mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	This fixes PR5130. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83290 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			12936 lines
		
	
	
		
			516 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			12936 lines
		
	
	
		
			516 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // InstructionCombining - Combine instructions to form fewer, simple
 | |
| // instructions.  This pass does not modify the CFG.  This pass is where
 | |
| // algebraic simplification happens.
 | |
| //
 | |
| // This pass combines things like:
 | |
| //    %Y = add i32 %X, 1
 | |
| //    %Z = add i32 %Y, 1
 | |
| // into:
 | |
| //    %Z = add i32 %X, 2
 | |
| //
 | |
| // This is a simple worklist driven algorithm.
 | |
| //
 | |
| // This pass guarantees that the following canonicalizations are performed on
 | |
| // the program:
 | |
| //    1. If a binary operator has a constant operand, it is moved to the RHS
 | |
| //    2. Bitwise operators with constant operands are always grouped so that
 | |
| //       shifts are performed first, then or's, then and's, then xor's.
 | |
| //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
 | |
| //    4. All cmp instructions on boolean values are replaced with logical ops
 | |
| //    5. add X, X is represented as (X*2) => (X << 1)
 | |
| //    6. Multiplies with a power-of-two constant argument are transformed into
 | |
| //       shifts.
 | |
| //   ... etc.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/MallocHelper.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/ConstantRange.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "llvm/Support/IRBuilder.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| #include <climits>
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| STATISTIC(NumCombined , "Number of insts combined");
 | |
| STATISTIC(NumConstProp, "Number of constant folds");
 | |
| STATISTIC(NumDeadInst , "Number of dead inst eliminated");
 | |
| STATISTIC(NumDeadStore, "Number of dead stores eliminated");
 | |
| STATISTIC(NumSunkInst , "Number of instructions sunk");
 | |
| 
 | |
| namespace {
 | |
|   /// InstCombineWorklist - This is the worklist management logic for
 | |
|   /// InstCombine.
 | |
|   class InstCombineWorklist {
 | |
|     SmallVector<Instruction*, 256> Worklist;
 | |
|     DenseMap<Instruction*, unsigned> WorklistMap;
 | |
|     
 | |
|     void operator=(const InstCombineWorklist&RHS);   // DO NOT IMPLEMENT
 | |
|     InstCombineWorklist(const InstCombineWorklist&); // DO NOT IMPLEMENT
 | |
|   public:
 | |
|     InstCombineWorklist() {}
 | |
|     
 | |
|     bool isEmpty() const { return Worklist.empty(); }
 | |
|     
 | |
|     /// Add - Add the specified instruction to the worklist if it isn't already
 | |
|     /// in it.
 | |
|     void Add(Instruction *I) {
 | |
|       DEBUG(errs() << "IC: ADD: " << *I << '\n');
 | |
|       if (WorklistMap.insert(std::make_pair(I, Worklist.size())).second)
 | |
|         Worklist.push_back(I);
 | |
|     }
 | |
|     
 | |
|     void AddValue(Value *V) {
 | |
|       if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|         Add(I);
 | |
|     }
 | |
|     
 | |
|     // Remove - remove I from the worklist if it exists.
 | |
|     void Remove(Instruction *I) {
 | |
|       DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
 | |
|       if (It == WorklistMap.end()) return; // Not in worklist.
 | |
|       
 | |
|       // Don't bother moving everything down, just null out the slot.
 | |
|       Worklist[It->second] = 0;
 | |
|       
 | |
|       WorklistMap.erase(It);
 | |
|     }
 | |
|     
 | |
|     Instruction *RemoveOne() {
 | |
|       Instruction *I = Worklist.back();
 | |
|       Worklist.pop_back();
 | |
|       WorklistMap.erase(I);
 | |
|       return I;
 | |
|     }
 | |
| 
 | |
|     /// AddUsersToWorkList - When an instruction is simplified, add all users of
 | |
|     /// the instruction to the work lists because they might get more simplified
 | |
|     /// now.
 | |
|     ///
 | |
|     void AddUsersToWorkList(Instruction &I) {
 | |
|       for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|            UI != UE; ++UI)
 | |
|         Add(cast<Instruction>(*UI));
 | |
|     }
 | |
|     
 | |
|     
 | |
|     /// Zap - check that the worklist is empty and nuke the backing store for
 | |
|     /// the map if it is large.
 | |
|     void Zap() {
 | |
|       assert(WorklistMap.empty() && "Worklist empty, but map not?");
 | |
|       
 | |
|       // Do an explicit clear, this shrinks the map if needed.
 | |
|       WorklistMap.clear();
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace.
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   /// InstCombineIRInserter - This is an IRBuilder insertion helper that works
 | |
|   /// just like the normal insertion helper, but also adds any new instructions
 | |
|   /// to the instcombine worklist.
 | |
|   class InstCombineIRInserter : public IRBuilderDefaultInserter<true> {
 | |
|     InstCombineWorklist &Worklist;
 | |
|   public:
 | |
|     InstCombineIRInserter(InstCombineWorklist &WL) : Worklist(WL) {}
 | |
|     
 | |
|     void InsertHelper(Instruction *I, const Twine &Name,
 | |
|                       BasicBlock *BB, BasicBlock::iterator InsertPt) const {
 | |
|       IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
 | |
|       Worklist.Add(I);
 | |
|     }
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   class InstCombiner : public FunctionPass,
 | |
|                        public InstVisitor<InstCombiner, Instruction*> {
 | |
|     TargetData *TD;
 | |
|     bool MustPreserveLCSSA;
 | |
|     bool MadeIRChange;
 | |
|   public:
 | |
|     /// Worklist - All of the instructions that need to be simplified.
 | |
|     InstCombineWorklist Worklist;
 | |
| 
 | |
|     /// Builder - This is an IRBuilder that automatically inserts new
 | |
|     /// instructions into the worklist when they are created.
 | |
|     typedef IRBuilder<true, ConstantFolder, InstCombineIRInserter> BuilderTy;
 | |
|     BuilderTy *Builder;
 | |
|         
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     InstCombiner() : FunctionPass(&ID), TD(0), Builder(0) {}
 | |
| 
 | |
|     LLVMContext *Context;
 | |
|     LLVMContext *getContext() const { return Context; }
 | |
| 
 | |
|   public:
 | |
|     virtual bool runOnFunction(Function &F);
 | |
|     
 | |
|     bool DoOneIteration(Function &F, unsigned ItNum);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|     TargetData *getTargetData() const { return TD; }
 | |
| 
 | |
|     // Visitation implementation - Implement instruction combining for different
 | |
|     // instruction types.  The semantics are as follows:
 | |
|     // Return Value:
 | |
|     //    null        - No change was made
 | |
|     //     I          - Change was made, I is still valid, I may be dead though
 | |
|     //   otherwise    - Change was made, replace I with returned instruction
 | |
|     //
 | |
|     Instruction *visitAdd(BinaryOperator &I);
 | |
|     Instruction *visitFAdd(BinaryOperator &I);
 | |
|     Instruction *visitSub(BinaryOperator &I);
 | |
|     Instruction *visitFSub(BinaryOperator &I);
 | |
|     Instruction *visitMul(BinaryOperator &I);
 | |
|     Instruction *visitFMul(BinaryOperator &I);
 | |
|     Instruction *visitURem(BinaryOperator &I);
 | |
|     Instruction *visitSRem(BinaryOperator &I);
 | |
|     Instruction *visitFRem(BinaryOperator &I);
 | |
|     bool SimplifyDivRemOfSelect(BinaryOperator &I);
 | |
|     Instruction *commonRemTransforms(BinaryOperator &I);
 | |
|     Instruction *commonIRemTransforms(BinaryOperator &I);
 | |
|     Instruction *commonDivTransforms(BinaryOperator &I);
 | |
|     Instruction *commonIDivTransforms(BinaryOperator &I);
 | |
|     Instruction *visitUDiv(BinaryOperator &I);
 | |
|     Instruction *visitSDiv(BinaryOperator &I);
 | |
|     Instruction *visitFDiv(BinaryOperator &I);
 | |
|     Instruction *FoldAndOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
 | |
|     Instruction *FoldAndOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
 | |
|     Instruction *visitAnd(BinaryOperator &I);
 | |
|     Instruction *FoldOrOfICmps(Instruction &I, ICmpInst *LHS, ICmpInst *RHS);
 | |
|     Instruction *FoldOrOfFCmps(Instruction &I, FCmpInst *LHS, FCmpInst *RHS);
 | |
|     Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op,
 | |
|                                      Value *A, Value *B, Value *C);
 | |
|     Instruction *visitOr (BinaryOperator &I);
 | |
|     Instruction *visitXor(BinaryOperator &I);
 | |
|     Instruction *visitShl(BinaryOperator &I);
 | |
|     Instruction *visitAShr(BinaryOperator &I);
 | |
|     Instruction *visitLShr(BinaryOperator &I);
 | |
|     Instruction *commonShiftTransforms(BinaryOperator &I);
 | |
|     Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
 | |
|                                       Constant *RHSC);
 | |
|     Instruction *visitFCmpInst(FCmpInst &I);
 | |
|     Instruction *visitICmpInst(ICmpInst &I);
 | |
|     Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
 | |
|     Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
 | |
|                                                 Instruction *LHS,
 | |
|                                                 ConstantInt *RHS);
 | |
|     Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
 | |
|                                 ConstantInt *DivRHS);
 | |
| 
 | |
|     Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
 | |
|                              ICmpInst::Predicate Cond, Instruction &I);
 | |
|     Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
 | |
|                                      BinaryOperator &I);
 | |
|     Instruction *commonCastTransforms(CastInst &CI);
 | |
|     Instruction *commonIntCastTransforms(CastInst &CI);
 | |
|     Instruction *commonPointerCastTransforms(CastInst &CI);
 | |
|     Instruction *visitTrunc(TruncInst &CI);
 | |
|     Instruction *visitZExt(ZExtInst &CI);
 | |
|     Instruction *visitSExt(SExtInst &CI);
 | |
|     Instruction *visitFPTrunc(FPTruncInst &CI);
 | |
|     Instruction *visitFPExt(CastInst &CI);
 | |
|     Instruction *visitFPToUI(FPToUIInst &FI);
 | |
|     Instruction *visitFPToSI(FPToSIInst &FI);
 | |
|     Instruction *visitUIToFP(CastInst &CI);
 | |
|     Instruction *visitSIToFP(CastInst &CI);
 | |
|     Instruction *visitPtrToInt(PtrToIntInst &CI);
 | |
|     Instruction *visitIntToPtr(IntToPtrInst &CI);
 | |
|     Instruction *visitBitCast(BitCastInst &CI);
 | |
|     Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
 | |
|                                 Instruction *FI);
 | |
|     Instruction *FoldSelectIntoOp(SelectInst &SI, Value*, Value*);
 | |
|     Instruction *visitSelectInst(SelectInst &SI);
 | |
|     Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
 | |
|     Instruction *visitCallInst(CallInst &CI);
 | |
|     Instruction *visitInvokeInst(InvokeInst &II);
 | |
|     Instruction *visitPHINode(PHINode &PN);
 | |
|     Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
 | |
|     Instruction *visitAllocationInst(AllocationInst &AI);
 | |
|     Instruction *visitFreeInst(FreeInst &FI);
 | |
|     Instruction *visitLoadInst(LoadInst &LI);
 | |
|     Instruction *visitStoreInst(StoreInst &SI);
 | |
|     Instruction *visitBranchInst(BranchInst &BI);
 | |
|     Instruction *visitSwitchInst(SwitchInst &SI);
 | |
|     Instruction *visitInsertElementInst(InsertElementInst &IE);
 | |
|     Instruction *visitExtractElementInst(ExtractElementInst &EI);
 | |
|     Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
 | |
|     Instruction *visitExtractValueInst(ExtractValueInst &EV);
 | |
| 
 | |
|     // visitInstruction - Specify what to return for unhandled instructions...
 | |
|     Instruction *visitInstruction(Instruction &I) { return 0; }
 | |
| 
 | |
|   private:
 | |
|     Instruction *visitCallSite(CallSite CS);
 | |
|     bool transformConstExprCastCall(CallSite CS);
 | |
|     Instruction *transformCallThroughTrampoline(CallSite CS);
 | |
|     Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
 | |
|                                    bool DoXform = true);
 | |
|     bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS);
 | |
|     DbgDeclareInst *hasOneUsePlusDeclare(Value *V);
 | |
| 
 | |
| 
 | |
|   public:
 | |
|     // InsertNewInstBefore - insert an instruction New before instruction Old
 | |
|     // in the program.  Add the new instruction to the worklist.
 | |
|     //
 | |
|     Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
 | |
|       assert(New && New->getParent() == 0 &&
 | |
|              "New instruction already inserted into a basic block!");
 | |
|       BasicBlock *BB = Old.getParent();
 | |
|       BB->getInstList().insert(&Old, New);  // Insert inst
 | |
|       Worklist.Add(New);
 | |
|       return New;
 | |
|     }
 | |
|         
 | |
|     // ReplaceInstUsesWith - This method is to be used when an instruction is
 | |
|     // found to be dead, replacable with another preexisting expression.  Here
 | |
|     // we add all uses of I to the worklist, replace all uses of I with the new
 | |
|     // value, then return I, so that the inst combiner will know that I was
 | |
|     // modified.
 | |
|     //
 | |
|     Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
 | |
|       Worklist.AddUsersToWorkList(I);   // Add all modified instrs to worklist.
 | |
|       
 | |
|       // If we are replacing the instruction with itself, this must be in a
 | |
|       // segment of unreachable code, so just clobber the instruction.
 | |
|       if (&I == V) 
 | |
|         V = UndefValue::get(I.getType());
 | |
|         
 | |
|       I.replaceAllUsesWith(V);
 | |
|       return &I;
 | |
|     }
 | |
| 
 | |
|     // EraseInstFromFunction - When dealing with an instruction that has side
 | |
|     // effects or produces a void value, we can't rely on DCE to delete the
 | |
|     // instruction.  Instead, visit methods should return the value returned by
 | |
|     // this function.
 | |
|     Instruction *EraseInstFromFunction(Instruction &I) {
 | |
|       DEBUG(errs() << "IC: ERASE " << I << '\n');
 | |
| 
 | |
|       assert(I.use_empty() && "Cannot erase instruction that is used!");
 | |
|       // Make sure that we reprocess all operands now that we reduced their
 | |
|       // use counts.
 | |
|       if (I.getNumOperands() < 8) {
 | |
|         for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
 | |
|           if (Instruction *Op = dyn_cast<Instruction>(*i))
 | |
|             Worklist.Add(Op);
 | |
|       }
 | |
|       Worklist.Remove(&I);
 | |
|       I.eraseFromParent();
 | |
|       MadeIRChange = true;
 | |
|       return 0;  // Don't do anything with FI
 | |
|     }
 | |
|         
 | |
|     void ComputeMaskedBits(Value *V, const APInt &Mask, APInt &KnownZero,
 | |
|                            APInt &KnownOne, unsigned Depth = 0) const {
 | |
|       return llvm::ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
 | |
|     }
 | |
|     
 | |
|     bool MaskedValueIsZero(Value *V, const APInt &Mask, 
 | |
|                            unsigned Depth = 0) const {
 | |
|       return llvm::MaskedValueIsZero(V, Mask, TD, Depth);
 | |
|     }
 | |
|     unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0) const {
 | |
|       return llvm::ComputeNumSignBits(Op, TD, Depth);
 | |
|     }
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     /// SimplifyCommutative - This performs a few simplifications for 
 | |
|     /// commutative operators.
 | |
|     bool SimplifyCommutative(BinaryOperator &I);
 | |
| 
 | |
|     /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
 | |
|     /// most-complex to least-complex order.
 | |
|     bool SimplifyCompare(CmpInst &I);
 | |
| 
 | |
|     /// SimplifyDemandedUseBits - Attempts to replace V with a simpler value
 | |
|     /// based on the demanded bits.
 | |
|     Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, 
 | |
|                                    APInt& KnownZero, APInt& KnownOne,
 | |
|                                    unsigned Depth);
 | |
|     bool SimplifyDemandedBits(Use &U, APInt DemandedMask, 
 | |
|                               APInt& KnownZero, APInt& KnownOne,
 | |
|                               unsigned Depth=0);
 | |
|         
 | |
|     /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
 | |
|     /// SimplifyDemandedBits knows about.  See if the instruction has any
 | |
|     /// properties that allow us to simplify its operands.
 | |
|     bool SimplifyDemandedInstructionBits(Instruction &Inst);
 | |
|         
 | |
|     Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
 | |
|                                       APInt& UndefElts, unsigned Depth = 0);
 | |
|       
 | |
|     // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
 | |
|     // which has a PHI node as operand #0, see if we can fold the instruction
 | |
|     // into the PHI (which is only possible if all operands to the PHI are
 | |
|     // constants).
 | |
|     //
 | |
|     // If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
 | |
|     // that would normally be unprofitable because they strongly encourage jump
 | |
|     // threading.
 | |
|     Instruction *FoldOpIntoPhi(Instruction &I, bool AllowAggressive = false);
 | |
| 
 | |
|     // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
 | |
|     // operator and they all are only used by the PHI, PHI together their
 | |
|     // inputs, and do the operation once, to the result of the PHI.
 | |
|     Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
 | |
|     Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
 | |
|     Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
 | |
| 
 | |
|     
 | |
|     Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
 | |
|                           ConstantInt *AndRHS, BinaryOperator &TheAnd);
 | |
|     
 | |
|     Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
 | |
|                               bool isSub, Instruction &I);
 | |
|     Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
 | |
|                                  bool isSigned, bool Inside, Instruction &IB);
 | |
|     Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
 | |
|     Instruction *MatchBSwap(BinaryOperator &I);
 | |
|     bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
 | |
|     Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
 | |
|     Instruction *SimplifyMemSet(MemSetInst *MI);
 | |
| 
 | |
| 
 | |
|     Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
 | |
| 
 | |
|     bool CanEvaluateInDifferentType(Value *V, const Type *Ty,
 | |
|                                     unsigned CastOpc, int &NumCastsRemoved);
 | |
|     unsigned GetOrEnforceKnownAlignment(Value *V,
 | |
|                                         unsigned PrefAlign = 0);
 | |
| 
 | |
|   };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char InstCombiner::ID = 0;
 | |
| static RegisterPass<InstCombiner>
 | |
| X("instcombine", "Combine redundant instructions");
 | |
| 
 | |
| // getComplexity:  Assign a complexity or rank value to LLVM Values...
