mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-07 11:33:44 +00:00
bb41156c0c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12382 91177308-0d34-0410-b5e6-96231b3b80d8
589 lines
23 KiB
C++
589 lines
23 KiB
C++
//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the interface to tear out a code region, such as an
|
|
// individual loop or a parallel section, into a new function, replacing it with
|
|
// a call to the new function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/Verifier.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/FunctionUtils.h"
|
|
#include "Support/Debug.h"
|
|
#include "Support/StringExtras.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
inline bool contains(const std::vector<BasicBlock*> &V, const BasicBlock *BB){
|
|
return std::find(V.begin(), V.end(), BB) != V.end();
|
|
}
|
|
|
|
/// getFunctionArg - Return a pointer to F's ARGNOth argument.
|
|
///
|
|
Argument *getFunctionArg(Function *F, unsigned argno) {
|
|
Function::aiterator ai = F->abegin();
|
|
while (argno) { ++ai; --argno; }
|
|
return &*ai;
|
|
}
|
|
|
|
struct CodeExtractor {
|
|
typedef std::vector<Value*> Values;
|
|
typedef std::vector<std::pair<unsigned, unsigned> > PhiValChangesTy;
|
|
typedef std::map<PHINode*, PhiValChangesTy> PhiVal2ArgTy;
|
|
PhiVal2ArgTy PhiVal2Arg;
|
|
|
|
public:
|
|
Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code);
|
|
|
|
private:
|
|
void findInputsOutputs(const std::vector<BasicBlock*> &code,
|
|
Values &inputs,
|
|
Values &outputs,
|
|
BasicBlock *newHeader,
|
|
BasicBlock *newRootNode);
|
|
|
|
void processPhiNodeInputs(PHINode *Phi,
|
|
const std::vector<BasicBlock*> &code,
|
|
Values &inputs,
|
|
BasicBlock *newHeader,
|
|
BasicBlock *newRootNode);
|
|
|
|
void rewritePhiNodes(Function *F, BasicBlock *newFuncRoot);
|
|
|
|
Function *constructFunction(const Values &inputs,
|
|
const Values &outputs,
|
|
BasicBlock *newRootNode, BasicBlock *newHeader,
|
|
const std::vector<BasicBlock*> &code,
|
|
Function *oldFunction, Module *M);
|
|
|
|
void moveCodeToFunction(const std::vector<BasicBlock*> &code,
|
|
Function *newFunction);
|
|
|
|
void emitCallAndSwitchStatement(Function *newFunction,
|
|
BasicBlock *newHeader,
|
|
const std::vector<BasicBlock*> &code,
|
|
Values &inputs,
|
|
Values &outputs);
|
|
|
|
};
|
|
}
|
|
|
|
void CodeExtractor::processPhiNodeInputs(PHINode *Phi,
|
|
const std::vector<BasicBlock*> &code,
|
|
Values &inputs,
|
|
BasicBlock *codeReplacer,
|
|
BasicBlock *newFuncRoot)
|
|
{
|
|
// Separate incoming values and BasicBlocks as internal/external. We ignore
|
|
// the case where both the value and BasicBlock are internal, because we don't
|
|
// need to do a thing.
|
|
std::vector<unsigned> EValEBB;
|
|
std::vector<unsigned> EValIBB;
|
|
std::vector<unsigned> IValEBB;
|
|
|
|
for (unsigned i = 0, e = Phi->getNumIncomingValues(); i != e; ++i) {
|
|
Value *phiVal = Phi->getIncomingValue(i);
|
|
if (Instruction *Inst = dyn_cast<Instruction>(phiVal)) {
|
|
if (contains(code, Inst->getParent())) {
|
|
if (!contains(code, Phi->getIncomingBlock(i)))
|
|
IValEBB.push_back(i);
|
|
} else {
|
|
if (contains(code, Phi->getIncomingBlock(i)))
|
|
EValIBB.push_back(i);
|
|
else
|
|
EValEBB.push_back(i);
|
|
}
|
|
} else if (Constant *Const = dyn_cast<Constant>(phiVal)) {
|
|
// Constants are internal, but considered `external' if they are coming
|
|
// from an external block.
