mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@177920 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			803 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			803 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- StackColoring.cpp -------------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass implements the stack-coloring optimization that looks for
 | |
| // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
 | |
| // which represent the possible lifetime of stack slots. It attempts to
 | |
| // merge disjoint stack slots and reduce the used stack space.
 | |
| // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
 | |
| //
 | |
| // TODO: In the future we plan to improve stack coloring in the following ways:
 | |
| // 1. Allow merging multiple small slots into a single larger slot at different
 | |
| //    offsets.
 | |
| // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
 | |
| //    spill slots.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "stackcoloring"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SparseSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/DebugInfo.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/MC/MCInstrItineraries.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisableColoring("no-stack-coloring",
 | |
|         cl::init(false), cl::Hidden,
 | |
|         cl::desc("Disable stack coloring"));
 | |
| 
 | |
| /// The user may write code that uses allocas outside of the declared lifetime
 | |
| /// zone. This can happen when the user returns a reference to a local
 | |
| /// data-structure. We can detect these cases and decide not to optimize the
 | |
| /// code. If this flag is enabled, we try to save the user.
 | |
| static cl::opt<bool>
 | |
| ProtectFromEscapedAllocas("protect-from-escaped-allocas",
 | |
|                           cl::init(false), cl::Hidden,
 | |
|                           cl::desc("Do not optimize lifetime zones that "
 | |
|                                    "are broken"));
 | |
| 
 | |
| STATISTIC(NumMarkerSeen,  "Number of lifetime markers found.");
 | |
| STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
 | |
| STATISTIC(StackSlotMerged, "Number of stack slot merged.");
 | |
| STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           StackColoring Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// StackColoring - A machine pass for merging disjoint stack allocations,
 | |
| /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
 | |
| class StackColoring : public MachineFunctionPass {
 | |
|   MachineFrameInfo *MFI;
 | |
|   MachineFunction *MF;
 | |
| 
 | |
|   /// A class representing liveness information for a single basic block.
 | |
|   /// Each bit in the BitVector represents the liveness property
 | |
|   /// for a different stack slot.
 | |
|   struct BlockLifetimeInfo {
 | |
|     /// Which slots BEGINs in each basic block.
 | |
|     BitVector Begin;
 | |
|     /// Which slots ENDs in each basic block.
 | |
|     BitVector End;
 | |
|     /// Which slots are marked as LIVE_IN, coming into each basic block.
 | |
|     BitVector LiveIn;
 | |
|     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
 | |
|     BitVector LiveOut;
 | |
|   };
 | |
| 
 | |
|   /// Maps active slots (per bit) for each basic block.
 | |
|   typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
 | |
|   LivenessMap BlockLiveness;
 | |
| 
 | |
|   /// Maps serial numbers to basic blocks.
 | |
|   DenseMap<const MachineBasicBlock*, int> BasicBlocks;
 | |
|   /// Maps basic blocks to a serial number.
 | |
|   SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
 | |
| 
 | |
|   /// Maps liveness intervals for each slot.
 | |
|   SmallVector<LiveInterval*, 16> Intervals;
 | |
|   /// VNInfo is used for the construction of LiveIntervals.
 | |
|   VNInfo::Allocator VNInfoAllocator;
 | |
|   /// SlotIndex analysis object.
 | |
|   SlotIndexes *Indexes;
 | |
| 
 | |
|   /// The list of lifetime markers found. These markers are to be removed
 | |
|   /// once the coloring is done.
 | |
|   SmallVector<MachineInstr*, 8> Markers;
 | |
| 
 | |
|   /// SlotSizeSorter - A Sort utility for arranging stack slots according
 | |
|   /// to their size.
 | |
|   struct SlotSizeSorter {
 | |
|     MachineFrameInfo *MFI;
 | |
|     SlotSizeSorter(MachineFrameInfo *mfi) : MFI(mfi) { }
 | |
|     bool operator()(int LHS, int RHS) {
 | |
|       // We use -1 to denote a uninteresting slot. Place these slots at the end.
 | |
|       if (LHS == -1) return false;
 | |
|       if (RHS == -1) return true;
 | |
|       // Sort according to size.