 | |
| //   0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
 | |
| static unsigned getComplexity(Value *V) {
 | |
|   if (isa<Instruction>(V)) {
 | |
|     if (BinaryOperator::isNeg(V) ||
 | |
|         BinaryOperator::isFNeg(V) ||
 | |
|         BinaryOperator::isNot(V))
 | |
|       return 3;
 | |
|     return 4;
 | |
|   }
 | |
|   if (isa<Argument>(V)) return 3;
 | |
|   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
 | |
| }
 | |
| 
 | |
| // isOnlyUse - Return true if this instruction will be deleted if we stop using
 | |
| // it.
 | |
| static bool isOnlyUse(Value *V) {
 | |
|   return V->hasOneUse() || isa<Constant>(V);
 | |
| }
 | |
| 
 | |
| // getPromotedType - Return the specified type promoted as it would be to pass
 | |
| // though a va_arg area...
 | |
| static const Type *getPromotedType(const Type *Ty) {
 | |
|   if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
 | |
|     if (ITy->getBitWidth() < 32)
 | |
|       return Type::getInt32Ty(Ty->getContext());
 | |
|   }
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| /// getBitCastOperand - If the specified operand is a CastInst, a constant
 | |
| /// expression bitcast, or a GetElementPtrInst with all zero indices, return the
 | |
| /// operand value, otherwise return null.
 | |
| static Value *getBitCastOperand(Value *V) {
 | |
|   if (Operator *O = dyn_cast<Operator>(V)) {
 | |
|     if (O->getOpcode() == Instruction::BitCast)
 | |
|       return O->getOperand(0);
 | |
|     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
 | |
|       if (GEP->hasAllZeroIndices())
 | |
|         return GEP->getPointerOperand();
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// This function is a wrapper around CastInst::isEliminableCastPair. It
 | |
| /// simply extracts arguments and returns what that function returns.
 | |
| static Instruction::CastOps 
 | |
| isEliminableCastPair(
 | |
|   const CastInst *CI, ///< The first cast instruction
 | |
|   unsigned opcode,       ///< The opcode of the second cast instruction
 | |
|   const Type *DstTy,     ///< The target type for the second cast instruction
 | |
|   TargetData *TD         ///< The target data for pointer size
 | |
| ) {
 | |
| 
 | |
|   const Type *SrcTy = CI->getOperand(0)->getType();   // A from above
 | |
|   const Type *MidTy = CI->getType();                  // B from above
 | |
| 
 | |
|   // Get the opcodes of the two Cast instructions
 | |
|   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
 | |
|   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
 | |
| 
 | |
|   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
 | |
|                                                 DstTy,
 | |
|                                   TD ? TD->getIntPtrType(CI->getContext()) : 0);
 | |
|   
 | |
|   // We don't want to form an inttoptr or ptrtoint that converts to an integer
 | |
|   // type that differs from the pointer size.
 | |
|   if ((Res == Instruction::IntToPtr &&
 | |
|           (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
 | |
|       (Res == Instruction::PtrToInt &&
 | |
|           (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
 | |
|     Res = 0;
 | |
|   
 | |
|   return Instruction::CastOps(Res);
 | |
| }
 | |
| 
 | |
| /// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
 | |
| /// in any code being generated.  It does not require codegen if V is simple
 | |
| /// enough or if the cast can be folded into other casts.
 | |
| static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V, 
 | |
|                               const Type *Ty, TargetData *TD) {
 | |
|   if (V->getType() == Ty || isa<Constant>(V)) return false;
 | |
|   
 | |
|   // If this is another cast that can be eliminated, it isn't codegen either.
 | |
|   if (const CastInst *CI = dyn_cast<CastInst>(V))
 | |
|     if (isEliminableCastPair(CI, opcode, Ty, TD))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // SimplifyCommutative - This performs a few simplifications for commutative
 | |
| // operators:
 | |
| //
 | |
| //  1. Order operands such that they are listed from right (least complex) to
 | |
| //     left (most complex).  This puts constants before unary operators before
 | |
| //     binary operators.
 | |
| //
 | |
| //  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
 | |
| //  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | |
| //
 | |
| bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
 | |
|   bool Changed = false;
 | |
|   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
 | |
|     Changed = !I.swapOperands();
 | |
| 
 | |
|   if (!I.isAssociative()) return Changed;
 | |
|   Instruction::BinaryOps Opcode = I.getOpcode();
 | |
|   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
 | |
|     if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
 | |
|       if (isa<Constant>(I.getOperand(1))) {
 | |
|         Constant *Folded = ConstantExpr::get(I.getOpcode(),
 | |
|                                              cast<Constant>(I.getOperand(1)),
 | |
|                                              cast<Constant>(Op->getOperand(1)));
 | |
|         I.setOperand(0, Op->getOperand(0));
 | |
|         I.setOperand(1, Folded);
 | |
|         return true;
 | |
|       } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
 | |
|         if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
 | |
|             isOnlyUse(Op) && isOnlyUse(Op1)) {
 | |
|           Constant *C1 = cast<Constant>(Op->getOperand(1));
 | |
|           Constant *C2 = cast<Constant>(Op1->getOperand(1));
 | |
| 
 | |
|           // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | |
|           Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
 | |
|           Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
 | |
|                                                     Op1->getOperand(0),
 | |
|                                                     Op1->getName(), &I);
 | |
|           Worklist.Add(New);
 | |
|           I.setOperand(0, New);
 | |
|           I.setOperand(1, Folded);
 | |
|           return true;
 | |
|         }
 | |
|     }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// SimplifyCompare - For a CmpInst this function just orders the operands
 | |
| /// so that theyare listed from right (least complex) to left (most complex).
 | |
| /// This puts constants before unary operators before binary operators.
 | |
| bool InstCombiner::SimplifyCompare(CmpInst &I) {
 | |
|   if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
 | |
|     return false;
 | |
|   I.swapOperands();
 | |
|   // Compare instructions are not associative so there's nothing else we can do.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
 | |
| // if the LHS is a constant zero (which is the 'negate' form).
 | |
| //
 | |
| static inline Value *dyn_castNegVal(Value *V) {
 | |
|   if (BinaryOperator::isNeg(V))
 | |
|     return BinaryOperator::getNegArgument(V);
 | |
| 
 | |
|   // Constants can be considered to be negated values if they can be folded.
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | |
|     return ConstantExpr::getNeg(C);
 | |
| 
 | |
|   if (ConstantVector *C = dyn_cast<ConstantVector>(V))
 | |
|     if (C->getType()->getElementType()->isInteger())
 | |
|       return ConstantExpr::getNeg(C);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
 | |
| // instruction if the LHS is a constant negative zero (which is the 'negate'
 | |
| // form).
 | |
| //
 | |
| static inline Value *dyn_castFNegVal(Value *V) {
 | |
|   if (BinaryOperator::isFNeg(V))
 | |
|     return BinaryOperator::getFNegArgument(V);
 | |
| 
 | |
|   // Constants can be considered to be negated values if they can be folded.
 | |
|   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
 | |
|     return ConstantExpr::getFNeg(C);
 | |
| 
 | |
|   if (ConstantVector *C = dyn_cast<ConstantVector>(V))
 | |
|     if (C->getType()->getElementType()->isFloatingPoint())
 | |
|       return ConstantExpr::getFNeg(C);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static inline Value *dyn_castNotVal(Value *V) {
 | |
|   if (BinaryOperator::isNot(V))
 | |
|     return BinaryOperator::getNotArgument(V);
 | |
| 
 | |
|   // Constants can be considered to be not'ed values...
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | |
|     return ConstantInt::get(C->getType(), ~C->getValue());
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // dyn_castFoldableMul - If this value is a multiply that can be folded into
 | |
| // other computations (because it has a constant operand), return the
 | |
| // non-constant operand of the multiply, and set CST to point to the multiplier.
 | |
| // Otherwise, return null.
 | |
| //
 | |
| static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
 | |
|   if (V->hasOneUse() && V->getType()->isInteger())
 | |
|     if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|       if (I->getOpcode() == Instruction::Mul)
 | |
|         if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
 | |
|           return I->getOperand(0);
 | |
|       if (I->getOpcode() == Instruction::Shl)
 | |
|         if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
 | |
|           // The multiplier is really 1 << CST.
 | |
|           uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
 | |
|           uint32_t CSTVal = CST->getLimitedValue(BitWidth);
 | |
|           CST = ConstantInt::get(V->getType()->getContext(),
 | |
|                                  APInt(BitWidth, 1).shl(CSTVal));
 | |
|           return I->getOperand(0);
 | |
|         }
 | |
|     }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// AddOne - Add one to a ConstantInt
 | |
| static Constant *AddOne(Constant *C) {
 | |
|   return ConstantExpr::getAdd(C, 
 | |
|     ConstantInt::get(C->getType(), 1));
 | |
| }
 | |
| /// SubOne - Subtract one from a ConstantInt
 | |
| static Constant *SubOne(ConstantInt *C) {
 | |
|   return ConstantExpr::getSub(C, 
 | |
|     ConstantInt::get(C->getType(), 1));
 | |
| }
 | |
| /// MultiplyOverflows - True if the multiply can not be expressed in an int
 | |
| /// this size.
 | |
| static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
 | |
|   uint32_t W = C1->getBitWidth();
 | |
|   APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
 | |
|   if (sign) {
 | |
|     LHSExt.sext(W * 2);
 | |
|     RHSExt.sext(W * 2);
 | |
|   } else {
 | |
|     LHSExt.zext(W * 2);
 | |
|     RHSExt.zext(W * 2);
 | |
|   }
 | |
| 
 | |
|   APInt MulExt = LHSExt * RHSExt;
 | |
| 
 | |
|   if (sign) {
 | |
|     APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
 | |
|     APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
 | |
|     return MulExt.slt(Min) || MulExt.sgt(Max);
 | |
|   } else 
 | |
|     return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ShrinkDemandedConstant - Check to see if the specified operand of the 
 | |
| /// specified instruction is a constant integer.  If so, check to see if there
 | |
| /// are any bits set in the constant that are not demanded.  If so, shrink the
 | |
| /// constant and return true.
 | |
| static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, 
 | |
|                                    APInt Demanded) {
 | |
|   assert(I && "No instruction?");
 | |
|   assert(OpNo < I->getNumOperands() && "Operand index too large");
 | |
| 
 | |
|   // If the operand is not a constant integer, nothing to do.
 | |
|   ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
 | |
|   if (!OpC) return false;
 | |
| 
 | |
|   // If there are no bits set that aren't demanded, nothing to do.
 | |
|   Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
 | |
|   if ((~Demanded & OpC->getValue()) == 0)
 | |
|     return false;
 | |
| 
 | |
|   // This instruction is producing bits that are not demanded. Shrink the RHS.
 | |
|   Demanded &= OpC->getValue();
 | |
|   I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a 
 | |
| // set of known zero and one bits, compute the maximum and minimum values that
 | |
| // could have the specified known zero and known one bits, returning them in
 | |
| // min/max.
 | |
| static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
 | |
|                                                    const APInt& KnownOne,
 | |
|                                                    APInt& Min, APInt& Max) {
 | |
|   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
 | |
|          KnownZero.getBitWidth() == Min.getBitWidth() &&
 | |
|          KnownZero.getBitWidth() == Max.getBitWidth() &&
 | |
|          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
 | |
|   APInt UnknownBits = ~(KnownZero|KnownOne);
 | |
| 
 | |
|   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
 | |
|   // bit if it is unknown.
 | |
|   Min = KnownOne;
 | |
|   Max = KnownOne|UnknownBits;
 | |
|   
 | |
|   if (UnknownBits.isNegative()) { // Sign bit is unknown
 | |
|     Min.set(Min.getBitWidth()-1);
 | |
|     Max.clear(Max.getBitWidth()-1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
 | |
| // a set of known zero and one bits, compute the maximum and minimum values that
 | |
| // could have the specified known zero and known one bits, returning them in
 | |
| // min/max.
 | |
| static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
 | |
|                                                      const APInt &KnownOne,
 | |
|                                                      APInt &Min, APInt &Max) {
 | |
|   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
 | |
|          KnownZero.getBitWidth() == Min.getBitWidth() &&
 | |
|          KnownZero.getBitWidth() == Max.getBitWidth() &&
 | |
|          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
 | |
|   APInt UnknownBits = ~(KnownZero|KnownOne);
 | |
|   
 | |
|   // The minimum value is when the unknown bits are all zeros.
 | |
|   Min = KnownOne;
 | |
|   // The maximum value is when the unknown bits are all ones.
 | |
|   Max = KnownOne|UnknownBits;
 | |
| }
 | |
| 
 | |
| /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
 | |
| /// SimplifyDemandedBits knows about.  See if the instruction has any
 | |
| /// properties that allow us to simplify its operands.
 | |
| bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
 | |
|   unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
 | |
|   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | |
|   APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
 | |
|   
 | |
|   Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, 
 | |
|                                      KnownZero, KnownOne, 0);
 | |
|   if (V == 0) return false;
 | |
|   if (V == &Inst) return true;
 | |
|   ReplaceInstUsesWith(Inst, V);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
 | |
| /// specified instruction operand if possible, updating it in place.  It returns
 | |
| /// true if it made any change and false otherwise.
 | |
| bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask, 
 | |
|                                         APInt &KnownZero, APInt &KnownOne,
 | |
|                                         unsigned Depth) {
 | |
|   Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
 | |
|                                           KnownZero, KnownOne, Depth);
 | |
|   if (NewVal == 0) return false;
 | |
|   U.set(NewVal);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
 | |
| /// value based on the demanded bits.  When this function is called, it is known
 | |
| /// that only the bits set in DemandedMask of the result of V are ever used
 | |
| /// downstream. Consequently, depending on the mask and V, it may be possible
 | |
| /// to replace V with a constant or one of its operands. In such cases, this
 | |
| /// function does the replacement and returns true. In all other cases, it
 | |
| /// returns false after analyzing the expression and setting KnownOne and known
 | |
| /// to be one in the expression.  KnownZero contains all the bits that are known
 | |
| /// to be zero in the expression. These are provided to potentially allow the
 | |
| /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
 | |
| /// the expression. KnownOne and KnownZero always follow the invariant that 
 | |
| /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
 | |
| /// the bits in KnownOne and KnownZero may only be accurate for those bits set
 | |
| /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
 | |
| /// and KnownOne must all be the same.
 | |
| ///
 | |
| /// This returns null if it did not change anything and it permits no
 | |
| /// simplification.  This returns V itself if it did some simplification of V's
 | |
| /// operands based on the information about what bits are demanded. This returns
 | |
| /// some other non-null value if it found out that V is equal to another value
 | |
| /// in the context where the specified bits are demanded, but not for all users.
 | |
| Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
 | |
|                                              APInt &KnownZero, APInt &KnownOne,
 | |
|                                              unsigned Depth) {
 | |
|   assert(V != 0 && "Null pointer of Value???");
 | |
|   assert(Depth <= 6 && "Limit Search Depth");
 | |
|   uint32_t BitWidth = DemandedMask.getBitWidth();
 | |
|   const Type *VTy = V->getType();
 | |
|   assert((TD || !isa<PointerType>(VTy)) &&
 | |
|          "SimplifyDemandedBits needs to know bit widths!");
 | |
|   assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
 | |
|          (!VTy->isIntOrIntVector() ||
 | |
|           VTy->getScalarSizeInBits() == BitWidth) &&
 | |
|          KnownZero.getBitWidth() == BitWidth &&
 | |
|          KnownOne.getBitWidth() == BitWidth &&
 | |
|          "Value *V, DemandedMask, KnownZero and KnownOne "
 | |
|          "must have same BitWidth");
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = CI->getValue() & DemandedMask;
 | |
|     KnownZero = ~KnownOne & DemandedMask;
 | |
|     return 0;
 | |
|   }
 | |
|   if (isa<ConstantPointerNull>(V)) {
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne.clear();
 | |
|     KnownZero = DemandedMask;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   KnownZero.clear();
 | |
|   KnownOne.clear();
 | |
|   if (DemandedMask == 0) {   // Not demanding any bits from V.
 | |
|     if (isa<UndefValue>(V))
 | |
|       return 0;
 | |
|     return UndefValue::get(VTy);
 | |
|   }
 | |
|   
 | |
|   if (Depth == 6)        // Limit search depth.
 | |
|     return 0;
 | |
|   
 | |
|   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
 | |
|   APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) {
 | |
|     ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
 | |
|     return 0;        // Only analyze instructions.
 | |
|   }
 | |
| 
 | |
|   // If there are multiple uses of this value and we aren't at the root, then
 | |
|   // we can't do any simplifications of the operands, because DemandedMask
 | |
|   // only reflects the bits demanded by *one* of the users.
 | |
|   if (Depth != 0 && !I->hasOneUse()) {
 | |
|     // Despite the fact that we can't simplify this instruction in all User's
 | |
|     // context, we can at least compute the knownzero/knownone bits, and we can
 | |
|     // do simplifications that apply to *just* the one user if we know that
 | |
|     // this instruction has a simpler value in that context.
 | |
|     if (I->getOpcode() == Instruction::And) {
 | |
|       // If either the LHS or the RHS are Zero, the result is zero.
 | |
|       ComputeMaskedBits(I->getOperand(1), DemandedMask,
 | |
|                         RHSKnownZero, RHSKnownOne, Depth+1);
 | |
|       ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
 | |
|                         LHSKnownZero, LHSKnownOne, Depth+1);
 | |
|       
 | |
|       // If all of the demanded bits are known 1 on one side, return the other.
