mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178823 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2397 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2397 lines
		
	
	
		
			82 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // MachineScheduler schedules machine instructions after phi elimination. It
 | |
| // preserves LiveIntervals so it can be invoked before register allocation.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "misched"
 | |
| 
 | |
| #include "llvm/CodeGen/MachineScheduler.h"
 | |
| #include "llvm/ADT/OwningPtr.h"
 | |
| #include "llvm/ADT/PriorityQueue.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegisterClassInfo.h"
 | |
| #include "llvm/CodeGen/ScheduleDFS.h"
 | |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GraphWriter.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <queue>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace llvm {
 | |
| cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
 | |
|                            cl::desc("Force top-down list scheduling"));
 | |
| cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
 | |
|                             cl::desc("Force bottom-up list scheduling"));
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
 | |
|   cl::desc("Pop up a window to show MISched dags after they are processed"));
 | |
| 
 | |
| static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
 | |
|   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
 | |
| #else
 | |
| static bool ViewMISchedDAGs = false;
 | |
| #endif // NDEBUG
 | |
| 
 | |
| // Experimental heuristics
 | |
| static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
 | |
|   cl::desc("Enable load clustering."), cl::init(true));
 | |
| 
 | |
| // Experimental heuristics
 | |
| static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
 | |
|   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
 | |
| 
 | |
| static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
 | |
|   cl::desc("Verify machine instrs before and after machine scheduling"));
 | |
| 
 | |
| // DAG subtrees must have at least this many nodes.
 | |
| static const unsigned MinSubtreeSize = 8;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Machine Instruction Scheduling Pass and Registry
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MachineSchedContext::MachineSchedContext():
 | |
|     MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
 | |
|   RegClassInfo = new RegisterClassInfo();
 | |
| }
 | |
| 
 | |
| MachineSchedContext::~MachineSchedContext() {
 | |
|   delete RegClassInfo;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// MachineScheduler runs after coalescing and before register allocation.
 | |
| class MachineScheduler : public MachineSchedContext,
 | |
|                          public MachineFunctionPass {
 | |
| public:
 | |
|   MachineScheduler();
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
| 
 | |
|   virtual void releaseMemory() {}
 | |
| 
 | |
|   virtual bool runOnMachineFunction(MachineFunction&);
 | |
| 
 | |
|   virtual void print(raw_ostream &O, const Module* = 0) const;
 | |
| 
 | |
|   static char ID; // Class identification, replacement for typeinfo
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| char MachineScheduler::ID = 0;
 | |
| 
 | |
| char &llvm::MachineSchedulerID = MachineScheduler::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
 | |
|                       "Machine Instruction Scheduler", false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | |
| INITIALIZE_PASS_END(MachineScheduler, "misched",
 | |
|                     "Machine Instruction Scheduler", false, false)
 | |
| 
 | |
| MachineScheduler::MachineScheduler()
 | |
| : MachineFunctionPass(ID) {
 | |
|   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequiredID(MachineDominatorsID);
 | |
|   AU.addRequired<MachineLoopInfo>();
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addRequired<TargetPassConfig>();
 | |
|   AU.addRequired<SlotIndexes>();
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addRequired<LiveIntervals>();
 | |
|   AU.addPreserved<LiveIntervals>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| MachinePassRegistry MachineSchedRegistry::Registry;
 | |
| 
 | |
| /// A dummy default scheduler factory indicates whether the scheduler
 | |
| /// is overridden on the command line.
 | |
| static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// MachineSchedOpt allows command line selection of the scheduler.
 | |
| static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
 | |
|                RegisterPassParser<MachineSchedRegistry> >
 | |
| MachineSchedOpt("misched",
 | |
|                 cl::init(&useDefaultMachineSched), cl::Hidden,
 | |
|                 cl::desc("Machine instruction scheduler to use"));
 | |
| 
 | |
| static MachineSchedRegistry
 | |
| DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
 | |
|                      useDefaultMachineSched);
 | |
| 
 | |
| /// Forward declare the standard machine scheduler. This will be used as the
 | |
| /// default scheduler if the target does not set a default.
 | |
| static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
 | |
| 
 | |
| 
 | |
| /// Decrement this iterator until reaching the top or a non-debug instr.
 | |
| static MachineBasicBlock::iterator
 | |
| priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
 | |
|   assert(I != Beg && "reached the top of the region, cannot decrement");
 | |
|   while (--I != Beg) {
 | |
|     if (!I->isDebugValue())
 | |
|       break;
 | |
|   }
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| /// If this iterator is a debug value, increment until reaching the End or a
 | |
| /// non-debug instruction.
 | |
| static MachineBasicBlock::iterator
 | |
| nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
 | |
|   for(; I != End; ++I) {
 | |
|     if (!I->isDebugValue())
 | |
|       break;
 | |
|   }
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| /// Top-level MachineScheduler pass driver.
 | |
| ///
 | |
| /// Visit blocks in function order. Divide each block into scheduling regions
 | |
| /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
 | |
| /// consistent with the DAG builder, which traverses the interior of the
 | |
| /// scheduling regions bottom-up.
 | |
| ///
 | |
| /// This design avoids exposing scheduling boundaries to the DAG builder,
 | |
| /// simplifying the DAG builder's support for "special" target instructions.
 | |
| /// At the same time the design allows target schedulers to operate across
 | |
| /// scheduling boundaries, for example to bundle the boudary instructions
 | |
| /// without reordering them. This creates complexity, because the target
 | |
| /// scheduler must update the RegionBegin and RegionEnd positions cached by
 | |
| /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
 | |
| /// design would be to split blocks at scheduling boundaries, but LLVM has a
 | |
| /// general bias against block splitting purely for implementation simplicity.
 | |
| bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
 | |
|   DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
 | |
| 
 | |
|   // Initialize the context of the pass.
 | |
|   MF = &mf;
 | |
|   MLI = &getAnalysis<MachineLoopInfo>();
 | |
|   MDT = &getAnalysis<MachineDominatorTree>();
 | |
|   PassConfig = &getAnalysis<TargetPassConfig>();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   LIS = &getAnalysis<LiveIntervals>();
 | |
|   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | |
| 
 | |
|   if (VerifyScheduling) {
 | |
|     DEBUG(LIS->print(dbgs()));
 | |
|     MF->verify(this, "Before machine scheduling.");
 | |
|   }
 | |
|   RegClassInfo->runOnMachineFunction(*MF);
 | |
| 
 | |
|   // Select the scheduler, or set the default.
 | |
|   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
 | |
|   if (Ctor == useDefaultMachineSched) {
 | |
|     // Get the default scheduler set by the target.
 | |
|     Ctor = MachineSchedRegistry::getDefault();
 | |
|     if (!Ctor) {
 | |
|       Ctor = createConvergingSched;
 | |
|       MachineSchedRegistry::setDefault(Ctor);
 | |
|     }
 | |
|   }
 | |
|   // Instantiate the selected scheduler.
 | |
|   OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
 | |
| 
 | |
|   // Visit all machine basic blocks.
 | |
|   //
 | |
|   // TODO: Visit blocks in global postorder or postorder within the bottom-up
 | |
|   // loop tree. Then we can optionally compute global RegPressure.
 | |
|   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
 | |
|        MBB != MBBEnd; ++MBB) {
 | |
| 
 | |
|     Scheduler->startBlock(MBB);
 | |
| 
 | |
|     // Break the block into scheduling regions [I, RegionEnd), and schedule each
 | |
|     // region as soon as it is discovered. RegionEnd points the scheduling
 | |
|     // boundary at the bottom of the region. The DAG does not include RegionEnd,
 | |
|     // but the region does (i.e. the next RegionEnd is above the previous
 | |
|     // RegionBegin). If the current block has no terminator then RegionEnd ==
 | |
|     // MBB->end() for the bottom region.
 | |
|     //
 | |
|     // The Scheduler may insert instructions during either schedule() or
 | |
|     // exitRegion(), even for empty regions. So the local iterators 'I' and
 | |
|     // 'RegionEnd' are invalid across these calls.
 | |
|     unsigned RemainingInstrs = MBB->size();
 | |
|     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
 | |
|         RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
 | |
| 
 | |
|       // Avoid decrementing RegionEnd for blocks with no terminator.
 | |
|       if (RegionEnd != MBB->end()
 | |
|           || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
 | |
|         --RegionEnd;
 | |
|         // Count the boundary instruction.
 | |
|         --RemainingInstrs;
 | |
|       }
 | |
| 
 | |
|       // The next region starts above the previous region. Look backward in the
 | |
|       // instruction stream until we find the nearest boundary.
 | |
|       MachineBasicBlock::iterator I = RegionEnd;
 | |
|       for(;I != MBB->begin(); --I, --RemainingInstrs) {
 | |
|         if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
 | |
|           break;
 | |
|       }
 | |
|       // Notify the scheduler of the region, even if we may skip scheduling
 | |
|       // it. Perhaps it still needs to be bundled.
 | |
|       Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
 | |
| 
 | |
|       // Skip empty scheduling regions (0 or 1 schedulable instructions).
 | |
|       if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
 | |
|         // Close the current region. Bundle the terminator if needed.
 | |
|         // This invalidates 'RegionEnd' and 'I'.
 | |
|         Scheduler->exitRegion();
 | |
|         continue;
 | |
|       }
 | |
|       DEBUG(dbgs() << "********** MI Scheduling **********\n");
 | |
|       DEBUG(dbgs() << MF->getName()
 | |
|             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
 | |
|             << "\n  From: " << *I << "    To: ";
 | |
|             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
 | |
|             else dbgs() << "End";
 | |
|             dbgs() << " Remaining: " << RemainingInstrs << "\n");
 | |
| 
 | |
|       // Schedule a region: possibly reorder instructions.
 | |
|       // This invalidates 'RegionEnd' and 'I'.
 | |
|       Scheduler->schedule();
 | |
| 
 | |
|       // Close the current region.
 | |
|       Scheduler->exitRegion();
 | |
| 
 | |
|       // Scheduling has invalidated the current iterator 'I'. Ask the
 | |
|       // scheduler for the top of it's scheduled region.
 | |
|       RegionEnd = Scheduler->begin();
 | |
|     }
 | |
|     assert(RemainingInstrs == 0 && "Instruction count mismatch!");
 | |
|     Scheduler->finishBlock();
 | |
|   }
 | |
|   Scheduler->finalizeSchedule();
 | |
|   DEBUG(LIS->print(dbgs()));
 | |
|   if (VerifyScheduling)
 | |
|     MF->verify(this, "After machine scheduling.");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void MachineScheduler::print(raw_ostream &O, const Module* m) const {
 | |
|   // unimplemented
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void ReadyQueue::dump() {
 | |
|   dbgs() << "  " << Name << ": ";
 | |
|   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
 | |
|     dbgs() << Queue[i]->NodeNum << " ";
 | |
|   dbgs() << "\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
 | |
| // preservation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ScheduleDAGMI::~ScheduleDAGMI() {
 | |
|   delete DFSResult;
 | |
|   DeleteContainerPointers(Mutations);
 | |
|   delete SchedImpl;
 | |
| }
 | |
| 
 | |
| bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
 | |
|   if (SuccSU != &ExitSU) {
 | |
|     // Do not use WillCreateCycle, it assumes SD scheduling.
 | |
|     // If Pred is reachable from Succ, then the edge creates a cycle.
 | |
|     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
 | |
|       return false;
 | |
|     Topo.AddPred(SuccSU, PredDep.getSUnit());
 | |
|   }
 | |
|   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
 | |
|   // Return true regardless of whether a new edge needed to be inserted.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
 | |
| /// NumPredsLeft reaches zero, release the successor node.