 | |
|       return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
 | |
|   }
 | |
| };
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
|   StackColoring() : MachineFunctionPass(ID) {
 | |
|     initializeStackColoringPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
|   bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
| private:
 | |
|   /// Debug.
 | |
|   void dump() const;
 | |
| 
 | |
|   /// Removes all of the lifetime marker instructions from the function.
 | |
|   /// \returns true if any markers were removed.
 | |
|   bool removeAllMarkers();
 | |
| 
 | |
|   /// Scan the machine function and find all of the lifetime markers.
 | |
|   /// Record the findings in the BEGIN and END vectors.
 | |
|   /// \returns the number of markers found.
 | |
|   unsigned collectMarkers(unsigned NumSlot);
 | |
| 
 | |
|   /// Perform the dataflow calculation and calculate the lifetime for each of
 | |
|   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
 | |
|   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
 | |
|   /// in and out blocks.
 | |
|   void calculateLocalLiveness();
 | |
| 
 | |
|   /// Construct the LiveIntervals for the slots.
 | |
|   void calculateLiveIntervals(unsigned NumSlots);
 | |
| 
 | |
|   /// Go over the machine function and change instructions which use stack
 | |
|   /// slots to use the joint slots.
 | |
|   void remapInstructions(DenseMap<int, int> &SlotRemap);
 | |
| 
 | |
|   /// The input program may contain intructions which are not inside lifetime
 | |
|   /// markers. This can happen due to a bug in the compiler or due to a bug in
 | |
|   /// user code (for example, returning a reference to a local variable).
 | |
|   /// This procedure checks all of the instructions in the function and
 | |
|   /// invalidates lifetime ranges which do not contain all of the instructions
 | |
|   /// which access that frame slot.
 | |
|   void removeInvalidSlotRanges();
 | |
| 
 | |
|   /// Map entries which point to other entries to their destination.
 | |
|   ///   A->B->C becomes A->C.
 | |
|    void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char StackColoring::ID = 0;
 | |
| char &llvm::StackColoringID = StackColoring::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(StackColoring,
 | |
|                    "stack-coloring", "Merge disjoint stack slots", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | |
| INITIALIZE_PASS_END(StackColoring,
 | |
|                    "stack-coloring", "Merge disjoint stack slots", false, false)
 | |
| 
 | |
| void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<MachineDominatorTree>();
 | |
|   AU.addPreserved<MachineDominatorTree>();
 | |
|   AU.addRequired<SlotIndexes>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| void StackColoring::dump() const {
 | |
|   for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
 | |
|        FI != FE; ++FI) {
 | |
|     DEBUG(dbgs()<<"Inspecting block #"<<BasicBlocks.lookup(*FI)<<
 | |
|           " ["<<FI->getName()<<"]\n");
 | |
| 
 | |
|     LivenessMap::const_iterator BI = BlockLiveness.find(*FI);
 | |
|     assert(BI != BlockLiveness.end() && "Block not found");
 | |
|     const BlockLifetimeInfo &BlockInfo = BI->second;
 | |
| 
 | |
|     DEBUG(dbgs()<<"BEGIN  : {");
 | |
|     for (unsigned i=0; i < BlockInfo.Begin.size(); ++i)
 | |
|       DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" ");
 | |
|     DEBUG(dbgs()<<"}\n");
 | |
| 
 | |
|     DEBUG(dbgs()<<"END    : {");
 | |
|     for (unsigned i=0; i < BlockInfo.End.size(); ++i)
 | |
|       DEBUG(dbgs()<<BlockInfo.End.test(i)<<" ");
 | |
| 
 | |
|     DEBUG(dbgs()<<"}\n");
 | |
| 
 | |
|     DEBUG(dbgs()<<"LIVE_IN: {");
 | |
|     for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i)
 | |
|       DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" ");
 | |
| 
 | |
|     DEBUG(dbgs()<<"}\n");
 | |
|     DEBUG(dbgs()<<"LIVEOUT: {");
 | |
|     for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i)
 | |
|       DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" ");
 | |
|     DEBUG(dbgs()<<"}\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned StackColoring::collectMarkers(unsigned NumSlot) {
 | |
|   unsigned MarkersFound = 0;
 | |
|   // Scan the function to find all lifetime markers.
