mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-08 18:31:23 +00:00
f522068412
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@57649 91177308-0d34-0410-b5e6-96231b3b80d8
150 lines
5.5 KiB
C++
150 lines
5.5 KiB
C++
//===------------- EscapeAnalysis.h - Pointer escape analysis -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides the implementation of the pointer escape analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "escape-analysis"
|
|
#include "llvm/Analysis/EscapeAnalysis.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Support/InstIterator.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
char EscapeAnalysis::ID = 0;
|
|
static RegisterPass<EscapeAnalysis> X("escape-analysis",
|
|
"Pointer Escape Analysis", true, true);
|
|
|
|
|
|
/// runOnFunction - Precomputation for escape analysis. This collects all know
|
|
/// "escape points" in the def-use graph of the function. These are
|
|
/// instructions which allow their inputs to escape from the current function.
|
|
bool EscapeAnalysis::runOnFunction(Function& F) {
|
|
EscapePoints.clear();
|
|
|
|
TargetData& TD = getAnalysis<TargetData>();
|
|
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
|
|
Module* M = F.getParent();
|
|
|
|
// Walk through all instructions in the function, identifying those that
|
|
// may allow their inputs to escape.
|
|
for(inst_iterator II = inst_begin(F), IE = inst_end(F); II != IE; ++II) {
|
|
Instruction* I = &*II;
|
|
|
|
// The most obvious case is stores. Any store that may write to global
|
|
// memory or to a function argument potentially allows its input to escape.
|
|
if (StoreInst* S = dyn_cast<StoreInst>(I)) {
|
|
const Type* StoreType = S->getOperand(0)->getType();
|
|
unsigned StoreSize = TD.getTypeStoreSize(StoreType);
|
|
Value* Pointer = S->getPointerOperand();
|
|
|
|
bool inserted = false;
|
|
for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end();
|
|
AI != AE; ++AI) {
|
|
if (!isa<PointerType>(AI->getType())) continue;
|
|
AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, AI, ~0U);
|
|
if (R != AliasAnalysis::NoAlias) {
|
|
EscapePoints.insert(S);
|
|
inserted = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (inserted)
|
|
continue;
|
|
|
|
for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
|
|
GI != GE; ++GI) {
|
|
AliasAnalysis::AliasResult R = AA.alias(Pointer, StoreSize, GI, ~0U);
|
|
if (R != AliasAnalysis::NoAlias) {
|
|
EscapePoints.insert(S);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Calls and invokes potentially allow their parameters to escape.
|
|
// FIXME: This can and should be refined. Intrinsics have known escape
|
|
// behavior, and alias analysis may be able to tell us more about callees.
|
|
} else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
|
|
EscapePoints.insert(I);
|
|
|
|
// Returns allow the return value to escape. This is mostly important
|
|
// for malloc to alloca promotion.
|
|
} else if (isa<ReturnInst>(I)) {
|
|
EscapePoints.insert(I);
|
|
|
|
// Branching on the value of a pointer may allow the value to escape through
|
|
// methods not discoverable via def-use chaining.
|
|
} else if(isa<BranchInst>(I) || isa<SwitchInst>(I)) {
|
|
EscapePoints.insert(I);
|
|
}
|
|
|
|
// FIXME: Are there any other possible escape points?
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// escapes - Determines whether the passed allocation can escape from the
|
|
/// current function. It does this by using a simple worklist algorithm to
|
|
/// search for a path in the def-use graph from the allocation to an
|
|
/// escape point.
|
|
/// FIXME: Once we've discovered a path, it would be a good idea to memoize it,
|
|
/// and all of its subpaths, to amortize the cost of future queries.
|
|
bool EscapeAnalysis::escapes(Value* A) {
|
|
assert(isa<PointerType>(A->getType()) &&
|
|
"Can't do escape analysis on non-pointer types!");
|
|
|
|
std::vector<Value*> worklist;
|
|
worklist.push_back(A);
|
|
|
|
SmallPtrSet<Value*, 8> visited;
|
|
visited.insert(A);
|
|
while (!worklist.empty()) {
|
|
Value* curr = worklist.back();
|
|
worklist.pop_back();
|
|
|
|
if (Instruction* I = dyn_cast<Instruction>(curr))
|
|
if (EscapePoints.count(I)) {
|
|
BranchInst* B = dyn_cast<BranchInst>(I);
|
|
if (!B) return true;
|
|
Value* condition = B->getCondition();
|
|
ICmpInst* C = dyn_cast<ICmpInst>(condition);
|
|
if (!C) return true;
|
|
Value* O1 = C->getOperand(0);
|
|
Value* O2 = C->getOperand(1);
|
|
if (isa<MallocInst>(O1->stripPointerCasts())) {
|
|
if (!isa<ConstantPointerNull>(O2)) return true;
|
|
} else if(isa<MallocInst>(O2->stripPointerCasts())) {
|
|
if (!isa<ConstantPointerNull>(O1)) return true;
|
|
} else
|
|
return true;
|
|
}
|
|
|
|
if (StoreInst* S = dyn_cast<StoreInst>(curr)) {
|
|
// We know this must be an instruction, because constant gep's would
|
|
// have been found to alias a global, so stores to them would have
|
|
// been in EscapePoints.
|
|
if (visited.insert(cast<Instruction>(S->getPointerOperand())))
|
|
worklist.push_back(cast<Instruction>(S->getPointerOperand()));
|
|
} else {
|
|
for (Instruction::use_iterator UI = curr->use_begin(),
|
|
UE = curr->use_end(); UI != UE; ++UI)
|
|
if (Instruction* U = dyn_cast<Instruction>(UI))
|
|
if (visited.insert(U))
|
|
worklist.push_back(U);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|