 | |
| ///
 | |
| /// FIXME: Adjust SuccSU height based on MinLatency.
 | |
| void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
 | |
|   SUnit *SuccSU = SuccEdge->getSUnit();
 | |
| 
 | |
|   if (SuccEdge->isWeak()) {
 | |
|     --SuccSU->WeakPredsLeft;
 | |
|     if (SuccEdge->isCluster())
 | |
|       NextClusterSucc = SuccSU;
 | |
|     return;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   if (SuccSU->NumPredsLeft == 0) {
 | |
|     dbgs() << "*** Scheduling failed! ***\n";
 | |
|     SuccSU->dump(this);
 | |
|     dbgs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| #endif
 | |
|   --SuccSU->NumPredsLeft;
 | |
|   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
 | |
|     SchedImpl->releaseTopNode(SuccSU);
 | |
| }
 | |
| 
 | |
| /// releaseSuccessors - Call releaseSucc on each of SU's successors.
 | |
| void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     releaseSucc(SU, &*I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
 | |
| /// NumSuccsLeft reaches zero, release the predecessor node.
 | |
| ///
 | |
| /// FIXME: Adjust PredSU height based on MinLatency.
 | |
| void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
 | |
|   SUnit *PredSU = PredEdge->getSUnit();
 | |
| 
 | |
|   if (PredEdge->isWeak()) {
 | |
|     --PredSU->WeakSuccsLeft;
 | |
|     if (PredEdge->isCluster())
 | |
|       NextClusterPred = PredSU;
 | |
|     return;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   if (PredSU->NumSuccsLeft == 0) {
 | |
|     dbgs() << "*** Scheduling failed! ***\n";
 | |
|     PredSU->dump(this);
 | |
|     dbgs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| #endif
 | |
|   --PredSU->NumSuccsLeft;
 | |
|   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
 | |
|     SchedImpl->releaseBottomNode(PredSU);
 | |
| }
 | |
| 
 | |
| /// releasePredecessors - Call releasePred on each of SU's predecessors.
 | |
| void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     releasePred(SU, &*I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
 | |
|                                     MachineBasicBlock::iterator InsertPos) {
 | |
|   // Advance RegionBegin if the first instruction moves down.
 | |
|   if (&*RegionBegin == MI)
 | |
|     ++RegionBegin;
 | |
| 
 | |
|   // Update the instruction stream.
 | |
|   BB->splice(InsertPos, BB, MI);
 | |
| 
 | |
|   // Update LiveIntervals
 | |
|   LIS->handleMove(MI, /*UpdateFlags=*/true);
 | |
| 
 | |
|   // Recede RegionBegin if an instruction moves above the first.
 | |
|   if (RegionBegin == InsertPos)
 | |
|     RegionBegin = MI;
 | |
| }
 | |
| 
 | |
| bool ScheduleDAGMI::checkSchedLimit() {
 | |
| #ifndef NDEBUG
 | |
|   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
 | |
|     CurrentTop = CurrentBottom;
 | |
|     return false;
 | |
|   }
 | |
|   ++NumInstrsScheduled;
 | |
| #endif
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
 | |
| /// crossing a scheduling boundary. [begin, end) includes all instructions in
 | |
| /// the region, including the boundary itself and single-instruction regions
 | |
| /// that don't get scheduled.
 | |
| void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
 | |
|                                 MachineBasicBlock::iterator begin,
 | |
|                                 MachineBasicBlock::iterator end,
 | |
|                                 unsigned endcount)
 | |
| {
 | |
|   ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
 | |
| 
 | |
|   // For convenience remember the end of the liveness region.
 | |
|   LiveRegionEnd =
 | |
|     (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
 | |
| }
 | |
| 
 | |
| // Setup the register pressure trackers for the top scheduled top and bottom
 | |
| // scheduled regions.
 | |
| void ScheduleDAGMI::initRegPressure() {
 | |
|   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
 | |
|   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
 | |
| 
 | |
|   // Close the RPTracker to finalize live ins.
 | |
|   RPTracker.closeRegion();
 | |
| 
 | |
|   DEBUG(RPTracker.getPressure().dump(TRI));
 | |
| 
 | |
|   // Initialize the live ins and live outs.
 | |
|   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
 | |
|   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
 | |
| 
 | |
|   // Close one end of the tracker so we can call
 | |
|   // getMaxUpward/DownwardPressureDelta before advancing across any
 | |
|   // instructions. This converts currently live regs into live ins/outs.
 | |
|   TopRPTracker.closeTop();
 | |
|   BotRPTracker.closeBottom();
 | |
| 
 | |
|   // Account for liveness generated by the region boundary.
 | |
|   if (LiveRegionEnd != RegionEnd)
 | |
|     BotRPTracker.recede();
 | |
| 
 | |
|   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
 | |
| 
 | |
|   // Cache the list of excess pressure sets in this region. This will also track
 | |
|   // the max pressure in the scheduled code for these sets.
 | |
|   RegionCriticalPSets.clear();
 | |
|   const std::vector<unsigned> &RegionPressure =
 | |
|     RPTracker.getPressure().MaxSetPressure;
 | |
|   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
 | |
|     unsigned Limit = TRI->getRegPressureSetLimit(i);
 | |
|     DEBUG(dbgs() << TRI->getRegPressureSetName(i)
 | |
|           << "Limit " << Limit
 | |
|           << " Actual " << RegionPressure[i] << "\n");
 | |
|     if (RegionPressure[i] > Limit)
 | |
|       RegionCriticalPSets.push_back(PressureElement(i, 0));
 | |
|   }
 | |
|   DEBUG(dbgs() << "Excess PSets: ";
 | |
|         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
 | |
|           dbgs() << TRI->getRegPressureSetName(
 | |
|             RegionCriticalPSets[i].PSetID) << " ";
 | |
|         dbgs() << "\n");
 | |
| }
 | |
| 
 | |
| // FIXME: When the pressure tracker deals in pressure differences then we won't
 | |
| // iterate over all RegionCriticalPSets[i].
 | |
| void ScheduleDAGMI::
 | |
| updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
 | |
|   for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
 | |
|     unsigned ID = RegionCriticalPSets[i].PSetID;
 | |
|     int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
 | |
|     if ((int)NewMaxPressure[ID] > MaxUnits)
 | |
|       MaxUnits = NewMaxPressure[ID];
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// schedule - Called back from MachineScheduler::runOnMachineFunction
 | |
| /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
 | |
| /// only includes instructions that have DAG nodes, not scheduling boundaries.
 | |
| ///
 | |
| /// This is a skeletal driver, with all the functionality pushed into helpers,
 | |
| /// so that it can be easilly extended by experimental schedulers. Generally,
 | |
| /// implementing MachineSchedStrategy should be sufficient to implement a new
 | |
| /// scheduling algorithm. However, if a scheduler further subclasses
 | |
| /// ScheduleDAGMI then it will want to override this virtual method in order to
 | |
| /// update any specialized state.
 | |
| void ScheduleDAGMI::schedule() {
 | |
|   buildDAGWithRegPressure();
 | |
| 
 | |
|   Topo.InitDAGTopologicalSorting();
 | |
| 
 | |
|   postprocessDAG();
 | |
| 
 | |
|   SmallVector<SUnit*, 8> TopRoots, BotRoots;
 | |
|   findRootsAndBiasEdges(TopRoots, BotRoots);
 | |
| 
 | |
|   // Initialize the strategy before modifying the DAG.
 | |
|   // This may initialize a DFSResult to be used for queue priority.
 | |
|   SchedImpl->initialize(this);
 | |
| 
 | |
|   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | |
|           SUnits[su].dumpAll(this));
 | |
|   if (ViewMISchedDAGs) viewGraph();
 | |
| 
 | |
|   // Initialize ready queues now that the DAG and priority data are finalized.
 | |
|   initQueues(TopRoots, BotRoots);
 | |
| 
 | |
|   bool IsTopNode = false;
 | |
|   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
 | |
|     assert(!SU->isScheduled && "Node already scheduled");
 | |
|     if (!checkSchedLimit())
 | |
|       break;
 | |
| 
 | |
|     scheduleMI(SU, IsTopNode);
 | |
| 
 | |
|     updateQueues(SU, IsTopNode);
 | |
|   }
 | |
|   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
 | |
| 
 | |
|   placeDebugValues();
 | |
| 
 | |
|   DEBUG({
 | |
|       unsigned BBNum = begin()->getParent()->getNumber();
 | |
|       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
 | |
|       dumpSchedule();
 | |
|       dbgs() << '\n';
 | |
|     });
 | |
| }
 | |
| 
 | |
| /// Build the DAG and setup three register pressure trackers.
 | |
| void ScheduleDAGMI::buildDAGWithRegPressure() {
 | |
|   // Initialize the register pressure tracker used by buildSchedGraph.
 | |
|   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
 | |
| 
 | |
|   // Account for liveness generate by the region boundary.
 | |
|   if (LiveRegionEnd != RegionEnd)
 | |
|     RPTracker.recede();
 | |
| 
 | |
|   // Build the DAG, and compute current register pressure.
 | |
|   buildSchedGraph(AA, &RPTracker);
 | |
| 
 | |
|   // Initialize top/bottom trackers after computing region pressure.
 | |
|   initRegPressure();
 | |
| }
 | |
| 
 | |
| /// Apply each ScheduleDAGMutation step in order.
 | |
| void ScheduleDAGMI::postprocessDAG() {
 | |
|   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
 | |
|     Mutations[i]->apply(this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGMI::computeDFSResult() {
 | |
|   if (!DFSResult)
 | |
|     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
 | |
|   DFSResult->clear();
 | |
|   ScheduledTrees.clear();
 | |
|   DFSResult->resize(SUnits.size());
 | |
|   DFSResult->compute(SUnits);
 | |
|   ScheduledTrees.resize(DFSResult->getNumSubtrees());
 | |
| }
 | |
| 
 | |
| void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
 | |
|                                           SmallVectorImpl<SUnit*> &BotRoots) {
 | |
|   for (std::vector<SUnit>::iterator
 | |
|          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
 | |
|     SUnit *SU = &(*I);
 | |
|     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
 | |
| 
 | |
|     // Order predecessors so DFSResult follows the critical path.
 | |
|     SU->biasCriticalPath();
 | |
| 
 | |
|     // A SUnit is ready to top schedule if it has no predecessors.
 | |
|     if (!I->NumPredsLeft)
 | |
|       TopRoots.push_back(SU);
 | |
|     // A SUnit is ready to bottom schedule if it has no successors.
 | |
|     if (!I->NumSuccsLeft)
 | |
|       BotRoots.push_back(SU);
 | |
|   }
 | |
|   ExitSU.biasCriticalPath();
 | |
| }
 | |
| 
 | |
| /// Identify DAG roots and setup scheduler queues.
 | |
| void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
 | |
|                                ArrayRef<SUnit*> BotRoots) {
 | |
|   NextClusterSucc = NULL;
 | |
|   NextClusterPred = NULL;
 | |
| 
 | |
|   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
 | |
|   //
 | |
|   // Nodes with unreleased weak edges can still be roots.
 | |
|   // Release top roots in forward order.
 | |
|   for (SmallVectorImpl<SUnit*>::const_iterator
 | |
|          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
 | |
|     SchedImpl->releaseTopNode(*I);
 | |
|   }
 | |
|   // Release bottom roots in reverse order so the higher priority nodes appear
 | |
|   // first. This is more natural and slightly more efficient.