 | |
|   // NOTE: We use the a reverse-post-order iteration to ensure that we obtain a
 | |
|   // deterministic numbering, and because we'll need a post-order iteration
 | |
|   // later for solving the liveness dataflow problem.
 | |
|   for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
 | |
|        FI != FE; ++FI) {
 | |
| 
 | |
|     // Assign a serial number to this basic block.
 | |
|     BasicBlocks[*FI] = BasicBlockNumbering.size();
 | |
|     BasicBlockNumbering.push_back(*FI);
 | |
| 
 | |
|     // Keep a reference to avoid repeated lookups.
 | |
|     BlockLifetimeInfo &BlockInfo = BlockLiveness[*FI];
 | |
| 
 | |
|     BlockInfo.Begin.resize(NumSlot);
 | |
|     BlockInfo.End.resize(NumSlot);
 | |
| 
 | |
|     for (MachineBasicBlock::iterator BI = (*FI)->begin(), BE = (*FI)->end();
 | |
|          BI != BE; ++BI) {
 | |
| 
 | |
|       if (BI->getOpcode() != TargetOpcode::LIFETIME_START &&
 | |
|           BI->getOpcode() != TargetOpcode::LIFETIME_END)
 | |
|         continue;
 | |
| 
 | |
|       Markers.push_back(BI);
 | |
| 
 | |
|       bool IsStart = BI->getOpcode() == TargetOpcode::LIFETIME_START;
 | |
|       const MachineOperand &MI = BI->getOperand(0);
 | |
|       unsigned Slot = MI.getIndex();
 | |
| 
 | |
|       MarkersFound++;
 | |
| 
 | |
|       const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
 | |
|       if (Allocation) {
 | |
|         DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<<
 | |
|               " with allocation: "<< Allocation->getName()<<"\n");
 | |
|       }
 | |
| 
 | |
|       if (IsStart) {
 | |
|         BlockInfo.Begin.set(Slot);
 | |
|       } else {
 | |
|         if (BlockInfo.Begin.test(Slot)) {
 | |
|           // Allocas that start and end within a single block are handled
 | |
|           // specially when computing the LiveIntervals to avoid pessimizing
 | |
|           // the liveness propagation.
 | |
|           BlockInfo.Begin.reset(Slot);
 | |
|         } else {
 | |
|           BlockInfo.End.set(Slot);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update statistics.
 | |
|   NumMarkerSeen += MarkersFound;
 | |
|   return MarkersFound;
 | |
| }
 | |
| 
 | |
| void StackColoring::calculateLocalLiveness() {
 | |
|   // Perform a standard reverse dataflow computation to solve for
 | |
|   // global liveness.  The BEGIN set here is equivalent to KILL in the standard
 | |
|   // formulation, and END is equivalent to GEN.  The result of this computation
 | |
|   // is a map from blocks to bitvectors where the bitvectors represent which
 | |
|   // allocas are live in/out of that block.
 | |
|   SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
 | |
|                                                  BasicBlockNumbering.end());
 | |
|   unsigned NumSSMIters = 0;
 | |
|   bool changed = true;
 | |
|   while (changed) {
 | |
|     changed = false;
 | |
|     ++NumSSMIters;
 | |
| 
 | |
|     SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet;
 | |
| 
 | |
|     for (SmallVector<const MachineBasicBlock*, 8>::iterator
 | |
|          PI = BasicBlockNumbering.begin(), PE = BasicBlockNumbering.end();
 | |
|          PI != PE; ++PI) {
 | |
| 
 | |
|       const MachineBasicBlock *BB = *PI;
 | |
|       if (!BBSet.count(BB)) continue;
 | |
| 
 | |
|       // Use an iterator to avoid repeated lookups.
 | |
|       LivenessMap::iterator BI = BlockLiveness.find(BB);
 | |
|       assert(BI != BlockLiveness.end() && "Block not found");
 | |
|       BlockLifetimeInfo &BlockInfo = BI->second;
 | |
| 
 | |
|       BitVector LocalLiveIn;
 | |
|       BitVector LocalLiveOut;
 | |
| 
 | |
|       // Forward propagation from begins to ends.