 | |
|       // These bits cannot contribute to the result of the 'and' in this
 | |
|       // context.
 | |
|       if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 
 | |
|           (DemandedMask & ~LHSKnownZero))
 | |
|         return I->getOperand(0);
 | |
|       if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 
 | |
|           (DemandedMask & ~RHSKnownZero))
 | |
|         return I->getOperand(1);
 | |
|       
 | |
|       // If all of the demanded bits in the inputs are known zeros, return zero.
 | |
|       if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
 | |
|         return Constant::getNullValue(VTy);
 | |
|       
 | |
|     } else if (I->getOpcode() == Instruction::Or) {
 | |
|       // We can simplify (X|Y) -> X or Y in the user's context if we know that
 | |
|       // only bits from X or Y are demanded.
 | |
|       
 | |
|       // If either the LHS or the RHS are One, the result is One.
 | |
|       ComputeMaskedBits(I->getOperand(1), DemandedMask, 
 | |
|                         RHSKnownZero, RHSKnownOne, Depth+1);
 | |
|       ComputeMaskedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne, 
 | |
|                         LHSKnownZero, LHSKnownOne, Depth+1);
 | |
|       
 | |
|       // If all of the demanded bits are known zero on one side, return the
 | |
|       // other.  These bits cannot contribute to the result of the 'or' in this
 | |
|       // context.
 | |
|       if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 
 | |
|           (DemandedMask & ~LHSKnownOne))
 | |
|         return I->getOperand(0);
 | |
|       if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 
 | |
|           (DemandedMask & ~RHSKnownOne))
 | |
|         return I->getOperand(1);
 | |
|       
 | |
|       // If all of the potentially set bits on one side are known to be set on
 | |
|       // the other side, just use the 'other' side.
 | |
|       if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 
 | |
|           (DemandedMask & (~RHSKnownZero)))
 | |
|         return I->getOperand(0);
 | |
|       if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 
 | |
|           (DemandedMask & (~LHSKnownZero)))
 | |
|         return I->getOperand(1);
 | |
|     }
 | |
|     
 | |
|     // Compute the KnownZero/KnownOne bits to simplify things downstream.
 | |
|     ComputeMaskedBits(I, DemandedMask, KnownZero, KnownOne, Depth);
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   // If this is the root being simplified, allow it to have multiple uses,
 | |
|   // just set the DemandedMask to all bits so that we can try to simplify the
 | |
|   // operands.  This allows visitTruncInst (for example) to simplify the
 | |
|   // operand of a trunc without duplicating all the logic below.
 | |
|   if (Depth == 0 && !V->hasOneUse())
 | |
|     DemandedMask = APInt::getAllOnesValue(BitWidth);
 | |
|   
 | |
|   switch (I->getOpcode()) {
 | |
|   default:
 | |
|     ComputeMaskedBits(I, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
 | |
|                              RHSKnownZero, RHSKnownOne, Depth+1) ||
 | |
|         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
 | |
|                              LHSKnownZero, LHSKnownOne, Depth+1))
 | |
|       return I;
 | |
|     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
 | |
|     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|     // If all of the demanded bits are known 1 on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'and'.
 | |
|     if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) == 
 | |
|         (DemandedMask & ~LHSKnownZero))
 | |
|       return I->getOperand(0);
 | |
|     if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) == 
 | |
|         (DemandedMask & ~RHSKnownZero))
 | |
|       return I->getOperand(1);
 | |
|     
 | |
|     // If all of the demanded bits in the inputs are known zeros, return zero.
 | |
|     if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
 | |
|       return Constant::getNullValue(VTy);
 | |
|       
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
 | |
|       return I;
 | |
|       
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     RHSKnownOne &= LHSKnownOne;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     RHSKnownZero |= LHSKnownZero;
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     // If either the LHS or the RHS are One, the result is One.
 | |
|     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 
 | |
|                              RHSKnownZero, RHSKnownOne, Depth+1) ||
 | |
|         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne, 
 | |
|                              LHSKnownZero, LHSKnownOne, Depth+1))
 | |
|       return I;
 | |
|     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
 | |
|     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'or'.
 | |
|     if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) == 
 | |
|         (DemandedMask & ~LHSKnownOne))
 | |
|       return I->getOperand(0);
 | |
|     if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) == 
 | |
|         (DemandedMask & ~RHSKnownOne))
 | |
|       return I->getOperand(1);
 | |
| 
 | |
|     // If all of the potentially set bits on one side are known to be set on
 | |
|     // the other side, just use the 'other' side.
 | |
|     if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) == 
 | |
|         (DemandedMask & (~RHSKnownZero)))
 | |
|       return I->getOperand(0);
 | |
|     if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) == 
 | |
|         (DemandedMask & (~LHSKnownZero)))
 | |
|       return I->getOperand(1);
 | |
|         
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | |
|       return I;
 | |
|           
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     RHSKnownZero &= LHSKnownZero;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     RHSKnownOne |= LHSKnownOne;
 | |
|     break;
 | |
|   case Instruction::Xor: {
 | |
|     if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
 | |
|                              RHSKnownZero, RHSKnownOne, Depth+1) ||
 | |
|         SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 
 | |
|                              LHSKnownZero, LHSKnownOne, Depth+1))
 | |
|       return I;
 | |
|     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
 | |
|     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If all of the demanded bits are known zero on one side, return the other.
 | |
|     // These bits cannot contribute to the result of the 'xor'.
 | |
|     if ((DemandedMask & RHSKnownZero) == DemandedMask)
 | |
|       return I->getOperand(0);
 | |
|     if ((DemandedMask & LHSKnownZero) == DemandedMask)
 | |
|       return I->getOperand(1);
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) | 
 | |
|                          (RHSKnownOne & LHSKnownOne);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) | 
 | |
|                         (RHSKnownOne & LHSKnownZero);
 | |
|     
 | |
|     // If all of the demanded bits are known to be zero on one side or the
 | |
|     // other, turn this into an *inclusive* or.
 | |
|     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|     if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
 | |
|       Instruction *Or = 
 | |
|         BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
 | |
|                                  I->getName());
 | |
|       return InsertNewInstBefore(Or, *I);
 | |
|     }
 | |
|     
 | |
|     // If all of the demanded bits on one side are known, and all of the set
 | |
|     // bits on that side are also known to be set on the other side, turn this
 | |
|     // into an AND, as we know the bits will be cleared.
 | |
|     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | |
|     if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) { 
 | |
|       // all known
 | |
|       if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
 | |
|         Constant *AndC = Constant::getIntegerValue(VTy,
 | |
|                                                    ~RHSKnownOne & DemandedMask);
 | |
|         Instruction *And = 
 | |
|           BinaryOperator::CreateAnd(I->getOperand(0), AndC, "tmp");
 | |
|         return InsertNewInstBefore(And, *I);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If the RHS is a constant, see if we can simplify it.
 | |
|     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
 | |
|     if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | |
|       return I;
 | |
|     
 | |
|     RHSKnownZero = KnownZeroOut;
 | |
|     RHSKnownOne  = KnownOneOut;
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Select:
 | |
|     if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
 | |
|                              RHSKnownZero, RHSKnownOne, Depth+1) ||
 | |
|         SimplifyDemandedBits(I->getOperandUse(1), DemandedMask, 
 | |
|                              LHSKnownZero, LHSKnownOne, Depth+1))
 | |
|       return I;
 | |
|     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
 | |
|     assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If the operands are constants, see if we can simplify them.
 | |
|     if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
 | |
|         ShrinkDemandedConstant(I, 2, DemandedMask))
 | |
|       return I;
 | |
|     
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     RHSKnownOne &= LHSKnownOne;
 | |
|     RHSKnownZero &= LHSKnownZero;
 | |
|     break;
 | |
|   case Instruction::Trunc: {
 | |
|     unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
 | |
|     DemandedMask.zext(truncBf);
 | |
|     RHSKnownZero.zext(truncBf);
 | |
|     RHSKnownOne.zext(truncBf);
 | |
|     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask, 
 | |
|                              RHSKnownZero, RHSKnownOne, Depth+1))
 | |
|       return I;
 | |
|     DemandedMask.trunc(BitWidth);
 | |
|     RHSKnownZero.trunc(BitWidth);
 | |
|     RHSKnownOne.trunc(BitWidth);
 | |
|     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::BitCast:
 | |
|     if (!I->getOperand(0)->getType()->isIntOrIntVector())
 | |
|       return false;  // vector->int or fp->int?
 | |
| 
 | |
|     if (const VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
 | |
|       if (const VectorType *SrcVTy =
 | |
|             dyn_cast<VectorType>(I->getOperand(0)->getType())) {
 | |
|         if (DstVTy->getNumElements() != SrcVTy->getNumElements())
 | |
|           // Don't touch a bitcast between vectors of different element counts.
 | |
|           return false;
 | |
|       } else
 | |
|         // Don't touch a scalar-to-vector bitcast.
 | |
|         return false;
 | |
|     } else if (isa<VectorType>(I->getOperand(0)->getType()))
 | |
|       // Don't touch a vector-to-scalar bitcast.
 | |
|       return false;
 | |
| 
 | |
|     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
 | |
|                              RHSKnownZero, RHSKnownOne, Depth+1))
 | |
|       return I;
 | |
|     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
 | |
|     break;
 | |
|   case Instruction::ZExt: {
 | |
|     // Compute the bits in the result that are not present in the input.
 | |
|     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
 | |
|     
 | |
|     DemandedMask.trunc(SrcBitWidth);
 | |
|     RHSKnownZero.trunc(SrcBitWidth);
 | |
|     RHSKnownOne.trunc(SrcBitWidth);
 | |
|     if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
 | |
|                              RHSKnownZero, RHSKnownOne, Depth+1))
 | |
|       return I;
 | |
|     DemandedMask.zext(BitWidth);
 | |
|     RHSKnownZero.zext(BitWidth);
 | |
|     RHSKnownOne.zext(BitWidth);
 | |
|     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
 | |
|     // The top bits are known to be zero.
 | |
|     RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::SExt: {
 | |
|     // Compute the bits in the result that are not present in the input.
 | |
|     unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
 | |
|     
 | |
|     APInt InputDemandedBits = DemandedMask & 
 | |
|                               APInt::getLowBitsSet(BitWidth, SrcBitWidth);
 | |
| 
 | |
|     APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
 | |
|     // If any of the sign extended bits are demanded, we know that the sign
 | |
|     // bit is demanded.
 | |
|     if ((NewBits & DemandedMask) != 0)
 | |
|       InputDemandedBits.set(SrcBitWidth-1);
 | |
|       
 | |
|     InputDemandedBits.trunc(SrcBitWidth);
 | |
|     RHSKnownZero.trunc(SrcBitWidth);
 | |
|     RHSKnownOne.trunc(SrcBitWidth);
 | |
|     if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
 | |
|                              RHSKnownZero, RHSKnownOne, Depth+1))
 | |
|       return I;
 | |
|     InputDemandedBits.zext(BitWidth);
 | |
|     RHSKnownZero.zext(BitWidth);
 | |
|     RHSKnownOne.zext(BitWidth);
 | |
|     assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?"); 
 | |
|       
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
| 
 | |
|     // If the input sign bit is known zero, or if the NewBits are not demanded
 | |
|     // convert this into a zero extension.
 | |
|     if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
 | |
|       // Convert to ZExt cast
 | |
|       CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
 | |
|       return InsertNewInstBefore(NewCast, *I);
 | |
|     } else if (RHSKnownOne[SrcBitWidth-1]) {    // Input sign bit known set
 | |
|       RHSKnownOne |= NewBits;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Add: {
 | |
|     // Figure out what the input bits are.  If the top bits of the and result
 | |
|     // are not demanded, then the add doesn't demand them from its input
 | |
|     // either.
 | |
|     unsigned NLZ = DemandedMask.countLeadingZeros();
 | |
|       
 | |
|     // If there is a constant on the RHS, there are a variety of xformations
 | |
|     // we can do.
 | |
|     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       // If null, this should be simplified elsewhere.  Some of the xforms here
 | |
|       // won't work if the RHS is zero.
 | |
|       if (RHS->isZero())
 | |
|         break;
 | |
|       
 | |
|       // If the top bit of the output is demanded, demand everything from the
 | |
|       // input.  Otherwise, we demand all the input bits except NLZ top bits.
 | |
|       APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
 | |
| 
 | |
|       // Find information about known zero/one bits in the input.
 | |
|       if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits, 
 | |
|                                LHSKnownZero, LHSKnownOne, Depth+1))
 | |
|         return I;
 | |
| 
 | |
|       // If the RHS of the add has bits set that can't affect the input, reduce
 | |
|       // the constant.
 | |
|       if (ShrinkDemandedConstant(I, 1, InDemandedBits))
 | |
|         return I;
 | |
|       
 | |
|       // Avoid excess work.
 | |
|       if (LHSKnownZero == 0 && LHSKnownOne == 0)
 | |
|         break;
 | |
|       
 | |
|       // Turn it into OR if input bits are zero.
 | |
|       if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
 | |
|         Instruction *Or =
 | |
|           BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
 | |
|                                    I->getName());
 | |
|         return InsertNewInstBefore(Or, *I);
 | |
|       }
 | |
|       
 | |
|       // We can say something about the output known-zero and known-one bits,
 | |
|       // depending on potential carries from the input constant and the
 | |
|       // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
 | |
|       // bits set and the RHS constant is 0x01001, then we know we have a known
 | |
|       // one mask of 0x00001 and a known zero mask of 0xE0F0E.
 | |
|       
 | |
|       // To compute this, we first compute the potential carry bits.  These are
 | |
|       // the bits which may be modified.  I'm not aware of a better way to do
 | |
|       // this scan.
 | |
|       const APInt &RHSVal = RHS->getValue();
 | |
|       APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
 | |
|       
 | |
|       // Now that we know which bits have carries, compute the known-1/0 sets.
 | |
|       
 | |
|       // Bits are known one if they are known zero in one operand and one in the
 | |
|       // other, and there is no input carry.
 | |
|       RHSKnownOne = ((LHSKnownZero & RHSVal) | 
 | |
|                      (LHSKnownOne & ~RHSVal)) & ~CarryBits;
 | |
|       
 | |
|       // Bits are known zero if they are known zero in both operands and there
 | |
|       // is no input carry.
 | |
|       RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
 | |
|     } else {
 | |
|       // If the high-bits of this ADD are not demanded, then it does not demand
 | |
|       // the high bits of its LHS or RHS.
 | |
|       if (DemandedMask[BitWidth-1] == 0) {
 | |
|         // Right fill the mask of bits for this ADD to demand the most
 | |
|         // significant bit and all those below it.
 | |
|         APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
 | |
|         if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
 | |
|                                  LHSKnownZero, LHSKnownOne, Depth+1) ||
 | |
|             SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
 | |
|                                  LHSKnownZero, LHSKnownOne, Depth+1))
 | |
|           return I;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Sub:
 | |
|     // If the high-bits of this SUB are not demanded, then it does not demand
 | |
|     // the high bits of its LHS or RHS.
 | |
|     if (DemandedMask[BitWidth-1] == 0) {
 | |
|       // Right fill the mask of bits for this SUB to demand the most
 | |
|       // significant bit and all those below it.
 | |
|       uint32_t NLZ = DemandedMask.countLeadingZeros();
 | |
|       APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
 | |
|       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
 | |
|                                LHSKnownZero, LHSKnownOne, Depth+1) ||
 | |
|           SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
 | |
|                                LHSKnownZero, LHSKnownOne, Depth+1))
 | |
|         return I;
 | |
|     }
 | |
|     // Otherwise just hand the sub off to ComputeMaskedBits to fill in
 | |
|     // the known zeros and ones.
 | |
|     ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
 | |
|       APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
 | |
|       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn, 
 | |
|                                RHSKnownZero, RHSKnownOne, Depth+1))
 | |
|         return I;
 | |
|       assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
 | |
|       RHSKnownZero <<= ShiftAmt;
 | |
|       RHSKnownOne  <<= ShiftAmt;
 | |
|       // low bits known zero.
 | |
|       if (ShiftAmt)
 | |
|         RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::LShr:
 | |
|     // For a logical shift right
 | |
|     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
 | |
|       
 | |
|       // Unsigned shift right.
 | |
|       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
 | |
|       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
 | |
|                                RHSKnownZero, RHSKnownOne, Depth+1))
 | |
|         return I;
 | |
|       assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
 | |
|       RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
 | |
|       RHSKnownOne  = APIntOps::lshr(RHSKnownOne, ShiftAmt);
 | |
|       if (ShiftAmt) {
 | |
|         // Compute the new bits that are at the top now.
 | |
|         APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
 | |
|         RHSKnownZero |= HighBits;  // high bits known zero.
