mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	To find the last use of a register unit, start from the bottom and scan upwards until a user is found. <rdar://problem/13353090> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@176706 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1173 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1173 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the LiveInterval analysis pass which is used
 | |
| // by the Linear Scan Register allocator. This pass linearizes the
 | |
| // basic blocks of the function in DFS order and uses the
 | |
| // LiveVariables pass to conservatively compute live intervals for
 | |
| // each virtual and physical register.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "LiveRangeCalc.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/VirtRegMap.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <limits>
 | |
| using namespace llvm;
 | |
| 
 | |
| char LiveIntervals::ID = 0;
 | |
| char &llvm::LiveIntervalsID = LiveIntervals::ID;
 | |
| INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
 | |
|                 "Live Interval Analysis", false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveVariables)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | |
| INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
 | |
|                 "Live Interval Analysis", false, false)
 | |
| 
 | |
| void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addPreserved<AliasAnalysis>();
 | |
|   // LiveVariables isn't really required by this analysis, it is only required
 | |
|   // here to make sure it is live during TwoAddressInstructionPass and
 | |
|   // PHIElimination. This is temporary.
 | |
|   AU.addRequired<LiveVariables>();
 | |
|   AU.addPreserved<LiveVariables>();
 | |
|   AU.addPreservedID(MachineLoopInfoID);
 | |
|   AU.addRequiredTransitiveID(MachineDominatorsID);
 | |
|   AU.addPreservedID(MachineDominatorsID);
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addRequiredTransitive<SlotIndexes>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
 | |
|   DomTree(0), LRCalc(0) {
 | |
|   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| LiveIntervals::~LiveIntervals() {
 | |
|   delete LRCalc;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::releaseMemory() {
 | |
|   // Free the live intervals themselves.
 | |
|   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
 | |
|     delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
 | |
|   VirtRegIntervals.clear();
 | |
|   RegMaskSlots.clear();
 | |
|   RegMaskBits.clear();
 | |
|   RegMaskBlocks.clear();
 | |
| 
 | |
|   for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
 | |
|     delete RegUnitIntervals[i];
 | |
|   RegUnitIntervals.clear();
 | |
| 
 | |
|   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
 | |
|   VNInfoAllocator.Reset();
 | |
| }
 | |
| 
 | |
| /// runOnMachineFunction - Register allocate the whole function
 | |
| ///
 | |
| bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
 | |
|   MF = &fn;
 | |
|   MRI = &MF->getRegInfo();
 | |
|   TM = &fn.getTarget();
 | |
|   TRI = TM->getRegisterInfo();
 | |
|   TII = TM->getInstrInfo();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   Indexes = &getAnalysis<SlotIndexes>();
 | |
|   DomTree = &getAnalysis<MachineDominatorTree>();
 | |
|   if (!LRCalc)
 | |
|     LRCalc = new LiveRangeCalc();
 | |
| 
 | |
|   // Allocate space for all virtual registers.
 | |
|   VirtRegIntervals.resize(MRI->getNumVirtRegs());
 | |
| 
 | |
|   computeVirtRegs();
 | |
|   computeRegMasks();
 | |
|   computeLiveInRegUnits();
 | |
| 
 | |
|   DEBUG(dump());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// print - Implement the dump method.
 | |
| void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
 | |
|   OS << "********** INTERVALS **********\n";
 | |
| 
 | |
|   // Dump the regunits.
 | |
|   for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
 | |
|     if (LiveInterval *LI = RegUnitIntervals[i])
 | |
|       OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
 | |
| 
 | |
|   // Dump the virtregs.
 | |
|   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | |
|     if (hasInterval(Reg))
 | |
|       OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
 | |
|   }
 | |
| 
 | |
|   OS << "RegMasks:";
 | |
|   for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
 | |
|     OS << ' ' << RegMaskSlots[i];
 | |
|   OS << '\n';
 | |
| 
 | |
|   printInstrs(OS);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::printInstrs(raw_ostream &OS) const {
 | |
|   OS << "********** MACHINEINSTRS **********\n";
 | |
|   MF->print(OS, Indexes);
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void LiveIntervals::dumpInstrs() const {
 | |
|   printInstrs(dbgs());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| LiveInterval* LiveIntervals::createInterval(unsigned reg) {
 | |
|   float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
 | |
|   return new LiveInterval(reg, Weight);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// computeVirtRegInterval - Compute the live interval of a virtual register,
 | |
| /// based on defs and uses.
 | |
| void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) {
 | |
|   assert(LRCalc && "LRCalc not initialized.");
 | |
|   assert(LI->empty() && "Should only compute empty intervals.");
 | |
|   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
 | |
|   LRCalc->createDeadDefs(LI);
 | |
|   LRCalc->extendToUses(LI);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::computeVirtRegs() {
 | |
|   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | |
|     if (MRI->reg_nodbg_empty(Reg))
 | |
|       continue;
 | |
|     LiveInterval *LI = createInterval(Reg);
 | |
|     VirtRegIntervals[Reg] = LI;
 | |
|     computeVirtRegInterval(LI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveIntervals::computeRegMasks() {
 | |
|   RegMaskBlocks.resize(MF->getNumBlockIDs());
 | |
| 
 | |
|   // Find all instructions with regmask operands.
 | |
|   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     MachineBasicBlock *MBB = MBBI;
 | |
|     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
 | |
|     RMB.first = RegMaskSlots.size();
 | |
|     for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
 | |
|          MI != ME; ++MI)
 | |
|       for (MIOperands MO(MI); MO.isValid(); ++MO) {
 | |
|         if (!MO->isRegMask())
 | |
|           continue;
 | |
|           RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
 | |
|           RegMaskBits.push_back(MO->getRegMask());
 | |
|       }
 | |
|     // Compute the number of register mask instructions in this block.