|
|
if (!contains(code, Phi->getIncomingBlock(i)))
|
|
EValEBB.push_back(i);
|
|
} else if (Argument *Arg = dyn_cast<Argument>(phiVal)) {
|
|
// arguments are external
|
|
if (contains(code, Phi->getIncomingBlock(i)))
|
|
EValIBB.push_back(i);
|
|
else
|
|
EValEBB.push_back(i);
|
|
} else {
|
|
phiVal->dump();
|
|
assert(0 && "Unhandled input in a Phi node");
|
|
}
|
|
}
|
|
|
|
// Both value and block are external. Need to group all of
|
|
// these, have an external phi, pass the result as an
|
|
// argument, and have THIS phi use that result.
|
|
if (EValEBB.size() > 0) {
|
|
if (EValEBB.size() == 1) {
|
|
// Now if it's coming from the newFuncRoot, it's that funky input
|
|
unsigned phiIdx = EValEBB[0];
|
|
if (!dyn_cast<Constant>(Phi->getIncomingValue(phiIdx)))
|
|
{
|
|
PhiVal2Arg[Phi].push_back(std::make_pair(phiIdx, inputs.size()));
|
|
// We can just pass this value in as argument
|
|
inputs.push_back(Phi->getIncomingValue(phiIdx));
|
|
}
|
|
Phi->setIncomingBlock(phiIdx, newFuncRoot);
|
|
} else {
|
|
PHINode *externalPhi = new PHINode(Phi->getType(), "extPhi");
|
|
codeReplacer->getInstList().insert(codeReplacer->begin(), externalPhi);
|
|
for (std::vector<unsigned>::iterator i = EValEBB.begin(),
|
|
e = EValEBB.end(); i != e; ++i)
|
|
{
|
|
externalPhi->addIncoming(Phi->getIncomingValue(*i),
|
|
Phi->getIncomingBlock(*i));
|
|
|
|
// We make these values invalid instead of deleting them because that
|
|
// would shift the indices of other values... The fixPhiNodes should
|
|
// clean these phi nodes up later.
|
|
Phi->setIncomingValue(*i, 0);
|
|
Phi->setIncomingBlock(*i, 0);
|
|
}
|
|
PhiVal2Arg[Phi].push_back(std::make_pair(Phi->getNumIncomingValues(),
|
|
inputs.size()));
|
|
// We can just pass this value in as argument
|
|
inputs.push_back(externalPhi);
|
|
}
|
|
}
|
|
|
|
// When the value is external, but block internal...
|
|
// just pass it in as argument, no change to phi node
|
|
for (std::vector<unsigned>::iterator i = EValIBB.begin(),
|
|
e = EValIBB.end(); i != e; ++i)
|
|
{
|
|
// rewrite the phi input node to be an argument
|
|
PhiVal2Arg[Phi].push_back(std::make_pair(*i, inputs.size()));
|
|
inputs.push_back(Phi->getIncomingValue(*i));
|
|
}
|
|
|
|
// Value internal, block external
|
|
// this can happen if we are extracting a part of a loop
|
|
for (std::vector<unsigned>::iterator i = IValEBB.begin(),
|
|
e = IValEBB.end(); i != e; ++i)
|
|
{
|
|
assert(0 && "Cannot (YET) handle internal values via external blocks");
|
|
}
|
|
}
|
|
|
|
|
|
void CodeExtractor::findInputsOutputs(const std::vector<BasicBlock*> &code,
|
|
Values &inputs,
|
|
Values &outputs,
|
|
BasicBlock *newHeader,
|
|
BasicBlock *newRootNode)
|
|
{
|
|
for (std::vector<BasicBlock*>::const_iterator ci = code.begin(),
|
|
ce = code.end(); ci != ce; ++ci) {
|
|
BasicBlock *BB = *ci;
|
|
for (BasicBlock::iterator BBi = BB->begin(), BBe = BB->end();
|
|
BBi != BBe; ++BBi) {
|
|
// If a use is defined outside the region, it's an input.
|
|
// If a def is used outside the region, it's an output.