 | |
|   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
 | |
|          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
 | |
|     SchedImpl->releaseBottomNode(*I);
 | |
|   }
 | |
| 
 | |
|   releaseSuccessors(&EntrySU);
 | |
|   releasePredecessors(&ExitSU);
 | |
| 
 | |
|   SchedImpl->registerRoots();
 | |
| 
 | |
|   // Advance past initial DebugValues.
 | |
|   assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
 | |
|   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
 | |
|   TopRPTracker.setPos(CurrentTop);
 | |
| 
 | |
|   CurrentBottom = RegionEnd;
 | |
| }
 | |
| 
 | |
| /// Move an instruction and update register pressure.
 | |
| void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
 | |
|   // Move the instruction to its new location in the instruction stream.
 | |
|   MachineInstr *MI = SU->getInstr();
 | |
| 
 | |
|   if (IsTopNode) {
 | |
|     assert(SU->isTopReady() && "node still has unscheduled dependencies");
 | |
|     if (&*CurrentTop == MI)
 | |
|       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
 | |
|     else {
 | |
|       moveInstruction(MI, CurrentTop);
 | |
|       TopRPTracker.setPos(MI);
 | |
|     }
 | |
| 
 | |
|     // Update top scheduled pressure.
 | |
|     TopRPTracker.advance();
 | |
|     assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
 | |
|     updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
 | |
|   }
 | |
|   else {
 | |
|     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
 | |
|     MachineBasicBlock::iterator priorII =
 | |
|       priorNonDebug(CurrentBottom, CurrentTop);
 | |
|     if (&*priorII == MI)
 | |
|       CurrentBottom = priorII;
 | |
|     else {
 | |
|       if (&*CurrentTop == MI) {
 | |
|         CurrentTop = nextIfDebug(++CurrentTop, priorII);
 | |
|         TopRPTracker.setPos(CurrentTop);
 | |
|       }
 | |
|       moveInstruction(MI, CurrentBottom);
 | |
|       CurrentBottom = MI;
 | |
|     }
 | |
|     // Update bottom scheduled pressure.
 | |
|     BotRPTracker.recede();
 | |
|     assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
 | |
|     updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Update scheduler queues after scheduling an instruction.
 | |
| void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
 | |
|   // Release dependent instructions for scheduling.
 | |
|   if (IsTopNode)
 | |
|     releaseSuccessors(SU);
 | |
|   else
 | |
|     releasePredecessors(SU);
 | |
| 
 | |
|   SU->isScheduled = true;
 | |
| 
 | |
|   if (DFSResult) {
 | |
|     unsigned SubtreeID = DFSResult->getSubtreeID(SU);
 | |
|     if (!ScheduledTrees.test(SubtreeID)) {
 | |
|       ScheduledTrees.set(SubtreeID);
 | |
|       DFSResult->scheduleTree(SubtreeID);
 | |
|       SchedImpl->scheduleTree(SubtreeID);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Notify the scheduling strategy after updating the DAG.
 | |
|   SchedImpl->schedNode(SU, IsTopNode);
 | |
| }
 | |
| 
 | |
| /// Reinsert any remaining debug_values, just like the PostRA scheduler.
 | |
| void ScheduleDAGMI::placeDebugValues() {
 | |
|   // If first instruction was a DBG_VALUE then put it back.
 | |
|   if (FirstDbgValue) {
 | |
|     BB->splice(RegionBegin, BB, FirstDbgValue);
 | |
|     RegionBegin = FirstDbgValue;
 | |
|   }
 | |
| 
 | |
|   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
 | |
|          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
 | |
|     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
 | |
|     MachineInstr *DbgValue = P.first;
 | |
|     MachineBasicBlock::iterator OrigPrevMI = P.second;
 | |
|     if (&*RegionBegin == DbgValue)
 | |
|       ++RegionBegin;
 | |
|     BB->splice(++OrigPrevMI, BB, DbgValue);
 | |
|     if (OrigPrevMI == llvm::prior(RegionEnd))
 | |
|       RegionEnd = DbgValue;
 | |
|   }
 | |
|   DbgValues.clear();
 | |
|   FirstDbgValue = NULL;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void ScheduleDAGMI::dumpSchedule() const {
 | |
|   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
 | |
|     if (SUnit *SU = getSUnit(&(*MI)))
 | |
|       SU->dump(this);
 | |
|     else
 | |
|       dbgs() << "Missing SUnit\n";
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LoadClusterMutation - DAG post-processing to cluster loads.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// \brief Post-process the DAG to create cluster edges between neighboring
 | |
| /// loads.
 | |
| class LoadClusterMutation : public ScheduleDAGMutation {
 | |
|   struct LoadInfo {
 | |
|     SUnit *SU;
 | |
|     unsigned BaseReg;
 | |
|     unsigned Offset;
 | |
|     LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
 | |
|       : SU(su), BaseReg(reg), Offset(ofs) {}
 | |
|   };
 | |
|   static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
 | |
|                            const LoadClusterMutation::LoadInfo &RHS);
 | |
| 
 | |
|   const TargetInstrInfo *TII;
 | |
|   const TargetRegisterInfo *TRI;
 | |
| public:
 | |
|   LoadClusterMutation(const TargetInstrInfo *tii,
 | |
|                       const TargetRegisterInfo *tri)
 | |
|     : TII(tii), TRI(tri) {}
 | |
| 
 | |
|   virtual void apply(ScheduleDAGMI *DAG);
 | |
| protected:
 | |
|   void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
 | |
| };
 | |
| } // anonymous
 | |
| 
 | |
| bool LoadClusterMutation::LoadInfoLess(
 | |
|   const LoadClusterMutation::LoadInfo &LHS,
 | |
|   const LoadClusterMutation::LoadInfo &RHS) {
 | |
|   if (LHS.BaseReg != RHS.BaseReg)
 | |
|     return LHS.BaseReg < RHS.BaseReg;
 | |
|   return LHS.Offset < RHS.Offset;
 | |
| }
 | |
| 
 | |
| void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
 | |
|                                                   ScheduleDAGMI *DAG) {
 | |
|   SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
 | |
|   for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
 | |
|     SUnit *SU = Loads[Idx];
 | |
|     unsigned BaseReg;
 | |
|     unsigned Offset;
 | |
|     if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
 | |
|       LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
 | |
|   }
 | |
|   if (LoadRecords.size() < 2)
 | |
|     return;
 | |
|   std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
 | |
|   unsigned ClusterLength = 1;
 | |
|   for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
 | |
|     if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
 | |
|       ClusterLength = 1;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SUnit *SUa = LoadRecords[Idx].SU;
 | |
|     SUnit *SUb = LoadRecords[Idx+1].SU;
 | |
|     if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
 | |
|         && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
 | |
| 
 | |
|       DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
 | |
|             << SUb->NodeNum << ")\n");
 | |
|       // Copy successor edges from SUa to SUb. Interleaving computation
 | |
|       // dependent on SUa can prevent load combining due to register reuse.
 | |
|       // Predecessor edges do not need to be copied from SUb to SUa since nearby
 | |
|       // loads should have effectively the same inputs.
 | |
|       for (SUnit::const_succ_iterator
 | |
|              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
 | |
|         if (SI->getSUnit() == SUb)
 | |
|           continue;
 | |
|         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
 | |
|         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
 | |
|       }
 | |
|       ++ClusterLength;
 | |
|     }
 | |
|     else
 | |
|       ClusterLength = 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Callback from DAG postProcessing to create cluster edges for loads.
 | |
| void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
 | |
|   // Map DAG NodeNum to store chain ID.
 | |
|   DenseMap<unsigned, unsigned> StoreChainIDs;
 | |
|   // Map each store chain to a set of dependent loads.
 | |
|   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
 | |
|   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
 | |
|     SUnit *SU = &DAG->SUnits[Idx];
 | |
|     if (!SU->getInstr()->mayLoad())
 | |
|       continue;
 | |
|     unsigned ChainPredID = DAG->SUnits.size();
 | |
|     for (SUnit::const_pred_iterator
 | |
|            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
 | |
|       if (PI->isCtrl()) {
 | |
|         ChainPredID = PI->getSUnit()->NodeNum;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // Check if this chain-like pred has been seen
 | |
|     // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
 | |
|     unsigned NumChains = StoreChainDependents.size();
 | |
|     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
 | |
|       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
 | |
|     if (Result.second)
 | |
|       StoreChainDependents.resize(NumChains + 1);
 | |
|     StoreChainDependents[Result.first->second].push_back(SU);
 | |
|   }
 | |
|   // Iterate over the store chains.
 | |
|   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
 | |
|     clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // MacroFusion - DAG post-processing to encourage fusion of macro ops.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// \brief Post-process the DAG to create cluster edges between instructions
 | |
| /// that may be fused by the processor into a single operation.
 | |
| class MacroFusion : public ScheduleDAGMutation {
 | |
|   const TargetInstrInfo *TII;
 | |
| public:
 | |
|   MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
 | |
| 
 | |
|   virtual void apply(ScheduleDAGMI *DAG);
 | |
| };
 | |
| } // anonymous
 | |
| 
 | |
| /// \brief Callback from DAG postProcessing to create cluster edges to encourage
 | |
| /// fused operations.
 | |
| void MacroFusion::apply(ScheduleDAGMI *DAG) {
 | |
|   // For now, assume targets can only fuse with the branch.
 | |
|   MachineInstr *Branch = DAG->ExitSU.getInstr();
 | |
|   if (!Branch)
 | |
|     return;
 | |
| 
 | |
|   for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
 | |
|     SUnit *SU = &DAG->SUnits[--Idx];
 | |
|     if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
 | |
|       continue;
 | |
| 
 | |
|     // Create a single weak edge from SU to ExitSU. The only effect is to cause
 | |
|     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
 | |
|     // need to copy predecessor edges from ExitSU to SU, since top-down
 | |
|     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
 | |
|     // of SU, we could create an artificial edge from the deepest root, but it
 | |
|     // hasn't been needed yet.
 | |
|     bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
 | |
|     (void)Success;
 | |
|     assert(Success && "No DAG nodes should be reachable from ExitSU");
 | |
| 
 | |
|     DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
 | |
| /// the schedule.
 | |
| class ConvergingScheduler : public MachineSchedStrategy {
 | |
| public:
 | |
|   /// Represent the type of SchedCandidate found within a single queue.
 | |
|   /// pickNodeBidirectional depends on these listed by decreasing priority.
 | |
|   enum CandReason {
 | |
|     NoCand, SingleExcess, SingleCritical, Cluster,
 | |
|     ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
 | |
|     TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse,
 | |
|     NodeOrder};
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
 | |
| #endif
 | |
| 
 | |
|   /// Policy for scheduling the next instruction in the candidate's zone.
 | |
|   struct CandPolicy {
 | |
|     bool ReduceLatency;
 | |
|     unsigned ReduceResIdx;
 | |
|     unsigned DemandResIdx;
 | |
| 
 | |
|     CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
 | |
|   };
 | |
| 
 | |
|   /// Status of an instruction's critical resource consumption.
 | |
|   struct SchedResourceDelta {
 | |
|     // Count critical resources in the scheduled region required by SU.
 | |
|     unsigned CritResources;
 | |
| 
 | |
|     // Count critical resources from another region consumed by SU.
 | |
|     unsigned DemandedResources;
 | |
| 
 | |
|     SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
 | |
| 
 | |
|     bool operator==(const SchedResourceDelta &RHS) const {
 | |
|       return CritResources == RHS.CritResources
 | |
|         && DemandedResources == RHS.DemandedResources;
 | |
|     }
 | |
|     bool operator!=(const SchedResourceDelta &RHS) const {
 | |
|       return !operator==(RHS);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// Store the state used by ConvergingScheduler heuristics, required for the
 | |
|   /// lifetime of one invocation of pickNode().