 | |
|     RMB.second = RegMaskSlots.size() - RMB.first;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           Register Unit Liveness
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Fixed interference typically comes from ABI boundaries: Function arguments
 | |
| // and return values are passed in fixed registers, and so are exception
 | |
| // pointers entering landing pads. Certain instructions require values to be
 | |
| // present in specific registers. That is also represented through fixed
 | |
| // interference.
 | |
| //
 | |
| 
 | |
| /// computeRegUnitInterval - Compute the live interval of a register unit, based
 | |
| /// on the uses and defs of aliasing registers.  The interval should be empty,
 | |
| /// or contain only dead phi-defs from ABI blocks.
 | |
| void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
 | |
|   unsigned Unit = LI->reg;
 | |
| 
 | |
|   assert(LRCalc && "LRCalc not initialized.");
 | |
|   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
 | |
| 
 | |
|   // The physregs aliasing Unit are the roots and their super-registers.
 | |
|   // Create all values as dead defs before extending to uses. Note that roots
 | |
|   // may share super-registers. That's OK because createDeadDefs() is
 | |
|   // idempotent. It is very rare for a register unit to have multiple roots, so
 | |
|   // uniquing super-registers is probably not worthwhile.
 | |
|   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
 | |
|     unsigned Root = *Roots;
 | |
|     if (!MRI->reg_empty(Root))
 | |
|       LRCalc->createDeadDefs(LI, Root);
 | |
|     for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
 | |
|       if (!MRI->reg_empty(*Supers))
 | |
|         LRCalc->createDeadDefs(LI, *Supers);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now extend LI to reach all uses.
 | |
|   // Ignore uses of reserved registers. We only track defs of those.
 | |
|   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
 | |
|     unsigned Root = *Roots;
 | |
|     if (!MRI->isReserved(Root) && !MRI->reg_empty(Root))
 | |
|       LRCalc->extendToUses(LI, Root);
 | |
|     for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
 | |
|       unsigned Reg = *Supers;
 | |
|       if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
 | |
|         LRCalc->extendToUses(LI, Reg);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// computeLiveInRegUnits - Precompute the live ranges of any register units
 | |
| /// that are live-in to an ABI block somewhere. Register values can appear
 | |
| /// without a corresponding def when entering the entry block or a landing pad.
 | |
| ///
 | |
| void LiveIntervals::computeLiveInRegUnits() {
 | |
|   RegUnitIntervals.resize(TRI->getNumRegUnits());
 | |
|   DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
 | |
| 
 | |
|   // Keep track of the intervals allocated.
 | |
|   SmallVector<LiveInterval*, 8> NewIntvs;
 | |
| 
 | |
|   // Check all basic blocks for live-ins.
 | |
|   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
 | |
|        MFI != MFE; ++MFI) {
 | |
|     const MachineBasicBlock *MBB = MFI;
 | |
| 
 | |
|     // We only care about ABI blocks: Entry + landing pads.
 | |
|     if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
 | |
|       continue;
 | |
| 
 | |
|     // Create phi-defs at Begin for all live-in registers.
 | |
|     SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
 | |
|     DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
 | |
|     for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
 | |
|          LIE = MBB->livein_end(); LII != LIE; ++LII) {
 | |
|       for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
 | |
|         unsigned Unit = *Units;
 | |
|         LiveInterval *Intv = RegUnitIntervals[Unit];
 | |
|         if (!Intv) {
 | |
|           Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
 | |
|           NewIntvs.push_back(Intv);
 | |
|         }
 | |
|         VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
 | |
|         (void)VNI;
 | |
|         DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
 | |
|       }
 | |
|     }
 | |
|     DEBUG(dbgs() << '\n');
 | |
|   }
 | |
|   DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
 | |
| 
 | |
|   // Compute the 'normal' part of the intervals.
 | |
|   for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
 | |
|     computeRegUnitInterval(NewIntvs[i]);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// shrinkToUses - After removing some uses of a register, shrink its live
 | |
| /// range to just the remaining uses. This method does not compute reaching
 | |
| /// defs for new uses, and it doesn't remove dead defs.
 | |
| bool LiveIntervals::shrinkToUses(LiveInterval *li,
 | |
|                                  SmallVectorImpl<MachineInstr*> *dead) {
 | |
|   DEBUG(dbgs() << "Shrink: " << *li << '\n');
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(li->reg)
 | |
|          && "Can only shrink virtual registers");
 | |
|   // Find all the values used, including PHI kills.
 | |
|   SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
 | |
| 
 | |
|   // Blocks that have already been added to WorkList as live-out.
 | |
|   SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
 | |
| 
 | |
|   // Visit all instructions reading li->reg.
 | |
|   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
 | |
|        MachineInstr *UseMI = I.skipInstruction();) {
 | |
|     if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
 | |
|       continue;
 | |
|     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
 | |
|     LiveRangeQuery LRQ(*li, Idx);
 | |
|     VNInfo *VNI = LRQ.valueIn();
 | |
|     if (!VNI) {
 | |
|       // This shouldn't happen: readsVirtualRegister returns true, but there is
 | |
|       // no live value. It is likely caused by a target getting <undef> flags
 | |
|       // wrong.
 | |
|       DEBUG(dbgs() << Idx << '\t' << *UseMI
 | |
|                    << "Warning: Instr claims to read non-existent value in "
 | |
|                     << *li << '\n');
 | |
|       continue;
 | |
|     }
 | |
|     // Special case: An early-clobber tied operand reads and writes the
 | |
|     // register one slot early.