 | |
|       for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
 | |
|            PE = BB->pred_end(); PI != PE; ++PI) {
 | |
|         LivenessMap::const_iterator I = BlockLiveness.find(*PI);
 | |
|         assert(I != BlockLiveness.end() && "Predecessor not found");
 | |
|         LocalLiveIn |= I->second.LiveOut;
 | |
|       }
 | |
|       LocalLiveIn |= BlockInfo.End;
 | |
|       LocalLiveIn.reset(BlockInfo.Begin);
 | |
| 
 | |
|       // Reverse propagation from ends to begins.
 | |
|       for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
 | |
|            SE = BB->succ_end(); SI != SE; ++SI) {
 | |
|         LivenessMap::const_iterator I = BlockLiveness.find(*SI);
 | |
|         assert(I != BlockLiveness.end() && "Successor not found");
 | |
|         LocalLiveOut |= I->second.LiveIn;
 | |
|       }
 | |
|       LocalLiveOut |= BlockInfo.Begin;
 | |
|       LocalLiveOut.reset(BlockInfo.End);
 | |
| 
 | |
|       LocalLiveIn |= LocalLiveOut;
 | |
|       LocalLiveOut |= LocalLiveIn;
 | |
| 
 | |
|       // After adopting the live bits, we need to turn-off the bits which
 | |
|       // are de-activated in this block.
 | |
|       LocalLiveOut.reset(BlockInfo.End);
 | |
|       LocalLiveIn.reset(BlockInfo.Begin);
 | |
| 
 | |
|       // If we have both BEGIN and END markers in the same basic block then
 | |
|       // we know that the BEGIN marker comes after the END, because we already
 | |
|       // handle the case where the BEGIN comes before the END when collecting
 | |
|       // the markers (and building the BEGIN/END vectore).
 | |
|       // Want to enable the LIVE_IN and LIVE_OUT of slots that have both
 | |
|       // BEGIN and END because it means that the value lives before and after
 | |
|       // this basic block.
 | |
|       BitVector LocalEndBegin = BlockInfo.End;
 | |
|       LocalEndBegin &= BlockInfo.Begin;
 | |
|       LocalLiveIn |= LocalEndBegin;
 | |
|       LocalLiveOut |= LocalEndBegin;
 | |
| 
 | |
|       if (LocalLiveIn.test(BlockInfo.LiveIn)) {
 | |
|         changed = true;
 | |
|         BlockInfo.LiveIn |= LocalLiveIn;
 | |
| 
 | |
|         for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
 | |
|              PE = BB->pred_end(); PI != PE; ++PI)
 | |
|           NextBBSet.insert(*PI);
 | |
|       }
 | |
| 
 | |
|       if (LocalLiveOut.test(BlockInfo.LiveOut)) {
 | |
|         changed = true;
 | |
|         BlockInfo.LiveOut |= LocalLiveOut;
 | |
| 
 | |
|         for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
 | |
|              SE = BB->succ_end(); SI != SE; ++SI)
 | |
|           NextBBSet.insert(*SI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     BBSet = NextBBSet;
 | |
|   }// while changed.
 | |
| }
 | |
| 
 | |
| void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
 | |
|   SmallVector<SlotIndex, 16> Starts;
 | |
|   SmallVector<SlotIndex, 16> Finishes;
 | |
| 
 | |
|   // For each block, find which slots are active within this block
 | |
|   // and update the live intervals.
 | |
|   for (MachineFunction::iterator MBB = MF->begin(), MBBe = MF->end();
 | |
|        MBB != MBBe; ++MBB) {
 | |
|     Starts.clear();
 | |
|     Starts.resize(NumSlots);
 | |
|     Finishes.clear();
 | |
|     Finishes.resize(NumSlots);
 | |
| 
 | |
|     // Create the interval for the basic blocks with lifetime markers in them.
 | |
|     for (SmallVectorImpl<MachineInstr*>::const_iterator it = Markers.begin(),
 | |
|          e = Markers.end(); it != e; ++it) {
 | |
|       const MachineInstr *MI = *it;
 | |
|       if (MI->getParent() != MBB)
 | |
|         continue;
 | |
| 
 | |
|       assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
 | |
|               MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
 | |
|              "Invalid Lifetime marker");
 | |
| 
 | |
|       bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
 | |
|       const MachineOperand &Mo = MI->getOperand(0);
 | |
|       int Slot = Mo.getIndex();
 | |
|       assert(Slot >= 0 && "Invalid slot");
 | |
| 
 | |
|       SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
 | |
| 
 | |
|       if (IsStart) {
 | |
|         if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
 | |
|           Starts[Slot] = ThisIndex;
 | |
|       } else {
 | |
|         if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
 | |
|           Finishes[Slot] = ThisIndex;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Create the interval of the blocks that we previously found to be 'alive'.