 | |
|   struct SchedCandidate {
 | |
|     CandPolicy Policy;
 | |
| 
 | |
|     // The best SUnit candidate.
 | |
|     SUnit *SU;
 | |
| 
 | |
|     // The reason for this candidate.
 | |
|     CandReason Reason;
 | |
| 
 | |
|     // Register pressure values for the best candidate.
 | |
|     RegPressureDelta RPDelta;
 | |
| 
 | |
|     // Critical resource consumption of the best candidate.
 | |
|     SchedResourceDelta ResDelta;
 | |
| 
 | |
|     SchedCandidate(const CandPolicy &policy)
 | |
|     : Policy(policy), SU(NULL), Reason(NoCand) {}
 | |
| 
 | |
|     bool isValid() const { return SU; }
 | |
| 
 | |
|     // Copy the status of another candidate without changing policy.
 | |
|     void setBest(SchedCandidate &Best) {
 | |
|       assert(Best.Reason != NoCand && "uninitialized Sched candidate");
 | |
|       SU = Best.SU;
 | |
|       Reason = Best.Reason;
 | |
|       RPDelta = Best.RPDelta;
 | |
|       ResDelta = Best.ResDelta;
 | |
|     }
 | |
| 
 | |
|     void initResourceDelta(const ScheduleDAGMI *DAG,
 | |
|                            const TargetSchedModel *SchedModel);
 | |
|   };
 | |
| 
 | |
|   /// Summarize the unscheduled region.
 | |
|   struct SchedRemainder {
 | |
|     // Critical path through the DAG in expected latency.
 | |
|     unsigned CriticalPath;
 | |
| 
 | |
|     // Unscheduled resources
 | |
|     SmallVector<unsigned, 16> RemainingCounts;
 | |
|     // Critical resource for the unscheduled zone.
 | |
|     unsigned CritResIdx;
 | |
|     // Number of micro-ops left to schedule.
 | |
|     unsigned RemainingMicroOps;
 | |
| 
 | |
|     void reset() {
 | |
|       CriticalPath = 0;
 | |
|       RemainingCounts.clear();
 | |
|       CritResIdx = 0;
 | |
|       RemainingMicroOps = 0;
 | |
|     }
 | |
| 
 | |
|     SchedRemainder() { reset(); }
 | |
| 
 | |
|     void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
 | |
| 
 | |
|     unsigned getMaxRemainingCount(const TargetSchedModel *SchedModel) const {
 | |
|       if (!SchedModel->hasInstrSchedModel())
 | |
|         return 0;
 | |
| 
 | |
|       return std::max(
 | |
|         RemainingMicroOps * SchedModel->getMicroOpFactor(),
 | |
|         RemainingCounts[CritResIdx]);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// Each Scheduling boundary is associated with ready queues. It tracks the
 | |
|   /// current cycle in the direction of movement, and maintains the state
 | |
|   /// of "hazards" and other interlocks at the current cycle.
 | |
|   struct SchedBoundary {
 | |
|     ScheduleDAGMI *DAG;
 | |
|     const TargetSchedModel *SchedModel;
 | |
|     SchedRemainder *Rem;
 | |
| 
 | |
|     ReadyQueue Available;
 | |
|     ReadyQueue Pending;
 | |
|     bool CheckPending;
 | |
| 
 | |
|     // For heuristics, keep a list of the nodes that immediately depend on the
 | |
|     // most recently scheduled node.
 | |
|     SmallPtrSet<const SUnit*, 8> NextSUs;
 | |
| 
 | |
|     ScheduleHazardRecognizer *HazardRec;
 | |
| 
 | |
|     unsigned CurrCycle;
 | |
|     unsigned IssueCount;
 | |
| 
 | |
|     /// MinReadyCycle - Cycle of the soonest available instruction.
 | |
|     unsigned MinReadyCycle;
 | |
| 
 | |
|     // The expected latency of the critical path in this scheduled zone.
 | |
|     unsigned ExpectedLatency;
 | |
| 
 | |
|     // Resources used in the scheduled zone beyond this boundary.
 | |
|     SmallVector<unsigned, 16> ResourceCounts;
 | |
| 
 | |
|     // Cache the critical resources ID in this scheduled zone.
 | |
|     unsigned CritResIdx;
 | |
| 
 | |
|     // Is the scheduled region resource limited vs. latency limited.
 | |
|     bool IsResourceLimited;
 | |
| 
 | |
|     unsigned ExpectedCount;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     // Remember the greatest min operand latency.
 | |
|     unsigned MaxMinLatency;
 | |
| #endif
 | |
| 
 | |
|     void reset() {
 | |
|       // A new HazardRec is created for each DAG and owned by SchedBoundary.
 | |
|       delete HazardRec;
 | |
| 
 | |
|       Available.clear();
 | |
|       Pending.clear();
 | |
|       CheckPending = false;
 | |
|       NextSUs.clear();
 | |
|       HazardRec = 0;
 | |
|       CurrCycle = 0;
 | |
|       IssueCount = 0;
 | |
|       MinReadyCycle = UINT_MAX;
 | |
|       ExpectedLatency = 0;
 | |
|       ResourceCounts.resize(1);
 | |
|       assert(!ResourceCounts[0] && "nonzero count for bad resource");
 | |
|       CritResIdx = 0;
 | |
|       IsResourceLimited = false;
 | |
|       ExpectedCount = 0;
 | |
| #ifndef NDEBUG
 | |
|       MaxMinLatency = 0;
 | |
| #endif
 | |
|       // Reserve a zero-count for invalid CritResIdx.
 | |
|       ResourceCounts.resize(1);
 | |
|     }
 | |
| 
 | |
|     /// Pending queues extend the ready queues with the same ID and the
 | |
|     /// PendingFlag set.
 | |
|     SchedBoundary(unsigned ID, const Twine &Name):
 | |
|       DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
 | |
|       Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
 | |
|       HazardRec(0) {
 | |
|       reset();
 | |
|     }
 | |
| 
 | |
|     ~SchedBoundary() { delete HazardRec; }
 | |
| 
 | |
|     void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
 | |
|               SchedRemainder *rem);
 | |
| 
 | |
|     bool isTop() const {
 | |
|       return Available.getID() == ConvergingScheduler::TopQID;
 | |
|     }
 | |
| 
 | |
|     unsigned getUnscheduledLatency(SUnit *SU) const {
 | |
|       if (isTop())
 | |
|         return SU->getHeight();
 | |
|       return SU->getDepth() + SU->Latency;
 | |
|     }
 | |
| 
 | |
|     unsigned getCriticalCount() const {
 | |
|       return ResourceCounts[CritResIdx];
 | |
|     }
 | |
| 
 | |
|     bool checkHazard(SUnit *SU);
 | |
| 
 | |
|     void setLatencyPolicy(CandPolicy &Policy);
 | |
| 
 | |
|     void releaseNode(SUnit *SU, unsigned ReadyCycle);
 | |
| 
 | |
|     void bumpCycle();
 | |
| 
 | |
|     void countResource(unsigned PIdx, unsigned Cycles);
 | |
| 
 | |
|     void bumpNode(SUnit *SU);
 | |
| 
 | |
|     void releasePending();
 | |
| 
 | |
|     void removeReady(SUnit *SU);
 | |
| 
 | |
|     SUnit *pickOnlyChoice();
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   ScheduleDAGMI *DAG;
 | |
|   const TargetSchedModel *SchedModel;
 | |
|   const TargetRegisterInfo *TRI;
 | |
| 
 | |
|   // State of the top and bottom scheduled instruction boundaries.
 | |
|   SchedRemainder Rem;
 | |
|   SchedBoundary Top;
 | |
|   SchedBoundary Bot;
 | |
| 
 | |
| public:
 | |
|   /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
 | |
|   enum {
 | |
|     TopQID = 1,
 | |
|     BotQID = 2,
 | |
|     LogMaxQID = 2
 | |
|   };
 | |
| 
 | |
|   ConvergingScheduler():
 | |
|     DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
 | |
| 
 | |
|   virtual void initialize(ScheduleDAGMI *dag);
 | |
| 
 | |
|   virtual SUnit *pickNode(bool &IsTopNode);
 | |
| 
 | |
|   virtual void schedNode(SUnit *SU, bool IsTopNode);
 | |
| 
 | |
|   virtual void releaseTopNode(SUnit *SU);
 | |
| 
 | |
|   virtual void releaseBottomNode(SUnit *SU);
 | |
| 
 | |
|   virtual void registerRoots();
 | |
| 
 | |
| protected:
 | |
|   void balanceZones(
 | |
|     ConvergingScheduler::SchedBoundary &CriticalZone,
 | |
|     ConvergingScheduler::SchedCandidate &CriticalCand,
 | |
|     ConvergingScheduler::SchedBoundary &OppositeZone,
 | |
|     ConvergingScheduler::SchedCandidate &OppositeCand);
 | |
| 
 | |
|   void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand,
 | |
|                            ConvergingScheduler::SchedCandidate &BotCand);
 | |
| 
 | |
|   void tryCandidate(SchedCandidate &Cand,
 | |
|                     SchedCandidate &TryCand,
 | |
|                     SchedBoundary &Zone,
 | |
|                     const RegPressureTracker &RPTracker,
 | |
|                     RegPressureTracker &TempTracker);
 | |
| 
 | |
|   SUnit *pickNodeBidirectional(bool &IsTopNode);
 | |
| 
 | |
|   void pickNodeFromQueue(SchedBoundary &Zone,
 | |
|                          const RegPressureTracker &RPTracker,
 | |
|                          SchedCandidate &Candidate);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   void traceCandidate(const SchedCandidate &Cand);
 | |
| #endif
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| void ConvergingScheduler::SchedRemainder::
 | |
| init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
 | |
|   reset();
 | |
|   if (!SchedModel->hasInstrSchedModel())
 | |
|     return;
 | |
|   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
 | |
|   for (std::vector<SUnit>::iterator
 | |
|          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
 | |
|     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
 | |
|     RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC);
 | |
|     for (TargetSchedModel::ProcResIter
 | |
|            PI = SchedModel->getWriteProcResBegin(SC),
 | |
|            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | |
|       unsigned PIdx = PI->ProcResourceIdx;
 | |
|       unsigned Factor = SchedModel->getResourceFactor(PIdx);
 | |
|       RemainingCounts[PIdx] += (Factor * PI->Cycles);
 | |
|     }
 | |
|   }
 | |
|   for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds();
 | |
|        PIdx != PEnd; ++PIdx) {
 | |
|     if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx])
 | |
|         >= (int)SchedModel->getLatencyFactor()) {
 | |
|       CritResIdx = PIdx;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::SchedBoundary::
 | |
| init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
 | |
|   reset();
 | |
|   DAG = dag;
 | |
|   SchedModel = smodel;
 | |
|   Rem = rem;
 | |
|   if (SchedModel->hasInstrSchedModel())
 | |
|     ResourceCounts.resize(SchedModel->getNumProcResourceKinds());
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
 | |
|   DAG = dag;
 | |
|   SchedModel = DAG->getSchedModel();
 | |
|   TRI = DAG->TRI;
 | |
| 
 | |
|   Rem.init(DAG, SchedModel);
 | |
|   Top.init(DAG, SchedModel, &Rem);
 | |
|   Bot.init(DAG, SchedModel, &Rem);
 | |
| 
 | |
|   // Initialize resource counts.
 | |
| 
 | |
|   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
 | |
|   // are disabled, then these HazardRecs will be disabled.