|
|
if (Instruction *I = dyn_cast<Instruction>(&*BBi)) {
|
|
// If it's a phi node
|
|
if (PHINode *Phi = dyn_cast<PHINode>(I)) {
|
|
processPhiNodeInputs(Phi, code, inputs, newHeader, newRootNode);
|
|
} else {
|
|
// All other instructions go through the generic input finder
|
|
// Loop over the operands of each instruction (inputs)
|
|
for (User::op_iterator op = I->op_begin(), opE = I->op_end();
|
|
op != opE; ++op) {
|
|
if (Instruction *opI = dyn_cast<Instruction>(op->get())) {
|
|
// Check if definition of this operand is within the loop
|
|
if (!contains(code, opI->getParent())) {
|
|
// add this operand to the inputs
|
|
inputs.push_back(opI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Consider uses of this instruction (outputs)
|
|
for (Value::use_iterator use = I->use_begin(), useE = I->use_end();
|
|
use != useE; ++use) {
|
|
if (Instruction* inst = dyn_cast<Instruction>(*use)) {
|
|
if (!contains(code, inst->getParent())) {
|
|
// add this op to the outputs
|
|
outputs.push_back(I);
|
|
}
|
|
}
|
|
}
|
|
} /* if */
|
|
} /* for: insts */
|
|
} /* for: basic blocks */
|
|
}
|
|
|
|
void CodeExtractor::rewritePhiNodes(Function *F,
|
|
BasicBlock *newFuncRoot) {
|
|
// Write any changes that were saved before: use function arguments as inputs
|
|
for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end();
|
|
i != e; ++i)
|
|
{
|
|
PHINode *phi = (*i).first;
|
|
PhiValChangesTy &values = (*i).second;
|
|
for (unsigned cIdx = 0, ce = values.size(); cIdx != ce; ++cIdx)
|
|
{
|
|
unsigned phiValueIdx = values[cIdx].first, argNum = values[cIdx].second;
|
|
if (phiValueIdx < phi->getNumIncomingValues())
|
|
phi->setIncomingValue(phiValueIdx, getFunctionArg(F, argNum));
|
|
else
|
|
phi->addIncoming(getFunctionArg(F, argNum), newFuncRoot);
|
|
}
|
|
}
|
|
|
|
// Delete any invalid Phi node inputs that were marked as NULL previously
|
|
for (PhiVal2ArgTy::iterator i = PhiVal2Arg.begin(), e = PhiVal2Arg.end();
|
|
i != e; ++i)
|
|
{
|
|
PHINode *phi = (*i).first;
|
|
for (unsigned idx = 0, end = phi->getNumIncomingValues(); idx != end; ++idx)
|
|
{
|
|
if (phi->getIncomingValue(idx) == 0 && phi->getIncomingBlock(idx) == 0) {
|
|
phi->removeIncomingValue(idx);
|
|
--idx;
|
|
--end;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We are done with the saved values
|
|
PhiVal2Arg.clear();
|
|
}
|
|
|
|
|
|
/// constructFunction - make a function based on inputs and outputs, as follows:
|
|
/// f(in0, ..., inN, out0, ..., outN)
|
|
///
|
|
Function *CodeExtractor::constructFunction(const Values &inputs,
|
|
const Values &outputs,
|
|
BasicBlock *newRootNode,
|
|
BasicBlock *newHeader,
|
|
const std::vector<BasicBlock*> &code,
|
|
Function *oldFunction, Module *M) {
|
|
DEBUG(std::cerr << "inputs: " << inputs.size() << "\n");
|
|
DEBUG(std::cerr << "outputs: " << outputs.size() << "\n");
|
|
BasicBlock *header = code[0];
|
|
|
|
// This function returns unsigned, outputs will go back by reference.