 | |
|     BitVector Alive = BlockLiveness[MBB].LiveIn;
 | |
|     Alive |= BlockLiveness[MBB].LiveOut;
 | |
| 
 | |
|     if (Alive.any()) {
 | |
|       for (int pos = Alive.find_first(); pos != -1;
 | |
|            pos = Alive.find_next(pos)) {
 | |
|         if (!Starts[pos].isValid())
 | |
|           Starts[pos] = Indexes->getMBBStartIdx(MBB);
 | |
|         if (!Finishes[pos].isValid())
 | |
|           Finishes[pos] = Indexes->getMBBEndIdx(MBB);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (unsigned i = 0; i < NumSlots; ++i) {
 | |
|       assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range");
 | |
|       if (!Starts[i].isValid())
 | |
|         continue;
 | |
| 
 | |
|       assert(Starts[i] && Finishes[i] && "Invalid interval");
 | |
|       VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
 | |
|       SlotIndex S = Starts[i];
 | |
|       SlotIndex F = Finishes[i];
 | |
|       if (S < F) {
 | |
|         // We have a single consecutive region.
 | |
|         Intervals[i]->addRange(LiveRange(S, F, ValNum));
 | |
|       } else {
 | |
|         // We have two non consecutive regions. This happens when
 | |
|         // LIFETIME_START appears after the LIFETIME_END marker.
 | |
|         SlotIndex NewStart = Indexes->getMBBStartIdx(MBB);
 | |
|         SlotIndex NewFin = Indexes->getMBBEndIdx(MBB);
 | |
|         Intervals[i]->addRange(LiveRange(NewStart, F, ValNum));
 | |
|         Intervals[i]->addRange(LiveRange(S, NewFin, ValNum));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool StackColoring::removeAllMarkers() {
 | |
|   unsigned Count = 0;
 | |
|   for (unsigned i = 0; i < Markers.size(); ++i) {
 | |
|     Markers[i]->eraseFromParent();
 | |
|     Count++;
 | |
|   }
 | |
|   Markers.clear();
 | |
| 
 | |
|   DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
 | |
|   unsigned FixedInstr = 0;
 | |
|   unsigned FixedMemOp = 0;
 | |
|   unsigned FixedDbg = 0;
 | |
|   MachineModuleInfo *MMI = &MF->getMMI();
 | |
| 
 | |
|   // Remap debug information that refers to stack slots.
 | |
|   MachineModuleInfo::VariableDbgInfoMapTy &VMap = MMI->getVariableDbgInfo();
 | |
|   for (MachineModuleInfo::VariableDbgInfoMapTy::iterator VI = VMap.begin(),
 | |
|        VE = VMap.end(); VI != VE; ++VI) {
 | |
|     const MDNode *Var = VI->first;
 | |
|     if (!Var) continue;
 | |
|     std::pair<unsigned, DebugLoc> &VP = VI->second;
 | |
|     if (SlotRemap.count(VP.first)) {
 | |
|       DEBUG(dbgs()<<"Remapping debug info for ["<<Var->getName()<<"].\n");
 | |
|       VP.first = SlotRemap[VP.first];
 | |
|       FixedDbg++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Keep a list of *allocas* which need to be remapped.
 | |
|   DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
 | |
|   for (DenseMap<int, int>::const_iterator it = SlotRemap.begin(),
 | |
|        e = SlotRemap.end(); it != e; ++it) {
 | |
|     const AllocaInst *From = MFI->getObjectAllocation(it->first);
 | |
|     const AllocaInst *To = MFI->getObjectAllocation(it->second);
 | |
|     assert(To && From && "Invalid allocation object");
 | |
|     Allocas[From] = To;
 | |
|   }
 | |
| 
 | |
|   // Remap all instructions to the new stack slots.