 | |
|   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
 | |
|   const TargetMachine &TM = DAG->MF.getTarget();
 | |
|   Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
 | |
|   Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
 | |
| 
 | |
|   assert((!ForceTopDown || !ForceBottomUp) &&
 | |
|          "-misched-topdown incompatible with -misched-bottomup");
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::releaseTopNode(SUnit *SU) {
 | |
|   if (SU->isScheduled)
 | |
|     return;
 | |
| 
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
 | |
|     unsigned MinLatency = I->getMinLatency();
 | |
| #ifndef NDEBUG
 | |
|     Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
 | |
| #endif
 | |
|     if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
 | |
|       SU->TopReadyCycle = PredReadyCycle + MinLatency;
 | |
|   }
 | |
|   Top.releaseNode(SU, SU->TopReadyCycle);
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
 | |
|   if (SU->isScheduled)
 | |
|     return;
 | |
| 
 | |
|   assert(SU->getInstr() && "Scheduled SUnit must have instr");
 | |
| 
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isWeak())
 | |
|       continue;
 | |
|     unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
 | |
|     unsigned MinLatency = I->getMinLatency();
 | |
| #ifndef NDEBUG
 | |
|     Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
 | |
| #endif
 | |
|     if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
 | |
|       SU->BotReadyCycle = SuccReadyCycle + MinLatency;
 | |
|   }
 | |
|   Bot.releaseNode(SU, SU->BotReadyCycle);
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::registerRoots() {
 | |
|   Rem.CriticalPath = DAG->ExitSU.getDepth();
 | |
|   // Some roots may not feed into ExitSU. Check all of them in case.
 | |
|   for (std::vector<SUnit*>::const_iterator
 | |
|          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
 | |
|     if ((*I)->getDepth() > Rem.CriticalPath)
 | |
|       Rem.CriticalPath = (*I)->getDepth();
 | |
|   }
 | |
|   DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
 | |
| }
 | |
| 
 | |
| /// Does this SU have a hazard within the current instruction group.
 | |
| ///
 | |
| /// The scheduler supports two modes of hazard recognition. The first is the
 | |
| /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
 | |
| /// supports highly complicated in-order reservation tables
 | |
| /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
 | |
| ///
 | |
| /// The second is a streamlined mechanism that checks for hazards based on
 | |
| /// simple counters that the scheduler itself maintains. It explicitly checks
 | |
| /// for instruction dispatch limitations, including the number of micro-ops that
 | |
| /// can dispatch per cycle.
 | |
| ///
 | |
| /// TODO: Also check whether the SU must start a new group.
 | |
| bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
 | |
|   if (HazardRec->isEnabled())
 | |
|     return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
 | |
| 
 | |
|   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
 | |
|   if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) {
 | |
|     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
 | |
|           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Compute the remaining latency to determine whether ILP should be increased.
 | |
| void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) {
 | |
|   // FIXME: compile time. In all, we visit four queues here one we should only
 | |
|   // need to visit the one that was last popped if we cache the result.
 | |
|   unsigned RemLatency = 0;
 | |
|   for (ReadyQueue::iterator I = Available.begin(), E = Available.end();
 | |
|        I != E; ++I) {
 | |
|     unsigned L = getUnscheduledLatency(*I);
 | |
|     if (L > RemLatency)
 | |
|       RemLatency = L;
 | |
|   }
 | |
|   for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end();
 | |
|        I != E; ++I) {
 | |
|     unsigned L = getUnscheduledLatency(*I);
 | |
|     if (L > RemLatency)
 | |
|       RemLatency = L;
 | |
|   }
 | |
|   unsigned CriticalPathLimit = Rem->CriticalPath + SchedModel->getILPWindow();
 | |
|   if (RemLatency + ExpectedLatency >= CriticalPathLimit
 | |
|       && RemLatency > Rem->getMaxRemainingCount(SchedModel)) {
 | |
|     Policy.ReduceLatency = true;
 | |
|     DEBUG(dbgs() << "Increase ILP: " << Available.getName() << '\n');
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
 | |
|                                                      unsigned ReadyCycle) {
 | |
| 
 | |
|   if (ReadyCycle < MinReadyCycle)
 | |
|     MinReadyCycle = ReadyCycle;
 | |
| 
 | |
|   // Check for interlocks first. For the purpose of other heuristics, an
 | |
|   // instruction that cannot issue appears as if it's not in the ReadyQueue.
 | |
|   if (ReadyCycle > CurrCycle || checkHazard(SU))
 | |
|     Pending.push(SU);
 | |
|   else
 | |
|     Available.push(SU);
 | |
| 
 | |
|   // Record this node as an immediate dependent of the scheduled node.
 | |
|   NextSUs.insert(SU);
 | |
| }
 | |
| 
 | |
| /// Move the boundary of scheduled code by one cycle.
 | |
| void ConvergingScheduler::SchedBoundary::bumpCycle() {
 | |
|   unsigned Width = SchedModel->getIssueWidth();
 | |
|   IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
 | |
| 
 | |
|   unsigned NextCycle = CurrCycle + 1;
 | |
|   assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
 | |
|   if (MinReadyCycle > NextCycle) {
 | |
|     IssueCount = 0;
 | |
|     NextCycle = MinReadyCycle;
 | |
|   }
 | |
| 
 | |
|   if (!HazardRec->isEnabled()) {
 | |
|     // Bypass HazardRec virtual calls.
 | |
|     CurrCycle = NextCycle;
 | |
|   }
 | |
|   else {
 | |
|     // Bypass getHazardType calls in case of long latency.
 | |
|     for (; CurrCycle != NextCycle; ++CurrCycle) {
 | |
|       if (isTop())
 | |
|         HazardRec->AdvanceCycle();
 | |
|       else
 | |
|         HazardRec->RecedeCycle();
 | |
|     }
 | |
|   }
 | |
|   CheckPending = true;
 | |
|   IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
 | |
| 
 | |
|   DEBUG(dbgs() << "  " << Available.getName()
 | |
|         << " Cycle: " << CurrCycle << '\n');
 | |
| }
 | |
| 
 | |
| /// Add the given processor resource to this scheduled zone.
 | |
| void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx,
 | |
|                                                        unsigned Cycles) {
 | |
|   unsigned Factor = SchedModel->getResourceFactor(PIdx);
 | |
|   DEBUG(dbgs() << "  " << SchedModel->getProcResource(PIdx)->Name
 | |
|         << " +(" << Cycles << "x" << Factor
 | |
|         << ") / " << SchedModel->getLatencyFactor() << '\n');
 | |
| 
 | |
|   unsigned Count = Factor * Cycles;
 | |
|   ResourceCounts[PIdx] += Count;
 | |
|   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
 | |
|   Rem->RemainingCounts[PIdx] -= Count;
 | |
| 
 | |
|   // Check if this resource exceeds the current critical resource by a full
 | |
|   // cycle. If so, it becomes the critical resource.
 | |
|   if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx])
 | |
|       >= (int)SchedModel->getLatencyFactor()) {
 | |
|     CritResIdx = PIdx;
 | |
|     DEBUG(dbgs() << "  *** Critical resource "
 | |
|           << SchedModel->getProcResource(PIdx)->Name << " x"
 | |
|           << ResourceCounts[PIdx] << '\n');
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Move the boundary of scheduled code by one SUnit.
 | |
| void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
 | |
|   // Update the reservation table.
 | |
|   if (HazardRec->isEnabled()) {
 | |
|     if (!isTop() && SU->isCall) {
 | |
|       // Calls are scheduled with their preceding instructions. For bottom-up
 | |
|       // scheduling, clear the pipeline state before emitting.
 | |
|       HazardRec->Reset();
 | |
|     }
 | |
|     HazardRec->EmitInstruction(SU);
 | |
|   }
 | |
|   // Update resource counts and critical resource.
 | |
|   if (SchedModel->hasInstrSchedModel()) {
 | |
|     const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
 | |
|     Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC);
 | |
|     for (TargetSchedModel::ProcResIter
 | |
|            PI = SchedModel->getWriteProcResBegin(SC),
 | |
|            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | |
|       countResource(PI->ProcResourceIdx, PI->Cycles);
 | |
|     }
 | |
|   }
 | |
|   if (isTop()) {
 | |
|     if (SU->getDepth() > ExpectedLatency)
 | |
|       ExpectedLatency = SU->getDepth();
 | |
|   }
 | |
|   else {
 | |
|     if (SU->getHeight() > ExpectedLatency)
 | |
|       ExpectedLatency = SU->getHeight();
 | |
|   }
 | |
| 
 | |
|   IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
 | |
| 
 | |
|   // Check the instruction group dispatch limit.
 | |
|   // TODO: Check if this SU must end a dispatch group.
 | |
|   IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
 | |
| 
 | |
|   // checkHazard prevents scheduling multiple instructions per cycle that exceed
 | |
|   // issue width. However, we commonly reach the maximum. In this case
 | |
|   // opportunistically bump the cycle to avoid uselessly checking everything in
 | |
|   // the readyQ. Furthermore, a single instruction may produce more than one
 | |
|   // cycle's worth of micro-ops.
 | |
|   if (IssueCount >= SchedModel->getIssueWidth()) {
 | |
|     DEBUG(dbgs() << "  *** Max instrs at cycle " << CurrCycle << '\n');
 | |
|     bumpCycle();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Release pending ready nodes in to the available queue. This makes them
 | |
| /// visible to heuristics.
 | |
| void ConvergingScheduler::SchedBoundary::releasePending() {
 | |
|   // If the available queue is empty, it is safe to reset MinReadyCycle.
 | |
|   if (Available.empty())
 | |
|     MinReadyCycle = UINT_MAX;
 | |
| 
 | |
|   // Check to see if any of the pending instructions are ready to issue.  If
 | |
|   // so, add them to the available queue.
 | |
|   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
 | |
|     SUnit *SU = *(Pending.begin()+i);
 | |
|     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
 | |
| 
 | |
|     if (ReadyCycle < MinReadyCycle)
 | |
|       MinReadyCycle = ReadyCycle;
 | |
| 
 | |
|     if (ReadyCycle > CurrCycle)
 | |
|       continue;
 | |
| 
 | |
|     if (checkHazard(SU))
 | |
|       continue;
 | |
| 
 | |
|     Available.push(SU);
 | |
|     Pending.remove(Pending.begin()+i);
 | |
|     --i; --e;
 | |
|   }
 | |
|   DEBUG(if (!Pending.empty()) Pending.dump());
 | |
|   CheckPending = false;
 | |
| }
 | |
| 
 | |
| /// Remove SU from the ready set for this boundary.
 | |
| void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
 | |
|   if (Available.isInQueue(SU))
 | |
|     Available.remove(Available.find(SU));
 | |
|   else {
 | |
|     assert(Pending.isInQueue(SU) && "bad ready count");
 | |
|     Pending.remove(Pending.find(SU));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If this queue only has one ready candidate, return it. As a side effect,
 | |
| /// defer any nodes that now hit a hazard, and advance the cycle until at least
 | |
| /// one node is ready. If multiple instructions are ready, return NULL.
 | |
| SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
 | |
|   if (CheckPending)
 | |
|     releasePending();
 | |
| 
 | |
|   if (IssueCount > 0) {
 | |
|     // Defer any ready instrs that now have a hazard.
 | |
|     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
 | |
|       if (checkHazard(*I)) {
 | |
|         Pending.push(*I);
 | |
|         I = Available.remove(I);
 | |
|         continue;
 | |
|       }
 | |
|       ++I;
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0; Available.empty(); ++i) {
 | |
|     assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
 | |
|            "permanent hazard"); (void)i;
 | |
|     bumpCycle();
 | |
|     releasePending();
 | |
|   }
 | |
|   if (Available.size() == 1)
 | |
|     return *Available.begin();
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// Record the candidate policy for opposite zones with different critical
 | |
| /// resources.