 | |
|     if (VNInfo *DefVNI = LRQ.valueDefined())
 | |
|       Idx = DefVNI->def;
 | |
| 
 | |
|     WorkList.push_back(std::make_pair(Idx, VNI));
 | |
|   }
 | |
| 
 | |
|   // Create a new live interval with only minimal live segments per def.
 | |
|   LiveInterval NewLI(li->reg, 0);
 | |
|   for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
 | |
|        I != E; ++I) {
 | |
|     VNInfo *VNI = *I;
 | |
|     if (VNI->isUnused())
 | |
|       continue;
 | |
|     NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
 | |
|   }
 | |
| 
 | |
|   // Keep track of the PHIs that are in use.
 | |
|   SmallPtrSet<VNInfo*, 8> UsedPHIs;
 | |
| 
 | |
|   // Extend intervals to reach all uses in WorkList.
 | |
|   while (!WorkList.empty()) {
 | |
|     SlotIndex Idx = WorkList.back().first;
 | |
|     VNInfo *VNI = WorkList.back().second;
 | |
|     WorkList.pop_back();
 | |
|     const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
 | |
|     SlotIndex BlockStart = getMBBStartIdx(MBB);
 | |
| 
 | |
|     // Extend the live range for VNI to be live at Idx.
 | |
|     if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
 | |
|       (void)ExtVNI;
 | |
|       assert(ExtVNI == VNI && "Unexpected existing value number");
 | |
|       // Is this a PHIDef we haven't seen before?
 | |
|       if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
 | |
|         continue;
 | |
|       // The PHI is live, make sure the predecessors are live-out.
 | |
|       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
 | |
|            PE = MBB->pred_end(); PI != PE; ++PI) {
 | |
|         if (!LiveOut.insert(*PI))
 | |
|           continue;
 | |
|         SlotIndex Stop = getMBBEndIdx(*PI);
 | |
|         // A predecessor is not required to have a live-out value for a PHI.
 | |
|         if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
 | |
|           WorkList.push_back(std::make_pair(Stop, PVNI));
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // VNI is live-in to MBB.
 | |
|     DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
 | |
|     NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
 | |
| 
 | |
|     // Make sure VNI is live-out from the predecessors.
 | |
|     for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
 | |
|          PE = MBB->pred_end(); PI != PE; ++PI) {
 | |
|       if (!LiveOut.insert(*PI))
 | |
|         continue;
 | |
|       SlotIndex Stop = getMBBEndIdx(*PI);
 | |
|       assert(li->getVNInfoBefore(Stop) == VNI &&
 | |
|              "Wrong value out of predecessor");
 | |
|       WorkList.push_back(std::make_pair(Stop, VNI));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle dead values.
 | |
|   bool CanSeparate = false;
 | |
|   for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
 | |
|        I != E; ++I) {
 | |
|     VNInfo *VNI = *I;
 | |
|     if (VNI->isUnused())
 | |
|       continue;
 | |
|     LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
 | |
|     assert(LII != NewLI.end() && "Missing live range for PHI");
 | |
|     if (LII->end != VNI->def.getDeadSlot())
 | |
|       continue;
 | |
|     if (VNI->isPHIDef()) {
 | |
|       // This is a dead PHI. Remove it.
 | |
|       VNI->markUnused();
 | |
|       NewLI.removeRange(*LII);
 | |
|       DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
 | |
|       CanSeparate = true;
 | |
|     } else {
 | |
|       // This is a dead def. Make sure the instruction knows.
 | |
|       MachineInstr *MI = getInstructionFromIndex(VNI->def);
 | |
|       assert(MI && "No instruction defining live value");
 | |
|       MI->addRegisterDead(li->reg, TRI);
 | |
|       if (dead && MI->allDefsAreDead()) {
 | |
|         DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
 | |
|         dead->push_back(MI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Move the trimmed ranges back.
 | |
|   li->ranges.swap(NewLI.ranges);
 | |
|   DEBUG(dbgs() << "Shrunk: " << *li << '\n');
 | |
|   return CanSeparate;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::extendToIndices(LiveInterval *LI,
 | |
|                                     ArrayRef<SlotIndex> Indices) {
 | |
|   assert(LRCalc && "LRCalc not initialized.");
 | |
|   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
 | |
|   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
 | |
|     LRCalc->extend(LI, Indices[i]);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
 | |
|                                SmallVectorImpl<SlotIndex> *EndPoints) {
 | |
|   LiveRangeQuery LRQ(*LI, Kill);
 | |
|   VNInfo *VNI = LRQ.valueOut();
 | |
|   if (!VNI)
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
 | |
|   SlotIndex MBBStart, MBBEnd;
 | |
|   tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);
 | |
| 
 | |
|   // If VNI isn't live out from KillMBB, the value is trivially pruned.
 | |
|   if (LRQ.endPoint() < MBBEnd) {
 | |
|     LI->removeRange(Kill, LRQ.endPoint());
 | |
|     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // VNI is live out of KillMBB.
 | |
|   LI->removeRange(Kill, MBBEnd);
 | |
|   if (EndPoints) EndPoints->push_back(MBBEnd);
 | |
| 
 | |
|   // Find all blocks that are reachable from KillMBB without leaving VNI's live
 | |
|   // range. It is possible that KillMBB itself is reachable, so start a DFS
 | |
|   // from each successor.
 | |
|   typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
 | |
|   VisitedTy Visited;
 | |
|   for (MachineBasicBlock::succ_iterator
 | |
|        SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
 | |
|        SuccI != SuccE; ++SuccI) {
 | |
|     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
 | |
|          I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
 | |
|          I != E;) {
 | |
|       MachineBasicBlock *MBB = *I;
 | |
| 
 | |
|       // Check if VNI is live in to MBB.