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::AShr:
 | |
|     // If this is an arithmetic shift right and only the low-bit is set, we can
 | |
|     // always convert this into a logical shr, even if the shift amount is
 | |
|     // variable.  The low bit of the shift cannot be an input sign bit unless
 | |
|     // the shift amount is >= the size of the datatype, which is undefined.
 | |
|     if (DemandedMask == 1) {
 | |
|       // Perform the logical shift right.
 | |
|       Instruction *NewVal = BinaryOperator::CreateLShr(
 | |
|                         I->getOperand(0), I->getOperand(1), I->getName());
 | |
|       return InsertNewInstBefore(NewVal, *I);
 | |
|     }    
 | |
| 
 | |
|     // If the sign bit is the only bit demanded by this ashr, then there is no
 | |
|     // need to do it, the shift doesn't change the high bit.
 | |
|     if (DemandedMask.isSignBit())
 | |
|       return I->getOperand(0);
 | |
|     
 | |
|     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
 | |
|       
 | |
|       // Signed shift right.
 | |
|       APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
 | |
|       // If any of the "high bits" are demanded, we should set the sign bit as
 | |
|       // demanded.
 | |
|       if (DemandedMask.countLeadingZeros() <= ShiftAmt)
 | |
|         DemandedMaskIn.set(BitWidth-1);
 | |
|       if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
 | |
|                                RHSKnownZero, RHSKnownOne, Depth+1))
 | |
|         return I;
 | |
|       assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
 | |
|       // Compute the new bits that are at the top now.
 | |
|       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
 | |
|       RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
 | |
|       RHSKnownOne  = APIntOps::lshr(RHSKnownOne, ShiftAmt);
 | |
|         
 | |
|       // Handle the sign bits.
 | |
|       APInt SignBit(APInt::getSignBit(BitWidth));
 | |
|       // Adjust to where it is now in the mask.
 | |
|       SignBit = APIntOps::lshr(SignBit, ShiftAmt);  
 | |
|         
 | |
|       // If the input sign bit is known to be zero, or if none of the top bits
 | |
|       // are demanded, turn this into an unsigned shift right.
 | |
|       if (BitWidth <= ShiftAmt || RHSKnownZero[BitWidth-ShiftAmt-1] || 
 | |
|           (HighBits & ~DemandedMask) == HighBits) {
 | |
|         // Perform the logical shift right.
 | |
|         Instruction *NewVal = BinaryOperator::CreateLShr(
 | |
|                           I->getOperand(0), SA, I->getName());
 | |
|         return InsertNewInstBefore(NewVal, *I);
 | |
|       } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
 | |
|         RHSKnownOne |= HighBits;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::SRem:
 | |
|     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       APInt RA = Rem->getValue().abs();
 | |
|       if (RA.isPowerOf2()) {
 | |
|         if (DemandedMask.ult(RA))    // srem won't affect demanded bits
 | |
|           return I->getOperand(0);
 | |
| 
 | |
|         APInt LowBits = RA - 1;
 | |
|         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
 | |
|         if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
 | |
|                                  LHSKnownZero, LHSKnownOne, Depth+1))
 | |
|           return I;
 | |
| 
 | |
|         if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
 | |
|           LHSKnownZero |= ~LowBits;
 | |
| 
 | |
|         KnownZero |= LHSKnownZero & DemandedMask;
 | |
| 
 | |
|         assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?"); 
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::URem: {
 | |
|     APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
 | |
|     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
 | |
|     if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
 | |
|                              KnownZero2, KnownOne2, Depth+1) ||
 | |
|         SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
 | |
|                              KnownZero2, KnownOne2, Depth+1))
 | |
|       return I;
 | |
| 
 | |
|     unsigned Leaders = KnownZero2.countLeadingOnes();
 | |
|     Leaders = std::max(Leaders,
 | |
|                        KnownZero2.countLeadingOnes());
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Call:
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|       switch (II->getIntrinsicID()) {
 | |
|       default: break;
 | |
|       case Intrinsic::bswap: {
 | |
|         // If the only bits demanded come from one byte of the bswap result,
 | |
|         // just shift the input byte into position to eliminate the bswap.
 | |
|         unsigned NLZ = DemandedMask.countLeadingZeros();
 | |
|         unsigned NTZ = DemandedMask.countTrailingZeros();
 | |
|           
 | |
|         // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
 | |
|         // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
 | |
|         // have 14 leading zeros, round to 8.
 | |
|         NLZ &= ~7;
 | |
|         NTZ &= ~7;
 | |
|         // If we need exactly one byte, we can do this transformation.
 | |
|         if (BitWidth-NLZ-NTZ == 8) {
 | |
|           unsigned ResultBit = NTZ;
 | |
|           unsigned InputBit = BitWidth-NTZ-8;
 | |
|           
 | |
|           // Replace this with either a left or right shift to get the byte into
 | |
|           // the right place.
 | |
|           Instruction *NewVal;
 | |
|           if (InputBit > ResultBit)
 | |
|             NewVal = BinaryOperator::CreateLShr(I->getOperand(1),
 | |
|                     ConstantInt::get(I->getType(), InputBit-ResultBit));
 | |
|           else
 | |
|             NewVal = BinaryOperator::CreateShl(I->getOperand(1),
 | |
|                     ConstantInt::get(I->getType(), ResultBit-InputBit));
 | |
|           NewVal->takeName(I);
 | |
|           return InsertNewInstBefore(NewVal, *I);
 | |
|         }
 | |
|           
 | |
|         // TODO: Could compute known zero/one bits based on the input.
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|     ComputeMaskedBits(V, DemandedMask, RHSKnownZero, RHSKnownOne, Depth);
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // If the client is only demanding bits that we know, return the known
 | |
|   // constant.
 | |
|   if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
 | |
|     return Constant::getIntegerValue(VTy, RHSKnownOne);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SimplifyDemandedVectorElts - The specified value produces a vector with
 | |
| /// any number of elements. DemandedElts contains the set of elements that are
 | |
| /// actually used by the caller.  This method analyzes which elements of the
 | |
| /// operand are undef and returns that information in UndefElts.
 | |
| ///
 | |
| /// If the information about demanded elements can be used to simplify the
 | |
| /// operation, the operation is simplified, then the resultant value is
 | |
| /// returned.  This returns null if no change was made.
 | |
| Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
 | |
|                                                 APInt& UndefElts,
 | |
|                                                 unsigned Depth) {
 | |
|   unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
 | |
|   APInt EltMask(APInt::getAllOnesValue(VWidth));
 | |
|   assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
 | |
| 
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     // If the entire vector is undefined, just return this info.
 | |
|     UndefElts = EltMask;
 | |
|     return 0;
 | |
|   } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
 | |
|     UndefElts = EltMask;
 | |
|     return UndefValue::get(V->getType());
 | |
|   }
 | |
| 
 | |
|   UndefElts = 0;
 | |
|   if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
 | |
|     const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
 | |
|     Constant *Undef = UndefValue::get(EltTy);
 | |
| 
 | |
|     std::vector<Constant*> Elts;
 | |
|     for (unsigned i = 0; i != VWidth; ++i)
 | |
|       if (!DemandedElts[i]) {   // If not demanded, set to undef.
 | |
|         Elts.push_back(Undef);
 | |
|         UndefElts.set(i);
 | |
|       } else if (isa<UndefValue>(CP->getOperand(i))) {   // Already undef.
 | |
|         Elts.push_back(Undef);
 | |
|         UndefElts.set(i);
 | |
|       } else {                               // Otherwise, defined.
 | |
|         Elts.push_back(CP->getOperand(i));
 | |
|       }
 | |
| 
 | |
|     // If we changed the constant, return it.
 | |
|     Constant *NewCP = ConstantVector::get(Elts);
 | |
|     return NewCP != CP ? NewCP : 0;
 | |
|   } else if (isa<ConstantAggregateZero>(V)) {
 | |
|     // Simplify the CAZ to a ConstantVector where the non-demanded elements are
 | |
|     // set to undef.
 | |
|     
 | |
|     // Check if this is identity. If so, return 0 since we are not simplifying
 | |
|     // anything.
 | |
|     if (DemandedElts == ((1ULL << VWidth) -1))
 | |
|       return 0;
 | |
|     
 | |
|     const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
 | |
|     Constant *Zero = Constant::getNullValue(EltTy);
 | |
|     Constant *Undef = UndefValue::get(EltTy);
 | |
|     std::vector<Constant*> Elts;
 | |
|     for (unsigned i = 0; i != VWidth; ++i) {
 | |
|       Constant *Elt = DemandedElts[i] ? Zero : Undef;
 | |
|       Elts.push_back(Elt);
 | |
|     }
 | |
|     UndefElts = DemandedElts ^ EltMask;
 | |
|     return ConstantVector::get(Elts);
 | |
|   }
 | |
|   
 | |
|   // Limit search depth.
 | |
|   if (Depth == 10)
 | |
|     return 0;
 | |
| 
 | |
|   // If multiple users are using the root value, procede with
 | |
|   // simplification conservatively assuming that all elements
 | |
|   // are needed.
 | |
|   if (!V->hasOneUse()) {
 | |
|     // Quit if we find multiple users of a non-root value though.
 | |
|     // They'll be handled when it's their turn to be visited by
 | |
|     // the main instcombine process.
 | |
|     if (Depth != 0)
 | |
|       // TODO: Just compute the UndefElts information recursively.
 | |
|       return 0;
 | |
| 
 | |
|     // Conservatively assume that all elements are needed.
 | |
|     DemandedElts = EltMask;
 | |
|   }
 | |
|   
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return 0;        // Only analyze instructions.
 | |
|   
 | |
|   bool MadeChange = false;
 | |
|   APInt UndefElts2(VWidth, 0);
 | |
|   Value *TmpV;
 | |
|   switch (I->getOpcode()) {
 | |
|   default: break;
 | |
|     
 | |
|   case Instruction::InsertElement: {
 | |
|     // If this is a variable index, we don't know which element it overwrites.
 | |
|     // demand exactly the same input as we produce.
 | |
|     ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
 | |
|     if (Idx == 0) {
 | |
|       // Note that we can't propagate undef elt info, because we don't know
 | |
|       // which elt is getting updated.
 | |
|       TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
 | |
|                                         UndefElts2, Depth+1);
 | |
|       if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     // If this is inserting an element that isn't demanded, remove this
 | |
|     // insertelement.
 | |
|     unsigned IdxNo = Idx->getZExtValue();
 | |
|     if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
 | |
|       Worklist.Add(I);
 | |
|       return I->getOperand(0);
 | |
|     }
 | |
|     
 | |
|     // Otherwise, the element inserted overwrites whatever was there, so the
 | |
|     // input demanded set is simpler than the output set.
 | |
|     APInt DemandedElts2 = DemandedElts;
 | |
|     DemandedElts2.clear(IdxNo);
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
 | |
|                                       UndefElts, Depth+1);
 | |
|     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | |
| 
 | |
|     // The inserted element is defined.
 | |
|     UndefElts.clear(IdxNo);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::ShuffleVector: {
 | |
|     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
 | |
|     uint64_t LHSVWidth =
 | |
|       cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
 | |
|     APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
 | |
|     for (unsigned i = 0; i < VWidth; i++) {
 | |
|       if (DemandedElts[i]) {
 | |
|         unsigned MaskVal = Shuffle->getMaskValue(i);
 | |
|         if (MaskVal != -1u) {
 | |
|           assert(MaskVal < LHSVWidth * 2 &&
 | |
|                  "shufflevector mask index out of range!");
 | |
|           if (MaskVal < LHSVWidth)
 | |
|             LeftDemanded.set(MaskVal);
 | |
|           else
 | |
|             RightDemanded.set(MaskVal - LHSVWidth);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     APInt UndefElts4(LHSVWidth, 0);
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
 | |
|                                       UndefElts4, Depth+1);
 | |
|     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | |
| 
 | |
|     APInt UndefElts3(LHSVWidth, 0);
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
 | |
|                                       UndefElts3, Depth+1);
 | |
|     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
 | |
| 
 | |
|     bool NewUndefElts = false;
 | |
|     for (unsigned i = 0; i < VWidth; i++) {
 | |
|       unsigned MaskVal = Shuffle->getMaskValue(i);
 | |
|       if (MaskVal == -1u) {
 | |
|         UndefElts.set(i);
 | |
|       } else if (MaskVal < LHSVWidth) {
 | |
|         if (UndefElts4[MaskVal]) {
 | |
|           NewUndefElts = true;
 | |
|           UndefElts.set(i);
 | |
|         }
 | |
|       } else {
 | |
|         if (UndefElts3[MaskVal - LHSVWidth]) {
 | |
|           NewUndefElts = true;
 | |
|           UndefElts.set(i);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (NewUndefElts) {
 | |
|       // Add additional discovered undefs.
 | |
|       std::vector<Constant*> Elts;
 | |
|       for (unsigned i = 0; i < VWidth; ++i) {
 | |
|         if (UndefElts[i])
 | |
|           Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
 | |
|         else
 | |
|           Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context),
 | |
|                                           Shuffle->getMaskValue(i)));
 | |
|       }
 | |
|       I->setOperand(2, ConstantVector::get(Elts));
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::BitCast: {
 | |
|     // Vector->vector casts only.
 | |
|     const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
 | |
|     if (!VTy) break;
 | |
|     unsigned InVWidth = VTy->getNumElements();
 | |
|     APInt InputDemandedElts(InVWidth, 0);
 | |
|     unsigned Ratio;
 | |
| 
 | |
|     if (VWidth == InVWidth) {
 | |
|       // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
 | |
|       // elements as are demanded of us.
 | |
|       Ratio = 1;
 | |
|       InputDemandedElts = DemandedElts;
 | |
|     } else if (VWidth > InVWidth) {
 | |
|       // Untested so far.
 | |
|       break;
 | |
|       
 | |
|       // If there are more elements in the result than there are in the source,
 | |
|       // then an input element is live if any of the corresponding output
 | |
|       // elements are live.
 | |
|       Ratio = VWidth/InVWidth;
 | |
|       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
 | |
|         if (DemandedElts[OutIdx])
 | |
|           InputDemandedElts.set(OutIdx/Ratio);
 | |
|       }
 | |
|     } else {
 | |
|       // Untested so far.
 | |
|       break;
 | |
|       
 | |
|       // If there are more elements in the source than there are in the result,
 | |
|       // then an input element is live if the corresponding output element is
 | |
|       // live.
 | |
|       Ratio = InVWidth/VWidth;
 | |
|       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
 | |
|         if (DemandedElts[InIdx/Ratio])
 | |
|           InputDemandedElts.set(InIdx);
 | |
|     }
 | |
|     
 | |
|     // div/rem demand all inputs, because they don't want divide by zero.
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
 | |
|                                       UndefElts2, Depth+1);
 | |
|     if (TmpV) {
 | |
|       I->setOperand(0, TmpV);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     
 | |
|     UndefElts = UndefElts2;
 | |
|     if (VWidth > InVWidth) {
 | |
|       llvm_unreachable("Unimp");
 | |
|       // If there are more elements in the result than there are in the source,
 | |
|       // then an output element is undef if the corresponding input element is
 | |
|       // undef.
 | |
|       for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
 | |
|         if (UndefElts2[OutIdx/Ratio])
 | |
|           UndefElts.set(OutIdx);
 | |
|     } else if (VWidth < InVWidth) {
 | |
|       llvm_unreachable("Unimp");
 | |
|       // If there are more elements in the source than there are in the result,
 | |
|       // then a result element is undef if all of the corresponding input
 | |
|       // elements are undef.
 | |
|       UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
 | |
|       for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
 | |
|         if (!UndefElts2[InIdx])            // Not undef?
 | |
|           UndefElts.clear(InIdx/Ratio);    // Clear undef bit.
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|     // div/rem demand all inputs, because they don't want divide by zero.
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
 | |
|                                       UndefElts, Depth+1);
 | |
|     if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | |
|     TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
 | |
|                                       UndefElts2, Depth+1);
 | |
|     if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
 | |
|       
 | |
|     // Output elements are undefined if both are undefined.  Consider things
 | |
|     // like undef&0.  The result is known zero, not undef.
 | |
|     UndefElts &= UndefElts2;
 | |
|     break;
 | |
|     
 | |
|   case Instruction::Call: {
 | |
|     IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
 | |
|     if (!II) break;
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default: break;
 | |
|       
 | |
|     // Binary vector operations that work column-wise.  A dest element is a
 | |
|     // function of the corresponding input elements from the two inputs.
 | |
|     case Intrinsic::x86_sse_sub_ss:
 | |
|     case Intrinsic::x86_sse_mul_ss:
 | |
|     case Intrinsic::x86_sse_min_ss:
 | |
|     case Intrinsic::x86_sse_max_ss:
 | |
|     case Intrinsic::x86_sse2_sub_sd:
 | |
|     case Intrinsic::x86_sse2_mul_sd:
 | |
|     case Intrinsic::x86_sse2_min_sd:
 | |
|     case Intrinsic::x86_sse2_max_sd:
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
 | |
|                                         UndefElts, Depth+1);
 | |
|       if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
 | |
|       TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
 | |
|                                         UndefElts2, Depth+1);
 | |
|       if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
 | |
| 
 | |
|       // If only the low elt is demanded and this is a scalarizable intrinsic,
 | |
|       // scalarize it now.
 | |
|       if (DemandedElts == 1) {
 | |
|         switch (II->getIntrinsicID()) {
 | |
|         default: break;
 | |
|         case Intrinsic::x86_sse_sub_ss:
 | |
|         case Intrinsic::x86_sse_mul_ss:
 | |
|         case Intrinsic::x86_sse2_sub_sd:
 | |
|         case Intrinsic::x86_sse2_mul_sd:
 | |
|           // TODO: Lower MIN/MAX/ABS/etc
 | |
|           Value *LHS = II->getOperand(1);
 | |
|           Value *RHS = II->getOperand(2);
 | |
|           // Extract the element as scalars.
 | |
|           LHS = InsertNewInstBefore(ExtractElementInst::Create(LHS, 
 | |
|             ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), "tmp"), *II);
 | |
|           RHS = InsertNewInstBefore(ExtractElementInst::Create(RHS,
 | |
|             ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), "tmp"), *II);
 | |
|           
 | |
|           switch (II->getIntrinsicID()) {
 | |
|           default: llvm_unreachable("Case stmts out of sync!");
 | |
|           case Intrinsic::x86_sse_sub_ss:
 | |
|           case Intrinsic::x86_sse2_sub_sd:
 | |
|             TmpV = InsertNewInstBefore(BinaryOperator::CreateFSub(LHS, RHS,
 | |
|                                                         II->getName()), *II);
 | |
|             break;
 | |
|           case Intrinsic::x86_sse_mul_ss:
 | |
|           case Intrinsic::x86_sse2_mul_sd:
 | |
|             TmpV = InsertNewInstBefore(BinaryOperator::CreateFMul(LHS, RHS,
 | |
|                                                          II->getName()), *II);
 | |
|             break;
 | |
|           }
 | |
|           
 | |
|           Instruction *New =
 | |
|             InsertElementInst::Create(
 | |
|               UndefValue::get(II->getType()), TmpV,
 | |
|               ConstantInt::get(Type::getInt32Ty(*Context), 0U, false), II->getName());
 | |
|           InsertNewInstBefore(New, *II);
 | |
|           return New;
 | |
|         }            
 | |
|       }
 | |
|         
 | |
|       // Output elements are undefined if both are undefined.  Consider things
 | |
|       // like undef&0.  The result is known zero, not undef.