|
|
Type *retTy = Type::UShortTy;
|
|
std::vector<const Type*> paramTy;
|
|
|
|
// Add the types of the input values to the function's argument list
|
|
for (Values::const_iterator i = inputs.begin(),
|
|
e = inputs.end(); i != e; ++i) {
|
|
const Value *value = *i;
|
|
DEBUG(std::cerr << "value used in func: " << value << "\n");
|
|
paramTy.push_back(value->getType());
|
|
}
|
|
|
|
// Add the types of the output values to the function's argument list, but
|
|
// make them pointer types for scalars
|
|
for (Values::const_iterator i = outputs.begin(),
|
|
e = outputs.end(); i != e; ++i) {
|
|
const Value *value = *i;
|
|
DEBUG(std::cerr << "instr used in func: " << value << "\n");
|
|
const Type *valueType = value->getType();
|
|
// Convert scalar types into a pointer of that type
|
|
if (valueType->isPrimitiveType()) {
|
|
valueType = PointerType::get(valueType);
|
|
}
|
|
paramTy.push_back(valueType);
|
|
}
|
|
|
|
DEBUG(std::cerr << "Function type: " << retTy << " f(");
|
|
for (std::vector<const Type*>::iterator i = paramTy.begin(),
|
|
e = paramTy.end(); i != e; ++i)
|
|
DEBUG(std::cerr << (*i) << ", ");
|
|
DEBUG(std::cerr << ")\n");
|
|
|
|
const FunctionType *funcType = FunctionType::get(retTy, paramTy, false);
|
|
|
|
// Create the new function
|
|
Function *newFunction = new Function(funcType,
|
|
GlobalValue::InternalLinkage,
|
|
oldFunction->getName() + "_code", M);
|
|
newFunction->getBasicBlockList().push_back(newRootNode);
|
|
|
|
for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
|
|
std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end());
|
|
for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end();
|
|
use != useE; ++use)
|
|
if (Instruction* inst = dyn_cast<Instruction>(*use))
|
|
if (contains(code, inst->getParent()))
|
|
inst->replaceUsesOfWith(inputs[i], getFunctionArg(newFunction, i));
|
|
}
|
|
|
|
// Rewrite branches to basic blocks outside of the loop to new dummy blocks
|
|
// within the new function. This must be done before we lose track of which
|
|
// blocks were originally in the code region.
|
|
std::vector<User*> Users(header->use_begin(), header->use_end());
|
|
for (std::vector<User*>::iterator i = Users.begin(), e = Users.end();
|
|
i != e; ++i) {
|
|
if (BranchInst *inst = dyn_cast<BranchInst>(*i)) {
|
|
BasicBlock *BB = inst->getParent();
|
|
if (!contains(code, BB) && BB->getParent() == oldFunction) {
|
|
// The BasicBlock which contains the branch is not in the region
|
|
// modify the branch target to a new block
|
|
inst->replaceUsesOfWith(header, newHeader);
|
|
}
|
|
}
|
|
}
|
|
|
|
return newFunction;
|
|
}
|
|
|
|
void CodeExtractor::moveCodeToFunction(const std::vector<BasicBlock*> &code,
|
|
Function *newFunction)
|
|
{
|
|
Function *oldFunc = code[0]->getParent();
|
|
Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
|
|
Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
|
|
|
|
for (std::vector<BasicBlock*>::const_iterator i = code.begin(), e =code.end();
|
|
i != e; ++i) {
|
|
BasicBlock *BB = *i;
|
|
|
|
// Delete the basic block from the old function, and the list of blocks
|
|
oldBlocks.remove(BB);
|
|
|
|
// Insert this basic block into the new function
|
|
newBlocks.push_back(BB);
|
|
}
|
|
}
|
|
|
|
void
|
|
CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
|
|
BasicBlock *codeReplacer,
|
|
const std::vector<BasicBlock*> &code,
|
|
Values &inputs,
|
|
Values &outputs)
|
|
{
|
|
// Emit a call to the new function, passing allocated memory for outputs and
|
|
// just plain inputs for non-scalars
|
|
std::vector<Value*> params;
|
|
BasicBlock *codeReplacerTail = new BasicBlock("codeReplTail",
|
|
codeReplacer->getParent());
|
|
for (Values::const_iterator i = inputs.begin(),
|
|
e = inputs.end(); i != e; ++i)
|
|
params.push_back(*i);
|
|
for (Values::const_iterator i = outputs.begin(),
|
|
e = outputs.end(); i != e; ++i) {
|
|
// Create allocas for scalar outputs
|
|
if ((*i)->getType()->isPrimitiveType()) {
|
|
Constant *one = ConstantUInt::get(Type::UIntTy, 1);
|
|
AllocaInst *alloca = new AllocaInst((*i)->getType(), one);
|
|
codeReplacer->getInstList().push_back(alloca);
|
|
params.push_back(alloca);
|
|
|
|
LoadInst *load = new LoadInst(alloca, "alloca");
|
|
codeReplacerTail->getInstList().push_back(load);
|
|
std::vector<User*> Users((*i)->use_begin(), (*i)->use_end());
|
|
for (std::vector<User*>::iterator use = Users.begin(), useE =Users.end();
|
|
use != useE; ++use) {
|
|
if (Instruction* inst = dyn_cast<Instruction>(*use)) {
|
|
if (!contains(code, inst->getParent())) {
|
|
inst->replaceUsesOfWith(*i, load);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
params.push_back(*i);
|
|
}
|
|
}
|
|
CallInst *call = new CallInst(newFunction, params, "targetBlock");
|
|
codeReplacer->getInstList().push_back(call);
|
|
codeReplacer->getInstList().push_back(new BranchInst(codeReplacerTail));
|
|
|
|
// Now we can emit a switch statement using the call as a value.