 | |
|   MachineFunction::iterator BB, BBE;
 | |
|   MachineBasicBlock::iterator I, IE;
 | |
|   for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB)
 | |
|     for (I = BB->begin(), IE = BB->end(); I != IE; ++I) {
 | |
| 
 | |
|       // Skip lifetime markers. We'll remove them soon.
 | |
|       if (I->getOpcode() == TargetOpcode::LIFETIME_START ||
 | |
|           I->getOpcode() == TargetOpcode::LIFETIME_END)
 | |
|         continue;
 | |
| 
 | |
|       // Update the MachineMemOperand to use the new alloca.
 | |
|       for (MachineInstr::mmo_iterator MM = I->memoperands_begin(),
 | |
|            E = I->memoperands_end(); MM != E; ++MM) {
 | |
|         MachineMemOperand *MMO = *MM;
 | |
| 
 | |
|         const Value *V = MMO->getValue();
 | |
| 
 | |
|         if (!V)
 | |
|           continue;
 | |
| 
 | |
|         // Climb up and find the original alloca.
 | |
|         V = GetUnderlyingObject(V);
 | |
|         // If we did not find one, or if the one that we found is not in our
 | |
|         // map, then move on.
 | |
|         if (!V || !isa<AllocaInst>(V)) {
 | |
|           // Clear mem operand since we don't know for sure that it doesn't
 | |
|           // alias a merged alloca.
 | |
|           MMO->setValue(0);
 | |
|           continue;
 | |
|         }
 | |
|         const AllocaInst *AI= cast<AllocaInst>(V);
 | |
|         if (!Allocas.count(AI))
 | |
|           continue;
 | |
| 
 | |
|         MMO->setValue(Allocas[AI]);
 | |
|         FixedMemOp++;
 | |
|       }
 | |
| 
 | |
|       // Update all of the machine instruction operands.
 | |
|       for (unsigned i = 0 ; i <  I->getNumOperands(); ++i) {
 | |
|         MachineOperand &MO = I->getOperand(i);
 | |
| 
 | |
|         if (!MO.isFI())
 | |
|           continue;
 | |
|         int FromSlot = MO.getIndex();
 | |
| 
 | |
|         // Don't touch arguments.
 | |
|         if (FromSlot<0)
 | |
|           continue;
 | |
| 
 | |
|         // Only look at mapped slots.
 | |
|         if (!SlotRemap.count(FromSlot))
 | |
|           continue;
 | |
| 
 | |
|         // In a debug build, check that the instruction that we are modifying is
 | |
|         // inside the expected live range. If the instruction is not inside
 | |
|         // the calculated range then it means that the alloca usage moved
 | |
|         // outside of the lifetime markers, or that the user has a bug.
 | |
|         // NOTE: Alloca address calculations which happen outside the lifetime
 | |
|         // zone are are okay, despite the fact that we don't have a good way
 | |
|         // for validating all of the usages of the calculation.
 | |
| #ifndef NDEBUG
 | |
|         bool TouchesMemory = I->mayLoad() || I->mayStore();
 | |
|         // If we *don't* protect the user from escaped allocas, don't bother
 | |
|         // validating the instructions.
 | |
|         if (!I->isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
 | |
|           SlotIndex Index = Indexes->getInstructionIndex(I);
 | |
|           LiveInterval *Interval = Intervals[FromSlot];
 | |
|           assert(Interval->find(Index) != Interval->end() &&
 | |
|                  "Found instruction usage outside of live range.");
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         // Fix the machine instructions.
 | |
|         int ToSlot = SlotRemap[FromSlot];
 | |
|         MO.setIndex(ToSlot);
 | |
|         FixedInstr++;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
 | |
|   DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
 | |
|   DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
 | |
| }
 | |
| 
 | |
| void StackColoring::removeInvalidSlotRanges() {
 | |
|   MachineFunction::const_iterator BB, BBE;
 | |
|   MachineBasicBlock::const_iterator I, IE;
 | |
|   for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB)
 | |
|     for (I = BB->begin(), IE = BB->end(); I != IE; ++I) {
 | |
| 
 | |
|       if (I->getOpcode() == TargetOpcode::LIFETIME_START ||
 | |
|           I->getOpcode() == TargetOpcode::LIFETIME_END || I->isDebugValue())
 | |
|         continue;
 | |
| 
 | |
|       // Some intervals are suspicious! In some cases we find address
 | |
|       // calculations outside of the lifetime zone, but not actual memory
 | |
|       // read or write. Memory accesses outside of the lifetime zone are a clear
 | |
|       // violation, but address calculations are okay. This can happen when
 | |
|       // GEPs are hoisted outside of the lifetime zone.