 | |
|       UndefElts &= UndefElts2;
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return MadeChange ? I : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AssociativeOpt - Perform an optimization on an associative operator.  This
 | |
| /// function is designed to check a chain of associative operators for a
 | |
| /// potential to apply a certain optimization.  Since the optimization may be
 | |
| /// applicable if the expression was reassociated, this checks the chain, then
 | |
| /// reassociates the expression as necessary to expose the optimization
 | |
| /// opportunity.  This makes use of a special Functor, which must define
 | |
| /// 'shouldApply' and 'apply' methods.
 | |
| ///
 | |
| template<typename Functor>
 | |
| static Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
 | |
|   unsigned Opcode = Root.getOpcode();
 | |
|   Value *LHS = Root.getOperand(0);
 | |
| 
 | |
|   // Quick check, see if the immediate LHS matches...
 | |
|   if (F.shouldApply(LHS))
 | |
|     return F.apply(Root);
 | |
| 
 | |
|   // Otherwise, if the LHS is not of the same opcode as the root, return.
 | |
|   Instruction *LHSI = dyn_cast<Instruction>(LHS);
 | |
|   while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
 | |
|     // Should we apply this transform to the RHS?
 | |
|     bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
 | |
| 
 | |
|     // If not to the RHS, check to see if we should apply to the LHS...
 | |
|     if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
 | |
|       cast<BinaryOperator>(LHSI)->swapOperands();   // Make the LHS the RHS
 | |
|       ShouldApply = true;
 | |
|     }
 | |
| 
 | |
|     // If the functor wants to apply the optimization to the RHS of LHSI,
 | |
|     // reassociate the expression from ((? op A) op B) to (? op (A op B))
 | |
|     if (ShouldApply) {
 | |
|       // Now all of the instructions are in the current basic block, go ahead
 | |
|       // and perform the reassociation.
 | |
|       Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
 | |
| 
 | |
|       // First move the selected RHS to the LHS of the root...
 | |
|       Root.setOperand(0, LHSI->getOperand(1));
 | |
| 
 | |
|       // Make what used to be the LHS of the root be the user of the root...
 | |
|       Value *ExtraOperand = TmpLHSI->getOperand(1);
 | |
|       if (&Root == TmpLHSI) {
 | |
|         Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
 | |
|         return 0;
 | |
|       }
 | |
|       Root.replaceAllUsesWith(TmpLHSI);          // Users now use TmpLHSI
 | |
|       TmpLHSI->setOperand(1, &Root);             // TmpLHSI now uses the root
 | |
|       BasicBlock::iterator ARI = &Root; ++ARI;
 | |
|       TmpLHSI->moveBefore(ARI);                  // Move TmpLHSI to after Root
 | |
|       ARI = Root;
 | |
| 
 | |
|       // Now propagate the ExtraOperand down the chain of instructions until we
 | |
|       // get to LHSI.
 | |
|       while (TmpLHSI != LHSI) {
 | |
|         Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
 | |
|         // Move the instruction to immediately before the chain we are
 | |
|         // constructing to avoid breaking dominance properties.
 | |
|         NextLHSI->moveBefore(ARI);
 | |
|         ARI = NextLHSI;
 | |
| 
 | |
|         Value *NextOp = NextLHSI->getOperand(1);
 | |
|         NextLHSI->setOperand(1, ExtraOperand);
 | |
|         TmpLHSI = NextLHSI;
 | |
|         ExtraOperand = NextOp;
 | |
|       }
 | |
| 
 | |
|       // Now that the instructions are reassociated, have the functor perform
 | |
|       // the transformation...
 | |
|       return F.apply(Root);
 | |
|     }
 | |
| 
 | |
|     LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // AddRHS - Implements: X + X --> X << 1
 | |
| struct AddRHS {
 | |
|   Value *RHS;
 | |
|   explicit AddRHS(Value *rhs) : RHS(rhs) {}
 | |
|   bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | |
|   Instruction *apply(BinaryOperator &Add) const {
 | |
|     return BinaryOperator::CreateShl(Add.getOperand(0),
 | |
|                                      ConstantInt::get(Add.getType(), 1));
 | |
|   }
 | |
| };
 | |
| 
 | |
| // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
 | |
| //                 iff C1&C2 == 0
 | |
| struct AddMaskingAnd {
 | |
|   Constant *C2;
 | |
|   explicit AddMaskingAnd(Constant *c) : C2(c) {}
 | |
|   bool shouldApply(Value *LHS) const {
 | |
|     ConstantInt *C1;
 | |
|     return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
 | |
|            ConstantExpr::getAnd(C1, C2)->isNullValue();
 | |
|   }
 | |
|   Instruction *apply(BinaryOperator &Add) const {
 | |
|     return BinaryOperator::CreateOr(Add.getOperand(0), Add.getOperand(1));
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
 | |
|                                              InstCombiner *IC) {
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(&I))
 | |
|     return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
 | |
| 
 | |
|   // Figure out if the constant is the left or the right argument.
 | |
|   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
 | |
|   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
 | |
| 
 | |
|   if (Constant *SOC = dyn_cast<Constant>(SO)) {
 | |
|     if (ConstIsRHS)
 | |
|       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
 | |
|     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
 | |
|   }
 | |
| 
 | |
|   Value *Op0 = SO, *Op1 = ConstOperand;
 | |
|   if (!ConstIsRHS)
 | |
|     std::swap(Op0, Op1);
 | |
|   
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
 | |
|     return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
 | |
|                                     SO->getName()+".op");
 | |
|   if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
 | |
|     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
 | |
|                                    SO->getName()+".cmp");
 | |
|   if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
 | |
|     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
 | |
|                                    SO->getName()+".cmp");
 | |
|   llvm_unreachable("Unknown binary instruction type!");
 | |
| }
 | |
| 
 | |
| // FoldOpIntoSelect - Given an instruction with a select as one operand and a
 | |
| // constant as the other operand, try to fold the binary operator into the
 | |
| // select arguments.  This also works for Cast instructions, which obviously do
 | |
| // not have a second operand.
 | |
| static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
 | |
|                                      InstCombiner *IC) {
 | |
|   // Don't modify shared select instructions
 | |
|   if (!SI->hasOneUse()) return 0;
 | |
|   Value *TV = SI->getOperand(1);
 | |
|   Value *FV = SI->getOperand(2);
 | |
| 
 | |
|   if (isa<Constant>(TV) || isa<Constant>(FV)) {
 | |
|     // Bool selects with constant operands can be folded to logical ops.
 | |
|     if (SI->getType() == Type::getInt1Ty(*IC->getContext())) return 0;
 | |
| 
 | |
|     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
 | |
|     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
 | |
| 
 | |
|     return SelectInst::Create(SI->getCondition(), SelectTrueVal,
 | |
|                               SelectFalseVal);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
 | |
| /// has a PHI node as operand #0, see if we can fold the instruction into the
 | |
| /// PHI (which is only possible if all operands to the PHI are constants).
 | |
| ///
 | |
| /// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
 | |
| /// that would normally be unprofitable because they strongly encourage jump
 | |
| /// threading.
 | |
| Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
 | |
|                                          bool AllowAggressive) {
 | |
|   AllowAggressive = false;
 | |
|   PHINode *PN = cast<PHINode>(I.getOperand(0));
 | |
|   unsigned NumPHIValues = PN->getNumIncomingValues();
 | |
|   if (NumPHIValues == 0 ||
 | |
|       // We normally only transform phis with a single use, unless we're trying
 | |
|       // hard to make jump threading happen.
 | |
|       (!PN->hasOneUse() && !AllowAggressive))
 | |
|     return 0;
 | |
|   
 | |
|   
 | |
|   // Check to see if all of the operands of the PHI are simple constants
 | |
|   // (constantint/constantfp/undef).  If there is one non-constant value,
 | |
|   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
 | |
|   // bail out.  We don't do arbitrary constant expressions here because moving
 | |
|   // their computation can be expensive without a cost model.
 | |
|   BasicBlock *NonConstBB = 0;
 | |
|   for (unsigned i = 0; i != NumPHIValues; ++i)
 | |
|     if (!isa<Constant>(PN->getIncomingValue(i)) ||
 | |
|         isa<ConstantExpr>(PN->getIncomingValue(i))) {
 | |
|       if (NonConstBB) return 0;  // More than one non-const value.
 | |
|       if (isa<PHINode>(PN->getIncomingValue(i))) return 0;  // Itself a phi.
 | |
|       NonConstBB = PN->getIncomingBlock(i);
 | |
|       
 | |
|       // If the incoming non-constant value is in I's block, we have an infinite
 | |
|       // loop.
 | |
|       if (NonConstBB == I.getParent())
 | |
|         return 0;
 | |
|     }
 | |
|   
 | |
|   // If there is exactly one non-constant value, we can insert a copy of the
 | |
|   // operation in that block.  However, if this is a critical edge, we would be
 | |
|   // inserting the computation one some other paths (e.g. inside a loop).  Only
 | |
|   // do this if the pred block is unconditionally branching into the phi block.
 | |
|   if (NonConstBB != 0 && !AllowAggressive) {
 | |
|     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
 | |
|     if (!BI || !BI->isUnconditional()) return 0;
 | |
|   }
 | |
| 
 | |
|   // Okay, we can do the transformation: create the new PHI node.
 | |
|   PHINode *NewPN = PHINode::Create(I.getType(), "");
 | |
|   NewPN->reserveOperandSpace(PN->getNumOperands()/2);
 | |
|   InsertNewInstBefore(NewPN, *PN);
 | |
|   NewPN->takeName(PN);
 | |
| 
 | |
|   // Next, add all of the operands to the PHI.
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
 | |
|     // We only currently try to fold the condition of a select when it is a phi,
 | |
|     // not the true/false values.
 | |
|     Value *TrueV = SI->getTrueValue();
 | |
|     Value *FalseV = SI->getFalseValue();
 | |
|     BasicBlock *PhiTransBB = PN->getParent();
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       BasicBlock *ThisBB = PN->getIncomingBlock(i);
 | |
|       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
 | |
|       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
 | |
|       Value *InV = 0;
 | |
|       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
 | |
|         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
 | |
|       } else {
 | |
|         assert(PN->getIncomingBlock(i) == NonConstBB);
 | |
|         InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
 | |
|                                  FalseVInPred,
 | |
|                                  "phitmp", NonConstBB->getTerminator());
 | |
|         Worklist.Add(cast<Instruction>(InV));
 | |
|       }
 | |
|       NewPN->addIncoming(InV, ThisBB);
 | |
|     }
 | |
|   } else if (I.getNumOperands() == 2) {
 | |
|     Constant *C = cast<Constant>(I.getOperand(1));
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       Value *InV = 0;
 | |
|       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
 | |
|         if (CmpInst *CI = dyn_cast<CmpInst>(&I))
 | |
|           InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
 | |
|         else
 | |
|           InV = ConstantExpr::get(I.getOpcode(), InC, C);
 | |
|       } else {
 | |
|         assert(PN->getIncomingBlock(i) == NonConstBB);
 | |
|         if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) 
 | |
|           InV = BinaryOperator::Create(BO->getOpcode(),
 | |
|                                        PN->getIncomingValue(i), C, "phitmp",
 | |
|                                        NonConstBB->getTerminator());
 | |
|         else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
 | |
|           InV = CmpInst::Create(CI->getOpcode(),
 | |
|                                 CI->getPredicate(),
 | |
|                                 PN->getIncomingValue(i), C, "phitmp",
 | |
|                                 NonConstBB->getTerminator());
 | |
|         else
 | |
|           llvm_unreachable("Unknown binop!");
 | |
|         
 | |
|         Worklist.Add(cast<Instruction>(InV));
 | |
|       }
 | |
|       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | |
|     }
 | |
|   } else { 
 | |
|     CastInst *CI = cast<CastInst>(&I);
 | |
|     const Type *RetTy = CI->getType();
 | |
|     for (unsigned i = 0; i != NumPHIValues; ++i) {
 | |
|       Value *InV;
 | |
|       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
 | |
|         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
 | |
|       } else {
 | |
|         assert(PN->getIncomingBlock(i) == NonConstBB);
 | |
|         InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i), 
 | |
|                                I.getType(), "phitmp", 
 | |
|                                NonConstBB->getTerminator());
 | |
|         Worklist.Add(cast<Instruction>(InV));
 | |
|       }
 | |
|       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | |
|     }
 | |
|   }
 | |
|   return ReplaceInstUsesWith(I, NewPN);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// WillNotOverflowSignedAdd - Return true if we can prove that:
 | |
| ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
 | |
| /// This basically requires proving that the add in the original type would not
 | |
| /// overflow to change the sign bit or have a carry out.
 | |
| bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
 | |
|   // There are different heuristics we can use for this.  Here are some simple
 | |
|   // ones.
 | |
|   
 | |
|   // Add has the property that adding any two 2's complement numbers can only 
 | |
|   // have one carry bit which can change a sign.  As such, if LHS and RHS each
 | |
|   // have at least two sign bits, we know that the addition of the two values will
 | |
|   // sign extend fine.
 | |
|   if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
 | |
|     return true;
 | |
|   
 | |
|   
 | |
|   // If one of the operands only has one non-zero bit, and if the other operand
 | |
|   // has a known-zero bit in a more significant place than it (not including the
 | |
|   // sign bit) the ripple may go up to and fill the zero, but won't change the
 | |
|   // sign.  For example, (X & ~4) + 1.
 | |
|   
 | |
|   // TODO: Implement.
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
| 
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|     // X + undef -> undef
 | |
|     if (isa<UndefValue>(RHS))
 | |
|       return ReplaceInstUsesWith(I, RHS);
 | |
| 
 | |
|     // X + 0 --> X
 | |
|     if (RHSC->isNullValue())
 | |
|       return ReplaceInstUsesWith(I, LHS);
 | |
| 
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
 | |
|       // X + (signbit) --> X ^ signbit
 | |
|       const APInt& Val = CI->getValue();
 | |
|       uint32_t BitWidth = Val.getBitWidth();
 | |
|       if (Val == APInt::getSignBit(BitWidth))
 | |
|         return BinaryOperator::CreateXor(LHS, RHS);
 | |
|       
 | |
|       // See if SimplifyDemandedBits can simplify this.  This handles stuff like
 | |
|       // (X & 254)+1 -> (X&254)|1
 | |
|       if (SimplifyDemandedInstructionBits(I))
 | |
|         return &I;
 | |
| 
 | |
|       // zext(bool) + C -> bool ? C + 1 : C
 | |
|       if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
 | |
|         if (ZI->getSrcTy() == Type::getInt1Ty(*Context))
 | |
|           return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
 | |
|     }
 | |
| 
 | |
|     if (isa<PHINode>(LHS))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|     
 | |
|     ConstantInt *XorRHS = 0;
 | |
|     Value *XorLHS = 0;
 | |
|     if (isa<ConstantInt>(RHSC) &&
 | |
|         match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
 | |
|       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
 | |
|       const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
 | |
|       
 | |
|       uint32_t Size = TySizeBits / 2;
 | |
|       APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
 | |
|       APInt CFF80Val(-C0080Val);
 | |
|       do {
 | |
|         if (TySizeBits > Size) {
 | |
|           // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
 | |
|           // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
 | |
|           if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
 | |
|               (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
 | |
|             // This is a sign extend if the top bits are known zero.
 | |
|             if (!MaskedValueIsZero(XorLHS, 
 | |
|                    APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
 | |
|               Size = 0;  // Not a sign ext, but can't be any others either.