|
|
// FIXME: perhaps instead of default being self BB, it should be a second
|
|
// dummy block which asserts that the value is not within the range...?
|
|
//BasicBlock *defaultBlock = new BasicBlock("defaultBlock", oldF);
|
|
//insert abort() ?
|
|
//defaultBlock->getInstList().push_back(new BranchInst(codeReplacer));
|
|
|
|
SwitchInst *switchInst = new SwitchInst(call, codeReplacerTail,
|
|
codeReplacerTail);
|
|
|
|
// Since there may be multiple exits from the original region, make the new
|
|
// function return an unsigned, switch on that number
|
|
unsigned switchVal = 0;
|
|
for (std::vector<BasicBlock*>::const_iterator i =code.begin(), e = code.end();
|
|
i != e; ++i) {
|
|
BasicBlock *BB = *i;
|
|
|
|
// rewrite the terminator of the original BasicBlock
|
|
Instruction *term = BB->getTerminator();
|
|
if (BranchInst *brInst = dyn_cast<BranchInst>(term)) {
|
|
|
|
// Restore values just before we exit
|
|
// FIXME: Use a GetElementPtr to bunch the outputs in a struct
|
|
for (unsigned outIdx = 0, outE = outputs.size(); outIdx != outE; ++outIdx)
|
|
{
|
|
new StoreInst(outputs[outIdx],
|
|
getFunctionArg(newFunction, outIdx),
|
|
brInst);
|
|
}
|
|
|
|
// Rewrite branches into exits which return a value based on which
|
|
// exit we take from this function
|
|
if (brInst->isUnconditional()) {
|
|
if (!contains(code, brInst->getSuccessor(0))) {
|
|
ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal);
|
|
ReturnInst *newRet = new ReturnInst(brVal);
|
|
// add a new target to the switch
|
|
switchInst->addCase(brVal, brInst->getSuccessor(0));
|
|
++switchVal;
|
|
// rewrite the branch with a return
|
|
BasicBlock::iterator ii(brInst);
|
|
ReplaceInstWithInst(BB->getInstList(), ii, newRet);
|
|
delete brInst;
|
|
}
|
|
} else {
|
|
// Replace the conditional branch to branch
|
|
// to two new blocks, each of which returns a different code.
|
|
for (unsigned idx = 0; idx < 2; ++idx) {
|
|
BasicBlock *oldTarget = brInst->getSuccessor(idx);
|
|
if (!contains(code, oldTarget)) {
|
|
// add a new basic block which returns the appropriate value
|
|
BasicBlock *newTarget = new BasicBlock("newTarget", newFunction);
|
|
ConstantUInt *brVal = ConstantUInt::get(Type::UShortTy, switchVal);
|
|
ReturnInst *newRet = new ReturnInst(brVal);
|
|
newTarget->getInstList().push_back(newRet);
|
|
// rewrite the original branch instruction with this new target
|
|
brInst->setSuccessor(idx, newTarget);
|
|
// the switch statement knows what to do with this value
|
|
switchInst->addCase(brVal, oldTarget);
|
|
++switchVal;
|
|
}
|
|
}
|
|
}
|
|
} else if (ReturnInst *retTerm = dyn_cast<ReturnInst>(term)) {
|
|
assert(0 && "Cannot handle return instructions just yet.");
|
|
// FIXME: what if the terminator is a return!??!
|
|
// Need to rewrite: add new basic block, move the return there
|
|
// treat the original as an unconditional branch to that basicblock
|
|
} else if (SwitchInst *swTerm = dyn_cast<SwitchInst>(term)) {
|
|
assert(0 && "Cannot handle switch instructions just yet.");
|
|
} else if (InvokeInst *invInst = dyn_cast<InvokeInst>(term)) {
|
|
assert(0 && "Cannot handle invoke instructions just yet.");
|
|
} else {
|
|
assert(0 && "Unrecognized terminator, or badly-formed BasicBlock.");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// ExtractRegion - Removes a loop from a function, replaces it with a call to
|
|
/// new function. Returns pointer to the new function.