 | |
| ///
 | |
| /// If the CriticalZone is latency limited, don't force a policy for the
 | |
| /// candidates here. Instead, setLatencyPolicy sets ReduceLatency if needed.
 | |
| void ConvergingScheduler::balanceZones(
 | |
|   ConvergingScheduler::SchedBoundary &CriticalZone,
 | |
|   ConvergingScheduler::SchedCandidate &CriticalCand,
 | |
|   ConvergingScheduler::SchedBoundary &OppositeZone,
 | |
|   ConvergingScheduler::SchedCandidate &OppositeCand) {
 | |
| 
 | |
|   if (!CriticalZone.IsResourceLimited)
 | |
|     return;
 | |
|   assert(SchedModel->hasInstrSchedModel() && "required schedmodel");
 | |
| 
 | |
|   SchedRemainder *Rem = CriticalZone.Rem;
 | |
| 
 | |
|   // If the critical zone is overconsuming a resource relative to the
 | |
|   // remainder, try to reduce it.
 | |
|   unsigned RemainingCritCount =
 | |
|     Rem->RemainingCounts[CriticalZone.CritResIdx];
 | |
|   if ((int)(Rem->getMaxRemainingCount(SchedModel) - RemainingCritCount)
 | |
|       > (int)SchedModel->getLatencyFactor()) {
 | |
|     CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx;
 | |
|     DEBUG(dbgs() << "Balance " << CriticalZone.Available.getName() << " reduce "
 | |
|           << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name
 | |
|           << '\n');
 | |
|   }
 | |
|   // If the other zone is underconsuming a resource relative to the full zone,
 | |
|   // try to increase it.
 | |
|   unsigned OppositeCount =
 | |
|     OppositeZone.ResourceCounts[CriticalZone.CritResIdx];
 | |
|   if ((int)(OppositeZone.ExpectedCount - OppositeCount)
 | |
|       > (int)SchedModel->getLatencyFactor()) {
 | |
|     OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx;
 | |
|     DEBUG(dbgs() << "Balance " << OppositeZone.Available.getName() << " demand "
 | |
|           << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name
 | |
|           << '\n');
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Determine if the scheduled zones exceed resource limits or critical path and
 | |
| /// set each candidate's ReduceHeight policy accordingly.
 | |
| void ConvergingScheduler::checkResourceLimits(
 | |
|   ConvergingScheduler::SchedCandidate &TopCand,
 | |
|   ConvergingScheduler::SchedCandidate &BotCand) {
 | |
| 
 | |
|   // Set ReduceLatency to true if needed.
 | |
|   Bot.setLatencyPolicy(BotCand.Policy);
 | |
|   Top.setLatencyPolicy(TopCand.Policy);
 | |
| 
 | |
|   // Handle resource-limited regions.
 | |
|   if (Top.IsResourceLimited && Bot.IsResourceLimited
 | |
|       && Top.CritResIdx == Bot.CritResIdx) {
 | |
|     // If the scheduled critical resource in both zones is no longer the
 | |
|     // critical remaining resource, attempt to reduce resource height both ways.
 | |
|     if (Top.CritResIdx != Rem.CritResIdx) {
 | |
|       TopCand.Policy.ReduceResIdx = Top.CritResIdx;
 | |
|       BotCand.Policy.ReduceResIdx = Bot.CritResIdx;
 | |
|       DEBUG(dbgs() << "Reduce scheduled "
 | |
|             << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n');
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   // Handle latency-limited regions.
 | |
|   if (!Top.IsResourceLimited && !Bot.IsResourceLimited) {
 | |
|     // If the total scheduled expected latency exceeds the region's critical
 | |
|     // path then reduce latency both ways.
 | |
|     //
 | |
|     // Just because a zone is not resource limited does not mean it is latency
 | |
|     // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle
 | |
|     // to exceed expected latency.
 | |
|     if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath)
 | |
|         && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) {
 | |
|       TopCand.Policy.ReduceLatency = true;
 | |
|       BotCand.Policy.ReduceLatency = true;
 | |
|       DEBUG(dbgs() << "Reduce scheduled latency " << Top.ExpectedLatency
 | |
|             << " + " << Bot.ExpectedLatency << '\n');
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   // The critical resource is different in each zone, so request balancing.
 | |
| 
 | |
|   // Compute the cost of each zone.
 | |
|   Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle);
 | |
|   Top.ExpectedCount = std::max(
 | |
|     Top.getCriticalCount(),
 | |
|     Top.ExpectedCount * SchedModel->getLatencyFactor());
 | |
|   Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle);
 | |
|   Bot.ExpectedCount = std::max(
 | |
|     Bot.getCriticalCount(),
 | |
|     Bot.ExpectedCount * SchedModel->getLatencyFactor());
 | |
| 
 | |
|   balanceZones(Top, TopCand, Bot, BotCand);
 | |
|   balanceZones(Bot, BotCand, Top, TopCand);
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::SchedCandidate::
 | |
| initResourceDelta(const ScheduleDAGMI *DAG,
 | |
|                   const TargetSchedModel *SchedModel) {
 | |
|   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
 | |
|     return;
 | |
| 
 | |
|   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
 | |
|   for (TargetSchedModel::ProcResIter
 | |
|          PI = SchedModel->getWriteProcResBegin(SC),
 | |
|          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | |
|     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
 | |
|       ResDelta.CritResources += PI->Cycles;
 | |
|     if (PI->ProcResourceIdx == Policy.DemandResIdx)
 | |
|       ResDelta.DemandedResources += PI->Cycles;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Return true if this heuristic determines order.
 | |
| static bool tryLess(int TryVal, int CandVal,
 | |
|                     ConvergingScheduler::SchedCandidate &TryCand,
 | |
|                     ConvergingScheduler::SchedCandidate &Cand,
 | |
|                     ConvergingScheduler::CandReason Reason) {
 | |
|   if (TryVal < CandVal) {
 | |
|     TryCand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   if (TryVal > CandVal) {
 | |
|     if (Cand.Reason > Reason)
 | |
|       Cand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool tryGreater(int TryVal, int CandVal,
 | |
|                        ConvergingScheduler::SchedCandidate &TryCand,
 | |
|                        ConvergingScheduler::SchedCandidate &Cand,
 | |
|                        ConvergingScheduler::CandReason Reason) {
 | |
|   if (TryVal > CandVal) {
 | |
|     TryCand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   if (TryVal < CandVal) {
 | |
|     if (Cand.Reason > Reason)
 | |
|       Cand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
 | |
|   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
 | |
| }
 | |
| 
 | |
| /// Apply a set of heursitics to a new candidate. Heuristics are currently
 | |
| /// hierarchical. This may be more efficient than a graduated cost model because
 | |
| /// we don't need to evaluate all aspects of the model for each node in the
 | |
| /// queue. But it's really done to make the heuristics easier to debug and
 | |
| /// statistically analyze.
 | |
| ///
 | |
| /// \param Cand provides the policy and current best candidate.
 | |
| /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
 | |
| /// \param Zone describes the scheduled zone that we are extending.
 | |
| /// \param RPTracker describes reg pressure within the scheduled zone.
 | |
| /// \param TempTracker is a scratch pressure tracker to reuse in queries.
 | |
| void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
 | |
|                                        SchedCandidate &TryCand,
 | |
|                                        SchedBoundary &Zone,
 | |
|                                        const RegPressureTracker &RPTracker,
 | |
|                                        RegPressureTracker &TempTracker) {
 | |
| 
 | |
|   // Always initialize TryCand's RPDelta.
 | |
|   TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
 | |
|                                   DAG->getRegionCriticalPSets(),
 | |
|                                   DAG->getRegPressure().MaxSetPressure);
 | |
| 
 | |
|   // Initialize the candidate if needed.
 | |
|   if (!Cand.isValid()) {
 | |
|     TryCand.Reason = NodeOrder;
 | |
|     return;
 | |
|   }
 | |
|   // Avoid exceeding the target's limit.
 | |
|   if (tryLess(TryCand.RPDelta.Excess.UnitIncrease,
 | |
|               Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess))
 | |
|     return;
 | |
|   if (Cand.Reason == SingleExcess)
 | |
|     Cand.Reason = MultiPressure;
 | |
| 
 | |
|   // Avoid increasing the max critical pressure in the scheduled region.
 | |
|   if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease,
 | |
|               Cand.RPDelta.CriticalMax.UnitIncrease,
 | |
|               TryCand, Cand, SingleCritical))
 | |
|     return;
 | |
|   if (Cand.Reason == SingleCritical)
 | |
|     Cand.Reason = MultiPressure;
 | |
| 
 | |
|   // Keep clustered nodes together to encourage downstream peephole
 | |
|   // optimizations which may reduce resource requirements.
 | |
|   //
 | |
|   // This is a best effort to set things up for a post-RA pass. Optimizations
 | |
|   // like generating loads of multiple registers should ideally be done within
 | |
|   // the scheduler pass by combining the loads during DAG postprocessing.
 | |
|   const SUnit *NextClusterSU =
 | |
|     Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
 | |
|   if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
 | |
|                  TryCand, Cand, Cluster))
 | |
|     return;
 | |
|   // Currently, weak edges are for clustering, so we hard-code that reason.
 | |
|   // However, deferring the current TryCand will not change Cand's reason.
 | |
|   CandReason OrigReason = Cand.Reason;
 | |
|   if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
 | |
|               getWeakLeft(Cand.SU, Zone.isTop()),
 | |
|               TryCand, Cand, Cluster)) {
 | |
|     Cand.Reason = OrigReason;
 | |
|     return;
 | |
|   }
 | |
|   // Avoid critical resource consumption and balance the schedule.
 | |
|   TryCand.initResourceDelta(DAG, SchedModel);
 | |
|   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
 | |
|               TryCand, Cand, ResourceReduce))
 | |
|     return;
 | |
|   if (tryGreater(TryCand.ResDelta.DemandedResources,
 | |
|                  Cand.ResDelta.DemandedResources,
 | |
|                  TryCand, Cand, ResourceDemand))
 | |
|     return;
 | |
| 
 | |
|   // Avoid serializing long latency dependence chains.
 | |
|   if (Cand.Policy.ReduceLatency) {
 | |
|     if (Zone.isTop()) {
 | |
|       if (Cand.SU->getDepth() * SchedModel->getLatencyFactor()
 | |
|           > Zone.ExpectedCount) {
 | |
|         if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
 | |
|                     TryCand, Cand, TopDepthReduce))
 | |
|           return;
 | |
|       }
 | |
|       if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
 | |
|                      TryCand, Cand, TopPathReduce))
 | |
|         return;
 | |
|     }
 | |
|     else {
 | |
|       if (Cand.SU->getHeight() * SchedModel->getLatencyFactor()
 | |
|           > Zone.ExpectedCount) {
 | |
|         if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
 | |
|                     TryCand, Cand, BotHeightReduce))
 | |
|           return;
 | |
|       }
 | |
|       if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
 | |
|                      TryCand, Cand, BotPathReduce))
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Avoid increasing the max pressure of the entire region.
 | |
|   if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease,
 | |
|               Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax))
 | |
|     return;
 | |
|   if (Cand.Reason == SingleMax)
 | |
|     Cand.Reason = MultiPressure;
 | |
| 
 | |
|   // Prefer immediate defs/users of the last scheduled instruction. This is a
 | |
|   // nice pressure avoidance strategy that also conserves the processor's
 | |
|   // register renaming resources and keeps the machine code readable.