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         Size >>= 1;
 | |
|         C0080Val = APIntOps::lshr(C0080Val, Size);
 | |
|         CFF80Val = APIntOps::ashr(CFF80Val, Size);
 | |
|       } while (Size >= 1);
 | |
|       
 | |
|       // FIXME: This shouldn't be necessary. When the backends can handle types
 | |
|       // with funny bit widths then this switch statement should be removed. It
 | |
|       // is just here to get the size of the "middle" type back up to something
 | |
|       // that the back ends can handle.
 | |
|       const Type *MiddleType = 0;
 | |
|       switch (Size) {
 | |
|         default: break;
 | |
|         case 32: MiddleType = Type::getInt32Ty(*Context); break;
 | |
|         case 16: MiddleType = Type::getInt16Ty(*Context); break;
 | |
|         case  8: MiddleType = Type::getInt8Ty(*Context); break;
 | |
|       }
 | |
|       if (MiddleType) {
 | |
|         Value *NewTrunc = Builder->CreateTrunc(XorLHS, MiddleType, "sext");
 | |
|         return new SExtInst(NewTrunc, I.getType(), I.getName());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (I.getType() == Type::getInt1Ty(*Context))
 | |
|     return BinaryOperator::CreateXor(LHS, RHS);
 | |
| 
 | |
|   // X + X --> X << 1
 | |
|   if (I.getType()->isInteger()) {
 | |
|     if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS)))
 | |
|       return Result;
 | |
| 
 | |
|     if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
 | |
|       if (RHSI->getOpcode() == Instruction::Sub)
 | |
|         if (LHS == RHSI->getOperand(1))                   // A + (B - A) --> B
 | |
|           return ReplaceInstUsesWith(I, RHSI->getOperand(0));
 | |
|     }
 | |
|     if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
 | |
|       if (LHSI->getOpcode() == Instruction::Sub)
 | |
|         if (RHS == LHSI->getOperand(1))                   // (B - A) + A --> B
 | |
|           return ReplaceInstUsesWith(I, LHSI->getOperand(0));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // -A + B  -->  B - A
 | |
|   // -A + -B  -->  -(A + B)
 | |
|   if (Value *LHSV = dyn_castNegVal(LHS)) {
 | |
|     if (LHS->getType()->isIntOrIntVector()) {
 | |
|       if (Value *RHSV = dyn_castNegVal(RHS)) {
 | |
|         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
 | |
|         return BinaryOperator::CreateNeg(NewAdd);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     return BinaryOperator::CreateSub(RHS, LHSV);
 | |
|   }
 | |
| 
 | |
|   // A + -B  -->  A - B
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Value *V = dyn_castNegVal(RHS))
 | |
|       return BinaryOperator::CreateSub(LHS, V);
 | |
| 
 | |
| 
 | |
|   ConstantInt *C2;
 | |
|   if (Value *X = dyn_castFoldableMul(LHS, C2)) {
 | |
|     if (X == RHS)   // X*C + X --> X * (C+1)
 | |
|       return BinaryOperator::CreateMul(RHS, AddOne(C2));
 | |
| 
 | |
|     // X*C1 + X*C2 --> X * (C1+C2)
 | |
|     ConstantInt *C1;
 | |
|     if (X == dyn_castFoldableMul(RHS, C1))
 | |
|       return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
 | |
|   }
 | |
| 
 | |
|   // X + X*C --> X * (C+1)
 | |
|   if (dyn_castFoldableMul(RHS, C2) == LHS)
 | |
|     return BinaryOperator::CreateMul(LHS, AddOne(C2));
 | |
| 
 | |
|   // X + ~X --> -1   since   ~X = -X-1
 | |
|   if (dyn_castNotVal(LHS) == RHS ||
 | |
|       dyn_castNotVal(RHS) == LHS)
 | |
|     return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
 | |
|   
 | |
| 
 | |
|   // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
 | |
|   if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
 | |
|     if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
 | |
|       return R;
 | |
|   
 | |
|   // A+B --> A|B iff A and B have no bits set in common.
 | |
|   if (const IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
 | |
|     APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
 | |
|     APInt LHSKnownOne(IT->getBitWidth(), 0);
 | |
|     APInt LHSKnownZero(IT->getBitWidth(), 0);
 | |
|     ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
 | |
|     if (LHSKnownZero != 0) {
 | |
|       APInt RHSKnownOne(IT->getBitWidth(), 0);
 | |
|       APInt RHSKnownZero(IT->getBitWidth(), 0);
 | |
|       ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
 | |
|       
 | |
|       // No bits in common -> bitwise or.
 | |
|       if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
 | |
|         return BinaryOperator::CreateOr(LHS, RHS);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // W*X + Y*Z --> W * (X+Z)  iff W == Y
 | |
|   if (I.getType()->isIntOrIntVector()) {
 | |
|     Value *W, *X, *Y, *Z;
 | |
|     if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
 | |
|         match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
 | |
|       if (W != Y) {
 | |
|         if (W == Z) {
 | |
|           std::swap(Y, Z);
 | |
|         } else if (Y == X) {
 | |
|           std::swap(W, X);
 | |
|         } else if (X == Z) {
 | |
|           std::swap(Y, Z);
 | |
|           std::swap(W, X);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (W == Y) {
 | |
|         Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
 | |
|         return BinaryOperator::CreateMul(W, NewAdd);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
 | |
|     Value *X = 0;
 | |
|     if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
 | |
|       return BinaryOperator::CreateSub(SubOne(CRHS), X);
 | |
| 
 | |
|     // (X & FF00) + xx00  -> (X+xx00) & FF00
 | |
|     if (LHS->hasOneUse() &&
 | |
|         match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
 | |
|       Constant *Anded = ConstantExpr::getAnd(CRHS, C2);
 | |
|       if (Anded == CRHS) {
 | |
|         // See if all bits from the first bit set in the Add RHS up are included
 | |
|         // in the mask.  First, get the rightmost bit.
 | |
|         const APInt& AddRHSV = CRHS->getValue();
 | |
| 
 | |
|         // Form a mask of all bits from the lowest bit added through the top.
 | |
|         APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
 | |
| 
 | |
|         // See if the and mask includes all of these bits.
 | |
|         APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
 | |
| 
 | |
|         if (AddRHSHighBits == AddRHSHighBitsAnd) {
 | |
|           // Okay, the xform is safe.  Insert the new add pronto.
 | |
|           Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
 | |
|           return BinaryOperator::CreateAnd(NewAdd, C2);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant add into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|   }
 | |
| 
 | |
|   // add (select X 0 (sub n A)) A  -->  select X A n
 | |
|   {
 | |
|     SelectInst *SI = dyn_cast<SelectInst>(LHS);
 | |
|     Value *A = RHS;
 | |
|     if (!SI) {
 | |
|       SI = dyn_cast<SelectInst>(RHS);
 | |
|       A = LHS;
 | |
|     }
 | |
|     if (SI && SI->hasOneUse()) {
 | |
|       Value *TV = SI->getTrueValue();
 | |
|       Value *FV = SI->getFalseValue();
 | |
|       Value *N;
 | |
| 
 | |
|       // Can we fold the add into the argument of the select?
 | |
|       // We check both true and false select arguments for a matching subtract.
 | |
|       if (match(FV, m_Zero()) &&
 | |
|           match(TV, m_Sub(m_Value(N), m_Specific(A))))
 | |
|         // Fold the add into the true select value.
 | |
|         return SelectInst::Create(SI->getCondition(), N, A);
 | |
|       if (match(TV, m_Zero()) &&
 | |
|           match(FV, m_Sub(m_Value(N), m_Specific(A))))
 | |
|         // Fold the add into the false select value.
 | |
|         return SelectInst::Create(SI->getCondition(), A, N);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for (add (sext x), y), see if we can merge this into an
 | |
|   // integer add followed by a sext.
 | |
|   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
 | |
|     // (add (sext x), cst) --> (sext (add x, cst'))
 | |
|     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
 | |
|       Constant *CI = 
 | |
|         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
 | |
|       if (LHSConv->hasOneUse() &&
 | |
|           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
 | |
|           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
 | |
|         // Insert the new, smaller add.
 | |
|         Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0), 
 | |
|                                            CI, "addconv");
 | |
|         return new SExtInst(NewAdd, I.getType());
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // (add (sext x), (sext y)) --> (sext (add int x, y))
 | |
|     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
 | |
|       // Only do this if x/y have the same type, if at last one of them has a
 | |
|       // single use (so we don't increase the number of sexts), and if the
 | |
|       // integer add will not overflow.
 | |
|       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
 | |
|           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
 | |
|           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
 | |
|                                    RHSConv->getOperand(0))) {
 | |
|         // Insert the new integer add.
 | |
|         Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0), 
 | |
|                                            RHSConv->getOperand(0), "addconv");
 | |
|         return new SExtInst(NewAdd, I.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
| 
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|     // X + 0 --> X
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
 | |
|       if (CFP->isExactlyValue(ConstantFP::getNegativeZero
 | |
|                               (I.getType())->getValueAPF()))
 | |
|         return ReplaceInstUsesWith(I, LHS);
 | |
|     }
 | |
| 
 | |
|     if (isa<PHINode>(LHS))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   // -A + B  -->  B - A
 | |
|   // -A + -B  -->  -(A + B)
 | |
|   if (Value *LHSV = dyn_castFNegVal(LHS))
 | |
|     return BinaryOperator::CreateFSub(RHS, LHSV);
 | |
| 
 | |
|   // A + -B  -->  A - B
 | |
|   if (!isa<Constant>(RHS))
 | |
|     if (Value *V = dyn_castFNegVal(RHS))
 | |
|       return BinaryOperator::CreateFSub(LHS, V);
 | |
| 
 | |
|   // Check for X+0.0.  Simplify it to X if we know X is not -0.0.
 | |
|   if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
 | |
|     if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
 | |
|       return ReplaceInstUsesWith(I, LHS);
 | |
| 
 | |
|   // Check for (add double (sitofp x), y), see if we can merge this into an
 | |
|   // integer add followed by a promotion.
 | |
|   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
 | |
|     // (add double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
 | |
|     // ... if the constant fits in the integer value.  This is useful for things
 | |
|     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
 | |
|     // requires a constant pool load, and generally allows the add to be better
 | |
|     // instcombined.
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
 | |
|       Constant *CI = 
 | |
|       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
 | |
|       if (LHSConv->hasOneUse() &&
 | |
|           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
 | |
|           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
 | |
|         // Insert the new integer add.
 | |
|         Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0),
 | |
|                                            CI, "addconv");
 | |
|         return new SIToFPInst(NewAdd, I.getType());
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // (add double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
 | |
|     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
 | |
|       // Only do this if x/y have the same type, if at last one of them has a
 | |
|       // single use (so we don't increase the number of int->fp conversions),
 | |
|       // and if the integer add will not overflow.
 | |
|       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
 | |
|           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
 | |
|           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
 | |
|                                    RHSConv->getOperand(0))) {
 | |
|         // Insert the new integer add.
 | |
|         Value *NewAdd = Builder->CreateAdd(LHSConv->getOperand(0), 
 | |
|                                            RHSConv->getOperand(0), "addconv");
 | |
|         return new SIToFPInst(NewAdd, I.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSub(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Op0 == Op1)                        // sub X, X  -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // If this is a 'B = x-(-A)', change to B = x+A...
 | |
|   if (Value *V = dyn_castNegVal(Op1))
 | |
|     return BinaryOperator::CreateAdd(Op0, V);
 | |
| 
 | |
|   if (isa<UndefValue>(Op0))
 | |
|     return ReplaceInstUsesWith(I, Op0);    // undef - X -> undef
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I, Op1);    // X - undef -> undef
 | |
| 
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
 | |
|     // Replace (-1 - A) with (~A)...
 | |
|     if (C->isAllOnesValue())
 | |
|       return BinaryOperator::CreateNot(Op1);
 | |
| 
 | |
|     // C - ~X == X + (1+C)
 | |
|     Value *X = 0;
 | |
|     if (match(Op1, m_Not(m_Value(X))))
 | |
|       return BinaryOperator::CreateAdd(X, AddOne(C));
 | |
| 
 | |
|     // -(X >>u 31) -> (X >>s 31)
 | |
|     // -(X >>s 31) -> (X >>u 31)
 | |
|     if (C->isZero()) {
 | |
|       if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1)) {
 | |
|         if (SI->getOpcode() == Instruction::LShr) {
 | |
|           if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
 | |
|             // Check to see if we are shifting out everything but the sign bit.
 | |
|             if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
 | |
|                 SI->getType()->getPrimitiveSizeInBits()-1) {
 | |
|               // Ok, the transformation is safe.  Insert AShr.
 | |
|               return BinaryOperator::Create(Instruction::AShr, 
 | |
|                                           SI->getOperand(0), CU, SI->getName());
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         else if (SI->getOpcode() == Instruction::AShr) {
 | |
|           if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
 | |
|             // Check to see if we are shifting out everything but the sign bit.
 | |
|             if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
 | |
|                 SI->getType()->getPrimitiveSizeInBits()-1) {
 | |
|               // Ok, the transformation is safe.  Insert LShr. 
 | |
|               return BinaryOperator::CreateLShr(
 | |
|                                           SI->getOperand(0), CU, SI->getName());
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant sub into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
| 
 | |
|     // C - zext(bool) -> bool ? C - 1 : C
 | |
|     if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
 | |
|       if (ZI->getSrcTy() == Type::getInt1Ty(*Context))
 | |
|         return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
 | |
|   }
 | |
| 
 | |
|   if (I.getType() == Type::getInt1Ty(*Context))
 | |
|     return BinaryOperator::CreateXor(Op0, Op1);
 | |
| 
 | |
|   if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
 | |
|     if (Op1I->getOpcode() == Instruction::Add) {
 | |
|       if (Op1I->getOperand(0) == Op0)              // X-(X+Y) == -Y
 | |
|         return BinaryOperator::CreateNeg(Op1I->getOperand(1),
 | |
|                                          I.getName());
 | |
|       else if (Op1I->getOperand(1) == Op0)         // X-(Y+X) == -Y
 | |
|         return BinaryOperator::CreateNeg(Op1I->getOperand(0),
 | |
|                                          I.getName());
 | |
|       else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
 | |
|         if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
 | |
|           // C1-(X+C2) --> (C1-C2)-X
 | |
|           return BinaryOperator::CreateSub(
 | |
|             ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Op1I->hasOneUse()) {
 | |
|       // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
 | |
|       // is not used by anyone else...
 | |
|       //
 | |
|       if (Op1I->getOpcode() == Instruction::Sub) {
 | |
|         // Swap the two operands of the subexpr...
 | |
|         Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
 | |
|         Op1I->setOperand(0, IIOp1);
 | |
|         Op1I->setOperand(1, IIOp0);
 | |
| 
 | |
|         // Create the new top level add instruction...
 | |
|         return BinaryOperator::CreateAdd(Op0, Op1);
 | |
|       }
 | |
| 
 | |
|       // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
 | |
|       //
 | |
|       if (Op1I->getOpcode() == Instruction::And &&
 | |
|           (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
 | |
|         Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
 | |
| 
 | |
|         Value *NewNot = Builder->CreateNot(OtherOp, "B.not");
 | |
|         return BinaryOperator::CreateAnd(Op0, NewNot);
 | |
|       }
 | |
| 
 | |
|       // 0 - (X sdiv C)  -> (X sdiv -C)
 | |
|       if (Op1I->getOpcode() == Instruction::SDiv)
 | |
|         if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
 | |
|           if (CSI->isZero())
 | |
|             if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
 | |
|               return BinaryOperator::CreateSDiv(Op1I->getOperand(0),
 | |
|                                           ConstantExpr::getNeg(DivRHS));
 | |
| 
 | |
|       // X - X*C --> X * (1-C)
 | |
|       ConstantInt *C2 = 0;
 | |
|       if (dyn_castFoldableMul(Op1I, C2) == Op0) {
 | |
|         Constant *CP1 = 
 | |
|           ConstantExpr::getSub(ConstantInt::get(I.getType(), 1),
 | |
|                                              C2);
 | |
|         return BinaryOperator::CreateMul(Op0, CP1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | |
|     if (Op0I->getOpcode() == Instruction::Add) {
 | |
|       if (Op0I->getOperand(0) == Op1)             // (Y+X)-Y == X
 | |
|         return ReplaceInstUsesWith(I, Op0I->getOperand(1));
 | |
|       else if (Op0I->getOperand(1) == Op1)        // (X+Y)-Y == X
 | |
|         return ReplaceInstUsesWith(I, Op0I->getOperand(0));
 | |
|     } else if (Op0I->getOpcode() == Instruction::Sub) {
 | |
|       if (Op0I->getOperand(0) == Op1)             // (X-Y)-X == -Y
 | |
|         return BinaryOperator::CreateNeg(Op0I->getOperand(1),
 | |
|                                          I.getName());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ConstantInt *C1;
 | |
|   if (Value *X = dyn_castFoldableMul(Op0, C1)) {
 | |
|     if (X == Op1)  // X*C - X --> X * (C-1)
 | |
|       return BinaryOperator::CreateMul(Op1, SubOne(C1));
 | |
| 
 | |
|     ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
 | |
|     if (X == dyn_castFoldableMul(Op1, C2))
 | |
|       return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // If this is a 'B = x-(-A)', change to B = x+A...
 | |
|   if (Value *V = dyn_castFNegVal(Op1))
 | |
|     return BinaryOperator::CreateFAdd(Op0, V);
 | |
| 
 | |
|   if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
 | |
|     if (Op1I->getOpcode() == Instruction::FAdd) {
 | |
|       if (Op1I->getOperand(0) == Op0)              // X-(X+Y) == -Y
 | |
|         return BinaryOperator::CreateFNeg(Op1I->getOperand(1),
 | |
|                                           I.getName());
 | |
|       else if (Op1I->getOperand(1) == Op0)         // X-(Y+X) == -Y
 | |
|         return BinaryOperator::CreateFNeg(Op1I->getOperand(0),
 | |
|                                           I.getName());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isSignBitCheck - Given an exploded icmp instruction, return true if the
 | |
| /// comparison only checks the sign bit.  If it only checks the sign bit, set
 | |
| /// TrueIfSigned if the result of the comparison is true when the input value is
 | |
| /// signed.
 | |
| static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
 | |
|                            bool &TrueIfSigned) {
 | |
|   switch (pred) {
 | |
|   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
 | |
|     TrueIfSigned = true;
 | |
|     return RHS->isZero();
 | |
|   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
 | |
|     TrueIfSigned = true;
 | |
|     return RHS->isAllOnesValue();
 | |
|   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
 | |
|     TrueIfSigned = false;
 | |
|     return RHS->isAllOnesValue();
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     // True if LHS u> RHS and RHS == high-bit-mask - 1
 | |
|     TrueIfSigned = true;
 | |
|     return RHS->getValue() ==
 | |
|       APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
 | |
|   case ICmpInst::ICMP_UGE: 
 | |
|     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
 | |
|     TrueIfSigned = true;
 | |
|     return RHS->getValue().isSignBit();
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitMul(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0);
 | |
| 
 | |
|   if (isa<UndefValue>(I.getOperand(1)))              // undef * X -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // Simplify mul instructions with a constant RHS...
 | |
|   if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
| 
 | |
|       // ((X << C1)*C2) == (X * (C2 << C1))
 | |
|       if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
 | |
|         if (SI->getOpcode() == Instruction::Shl)
 | |
|           if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|             return BinaryOperator::CreateMul(SI->getOperand(0),
 | |
|                                         ConstantExpr::getShl(CI, ShOp));
 | |
| 
 | |
|       if (CI->isZero())
 | |
|         return ReplaceInstUsesWith(I, Op1);  // X * 0  == 0
 | |
|       if (CI->equalsInt(1))                  // X * 1  == X
 | |
|         return ReplaceInstUsesWith(I, Op0);
 | |
|       if (CI->isAllOnesValue())              // X * -1 == 0 - X
 | |
|         return BinaryOperator::CreateNeg(Op0, I.getName());
 | |
| 
 | |
|       const APInt& Val = cast<ConstantInt>(CI)->getValue();
 | |
|       if (Val.isPowerOf2()) {          // Replace X*(2^C) with X << C
 | |
|         return BinaryOperator::CreateShl(Op0,
 | |
|                  ConstantInt::get(Op0->getType(), Val.logBase2()));
 | |
|       }
 | |
|     } else if (isa<VectorType>(Op1->getType())) {
 | |
|       if (Op1->isNullValue())
 | |
|         return ReplaceInstUsesWith(I, Op1);
 | |
| 
 | |
|       if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
 | |
|         if (Op1V->isAllOnesValue())              // X * -1 == 0 - X
 | |
|           return BinaryOperator::CreateNeg(Op0, I.getName());
 | |
| 
 | |
|         // As above, vector X*splat(1.0) -> X in all defined cases.