 | |
|       // So, in here we only check instructions which can read or write memory.
 | |
|       if (!I->mayLoad() && !I->mayStore())
 | |
|         continue;
 | |
| 
 | |
|       // Check all of the machine operands.
 | |
|       for (unsigned i = 0 ; i <  I->getNumOperands(); ++i) {
 | |
|         const MachineOperand &MO = I->getOperand(i);
 | |
| 
 | |
|         if (!MO.isFI())
 | |
|           continue;
 | |
| 
 | |
|         int Slot = MO.getIndex();
 | |
| 
 | |
|         if (Slot<0)
 | |
|           continue;
 | |
| 
 | |
|         if (Intervals[Slot]->empty())
 | |
|           continue;
 | |
| 
 | |
|         // Check that the used slot is inside the calculated lifetime range.
 | |
|         // If it is not, warn about it and invalidate the range.
 | |
|         LiveInterval *Interval = Intervals[Slot];
 | |
|         SlotIndex Index = Indexes->getInstructionIndex(I);
 | |
|         if (Interval->find(Index) == Interval->end()) {
 | |
|           Intervals[Slot]->clear();
 | |
|           DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
 | |
|           EscapedAllocas++;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
 | |
|                                    unsigned NumSlots) {
 | |
|   // Expunge slot remap map.
 | |
|   for (unsigned i=0; i < NumSlots; ++i) {
 | |
|     // If we are remapping i
 | |
|     if (SlotRemap.count(i)) {
 | |
|       int Target = SlotRemap[i];
 | |
|       // As long as our target is mapped to something else, follow it.
 | |
|       while (SlotRemap.count(Target)) {
 | |
|         Target = SlotRemap[Target];
 | |
|         SlotRemap[i] = Target;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
 | |
|   DEBUG(dbgs() << "********** Stack Coloring **********\n"
 | |
|                << "********** Function: "
 | |
|                << ((const Value*)Func.getFunction())->getName() << '\n');
 | |
|   MF = &Func;
 | |
|   MFI = MF->getFrameInfo();
 | |
|   Indexes = &getAnalysis<SlotIndexes>();
 | |
|   BlockLiveness.clear();
 | |
|   BasicBlocks.clear();
 | |
|   BasicBlockNumbering.clear();
 | |
|   Markers.clear();
 | |
|   Intervals.clear();
 | |
|   VNInfoAllocator.Reset();
 | |
| 
 | |
|   unsigned NumSlots = MFI->getObjectIndexEnd();
 | |
| 
 | |
|   // If there are no stack slots then there are no markers to remove.
 | |
|   if (!NumSlots)
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<int, 8> SortedSlots;
 | |
| 
 | |
|   SortedSlots.reserve(NumSlots);
 | |
|   Intervals.reserve(NumSlots);
 | |
| 
 | |
|   unsigned NumMarkers = collectMarkers(NumSlots);
 | |
| 
 | |
|   unsigned TotalSize = 0;
 | |
|   DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
 | |
|   DEBUG(dbgs()<<"Slot structure:\n");
 | |
| 
 | |
|   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
 | |
|     DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
 | |
|     TotalSize += MFI->getObjectSize(i);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
 | |
| 
 | |
|   // Don't continue because there are not enough lifetime markers, or the
 | |
|   // stack is too small, or we are told not to optimize the slots.
 | |
|   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
 | |
|     DEBUG(dbgs()<<"Will not try to merge slots.\n");
 | |
|     return removeAllMarkers();
 | |
|   }
 | |
| 
 | |
|   for (unsigned i=0; i < NumSlots; ++i) {
 | |
|     LiveInterval *LI = new LiveInterval(i, 0);
 | |
|     Intervals.push_back(LI);
 | |
|     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
 | |
|     SortedSlots.push_back(i);
 | |
|   }
 | |
| 
 | |
|   // Calculate the liveness of each block.