 | |
|       tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
 | |
|       LiveRangeQuery LRQ(*LI, MBBStart);
 | |
|       if (LRQ.valueIn() != VNI) {
 | |
|         // This block isn't part of the VNI live range. Prune the search.
 | |
|         I.skipChildren();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Prune the search if VNI is killed in MBB.
 | |
|       if (LRQ.endPoint() < MBBEnd) {
 | |
|         LI->removeRange(MBBStart, LRQ.endPoint());
 | |
|         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
 | |
|         I.skipChildren();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // VNI is live through MBB.
 | |
|       LI->removeRange(MBBStart, MBBEnd);
 | |
|       if (EndPoints) EndPoints->push_back(MBBEnd);
 | |
|       ++I;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Register allocator hooks.
 | |
| //
 | |
| 
 | |
| void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
 | |
|   // Keep track of regunit ranges.
 | |
|   SmallVector<std::pair<LiveInterval*, LiveInterval::iterator>, 8> RU;
 | |
| 
 | |
|   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | |
|     if (MRI->reg_nodbg_empty(Reg))
 | |
|       continue;
 | |
|     LiveInterval *LI = &getInterval(Reg);
 | |
|     if (LI->empty())
 | |
|       continue;
 | |
| 
 | |
|     // Find the regunit intervals for the assigned register. They may overlap
 | |
|     // the virtual register live range, cancelling any kills.
 | |
|     RU.clear();
 | |
|     for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
 | |
|          ++Units) {
 | |
|       LiveInterval *RUInt = &getRegUnit(*Units);
 | |
|       if (RUInt->empty())
 | |
|         continue;
 | |
|       RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end)));
 | |
|     }
 | |
| 
 | |
|     // Every instruction that kills Reg corresponds to a live range end point.
 | |
|     for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
 | |
|          ++RI) {
 | |
|       // A block index indicates an MBB edge.
 | |
|       if (RI->end.isBlock())
 | |
|         continue;
 | |
|       MachineInstr *MI = getInstructionFromIndex(RI->end);
 | |
|       if (!MI)
 | |
|         continue;
 | |
| 
 | |
|       // Check if any of the reguints are live beyond the end of RI. That could
 | |
|       // happen when a physreg is defined as a copy of a virtreg:
 | |
|       //
 | |
|       //   %EAX = COPY %vreg5
 | |
|       //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
 | |
|       //   BAR %EAX<kill>
 | |
|       //
 | |
|       // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
 | |
|       bool CancelKill = false;
 | |
|       for (unsigned u = 0, e = RU.size(); u != e; ++u) {
 | |
|         LiveInterval *RInt = RU[u].first;
 | |
|         LiveInterval::iterator &I = RU[u].second;
 | |
|         if (I == RInt->end())
 | |
|           continue;
 | |
|         I = RInt->advanceTo(I, RI->end);
 | |
|         if (I == RInt->end() || I->start >= RI->end)
 | |
|           continue;
 | |
|         // I is overlapping RI.
 | |
|         CancelKill = true;
 | |
|         break;
 | |
|       }
 | |
|       if (CancelKill)
 | |
|         MI->clearRegisterKills(Reg, NULL);
 | |
|       else
 | |
|         MI->addRegisterKilled(Reg, NULL);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachineBasicBlock*
 | |
| LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
 | |
|   // A local live range must be fully contained inside the block, meaning it is
 | |
|   // defined and killed at instructions, not at block boundaries. It is not
 | |
|   // live in or or out of any block.
 | |
|   //
 | |
|   // It is technically possible to have a PHI-defined live range identical to a
 | |
|   // single block, but we are going to return false in that case.
 | |
| 
 | |
|   SlotIndex Start = LI.beginIndex();
 | |
|   if (Start.isBlock())
 | |
|     return NULL;
 | |
| 
 | |
|   SlotIndex Stop = LI.endIndex();
 | |
|   if (Stop.isBlock())
 | |
|     return NULL;
 | |
| 
 | |
|   // getMBBFromIndex doesn't need to search the MBB table when both indexes
 | |
|   // belong to proper instructions.
 | |
|   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
 | |
|   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
 | |
|   return MBB1 == MBB2 ? MBB1 : NULL;
 | |
| }
 | |
| 
 | |
| bool
 | |
| LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
 | |
|   for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
 | |
|        I != E; ++I) {
 | |
|     const VNInfo *PHI = *I;
 | |
|     if (PHI->isUnused() || !PHI->isPHIDef())
 | |
|       continue;
 | |
|     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
 | |
|     // Conservatively return true instead of scanning huge predecessor lists.
 | |
|     if (PHIMBB->pred_size() > 100)
 | |
|       return true;
 | |
|     for (MachineBasicBlock::const_pred_iterator
 | |
|          PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
 | |
|       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
 | |
|         return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| float
 | |
| LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
 | |
|   // Limit the loop depth ridiculousness.
 | |
|   if (loopDepth > 200)
 | |
|     loopDepth = 200;
 | |
| 
 | |
|   // The loop depth is used to roughly estimate the number of times the
 | |
|   // instruction is executed. Something like 10^d is simple, but will quickly
 | |
|   // overflow a float. This expression behaves like 10^d for small d, but is
 | |
|   // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
 | |
|   // headroom before overflow.
 | |
|   // By the way, powf() might be unavailable here. For consistency,
 | |
|   // We may take pow(double,double).