 | |
|   if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
 | |
|                  TryCand, Cand, NextDefUse))
 | |
|     return;
 | |
| 
 | |
|   // Fall through to original instruction order.
 | |
|   if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
 | |
|       || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
 | |
|     TryCand.Reason = NodeOrder;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
 | |
| /// more desirable than RHS from scheduling standpoint.
 | |
| static bool compareRPDelta(const RegPressureDelta &LHS,
 | |
|                            const RegPressureDelta &RHS) {
 | |
|   // Compare each component of pressure in decreasing order of importance
 | |
|   // without checking if any are valid. Invalid PressureElements are assumed to
 | |
|   // have UnitIncrease==0, so are neutral.
 | |
| 
 | |
|   // Avoid increasing the max critical pressure in the scheduled region.
 | |
|   if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) {
 | |
|     DEBUG(dbgs() << "RP excess top - bot: "
 | |
|           << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n');
 | |
|     return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
 | |
|   }
 | |
|   // Avoid increasing the max critical pressure in the scheduled region.
 | |
|   if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) {
 | |
|     DEBUG(dbgs() << "RP critical top - bot: "
 | |
|           << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease)
 | |
|           << '\n');
 | |
|     return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
 | |
|   }
 | |
|   // Avoid increasing the max pressure of the entire region.
 | |
|   if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) {
 | |
|     DEBUG(dbgs() << "RP current top - bot: "
 | |
|           << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease)
 | |
|           << '\n');
 | |
|     return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| const char *ConvergingScheduler::getReasonStr(
 | |
|   ConvergingScheduler::CandReason Reason) {
 | |
|   switch (Reason) {
 | |
|   case NoCand:         return "NOCAND    ";
 | |
|   case SingleExcess:   return "REG-EXCESS";
 | |
|   case SingleCritical: return "REG-CRIT  ";
 | |
|   case Cluster:        return "CLUSTER   ";
 | |
|   case SingleMax:      return "REG-MAX   ";
 | |
|   case MultiPressure:  return "REG-MULTI ";
 | |
|   case ResourceReduce: return "RES-REDUCE";
 | |
|   case ResourceDemand: return "RES-DEMAND";
 | |
|   case TopDepthReduce: return "TOP-DEPTH ";
 | |
|   case TopPathReduce:  return "TOP-PATH  ";
 | |
|   case BotHeightReduce:return "BOT-HEIGHT";
 | |
|   case BotPathReduce:  return "BOT-PATH  ";
 | |
|   case NextDefUse:     return "DEF-USE   ";
 | |
|   case NodeOrder:      return "ORDER     ";
 | |
|   };
 | |
|   llvm_unreachable("Unknown reason!");
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
 | |
|   PressureElement P;
 | |
|   unsigned ResIdx = 0;
 | |
|   unsigned Latency = 0;
 | |
|   switch (Cand.Reason) {
 | |
|   default:
 | |
|     break;
 | |
|   case SingleExcess:
 | |
|     P = Cand.RPDelta.Excess;
 | |
|     break;
 | |
|   case SingleCritical:
 | |
|     P = Cand.RPDelta.CriticalMax;
 | |
|     break;
 | |
|   case SingleMax:
 | |
|     P = Cand.RPDelta.CurrentMax;
 | |
|     break;
 | |
|   case ResourceReduce:
 | |
|     ResIdx = Cand.Policy.ReduceResIdx;
 | |
|     break;
 | |
|   case ResourceDemand:
 | |
|     ResIdx = Cand.Policy.DemandResIdx;
 | |
|     break;
 | |
|   case TopDepthReduce:
 | |
|     Latency = Cand.SU->getDepth();
 | |
|     break;
 | |
|   case TopPathReduce:
 | |
|     Latency = Cand.SU->getHeight();
 | |
|     break;
 | |
|   case BotHeightReduce:
 | |
|     Latency = Cand.SU->getHeight();
 | |
|     break;
 | |
|   case BotPathReduce:
 | |
|     Latency = Cand.SU->getDepth();
 | |
|     break;
 | |
|   }
 | |
|   dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
 | |
|   if (P.isValid())
 | |
|     dbgs() << " " << TRI->getRegPressureSetName(P.PSetID)
 | |
|            << ":" << P.UnitIncrease << " ";
 | |
|   else
 | |
|     dbgs() << "      ";
 | |
|   if (ResIdx)
 | |
|     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
 | |
|   else
 | |
|     dbgs() << "         ";
 | |
|   if (Latency)
 | |
|     dbgs() << " " << Latency << " cycles ";
 | |
|   else
 | |
|     dbgs() << "          ";
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// Pick the best candidate from the top queue.
 | |
| ///
 | |
| /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
 | |
| /// DAG building. To adjust for the current scheduling location we need to
 | |
| /// maintain the number of vreg uses remaining to be top-scheduled.
 | |
| void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
 | |
|                                             const RegPressureTracker &RPTracker,
 | |
|                                             SchedCandidate &Cand) {
 | |
|   ReadyQueue &Q = Zone.Available;
 | |
| 
 | |
|   DEBUG(Q.dump());
 | |
| 
 | |
|   // getMaxPressureDelta temporarily modifies the tracker.
 | |
|   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
 | |
| 
 | |
|   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
 | |
| 
 | |
|     SchedCandidate TryCand(Cand.Policy);
 | |
|     TryCand.SU = *I;
 | |
|     tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
 | |
|     if (TryCand.Reason != NoCand) {
 | |
|       // Initialize resource delta if needed in case future heuristics query it.
 | |
|       if (TryCand.ResDelta == SchedResourceDelta())
 | |
|         TryCand.initResourceDelta(DAG, SchedModel);
 | |
|       Cand.setBest(TryCand);
 | |
|       DEBUG(traceCandidate(Cand));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
 | |
|                       bool IsTop) {
 | |
|   DEBUG(dbgs() << "Pick " << (IsTop ? "Top" : "Bot")
 | |
|         << " SU(" << Cand.SU->NodeNum << ") "
 | |
|         << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
 | |
| }
 | |
| 
 | |
| /// Pick the best candidate node from either the top or bottom queue.
 | |
| SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
 | |
|   // Schedule as far as possible in the direction of no choice. This is most
 | |
|   // efficient, but also provides the best heuristics for CriticalPSets.
 | |
|   if (SUnit *SU = Bot.pickOnlyChoice()) {
 | |
|     IsTopNode = false;
 | |
|     return SU;
 | |
|   }
 | |
|   if (SUnit *SU = Top.pickOnlyChoice()) {
 | |
|     IsTopNode = true;
 | |
|     return SU;
 | |
|   }
 | |
|   CandPolicy NoPolicy;
 | |
|   SchedCandidate BotCand(NoPolicy);
 | |
|   SchedCandidate TopCand(NoPolicy);
 | |
|   checkResourceLimits(TopCand, BotCand);
 | |
| 
 | |
|   // Prefer bottom scheduling when heuristics are silent.
 | |
|   pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
 | |
|   assert(BotCand.Reason != NoCand && "failed to find the first candidate");
 | |
| 
 | |
|   // If either Q has a single candidate that provides the least increase in
 | |
|   // Excess pressure, we can immediately schedule from that Q.
 | |
|   //
 | |
|   // RegionCriticalPSets summarizes the pressure within the scheduled region and
 | |
|   // affects picking from either Q. If scheduling in one direction must
 | |
|   // increase pressure for one of the excess PSets, then schedule in that
 | |
|   // direction first to provide more freedom in the other direction.
 | |
|   if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) {
 | |
|     IsTopNode = false;
 | |
|     tracePick(BotCand, IsTopNode);
 | |
|     return BotCand.SU;
 | |
|   }
 | |
|   // Check if the top Q has a better candidate.
 | |
|   pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
 | |
|   assert(TopCand.Reason != NoCand && "failed to find the first candidate");
 | |
| 
 | |
|   // If either Q has a single candidate that minimizes pressure above the
 | |
|   // original region's pressure pick it.
 | |
|   if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) {
 | |
|     if (TopCand.Reason < BotCand.Reason) {
 | |
|       IsTopNode = true;
 | |
|       tracePick(TopCand, IsTopNode);
 | |
|       return TopCand.SU;
 | |
|     }
 | |
|     IsTopNode = false;
 | |
|     tracePick(BotCand, IsTopNode);
 | |
|     return BotCand.SU;
 | |
|   }
 | |
|   // Check for a salient pressure difference and pick the best from either side.
 | |
|   if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
 | |
|     IsTopNode = true;
 | |
|     tracePick(TopCand, IsTopNode);
 | |
|     return TopCand.SU;
 | |
|   }
 | |
|   // Otherwise prefer the bottom candidate, in node order if all else failed.
 | |
|   if (TopCand.Reason < BotCand.Reason) {
 | |
|     IsTopNode = true;
 | |
|     tracePick(TopCand, IsTopNode);
 | |
|     return TopCand.SU;
 | |
|   }
 | |
|   IsTopNode = false;
 | |
|   tracePick(BotCand, IsTopNode);
 | |
|   return BotCand.SU;
 | |
| }
 | |
| 
 | |
| /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
 | |
| SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
 | |
|   if (DAG->top() == DAG->bottom()) {
 | |
|     assert(Top.Available.empty() && Top.Pending.empty() &&
 | |
|            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
 | |
|     return NULL;
 | |
|   }
 | |
|   SUnit *SU;
 | |
|   do {
 | |
|     if (ForceTopDown) {
 | |
|       SU = Top.pickOnlyChoice();
 | |
|       if (!SU) {
 | |
|         CandPolicy NoPolicy;
 | |
|         SchedCandidate TopCand(NoPolicy);
 | |
|         pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
 | |
|         assert(TopCand.Reason != NoCand && "failed to find the first candidate");
 | |
|         SU = TopCand.SU;
 | |
|       }
 | |
|       IsTopNode = true;
 | |
|     }
 | |
|     else if (ForceBottomUp) {
 | |
|       SU = Bot.pickOnlyChoice();
 | |
|       if (!SU) {
 | |
|         CandPolicy NoPolicy;
 | |
|         SchedCandidate BotCand(NoPolicy);
 | |
|         pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
 | |
|         assert(BotCand.Reason != NoCand && "failed to find the first candidate");
 | |
|         SU = BotCand.SU;
 | |
|       }
 | |
|       IsTopNode = false;
 | |
|     }
 | |
|     else {
 | |
|       SU = pickNodeBidirectional(IsTopNode);
 | |
|     }
 | |
|   } while (SU->isScheduled);
 | |
| 
 | |
|   if (SU->isTopReady())
 | |
|     Top.removeReady(SU);
 | |
|   if (SU->isBottomReady())
 | |
|     Bot.removeReady(SU);
 | |
| 
 | |
|   DEBUG(dbgs() << "Scheduling " << *SU->getInstr());
 | |
|   return SU;
 | |
| }
 | |
| 
 | |
| /// Update the scheduler's state after scheduling a node. This is the same node
 | |
| /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
 | |
| /// it's state based on the current cycle before MachineSchedStrategy does.
 | |
| void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
 | |
|   if (IsTopNode) {
 | |
|     SU->TopReadyCycle = Top.CurrCycle;
 | |
|     Top.bumpNode(SU);
 | |
|   }
 | |
|   else {
 | |
|     SU->BotReadyCycle = Bot.CurrCycle;
 | |
|     Bot.bumpNode(SU);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Create the standard converging machine scheduler. This will be used as the
 | |
| /// default scheduler if the target does not set a default.