|
|
///
|
|
/// algorithm:
|
|
///
|
|
/// find inputs and outputs for the region
|
|
///
|
|
/// for inputs: add to function as args, map input instr* to arg#
|
|
/// for outputs: add allocas for scalars,
|
|
/// add to func as args, map output instr* to arg#
|
|
///
|
|
/// rewrite func to use argument #s instead of instr*
|
|
///
|
|
/// for each scalar output in the function: at every exit, store intermediate
|
|
/// computed result back into memory.
|
|
///
|
|
Function *CodeExtractor::ExtractCodeRegion(const std::vector<BasicBlock*> &code)
|
|
{
|
|
// 1) Find inputs, outputs
|
|
// 2) Construct new function
|
|
// * Add allocas for defs, pass as args by reference
|
|
// * Pass in uses as args
|
|
// 3) Move code region, add call instr to func
|
|
//
|
|
|
|
Values inputs, outputs;
|
|
|
|
// Assumption: this is a single-entry code region, and the header is the first
|
|
// block in the region. FIXME: is this true for a list of blocks from a
|
|
// natural function?
|
|
BasicBlock *header = code[0];
|
|
Function *oldFunction = header->getParent();
|
|
Module *module = oldFunction->getParent();
|
|
|
|
// This takes place of the original loop
|
|
BasicBlock *codeReplacer = new BasicBlock("codeRepl", oldFunction);
|
|
|
|
// The new function needs a root node because other nodes can branch to the
|
|
// head of the loop, and the root cannot have predecessors
|
|
BasicBlock *newFuncRoot = new BasicBlock("newFuncRoot");
|
|
newFuncRoot->getInstList().push_back(new BranchInst(header));
|
|
|
|
// Find inputs to, outputs from the code region
|
|
//
|
|
// If one of the inputs is coming from a different basic block and it's in a
|
|
// phi node, we need to rewrite the phi node:
|
|
//
|
|
// * All the inputs which involve basic blocks OUTSIDE of this region go into
|
|
// a NEW phi node that takes care of finding which value really came in.
|
|
// The result of this phi is passed to the function as an argument.
|
|
//
|
|
// * All the other phi values stay.
|
|
//
|
|
// FIXME: PHI nodes' incoming blocks aren't being rewritten to accomodate for
|
|
// blocks moving to a new function.
|
|
// SOLUTION: move Phi nodes out of the loop header into the codeReplacer, pass
|
|
// the values as parameters to the function
|
|
findInputsOutputs(code, inputs, outputs, codeReplacer, newFuncRoot);
|
|
|
|
// Step 2: Construct new function based on inputs/outputs,
|
|
// Add allocas for all defs
|
|
Function *newFunction = constructFunction(inputs, outputs, newFuncRoot,
|
|
codeReplacer, code,
|
|
oldFunction, module);
|
|
|
|
rewritePhiNodes(newFunction, newFuncRoot);
|
|
|
|
emitCallAndSwitchStatement(newFunction, codeReplacer, code, inputs, outputs);
|
|
|
|
moveCodeToFunction(code, newFunction);
|
|
|
|
DEBUG(if (verifyFunction(*newFunction)) abort());
|
|
return newFunction;
|
|
}
|
|
|
|
/// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new
|
|
/// function
|
|
///
|
|
Function* llvm::ExtractCodeRegion(const std::vector<BasicBlock*> &code) {
|
|
return CodeExtractor().ExtractCodeRegion(code);
|
|
}
|
|
|
|
/// ExtractBasicBlock - slurp a natural loop into a brand new function
|
|
///
|
|
Function* llvm::ExtractLoop(Loop *L) {
|
|
return CodeExtractor().ExtractCodeRegion(L->getBlocks());
|
|
}
|
|
|
|
/// ExtractBasicBlock - slurp a basic block into a brand new function
|
|
///
|
|
Function* llvm::ExtractBasicBlock(BasicBlock *BB) {
|
|
std::vector<BasicBlock*> Blocks;
|
|
Blocks.push_back(BB);
|
|
return CodeExtractor().ExtractCodeRegion(Blocks);
|
|
}
|