 | |
|   float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
 | |
| 
 | |
|   return (isDef + isUse) * lc;
 | |
| }
 | |
| 
 | |
| LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
 | |
|                                                   MachineInstr* startInst) {
 | |
|   LiveInterval& Interval = getOrCreateInterval(reg);
 | |
|   VNInfo* VN = Interval.getNextValue(
 | |
|     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
 | |
|     getVNInfoAllocator());
 | |
|   LiveRange LR(
 | |
|      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
 | |
|      getMBBEndIdx(startInst->getParent()), VN);
 | |
|   Interval.addRange(LR);
 | |
| 
 | |
|   return LR;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          Register mask functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
 | |
|                                              BitVector &UsableRegs) {
 | |
|   if (LI.empty())
 | |
|     return false;
 | |
|   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
 | |
| 
 | |
|   // Use a smaller arrays for local live ranges.
 | |
|   ArrayRef<SlotIndex> Slots;
 | |
|   ArrayRef<const uint32_t*> Bits;
 | |
|   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
 | |
|     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
 | |
|     Bits = getRegMaskBitsInBlock(MBB->getNumber());
 | |
|   } else {
 | |
|     Slots = getRegMaskSlots();
 | |
|     Bits = getRegMaskBits();
 | |
|   }
 | |
| 
 | |
|   // We are going to enumerate all the register mask slots contained in LI.
 | |
|   // Start with a binary search of RegMaskSlots to find a starting point.
 | |
|   ArrayRef<SlotIndex>::iterator SlotI =
 | |
|     std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
 | |
|   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
 | |
| 
 | |
|   // No slots in range, LI begins after the last call.
 | |
|   if (SlotI == SlotE)
 | |
|     return false;
 | |
| 
 | |
|   bool Found = false;
 | |
|   for (;;) {
 | |
|     assert(*SlotI >= LiveI->start);
 | |
|     // Loop over all slots overlapping this segment.
 | |
|     while (*SlotI < LiveI->end) {
 | |
|       // *SlotI overlaps LI. Collect mask bits.
 | |
|       if (!Found) {
 | |
|         // This is the first overlap. Initialize UsableRegs to all ones.
 | |
|         UsableRegs.clear();
 | |
|         UsableRegs.resize(TRI->getNumRegs(), true);
 | |
|         Found = true;
 | |
|       }
 | |
|       // Remove usable registers clobbered by this mask.
 | |
|       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
 | |
|       if (++SlotI == SlotE)
 | |
|         return Found;
 | |
|     }
 | |
|     // *SlotI is beyond the current LI segment.
 | |
|     LiveI = LI.advanceTo(LiveI, *SlotI);
 | |
|     if (LiveI == LiveE)
 | |
|       return Found;
 | |
|     // Advance SlotI until it overlaps.
 | |
|     while (*SlotI < LiveI->start)
 | |
|       if (++SlotI == SlotE)
 | |
|         return Found;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         IntervalUpdate class.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
 | |
| class LiveIntervals::HMEditor {
 | |
| private:
 | |
|   LiveIntervals& LIS;
 | |
|   const MachineRegisterInfo& MRI;
 | |
|   const TargetRegisterInfo& TRI;
 | |
|   SlotIndex OldIdx;
 | |
|   SlotIndex NewIdx;
 | |
|   SmallPtrSet<LiveInterval*, 8> Updated;
 | |
|   bool UpdateFlags;
 | |
| 
 | |
| public:
 | |
|   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
 | |
|            const TargetRegisterInfo& TRI,
 | |
|            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
 | |
|     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
 | |
|       UpdateFlags(UpdateFlags) {}
 | |
| 
 | |
|   // FIXME: UpdateFlags is a workaround that creates live intervals for all
 | |
|   // physregs, even those that aren't needed for regalloc, in order to update
 | |
|   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
 | |
|   // flags, and postRA passes will use a live register utility instead.
 | |
|   LiveInterval *getRegUnitLI(unsigned Unit) {
 | |
|     if (UpdateFlags)
 | |
|       return &LIS.getRegUnit(Unit);
 | |
|     return LIS.getCachedRegUnit(Unit);
 | |
|   }
 | |
| 
 | |
|   /// Update all live ranges touched by MI, assuming a move from OldIdx to
 | |
|   /// NewIdx.
 | |
|   void updateAllRanges(MachineInstr *MI) {
 | |
|     DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
 | |
|     bool hasRegMask = false;
 | |
|     for (MIOperands MO(MI); MO.isValid(); ++MO) {
 | |
|       if (MO->isRegMask())
 | |
|         hasRegMask = true;
 | |
|       if (!MO->isReg())
 | |
|         continue;
 | |
|       // Aggressively clear all kill flags.
 | |
|       // They are reinserted by VirtRegRewriter.
 | |
|       if (MO->isUse())
 | |
|         MO->setIsKill(false);
 | |
| 
 | |
|       unsigned Reg = MO->getReg();
 | |
|       if (!Reg)
 | |
|         continue;
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|         updateRange(LIS.getInterval(Reg));
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // For physregs, only update the regunits that actually have a
 | |
|       // precomputed live range.
 | |
|       for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
 | |
|         if (LiveInterval *LI = getRegUnitLI(*Units))
 | |
|           updateRange(*LI);
 | |
|     }
 | |
|     if (hasRegMask)
 | |
|       updateRegMaskSlots();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   /// Update a single live range, assuming an instruction has been moved from
 | |
|   /// OldIdx to NewIdx.