 | |
|         if (Constant *Splat = Op1V->getSplatValue()) {
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(Splat))
 | |
|             if (CI->equalsInt(1))
 | |
|               return ReplaceInstUsesWith(I, Op0);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
 | |
|       if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
 | |
|           isa<ConstantInt>(Op0I->getOperand(1)) && isa<ConstantInt>(Op1)) {
 | |
|         // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
 | |
|         Value *Add = Builder->CreateMul(Op0I->getOperand(0), Op1, "tmp");
 | |
|         Value *C1C2 = Builder->CreateMul(Op1, Op0I->getOperand(1));
 | |
|         return BinaryOperator::CreateAdd(Add, C1C2);
 | |
|         
 | |
|       }
 | |
| 
 | |
|     // Try to fold constant mul into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
| 
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (Value *Op0v = dyn_castNegVal(Op0))     // -X * -Y = X*Y
 | |
|     if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
 | |
|       return BinaryOperator::CreateMul(Op0v, Op1v);
 | |
| 
 | |
|   // (X / Y) *  Y = X - (X % Y)
 | |
|   // (X / Y) * -Y = (X % Y) - X
 | |
|   {
 | |
|     Value *Op1 = I.getOperand(1);
 | |
|     BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
 | |
|     if (!BO ||
 | |
|         (BO->getOpcode() != Instruction::UDiv && 
 | |
|          BO->getOpcode() != Instruction::SDiv)) {
 | |
|       Op1 = Op0;
 | |
|       BO = dyn_cast<BinaryOperator>(I.getOperand(1));
 | |
|     }
 | |
|     Value *Neg = dyn_castNegVal(Op1);
 | |
|     if (BO && BO->hasOneUse() &&
 | |
|         (BO->getOperand(1) == Op1 || BO->getOperand(1) == Neg) &&
 | |
|         (BO->getOpcode() == Instruction::UDiv ||
 | |
|          BO->getOpcode() == Instruction::SDiv)) {
 | |
|       Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
 | |
| 
 | |
|       // If the division is exact, X % Y is zero.
 | |
|       if (SDivOperator *SDiv = dyn_cast<SDivOperator>(BO))
 | |
|         if (SDiv->isExact()) {
 | |
|           if (Op1BO == Op1)
 | |
|             return ReplaceInstUsesWith(I, Op0BO);
 | |
|           else
 | |
|             return BinaryOperator::CreateNeg(Op0BO);
 | |
|         }
 | |
| 
 | |
|       Value *Rem;
 | |
|       if (BO->getOpcode() == Instruction::UDiv)
 | |
|         Rem = Builder->CreateURem(Op0BO, Op1BO);
 | |
|       else
 | |
|         Rem = Builder->CreateSRem(Op0BO, Op1BO);
 | |
|       Rem->takeName(BO);
 | |
| 
 | |
|       if (Op1BO == Op1)
 | |
|         return BinaryOperator::CreateSub(Op0BO, Rem);
 | |
|       return BinaryOperator::CreateSub(Rem, Op0BO);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (I.getType() == Type::getInt1Ty(*Context))
 | |
|     return BinaryOperator::CreateAnd(Op0, I.getOperand(1));
 | |
| 
 | |
|   // If one of the operands of the multiply is a cast from a boolean value, then
 | |
|   // we know the bool is either zero or one, so this is a 'masking' multiply.
 | |
|   // See if we can simplify things based on how the boolean was originally
 | |
|   // formed.
 | |
|   CastInst *BoolCast = 0;
 | |
|   if (ZExtInst *CI = dyn_cast<ZExtInst>(Op0))
 | |
|     if (CI->getOperand(0)->getType() == Type::getInt1Ty(*Context))
 | |
|       BoolCast = CI;
 | |
|   if (!BoolCast)
 | |
|     if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
 | |
|       if (CI->getOperand(0)->getType() == Type::getInt1Ty(*Context))
 | |
|         BoolCast = CI;
 | |
|   if (BoolCast) {
 | |
|     if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
 | |
|       Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
 | |
|       const Type *SCOpTy = SCIOp0->getType();
 | |
|       bool TIS = false;
 | |
|       
 | |
|       // If the icmp is true iff the sign bit of X is set, then convert this
 | |
|       // multiply into a shift/and combination.
 | |
|       if (isa<ConstantInt>(SCIOp1) &&
 | |
|           isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
 | |
|           TIS) {
 | |
|         // Shift the X value right to turn it into "all signbits".
 | |
|         Constant *Amt = ConstantInt::get(SCIOp0->getType(),
 | |
|                                           SCOpTy->getPrimitiveSizeInBits()-1);
 | |
|         Value *V = Builder->CreateAShr(SCIOp0, Amt,
 | |
|                                     BoolCast->getOperand(0)->getName()+".mask");
 | |
| 
 | |
|         // If the multiply type is not the same as the source type, sign extend
 | |
|         // or truncate to the multiply type.
 | |
|         if (I.getType() != V->getType())
 | |
|           V = Builder->CreateIntCast(V, I.getType(), true);
 | |
| 
 | |
|         Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
 | |
|         return BinaryOperator::CreateAnd(V, OtherOp);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0);
 | |
| 
 | |
|   // Simplify mul instructions with a constant RHS...
 | |
|   if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
 | |
|     if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
 | |
|       // "In IEEE floating point, x*1 is not equivalent to x for nans.  However,
 | |
|       // ANSI says we can drop signals, so we can do this anyway." (from GCC)
 | |
|       if (Op1F->isExactlyValue(1.0))
 | |
|         return ReplaceInstUsesWith(I, Op0);  // Eliminate 'mul double %X, 1.0'
 | |
|     } else if (isa<VectorType>(Op1->getType())) {
 | |
|       if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
 | |
|         // As above, vector X*splat(1.0) -> X in all defined cases.
 | |
|         if (Constant *Splat = Op1V->getSplatValue()) {
 | |
|           if (ConstantFP *F = dyn_cast<ConstantFP>(Splat))
 | |
|             if (F->isExactlyValue(1.0))
 | |
|               return ReplaceInstUsesWith(I, Op0);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant mul into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
| 
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (Value *Op0v = dyn_castFNegVal(Op0))     // -X * -Y = X*Y
 | |
|     if (Value *Op1v = dyn_castFNegVal(I.getOperand(1)))
 | |
|       return BinaryOperator::CreateFMul(Op0v, Op1v);
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
 | |
| /// instruction.
 | |
| bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
 | |
|   SelectInst *SI = cast<SelectInst>(I.getOperand(1));
 | |
|   
 | |
|   // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
 | |
|   int NonNullOperand = -1;
 | |
|   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|     if (ST->isNullValue())
 | |
|       NonNullOperand = 2;
 | |
|   // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
 | |
|   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
 | |
|     if (ST->isNullValue())
 | |
|       NonNullOperand = 1;
 | |
|   
 | |
|   if (NonNullOperand == -1)
 | |
|     return false;
 | |
|   
 | |
|   Value *SelectCond = SI->getOperand(0);
 | |
|   
 | |
|   // Change the div/rem to use 'Y' instead of the select.
 | |
|   I.setOperand(1, SI->getOperand(NonNullOperand));
 | |
|   
 | |
|   // Okay, we know we replace the operand of the div/rem with 'Y' with no
 | |
|   // problem.  However, the select, or the condition of the select may have
 | |
|   // multiple uses.  Based on our knowledge that the operand must be non-zero,
 | |
|   // propagate the known value for the select into other uses of it, and
 | |
|   // propagate a known value of the condition into its other users.
 | |
|   
 | |
|   // If the select and condition only have a single use, don't bother with this,
 | |
|   // early exit.
 | |
|   if (SI->use_empty() && SelectCond->hasOneUse())
 | |
|     return true;
 | |
|   
 | |
|   // Scan the current block backward, looking for other uses of SI.
 | |
|   BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
 | |
|   
 | |
|   while (BBI != BBFront) {
 | |
|     --BBI;
 | |
|     // If we found a call to a function, we can't assume it will return, so
 | |
|     // information from below it cannot be propagated above it.
 | |
|     if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
 | |
|       break;
 | |
|     
 | |
|     // Replace uses of the select or its condition with the known values.
 | |
|     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
 | |
|          I != E; ++I) {
 | |
|       if (*I == SI) {
 | |
|         *I = SI->getOperand(NonNullOperand);
 | |
|         Worklist.Add(BBI);
 | |
|       } else if (*I == SelectCond) {
 | |
|         *I = NonNullOperand == 1 ? ConstantInt::getTrue(*Context) :
 | |
|                                    ConstantInt::getFalse(*Context);
 | |
|         Worklist.Add(BBI);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If we past the instruction, quit looking for it.
 | |
|     if (&*BBI == SI)
 | |
|       SI = 0;
 | |
|     if (&*BBI == SelectCond)
 | |
|       SelectCond = 0;
 | |
|     
 | |
|     // If we ran out of things to eliminate, break out of the loop.
 | |
|     if (SelectCond == 0 && SI == 0)
 | |
|       break;
 | |
|     
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// This function implements the transforms on div instructions that work
 | |
| /// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
 | |
| /// used by the visitors to those instructions.
 | |
| /// @brief Transforms common to all three div instructions
 | |
| Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // undef / X -> 0        for integer.
 | |
|   // undef / X -> undef    for FP (the undef could be a snan).
 | |
|   if (isa<UndefValue>(Op0)) {
 | |
|     if (Op0->getType()->isFPOrFPVector())
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   }
 | |
| 
 | |
|   // X / undef -> undef
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I, Op1);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// This function implements the transforms common to both integer division
 | |
| /// instructions (udiv and sdiv). It is called by the visitors to those integer
 | |
| /// division instructions.
 | |
| /// @brief Common integer divide transforms
 | |
| Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // (sdiv X, X) --> 1     (udiv X, X) --> 1
 | |
|   if (Op0 == Op1) {
 | |
|     if (const VectorType *Ty = dyn_cast<VectorType>(I.getType())) {
 | |
|       Constant *CI = ConstantInt::get(Ty->getElementType(), 1);
 | |
|       std::vector<Constant*> Elts(Ty->getNumElements(), CI);
 | |
|       return ReplaceInstUsesWith(I, ConstantVector::get(Elts));
 | |
|     }
 | |
| 
 | |
|     Constant *CI = ConstantInt::get(I.getType(), 1);
 | |
|     return ReplaceInstUsesWith(I, CI);
 | |
|   }
 | |
|   
 | |
|   if (Instruction *Common = commonDivTransforms(I))
 | |
|     return Common;
 | |
|   
 | |
|   // Handle cases involving: [su]div X, (select Cond, Y, Z)
 | |
|   // This does not apply for fdiv.
 | |
|   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
 | |
|     return &I;
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // div X, 1 == X
 | |
|     if (RHS->equalsInt(1))
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|     // (X / C1) / C2  -> X / (C1*C2)
 | |
|     if (Instruction *LHS = dyn_cast<Instruction>(Op0))
 | |
|       if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
 | |
|         if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
 | |
|           if (MultiplyOverflows(RHS, LHSRHS,
 | |
|                                 I.getOpcode()==Instruction::SDiv))
 | |
|             return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|           else 
 | |
|             return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
 | |
|                                       ConstantExpr::getMul(RHS, LHSRHS));
 | |
|         }
 | |
| 
 | |
|     if (!RHS->isZero()) { // avoid X udiv 0
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|         if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|           return R;
 | |
|       if (isa<PHINode>(Op0))
 | |
|         if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|           return NV;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // 0 / X == 0, we don't need to preserve faults!
 | |
|   if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
 | |
|     if (LHS->equalsInt(0))
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // It can't be division by zero, hence it must be division by one.
 | |
|   if (I.getType() == Type::getInt1Ty(*Context))
 | |
|     return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|   if (ConstantVector *Op1V = dyn_cast<ConstantVector>(Op1)) {
 | |
|     if (ConstantInt *X = cast_or_null<ConstantInt>(Op1V->getSplatValue()))
 | |
|       // div X, 1 == X
 | |
|       if (X->isOne())
 | |
|         return ReplaceInstUsesWith(I, Op0);
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // Handle the integer div common cases
 | |
|   if (Instruction *Common = commonIDivTransforms(I))
 | |
|     return Common;
 | |
| 
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // X udiv C^2 -> X >> C
 | |
|     // Check to see if this is an unsigned division with an exact power of 2,
 | |
|     // if so, convert to a right shift.
 | |
|     if (C->getValue().isPowerOf2())  // 0 not included in isPowerOf2
 | |
|       return BinaryOperator::CreateLShr(Op0, 
 | |
|             ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
 | |
| 
 | |
|     // X udiv C, where C >= signbit
 | |
|     if (C->getValue().isNegative()) {
 | |
|       Value *IC = Builder->CreateICmpULT( Op0, C);
 | |
|       return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
 | |
|                                 ConstantInt::get(I.getType(), 1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
 | |
|   if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
 | |
|     if (RHSI->getOpcode() == Instruction::Shl &&
 | |
|         isa<ConstantInt>(RHSI->getOperand(0))) {
 | |
|       const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
 | |
|       if (C1.isPowerOf2()) {
 | |
|         Value *N = RHSI->getOperand(1);
 | |
|         const Type *NTy = N->getType();
 | |
|         if (uint32_t C2 = C1.logBase2())
 | |
|           N = Builder->CreateAdd(N, ConstantInt::get(NTy, C2), "tmp");
 | |
|         return BinaryOperator::CreateLShr(Op0, N);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
 | |
|   // where C1&C2 are powers of two.
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 
 | |
|     if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
 | |
|       if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2)))  {
 | |
|         const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
 | |
|         if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
 | |
|           // Compute the shift amounts
 | |
|           uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
 | |
|           // Construct the "on true" case of the select
 | |
|           Constant *TC = ConstantInt::get(Op0->getType(), TSA);
 | |
|           Value *TSI = Builder->CreateLShr(Op0, TC, SI->getName()+".t");
 | |
|   
 | |
|           // Construct the "on false" case of the select
 | |
|           Constant *FC = ConstantInt::get(Op0->getType(), FSA); 
 | |
|           Value *FSI = Builder->CreateLShr(Op0, FC, SI->getName()+".f");
 | |
| 
 | |
|           // construct the select instruction and return it.
 | |
|           return SelectInst::Create(SI->getOperand(0), TSI, FSI, SI->getName());
 | |
|         }
 | |
|       }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // Handle the integer div common cases
 | |
|   if (Instruction *Common = commonIDivTransforms(I))
 | |
|     return Common;
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // sdiv X, -1 == -X
 | |
|     if (RHS->isAllOnesValue())
 | |
|       return BinaryOperator::CreateNeg(Op0);
 | |
| 
 | |
|     // sdiv X, C  -->  ashr X, log2(C)
 | |
|     if (cast<SDivOperator>(&I)->isExact() &&
 | |
|         RHS->getValue().isNonNegative() &&
 | |
|         RHS->getValue().isPowerOf2()) {
 | |
|       Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
 | |
|                                             RHS->getValue().exactLogBase2());
 | |
|       return BinaryOperator::CreateAShr(Op0, ShAmt, I.getName());
 | |
|     }
 | |
| 
 | |
|     // -X/C  -->  X/-C  provided the negation doesn't overflow.
 | |
|     if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
 | |
|       if (isa<Constant>(Sub->getOperand(0)) &&
 | |
|           cast<Constant>(Sub->getOperand(0))->isNullValue() &&
 | |
|           Sub->hasNoSignedWrap())
 | |
|         return BinaryOperator::CreateSDiv(Sub->getOperand(1),
 | |
|                                           ConstantExpr::getNeg(RHS));
 | |
|   }
 | |
| 
 | |
|   // If the sign bits of both operands are zero (i.e. we can prove they are
 | |
|   // unsigned inputs), turn this into a udiv.
 | |
|   if (I.getType()->isInteger()) {
 | |
|     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
 | |
|     if (MaskedValueIsZero(Op0, Mask)) {
 | |
|       if (MaskedValueIsZero(Op1, Mask)) {
 | |
|         // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
 | |
|         return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
 | |
|       }
 | |
|       ConstantInt *ShiftedInt;
 | |
|       if (match(Op1, m_Shl(m_ConstantInt(ShiftedInt), m_Value())) &&
 | |
|           ShiftedInt->getValue().isPowerOf2()) {
 | |
|         // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
 | |
|         // Safe because the only negative value (1 << Y) can take on is
 | |
|         // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
 | |
|         // the sign bit set.
 | |
|         return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
 | |
|   return commonDivTransforms(I);
 | |
| }
 | |
| 
 | |
| /// This function implements the transforms on rem instructions that work
 | |
| /// regardless of the kind of rem instruction it is (urem, srem, or frem). It 
 | |
| /// is used by the visitors to those instructions.
 | |
| /// @brief Transforms common to all three rem instructions
 | |
| Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Op0)) {             // undef % X -> 0
 | |
|     if (I.getType()->isFPOrFPVector())
 | |
|       return ReplaceInstUsesWith(I, Op0);  // X % undef -> undef (could be SNaN)
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   }
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return ReplaceInstUsesWith(I, Op1);  // X % undef -> undef
 | |
| 
 | |
|   // Handle cases involving: rem X, (select Cond, Y, Z)
 | |
|   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
 | |
|     return &I;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// This function implements the transforms common to both integer remainder
 | |
| /// instructions (urem and srem). It is called by the visitors to those integer
 | |
| /// remainder instructions.
 | |
| /// @brief Common integer remainder transforms
 | |
| Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Instruction *common = commonRemTransforms(I))
 | |
|     return common;
 | |
| 
 | |
|   // 0 % X == 0 for integer, we don't need to preserve faults!
 | |
|   if (Constant *LHS = dyn_cast<Constant>(Op0))
 | |
|     if (LHS->isNullValue())
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // X % 0 == undef, we don't need to preserve faults!
 | |
|     if (RHS->equalsInt(0))
 | |
|       return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
 | |
|     
 | |
|     if (RHS->equalsInt(1))  // X % 1 == 0
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
 | |
|       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
 | |
|         if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|           return R;
 | |
|       } else if (isa<PHINode>(Op0I)) {
 | |
|         if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|           return NV;
 | |
|       }
 | |
| 
 | |
|       // See if we can fold away this rem instruction.
 | |
|       if (SimplifyDemandedInstructionBits(I))
 | |
|         return &I;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitURem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (Instruction *common = commonIRemTransforms(I))
 | |
|     return common;
 | |
|   
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // X urem C^2 -> X and C
 | |
|     // Check to see if this is an unsigned remainder with an exact power of 2,
 | |
|     // if so, convert to a bitwise and.