 | |
| static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
 | |
|   assert((!ForceTopDown || !ForceBottomUp) &&
 | |
|          "-misched-topdown incompatible with -misched-bottomup");
 | |
|   ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
 | |
|   // Register DAG post-processors.
 | |
|   if (EnableLoadCluster)
 | |
|     DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
 | |
|   if (EnableMacroFusion)
 | |
|     DAG->addMutation(new MacroFusion(DAG->TII));
 | |
|   return DAG;
 | |
| }
 | |
| static MachineSchedRegistry
 | |
| ConvergingSchedRegistry("converge", "Standard converging scheduler.",
 | |
|                         createConvergingSched);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ILP Scheduler. Currently for experimental analysis of heuristics.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// \brief Order nodes by the ILP metric.
 | |
| struct ILPOrder {
 | |
|   const SchedDFSResult *DFSResult;
 | |
|   const BitVector *ScheduledTrees;
 | |
|   bool MaximizeILP;
 | |
| 
 | |
|   ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
 | |
| 
 | |
|   /// \brief Apply a less-than relation on node priority.
 | |
|   ///
 | |
|   /// (Return true if A comes after B in the Q.)
 | |
|   bool operator()(const SUnit *A, const SUnit *B) const {
 | |
|     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
 | |
|     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
 | |
|     if (SchedTreeA != SchedTreeB) {
 | |
|       // Unscheduled trees have lower priority.
 | |
|       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
 | |
|         return ScheduledTrees->test(SchedTreeB);
 | |
| 
 | |
|       // Trees with shallower connections have have lower priority.
 | |
|       if (DFSResult->getSubtreeLevel(SchedTreeA)
 | |
|           != DFSResult->getSubtreeLevel(SchedTreeB)) {
 | |
|         return DFSResult->getSubtreeLevel(SchedTreeA)
 | |
|           < DFSResult->getSubtreeLevel(SchedTreeB);
 | |
|       }
 | |
|     }
 | |
|     if (MaximizeILP)
 | |
|       return DFSResult->getILP(A) < DFSResult->getILP(B);
 | |
|     else
 | |
|       return DFSResult->getILP(A) > DFSResult->getILP(B);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief Schedule based on the ILP metric.
 | |
| class ILPScheduler : public MachineSchedStrategy {
 | |
|   /// In case all subtrees are eventually connected to a common root through
 | |
|   /// data dependence (e.g. reduction), place an upper limit on their size.
 | |
|   ///
 | |
|   /// FIXME: A subtree limit is generally good, but in the situation commented
 | |
|   /// above, where multiple similar subtrees feed a common root, we should
 | |
|   /// only split at a point where the resulting subtrees will be balanced.
 | |
|   /// (a motivating test case must be found).
 | |
|   static const unsigned SubtreeLimit = 16;
 | |
| 
 | |
|   ScheduleDAGMI *DAG;
 | |
|   ILPOrder Cmp;
 | |
| 
 | |
|   std::vector<SUnit*> ReadyQ;
 | |
| public:
 | |
|   ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
 | |
| 
 | |
|   virtual void initialize(ScheduleDAGMI *dag) {
 | |
|     DAG = dag;
 | |
|     DAG->computeDFSResult();
 | |
|     Cmp.DFSResult = DAG->getDFSResult();
 | |
|     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
 | |
|     ReadyQ.clear();
 | |
|   }
 | |
| 
 | |
|   virtual void registerRoots() {
 | |
|     // Restore the heap in ReadyQ with the updated DFS results.
 | |
|     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | |
|   }
 | |
| 
 | |
|   /// Implement MachineSchedStrategy interface.
 | |
|   /// -----------------------------------------
 | |
| 
 | |
|   /// Callback to select the highest priority node from the ready Q.
 | |
|   virtual SUnit *pickNode(bool &IsTopNode) {
 | |
|     if (ReadyQ.empty()) return NULL;
 | |
|     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | |
|     SUnit *SU = ReadyQ.back();
 | |
|     ReadyQ.pop_back();
 | |
|     IsTopNode = false;
 | |
|     DEBUG(dbgs() << "*** Scheduling " << "SU(" << SU->NodeNum << "): "
 | |
|           << *SU->getInstr()
 | |
|           << " ILP: " << DAG->getDFSResult()->getILP(SU)
 | |
|           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
 | |
|           << DAG->getDFSResult()->getSubtreeLevel(
 | |
|             DAG->getDFSResult()->getSubtreeID(SU)) << '\n');
 | |
|     return SU;
 | |
|   }
 | |
| 
 | |
|   /// \brief Scheduler callback to notify that a new subtree is scheduled.
 | |
|   virtual void scheduleTree(unsigned SubtreeID) {
 | |
|     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | |
|   }
 | |
| 
 | |
|   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
 | |
|   /// DFSResults, and resort the priority Q.
 | |
|   virtual void schedNode(SUnit *SU, bool IsTopNode) {
 | |
|     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
 | |
|   }
 | |
| 
 | |
|   virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
 | |
| 
 | |
|   virtual void releaseBottomNode(SUnit *SU) {
 | |
|     ReadyQ.push_back(SU);
 | |
|     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
 | |
|   return new ScheduleDAGMI(C, new ILPScheduler(true));
 | |
| }
 | |
| static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
 | |
|   return new ScheduleDAGMI(C, new ILPScheduler(false));
 | |
| }
 | |
| static MachineSchedRegistry ILPMaxRegistry(
 | |
|   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
 | |
| static MachineSchedRegistry ILPMinRegistry(
 | |
|   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Machine Instruction Shuffler for Correctness Testing
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| namespace {
 | |
| /// Apply a less-than relation on the node order, which corresponds to the
 | |
| /// instruction order prior to scheduling. IsReverse implements greater-than.
 | |
| template<bool IsReverse>
 | |
| struct SUnitOrder {
 | |
|   bool operator()(SUnit *A, SUnit *B) const {
 | |
|     if (IsReverse)
 | |
|       return A->NodeNum > B->NodeNum;
 | |
|     else
 | |
|       return A->NodeNum < B->NodeNum;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Reorder instructions as much as possible.
 | |
| class InstructionShuffler : public MachineSchedStrategy {
 | |
|   bool IsAlternating;
 | |
|   bool IsTopDown;
 | |
| 
 | |
|   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
 | |
|   // gives nodes with a higher number higher priority causing the latest
 | |
|   // instructions to be scheduled first.
 | |
|   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
 | |
|     TopQ;
 | |
|   // When scheduling bottom-up, use greater-than as the queue priority.
 | |
|   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
 | |
|     BottomQ;
 | |
| public:
 | |
|   InstructionShuffler(bool alternate, bool topdown)
 | |
|     : IsAlternating(alternate), IsTopDown(topdown) {}
 | |
| 
 | |
|   virtual void initialize(ScheduleDAGMI *) {
 | |
|     TopQ.clear();
 | |
|     BottomQ.clear();
 | |
|   }
 | |
| 
 | |
|   /// Implement MachineSchedStrategy interface.
 | |
|   /// -----------------------------------------
 | |
| 
 | |
|   virtual SUnit *pickNode(bool &IsTopNode) {
 | |
|     SUnit *SU;
 | |
|     if (IsTopDown) {
 | |
|       do {
 | |
|         if (TopQ.empty()) return NULL;
 | |
|         SU = TopQ.top();
 | |
|         TopQ.pop();
 | |
|       } while (SU->isScheduled);
 | |
|       IsTopNode = true;
 | |
|     }
 | |
|     else {
 | |
|       do {
 | |
|         if (BottomQ.empty()) return NULL;
 | |
|         SU = BottomQ.top();
 | |
|         BottomQ.pop();
 | |
|       } while (SU->isScheduled);
 | |
|       IsTopNode = false;
 | |
|     }
 | |
|     if (IsAlternating)
 | |
|       IsTopDown = !IsTopDown;
 | |
|     return SU;
 | |
|   }
 | |
| 
 | |
|   virtual void schedNode(SUnit *SU, bool IsTopNode) {}
 | |
| 
 | |
|   virtual void releaseTopNode(SUnit *SU) {
 | |
|     TopQ.push(SU);
 | |
|   }
 | |
|   virtual void releaseBottomNode(SUnit *SU) {
 | |
|     BottomQ.push(SU);
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
 | |
|   bool Alternate = !ForceTopDown && !ForceBottomUp;
 | |
|   bool TopDown = !ForceBottomUp;
 | |
|   assert((TopDown || !ForceTopDown) &&
 | |
|          "-misched-topdown incompatible with -misched-bottomup");
 | |
|   return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
 | |
| }
 | |
| static MachineSchedRegistry ShufflerRegistry(
 | |
|   "shuffle", "Shuffle machine instructions alternating directions",
 | |
|   createInstructionShuffler);
 | |
| #endif // !NDEBUG
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // GraphWriter support for ScheduleDAGMI.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| namespace llvm {
 | |
| 
 | |
| template<> struct GraphTraits<
 | |
|   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
 | |
| 
 | |
| template<>
 | |
| struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
 | |
| 
 | |
|   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
 | |
| 
 | |
|   static std::string getGraphName(const ScheduleDAG *G) {
 | |
|     return G->MF.getName();
 | |
|   }
 | |
| 
 | |
|   static bool renderGraphFromBottomUp() {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   static bool isNodeHidden(const SUnit *Node) {
 | |
|     return (Node->NumPreds > 10 || Node->NumSuccs > 10);
 | |
|   }
 | |
| 
 | |
|   static bool hasNodeAddressLabel(const SUnit *Node,
 | |
|                                   const ScheduleDAG *Graph) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// If you want to override the dot attributes printed for a particular
 | |
|   /// edge, override this method.
 | |
|   static std::string getEdgeAttributes(const SUnit *Node,
 | |
|                                        SUnitIterator EI,
 | |
|                                        const ScheduleDAG *Graph) {
 | |
|     if (EI.isArtificialDep())
 | |
|       return "color=cyan,style=dashed";
 | |
|     if (EI.isCtrlDep())
 | |
|       return "color=blue,style=dashed";
 | |
|     return "";
 | |
|   }
 | |
| 
 | |
|   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
 | |
|     std::string Str;
 | |
|     raw_string_ostream SS(Str);
 | |
|     SS << "SU(" << SU->NodeNum << ')';
 | |
|     return SS.str();
 | |
|   }
 | |
|   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
 | |
|     return G->getGraphNodeLabel(SU);
 | |
|   }
 | |
| 
 | |
|   static std::string getNodeAttributes(const SUnit *N,
 | |
|                                        const ScheduleDAG *Graph) {
 | |
|     std::string Str("shape=Mrecord");
 | |
|     const SchedDFSResult *DFS =
 | |
|       static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
 | |
|     if (DFS) {
 | |
|       Str += ",style=filled,fillcolor=\"#";
 | |
|       Str += DOT::getColorString(DFS->getSubtreeID(N));
 | |
|       Str += '"';
 | |
|     }
 | |
|     return Str;
 | |
|   }
 | |
| };
 | |
| } // namespace llvm
 | |
| #endif // NDEBUG
 | |
| 
 | |
| /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
 | |
| /// rendered using 'dot'.
 | |
| ///
 | |
| void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
 | |
| #ifndef NDEBUG
 | |
|   ViewGraph(this, Name, false, Title);
 | |
| #else
 | |
|   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
 | |
|          << "systems with Graphviz or gv!\n";
 | |
| #endif  // NDEBUG
 | |
| }
 | |
| 
 | |
| /// Out-of-line implementation with no arguments is handy for gdb.
 | |
| void ScheduleDAGMI::viewGraph() {
 | |
|   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
 | |
| }
 |