 | |
|   void updateRange(LiveInterval &LI) {
 | |
|     if (!Updated.insert(&LI))
 | |
|       return;
 | |
|     DEBUG({
 | |
|       dbgs() << "     ";
 | |
|       if (TargetRegisterInfo::isVirtualRegister(LI.reg))
 | |
|         dbgs() << PrintReg(LI.reg);
 | |
|       else
 | |
|         dbgs() << PrintRegUnit(LI.reg, &TRI);
 | |
|       dbgs() << ":\t" << LI << '\n';
 | |
|     });
 | |
|     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
 | |
|       handleMoveDown(LI);
 | |
|     else
 | |
|       handleMoveUp(LI);
 | |
|     DEBUG(dbgs() << "        -->\t" << LI << '\n');
 | |
|     LI.verify();
 | |
|   }
 | |
| 
 | |
|   /// Update LI to reflect an instruction has been moved downwards from OldIdx
 | |
|   /// to NewIdx.
 | |
|   ///
 | |
|   /// 1. Live def at OldIdx:
 | |
|   ///    Move def to NewIdx, assert endpoint after NewIdx.
 | |
|   ///
 | |
|   /// 2. Live def at OldIdx, killed at NewIdx:
 | |
|   ///    Change to dead def at NewIdx.
 | |
|   ///    (Happens when bundling def+kill together).
 | |
|   ///
 | |
|   /// 3. Dead def at OldIdx:
 | |
|   ///    Move def to NewIdx, possibly across another live value.
 | |
|   ///
 | |
|   /// 4. Def at OldIdx AND at NewIdx:
 | |
|   ///    Remove live range [OldIdx;NewIdx) and value defined at OldIdx.
 | |
|   ///    (Happens when bundling multiple defs together).
 | |
|   ///
 | |
|   /// 5. Value read at OldIdx, killed before NewIdx:
 | |
|   ///    Extend kill to NewIdx.
 | |
|   ///
 | |
|   void handleMoveDown(LiveInterval &LI) {
 | |
|     // First look for a kill at OldIdx.
 | |
|     LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
 | |
|     LiveInterval::iterator E = LI.end();
 | |
|     // Is LI even live at OldIdx?
 | |
|     if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
 | |
|       return;
 | |
| 
 | |
|     // Handle a live-in value.
 | |
|     if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
 | |
|       bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
 | |
|       // If the live-in value already extends to NewIdx, there is nothing to do.
 | |
|       if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
 | |
|         return;
 | |
|       // Aggressively remove all kill flags from the old kill point.
 | |
|       // Kill flags shouldn't be used while live intervals exist, they will be
 | |
|       // reinserted by VirtRegRewriter.
 | |
|       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
 | |
|         for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
 | |
|           if (MO->isReg() && MO->isUse())
 | |
|             MO->setIsKill(false);
 | |
|       // Adjust I->end to reach NewIdx. This may temporarily make LI invalid by
 | |
|       // overlapping ranges. Case 5 above.
 | |
|       I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
 | |
|       // If this was a kill, there may also be a def. Otherwise we're done.
 | |
|       if (!isKill)
 | |
|         return;
 | |
|       ++I;
 | |
|     }
 | |
| 
 | |
|     // Check for a def at OldIdx.
 | |
|     if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
 | |
|       return;
 | |
|     // We have a def at OldIdx.
 | |
|     VNInfo *DefVNI = I->valno;
 | |
|     assert(DefVNI->def == I->start && "Inconsistent def");
 | |
|     DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
 | |
|     // If the defined value extends beyond NewIdx, just move the def down.
 | |
|     // This is case 1 above.
 | |
|     if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
 | |
|       I->start = DefVNI->def;
 | |
|       return;
 | |
|     }
 | |
|     // The remaining possibilities are now:
 | |
|     // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
 | |
|     // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
 | |
|     // In either case, it is possible that there is an existing def at NewIdx.
 | |
|     assert((I->end == OldIdx.getDeadSlot() ||
 | |
|             SlotIndex::isSameInstr(I->end, NewIdx)) &&
 | |
|             "Cannot move def below kill");
 | |
|     LiveInterval::iterator NewI = LI.advanceTo(I, NewIdx.getRegSlot());
 | |
|     if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
 | |
|       // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
 | |
|       // coalesced into that value.
 | |
|       assert(NewI->valno != DefVNI && "Multiple defs of value?");
 | |
|       LI.removeValNo(DefVNI);
 | |
|       return;
 | |
|     }
 | |
|     // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
 | |
|     // If the def at OldIdx was dead, we allow it to be moved across other LI
 | |
|     // values. The new range should be placed immediately before NewI, move any
 | |
|     // intermediate ranges up.
 | |
|     assert(NewI != I && "Inconsistent iterators");
 | |
|     std::copy(llvm::next(I), NewI, I);
 | |
|     *llvm::prior(NewI) = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
 | |
|   }
 | |
| 
 | |
|   /// Update LI to reflect an instruction has been moved upwards from OldIdx
 | |
|   /// to NewIdx.
 | |
|   ///
 | |
|   /// 1. Live def at OldIdx:
 | |
|   ///    Hoist def to NewIdx.
 | |
|   ///
 | |
|   /// 2. Dead def at OldIdx:
 | |
|   ///    Hoist def+end to NewIdx, possibly move across other values.
 | |
|   ///
 | |
|   /// 3. Dead def at OldIdx AND existing def at NewIdx:
 | |
|   ///    Remove value defined at OldIdx, coalescing it with existing value.
 | |
|   ///
 | |
|   /// 4. Live def at OldIdx AND existing def at NewIdx:
 | |
|   ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
 | |
|   ///    (Happens when bundling multiple defs together).
 | |
|   ///
 | |
|   /// 5. Value killed at OldIdx:
 | |
|   ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
 | |
|   ///    OldIdx.
 | |
|   ///
 | |
|   void handleMoveUp(LiveInterval &LI) {
 | |
|     // First look for a kill at OldIdx.
 | |
|     LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
 | |
|     LiveInterval::iterator E = LI.end();
 | |
|     // Is LI even live at OldIdx?