 | |
|   calculateLocalLiveness();
 | |
| 
 | |
|   // Propagate the liveness information.
 | |
|   calculateLiveIntervals(NumSlots);
 | |
| 
 | |
|   // Search for allocas which are used outside of the declared lifetime
 | |
|   // markers.
 | |
|   if (ProtectFromEscapedAllocas)
 | |
|     removeInvalidSlotRanges();
 | |
| 
 | |
|   // Maps old slots to new slots.
 | |
|   DenseMap<int, int> SlotRemap;
 | |
|   unsigned RemovedSlots = 0;
 | |
|   unsigned ReducedSize = 0;
 | |
| 
 | |
|   // Do not bother looking at empty intervals.
 | |
|   for (unsigned I = 0; I < NumSlots; ++I) {
 | |
|     if (Intervals[SortedSlots[I]]->empty())
 | |
|       SortedSlots[I] = -1;
 | |
|   }
 | |
| 
 | |
|   // This is a simple greedy algorithm for merging allocas. First, sort the
 | |
|   // slots, placing the largest slots first. Next, perform an n^2 scan and look
 | |
|   // for disjoint slots. When you find disjoint slots, merge the samller one
 | |
|   // into the bigger one and update the live interval. Remove the small alloca
 | |
|   // and continue.
 | |
| 
 | |
|   // Sort the slots according to their size. Place unused slots at the end.
 | |
|   // Use stable sort to guarantee deterministic code generation.
 | |
|   std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
 | |
|                    SlotSizeSorter(MFI));
 | |
| 
 | |
|   bool Changed = true;
 | |
|   while (Changed) {
 | |
|     Changed = false;
 | |
|     for (unsigned I = 0; I < NumSlots; ++I) {
 | |
|       if (SortedSlots[I] == -1)
 | |
|         continue;
 | |
| 
 | |
|       for (unsigned J=I+1; J < NumSlots; ++J) {
 | |
|         if (SortedSlots[J] == -1)
 | |
|           continue;
 | |
| 
 | |
|         int FirstSlot = SortedSlots[I];
 | |
|         int SecondSlot = SortedSlots[J];
 | |
|         LiveInterval *First = Intervals[FirstSlot];
 | |
|         LiveInterval *Second = Intervals[SecondSlot];
 | |
|         assert (!First->empty() && !Second->empty() && "Found an empty range");
 | |
| 
 | |
|         // Merge disjoint slots.
 | |
|         if (!First->overlaps(*Second)) {
 | |
|           Changed = true;
 | |
|           First->MergeRangesInAsValue(*Second, First->getValNumInfo(0));
 | |
|           SlotRemap[SecondSlot] = FirstSlot;
 | |
|           SortedSlots[J] = -1;
 | |
|           DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
 | |
|                 SecondSlot<<" together.\n");
 | |
|           unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
 | |
|                                            MFI->getObjectAlignment(SecondSlot));
 | |
| 
 | |
|           assert(MFI->getObjectSize(FirstSlot) >=
 | |
|                  MFI->getObjectSize(SecondSlot) &&
 | |
|                  "Merging a small object into a larger one");
 | |
| 
 | |
|           RemovedSlots+=1;
 | |
|           ReducedSize += MFI->getObjectSize(SecondSlot);
 | |
|           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
 | |
|           MFI->RemoveStackObject(SecondSlot);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }// While changed.
 | |
| 
 | |
|   // Record statistics.
 | |
|   StackSpaceSaved += ReducedSize;
 | |
|   StackSlotMerged += RemovedSlots;
 | |
|   DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
 | |
|         ReducedSize<<" bytes\n");
 | |
| 
 | |
|   // Scan the entire function and update all machine operands that use frame
 | |
|   // indices to use the remapped frame index.
 | |
|   expungeSlotMap(SlotRemap, NumSlots);
 | |
|   remapInstructions(SlotRemap);
 | |
| 
 | |
|   // Release the intervals.
 | |
|   for (unsigned I = 0; I < NumSlots; ++I) {
 | |
|     delete Intervals[I];
 | |
|   }
 | |
| 
 | |
|   return removeAllMarkers();
 | |
| }
 |