 | |
|     if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
 | |
|       return;
 | |
| 
 | |
|     // Handle a live-in value.
 | |
|     if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
 | |
|       // If the live-in value isn't killed here, there is nothing to do.
 | |
|       if (!SlotIndex::isSameInstr(OldIdx, I->end))
 | |
|         return;
 | |
|       // Adjust I->end to end at NewIdx. If we are hoisting a kill above
 | |
|       // another use, we need to search for that use. Case 5 above.
 | |
|       I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
 | |
|       ++I;
 | |
|       // If OldIdx also defines a value, there couldn't have been another use.
 | |
|       if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
 | |
|         // No def, search for the new kill.
 | |
|         // This can never be an early clobber kill since there is no def.
 | |
|         llvm::prior(I)->end = findLastUseBefore(LI.reg).getRegSlot();
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now deal with the def at OldIdx.
 | |
|     assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
 | |
|     VNInfo *DefVNI = I->valno;
 | |
|     assert(DefVNI->def == I->start && "Inconsistent def");
 | |
|     DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
 | |
| 
 | |
|     // Check for an existing def at NewIdx.
 | |
|     LiveInterval::iterator NewI = LI.find(NewIdx.getRegSlot());
 | |
|     if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
 | |
|       assert(NewI->valno != DefVNI && "Same value defined more than once?");
 | |
|       // There is an existing def at NewIdx.
 | |
|       if (I->end.isDead()) {
 | |
|         // Case 3: Remove the dead def at OldIdx.
 | |
|         LI.removeValNo(DefVNI);
 | |
|         return;
 | |
|       }
 | |
|       // Case 4: Replace def at NewIdx with live def at OldIdx.
 | |
|       I->start = DefVNI->def;
 | |
|       LI.removeValNo(NewI->valno);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // There is no existing def at NewIdx. Hoist DefVNI.
 | |
|     if (!I->end.isDead()) {
 | |
|       // Leave the end point of a live def.
 | |
|       I->start = DefVNI->def;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // DefVNI is a dead def. It may have been moved across other values in LI,
 | |
|     // so move I up to NewI. Slide [NewI;I) down one position.
 | |
|     std::copy_backward(NewI, I, llvm::next(I));
 | |
|     *NewI = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
 | |
|   }
 | |
| 
 | |
|   void updateRegMaskSlots() {
 | |
|     SmallVectorImpl<SlotIndex>::iterator RI =
 | |
|       std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
 | |
|                        OldIdx);
 | |
|     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
 | |
|            "No RegMask at OldIdx.");
 | |
|     *RI = NewIdx.getRegSlot();
 | |
|     assert((RI == LIS.RegMaskSlots.begin() ||
 | |
|             SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) &&
 | |
|             "Cannot move regmask instruction above another call");
 | |
|     assert((llvm::next(RI) == LIS.RegMaskSlots.end() ||
 | |
|             SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) &&
 | |
|             "Cannot move regmask instruction below another call");
 | |
|   }
 | |
| 
 | |
|   // Return the last use of reg between NewIdx and OldIdx.
 | |
|   SlotIndex findLastUseBefore(unsigned Reg) {
 | |
| 
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|       SlotIndex LastUse = NewIdx;
 | |
|       for (MachineRegisterInfo::use_nodbg_iterator
 | |
|              UI = MRI.use_nodbg_begin(Reg),
 | |
|              UE = MRI.use_nodbg_end();
 | |
|            UI != UE; UI.skipInstruction()) {
 | |
|         const MachineInstr* MI = &*UI;
 | |
|         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
 | |
|         if (InstSlot > LastUse && InstSlot < OldIdx)
 | |
|           LastUse = InstSlot;
 | |
|       }
 | |
|       return LastUse;
 | |
|     }
 | |
| 
 | |
|     // This is a regunit interval, so scanning the use list could be very
 | |
|     // expensive. Scan upwards from OldIdx instead.
 | |
|     assert(NewIdx < OldIdx && "Expected upwards move");
 | |
|     SlotIndexes *Indexes = LIS.getSlotIndexes();
 | |
|     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
 | |
| 
 | |
|     // OldIdx may not correspond to an instruction any longer, so set MII to
 | |
|     // point to the next instruction after OldIdx, or MBB->end().
 | |
|     MachineBasicBlock::iterator MII = MBB->end();
 | |
|     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
 | |
|                            Indexes->getNextNonNullIndex(OldIdx)))
 | |
|       if (MI->getParent() == MBB)
 | |
|         MII = MI;
 | |
| 
 | |
|     MachineBasicBlock::iterator Begin = MBB->begin();
 | |
|     while (MII != Begin) {
 | |
|       if ((--MII)->isDebugValue())
 | |
|         continue;
 | |
|       SlotIndex Idx = Indexes->getInstructionIndex(MII);
 | |
| 
 | |
|       // Stop searching when NewIdx is reached.
 | |
|       if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
 | |
|         return NewIdx;
 | |
| 
 | |
|       // Check if MII uses Reg.
 | |
|       for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
 | |
|         if (MO->isReg() &&
 | |
|             TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
 | |
|             TRI.hasRegUnit(MO->getReg(), Reg))
 | |
|           return Idx;
 | |
|     }
 | |
|     // Didn't reach NewIdx. It must be the first instruction in the block.
 | |
|     return NewIdx;
 | |
|   }
 | |
| };
 | |
| 
 | |
| void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
 | |
|   assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
 | |
|   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
 | |
|   Indexes->removeMachineInstrFromMaps(MI);
 | |
|   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
 | |
|   assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
 | |
|          OldIndex < getMBBEndIdx(MI->getParent()) &&
 | |
|          "Cannot handle moves across basic block boundaries.");
 | |
| 
 | |
|   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
 | |
|   HME.updateAllRanges(MI);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
 | |
|                                          MachineInstr* BundleStart,
 | |
|                                          bool UpdateFlags) {
 | |
|   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
 | |
|   SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
 | |
|   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
 | |
|   HME.updateAllRanges(MI);
 | |
| }
 | |
| 
 | |
| void
 | |
| LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
 | |
|                                       MachineBasicBlock::iterator Begin,
 | |
|                                       MachineBasicBlock::iterator End,
 | |
|                                       ArrayRef<unsigned> OrigRegs) {
 | |
|   // Find anchor points, which are at the beginning/end of blocks or at
 | |
|   // instructions that already have indexes.
 | |
|   while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
 | |
|     --Begin;
 | |
|   while (End != MBB->end() && !Indexes->hasIndex(End))
 | |
|     ++End;
 | |
| 
 | |
|   SlotIndex endIdx;
 | |
|   if (End == MBB->end())
 | |
|     endIdx = getMBBEndIdx(MBB).getPrevSlot();
 | |
|   else
 | |
|     endIdx = getInstructionIndex(End);
 | |
| 
 | |
|   Indexes->repairIndexesInRange(MBB, Begin, End);
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = End; I != Begin;) {
 | |
|     --I;
 | |
|     MachineInstr *MI = I;
 | |
|     if (MI->isDebugValue())
 | |
|       continue;
 | |
|     for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
 | |
|          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
 | |
|       if (MOI->isReg() &&
 | |
|           TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
 | |
|           !hasInterval(MOI->getReg())) {
 | |
|         LiveInterval &LI = getOrCreateInterval(MOI->getReg());
 | |
|         computeVirtRegInterval(&LI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
 | |
|     unsigned Reg = OrigRegs[i];
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
| 
 | |
|     LiveInterval &LI = getInterval(Reg);
 | |
|     // FIXME: Should we support undefs that gain defs?
 | |
|     if (!LI.hasAtLeastOneValue())
 | |
|       continue;
 | |
| 
 | |
|     LiveInterval::iterator LII = LI.find(endIdx);
 | |
|     SlotIndex lastUseIdx;
 | |
|     if (LII != LI.end() && LII->start < endIdx)
 | |
|       lastUseIdx = LII->end;
 | |
|     else
 | |
|       --LII;
 | |
| 
 | |
|     for (MachineBasicBlock::iterator I = End; I != Begin;) {
 | |
|       --I;
 | |
|       MachineInstr *MI = I;
 | |
|       if (MI->isDebugValue())
 | |
|         continue;
 | |
| 
 | |
|       SlotIndex instrIdx = getInstructionIndex(MI);
 | |
|       bool isStartValid = getInstructionFromIndex(LII->start);
 | |
|       bool isEndValid = getInstructionFromIndex(LII->end);
 | |
| 
 | |
|       // FIXME: This doesn't currently handle early-clobber or multiple removed
 | |
|       // defs inside of the region to repair.
 | |
|       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
 | |
|            OE = MI->operands_end(); OI != OE; ++OI) {
 | |
|         const MachineOperand &MO = *OI;
 | |
|         if (!MO.isReg() || MO.getReg() != Reg)
 | |
|           continue;
 | |
| 
 | |
|         if (MO.isDef()) {
 | |
|           if (!isStartValid) {
 | |
|             if (LII->end.isDead()) {
 | |
|               SlotIndex prevStart;
 | |
|               if (LII != LI.begin())
 | |
|                 prevStart = llvm::prior(LII)->start;
 | |
| 
 | |
|               // FIXME: This could be more efficient if there was a removeRange
 | |
|               // method that returned an iterator.
 | |
|               LI.removeRange(*LII, true);
 | |
|               if (prevStart.isValid())
 | |
|                 LII = LI.find(prevStart);
 | |
|               else
 | |
|                 LII = LI.begin();
 | |
|             } else {
 | |
|               LII->start = instrIdx.getRegSlot();
 | |
|               LII->valno->def = instrIdx.getRegSlot();
 | |
|               if (MO.getSubReg() && !MO.isUndef())
 | |
|                 lastUseIdx = instrIdx.getRegSlot();
 | |
|               else
 | |
|                 lastUseIdx = SlotIndex();
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           if (!lastUseIdx.isValid()) {
 | |
|             VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
 | |
|                                           VNInfoAllocator);
 | |
|             LiveRange LR(instrIdx.getRegSlot(), instrIdx.getDeadSlot(), VNI);
 | |
|             LII = LI.addRange(LR);
 | |
|           } else if (LII->start != instrIdx.getRegSlot()) {
 | |
|             VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
 | |
|                                           VNInfoAllocator);
 | |
|             LiveRange LR(instrIdx.getRegSlot(), lastUseIdx, VNI);
 | |
|             LII = LI.addRange(LR);
 | |
|           }
 | |
| 
 | |
|           if (MO.getSubReg() && !MO.isUndef())
 | |
|             lastUseIdx = instrIdx.getRegSlot();
 | |
|           else
 | |
|             lastUseIdx = SlotIndex();
 | |
|         } else if (MO.isUse()) {
 | |
|           // FIXME: This should probably be handled outside of this branch,
 | |
|           // either as part of the def case (for defs inside of the region) or
 | |
|           // after the loop over the region.
 | |
|           if (!isEndValid && !LII->end.isBlock())
 | |
|             LII->end = instrIdx.getRegSlot();
 | |
|           if (!lastUseIdx.isValid())
 | |
|             lastUseIdx = instrIdx.getRegSlot();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 |