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
 | |
|       if (C->getValue().isPowerOf2())
 | |
|         return BinaryOperator::CreateAnd(Op0, SubOne(C));
 | |
|   }
 | |
| 
 | |
|   if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
 | |
|     // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)  
 | |
|     if (RHSI->getOpcode() == Instruction::Shl &&
 | |
|         isa<ConstantInt>(RHSI->getOperand(0))) {
 | |
|       if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
 | |
|         Constant *N1 = Constant::getAllOnesValue(I.getType());
 | |
|         Value *Add = Builder->CreateAdd(RHSI, N1, "tmp");
 | |
|         return BinaryOperator::CreateAnd(Op0, Add);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
 | |
|   // where C1&C2 are powers of two.
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
 | |
|     if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
 | |
|       if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
 | |
|         // STO == 0 and SFO == 0 handled above.
 | |
|         if ((STO->getValue().isPowerOf2()) && 
 | |
|             (SFO->getValue().isPowerOf2())) {
 | |
|           Value *TrueAnd = Builder->CreateAnd(Op0, SubOne(STO),
 | |
|                                               SI->getName()+".t");
 | |
|           Value *FalseAnd = Builder->CreateAnd(Op0, SubOne(SFO),
 | |
|                                                SI->getName()+".f");
 | |
|           return SelectInst::Create(SI->getOperand(0), TrueAnd, FalseAnd);
 | |
|         }
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // Handle the integer rem common cases
 | |
|   if (Instruction *Common = commonIRemTransforms(I))
 | |
|     return Common;
 | |
|   
 | |
|   if (Value *RHSNeg = dyn_castNegVal(Op1))
 | |
|     if (!isa<Constant>(RHSNeg) ||
 | |
|         (isa<ConstantInt>(RHSNeg) &&
 | |
|          cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
 | |
|       // X % -Y -> X % Y
 | |
|       Worklist.AddValue(I.getOperand(1));
 | |
|       I.setOperand(1, RHSNeg);
 | |
|       return &I;
 | |
|     }
 | |
| 
 | |
|   // If the sign bits of both operands are zero (i.e. we can prove they are
 | |
|   // unsigned inputs), turn this into a urem.
 | |
|   if (I.getType()->isInteger()) {
 | |
|     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
 | |
|     if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
 | |
|       // X srem Y -> X urem Y, iff X and Y don't have sign bit set
 | |
|       return BinaryOperator::CreateURem(Op0, Op1, I.getName());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If it's a constant vector, flip any negative values positive.
 | |
|   if (ConstantVector *RHSV = dyn_cast<ConstantVector>(Op1)) {
 | |
|     unsigned VWidth = RHSV->getNumOperands();
 | |
| 
 | |
|     bool hasNegative = false;
 | |
|     for (unsigned i = 0; !hasNegative && i != VWidth; ++i)
 | |
|       if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i)))
 | |
|         if (RHS->getValue().isNegative())
 | |
|           hasNegative = true;
 | |
| 
 | |
|     if (hasNegative) {
 | |
|       std::vector<Constant *> Elts(VWidth);
 | |
|       for (unsigned i = 0; i != VWidth; ++i) {
 | |
|         if (ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV->getOperand(i))) {
 | |
|           if (RHS->getValue().isNegative())
 | |
|             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
 | |
|           else
 | |
|             Elts[i] = RHS;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       Constant *NewRHSV = ConstantVector::get(Elts);
 | |
|       if (NewRHSV != RHSV) {
 | |
|         Worklist.AddValue(I.getOperand(1));
 | |
|         I.setOperand(1, NewRHSV);
 | |
|         return &I;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
 | |
|   return commonRemTransforms(I);
 | |
| }
 | |
| 
 | |
| // isOneBitSet - Return true if there is exactly one bit set in the specified
 | |
| // constant.
 | |
| static bool isOneBitSet(const ConstantInt *CI) {
 | |
|   return CI->getValue().isPowerOf2();
 | |
| }
 | |
| 
 | |
| // isHighOnes - Return true if the constant is of the form 1+0+.
 | |
| // This is the same as lowones(~X).
 | |
| static bool isHighOnes(const ConstantInt *CI) {
 | |
|   return (~CI->getValue() + 1).isPowerOf2();
 | |
| }
 | |
| 
 | |
| /// getICmpCode - Encode a icmp predicate into a three bit mask.  These bits
 | |
| /// are carefully arranged to allow folding of expressions such as:
 | |
| ///
 | |
| ///      (A < B) | (A > B) --> (A != B)
 | |
| ///
 | |
| /// Note that this is only valid if the first and second predicates have the
 | |
| /// same sign. Is illegal to do: (A u< B) | (A s> B) 
 | |
| ///
 | |
| /// Three bits are used to represent the condition, as follows:
 | |
| ///   0  A > B
 | |
| ///   1  A == B
 | |
| ///   2  A < B
 | |
| ///
 | |
| /// <=>  Value  Definition
 | |
| /// 000     0   Always false
 | |
| /// 001     1   A >  B
 | |
| /// 010     2   A == B
 | |
| /// 011     3   A >= B
 | |
| /// 100     4   A <  B
 | |
| /// 101     5   A != B
 | |
| /// 110     6   A <= B
 | |
| /// 111     7   Always true
 | |
| ///  
 | |
| static unsigned getICmpCode(const ICmpInst *ICI) {
 | |
|   switch (ICI->getPredicate()) {
 | |
|     // False -> 0
 | |
|   case ICmpInst::ICMP_UGT: return 1;  // 001
 | |
|   case ICmpInst::ICMP_SGT: return 1;  // 001
 | |
|   case ICmpInst::ICMP_EQ:  return 2;  // 010
 | |
|   case ICmpInst::ICMP_UGE: return 3;  // 011
 | |
|   case ICmpInst::ICMP_SGE: return 3;  // 011
 | |
|   case ICmpInst::ICMP_ULT: return 4;  // 100
 | |
|   case ICmpInst::ICMP_SLT: return 4;  // 100
 | |
|   case ICmpInst::ICMP_NE:  return 5;  // 101
 | |
|   case ICmpInst::ICMP_ULE: return 6;  // 110
 | |
|   case ICmpInst::ICMP_SLE: return 6;  // 110
 | |
|     // True -> 7
 | |
|   default:
 | |
|     llvm_unreachable("Invalid ICmp predicate!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
 | |
| /// predicate into a three bit mask. It also returns whether it is an ordered
 | |
| /// predicate by reference.
 | |
| static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
 | |
|   isOrdered = false;
 | |
|   switch (CC) {
 | |
|   case FCmpInst::FCMP_ORD: isOrdered = true; return 0;  // 000
 | |
|   case FCmpInst::FCMP_UNO:                   return 0;  // 000
 | |
|   case FCmpInst::FCMP_OGT: isOrdered = true; return 1;  // 001
 | |
|   case FCmpInst::FCMP_UGT:                   return 1;  // 001
 | |
|   case FCmpInst::FCMP_OEQ: isOrdered = true; return 2;  // 010
 | |
|   case FCmpInst::FCMP_UEQ:                   return 2;  // 010
 | |
|   case FCmpInst::FCMP_OGE: isOrdered = true; return 3;  // 011
 | |
|   case FCmpInst::FCMP_UGE:                   return 3;  // 011
 | |
|   case FCmpInst::FCMP_OLT: isOrdered = true; return 4;  // 100
 | |
|   case FCmpInst::FCMP_ULT:                   return 4;  // 100
 | |
|   case FCmpInst::FCMP_ONE: isOrdered = true; return 5;  // 101
 | |
|   case FCmpInst::FCMP_UNE:                   return 5;  // 101
 | |
|   case FCmpInst::FCMP_OLE: isOrdered = true; return 6;  // 110
 | |
|   case FCmpInst::FCMP_ULE:                   return 6;  // 110
 | |
|     // True -> 7
 | |
|   default:
 | |
|     // Not expecting FCMP_FALSE and FCMP_TRUE;
 | |
|     llvm_unreachable("Unexpected FCmp predicate!");
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getICmpValue - This is the complement of getICmpCode, which turns an
 | |
| /// opcode and two operands into either a constant true or false, or a brand 
 | |
| /// new ICmp instruction. The sign is passed in to determine which kind
 | |
| /// of predicate to use in the new icmp instruction.
 | |
| static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS,
 | |
|                            LLVMContext *Context) {
 | |
|   switch (code) {
 | |
|   default: llvm_unreachable("Illegal ICmp code!");
 | |
|   case  0: return ConstantInt::getFalse(*Context);
 | |
|   case  1: 
 | |
|     if (sign)
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
 | |
|     else
 | |
|       return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
 | |
|   case  2: return new ICmpInst(ICmpInst::ICMP_EQ,  LHS, RHS);
 | |
|   case  3: 
 | |
|     if (sign)
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
 | |
|     else
 | |
|       return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
 | |
|   case  4: 
 | |
|     if (sign)
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
 | |
|     else
 | |
|       return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
 | |
|   case  5: return new ICmpInst(ICmpInst::ICMP_NE,  LHS, RHS);
 | |
|   case  6: 
 | |
|     if (sign)
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
 | |
|     else
 | |
|       return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
 | |
|   case  7: return ConstantInt::getTrue(*Context);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getFCmpValue - This is the complement of getFCmpCode, which turns an
 | |
| /// opcode and two operands into either a FCmp instruction. isordered is passed
 | |
| /// in to determine which kind of predicate to use in the new fcmp instruction.
 | |
| static Value *getFCmpValue(bool isordered, unsigned code,
 | |
|                            Value *LHS, Value *RHS, LLVMContext *Context) {
 | |
|   switch (code) {
 | |
|   default: llvm_unreachable("Illegal FCmp code!");
 | |
|   case  0:
 | |
|     if (isordered)
 | |
|       return new FCmpInst(FCmpInst::FCMP_ORD, LHS, RHS);
 | |
|     else
 | |
|       return new FCmpInst(FCmpInst::FCMP_UNO, LHS, RHS);
 | |
|   case  1: 
 | |
|     if (isordered)
 | |
|       return new FCmpInst(FCmpInst::FCMP_OGT, LHS, RHS);
 | |
|     else
 | |
|       return new FCmpInst(FCmpInst::FCMP_UGT, LHS, RHS);
 | |
|   case  2: 
 | |
|     if (isordered)
 | |
|       return new FCmpInst(FCmpInst::FCMP_OEQ, LHS, RHS);
 | |
|     else
 | |
|       return new FCmpInst(FCmpInst::FCMP_UEQ, LHS, RHS);
 | |
|   case  3: 
 | |
|     if (isordered)
 | |
|       return new FCmpInst(FCmpInst::FCMP_OGE, LHS, RHS);
 | |
|     else
 | |
|       return new FCmpInst(FCmpInst::FCMP_UGE, LHS, RHS);
 | |
|   case  4: 
 | |
|     if (isordered)
 | |
|       return new FCmpInst(FCmpInst::FCMP_OLT, LHS, RHS);
 | |
|     else
 | |
|       return new FCmpInst(FCmpInst::FCMP_ULT, LHS, RHS);
 | |
|   case  5: 
 | |
|     if (isordered)
 | |
|       return new FCmpInst(FCmpInst::FCMP_ONE, LHS, RHS);
 | |
|     else
 | |
|       return new FCmpInst(FCmpInst::FCMP_UNE, LHS, RHS);
 | |
|   case  6: 
 | |
|     if (isordered)
 | |
|       return new FCmpInst(FCmpInst::FCMP_OLE, LHS, RHS);
 | |
|     else
 | |
|       return new FCmpInst(FCmpInst::FCMP_ULE, LHS, RHS);
 | |
|   case  7: return ConstantInt::getTrue(*Context);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// PredicatesFoldable - Return true if both predicates match sign or if at
 | |
| /// least one of them is an equality comparison (which is signless).
 | |
| static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
 | |
|   return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
 | |
|          (ICmpInst::isSignedPredicate(p1) && ICmpInst::isEquality(p2)) ||
 | |
|          (ICmpInst::isSignedPredicate(p2) && ICmpInst::isEquality(p1));
 | |
| }
 | |
| 
 | |
| namespace { 
 | |
| // FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
 | |
| struct FoldICmpLogical {
 | |
|   InstCombiner &IC;
 | |
|   Value *LHS, *RHS;
 | |
|   ICmpInst::Predicate pred;
 | |
|   FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
 | |
|     : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
 | |
|       pred(ICI->getPredicate()) {}
 | |
|   bool shouldApply(Value *V) const {
 | |
|     if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
 | |
|       if (PredicatesFoldable(pred, ICI->getPredicate()))
 | |
|         return ((ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS) ||
 | |
|                 (ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS));
 | |
|     return false;
 | |
|   }
 | |
|   Instruction *apply(Instruction &Log) const {
 | |
|     ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
 | |
|     if (ICI->getOperand(0) != LHS) {
 | |
|       assert(ICI->getOperand(1) == LHS);
 | |
|       ICI->swapOperands();  // Swap the LHS and RHS of the ICmp
 | |
|     }
 | |
| 
 | |
|     ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
 | |
|     unsigned LHSCode = getICmpCode(ICI);
 | |
|     unsigned RHSCode = getICmpCode(RHSICI);
 | |
|     unsigned Code;
 | |
|     switch (Log.getOpcode()) {
 | |
|     case Instruction::And: Code = LHSCode & RHSCode; break;
 | |
|     case Instruction::Or:  Code = LHSCode | RHSCode; break;
 | |
|     case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
 | |
|     default: llvm_unreachable("Illegal logical opcode!"); return 0;
 | |
|     }
 | |
| 
 | |
|     bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) || 
 | |
|                     ICmpInst::isSignedPredicate(ICI->getPredicate());
 | |
|       
 | |
|     Value *RV = getICmpValue(isSigned, Code, LHS, RHS, IC.getContext());
 | |
|     if (Instruction *I = dyn_cast<Instruction>(RV))
 | |
|       return I;
 | |
|     // Otherwise, it's a constant boolean value...
 | |
|     return IC.ReplaceInstUsesWith(Log, RV);
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // OptAndOp - This handles expressions of the form ((val OP C1) & C2).  Where
 | |
| // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'.  Op is
 | |
| // guaranteed to be a binary operator.
 | |
| Instruction *InstCombiner::OptAndOp(Instruction *Op,
 | |
|                                     ConstantInt *OpRHS,
 | |
|                                     ConstantInt *AndRHS,
 | |
|                                     BinaryOperator &TheAnd) {
 | |
|   Value *X = Op->getOperand(0);
 | |
|   Constant *Together = 0;
 | |
|   if (!Op->isShift())
 | |
|     Together = ConstantExpr::getAnd(AndRHS, OpRHS);
 | |
| 
 | |
|   switch (Op->getOpcode()) {
 | |
|   case Instruction::Xor:
 | |
|     if (Op->hasOneUse()) {
 | |
|       // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
 | |
|       Value *And = Builder->CreateAnd(X, AndRHS);
 | |
|       And->takeName(Op);
 | |
|       return BinaryOperator::CreateXor(And, Together);
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     if (Together == AndRHS) // (X | C) & C --> C
 | |
|       return ReplaceInstUsesWith(TheAnd, AndRHS);
 | |
| 
 | |
|     if (Op->hasOneUse() && Together != OpRHS) {
 | |
|       // (X | C1) & C2 --> (X | (C1&C2)) & C2
 | |
|       Value *Or = Builder->CreateOr(X, Together);
 | |
|       Or->takeName(Op);
 | |
|       return BinaryOperator::CreateAnd(Or, AndRHS);
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|     if (Op->hasOneUse()) {
 | |
|       // Adding a one to a single bit bit-field should be turned into an XOR
 | |
|       // of the bit.  First thing to check is to see if this AND is with a
 | |
|       // single bit constant.
 | |
|       const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
 | |
| 
 | |
|       // If there is only one bit set...
 | |
|       if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
 | |
|         // Ok, at this point, we know that we are masking the result of the
 | |
|         // ADD down to exactly one bit.  If the constant we are adding has
 | |
|         // no bits set below this bit, then we can eliminate the ADD.
 | |
|         const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
 | |
| 
 | |
|         // Check to see if any bits below the one bit set in AndRHSV are set.
 | |
|         if ((AddRHS & (AndRHSV-1)) == 0) {
 | |
|           // If not, the only thing that can effect the output of the AND is
 | |
|           // the bit specified by AndRHSV.  If that bit is set, the effect of
 | |
|           // the XOR is to toggle the bit.  If it is clear, then the ADD has
 | |
|           // no effect.
 | |
|           if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
 | |
|             TheAnd.setOperand(0, X);
 | |
|             return &TheAnd;
 | |
|           } else {
 | |
|             // Pull the XOR out of the AND.
 | |
|             Value *NewAnd = Builder->CreateAnd(X, AndRHS);
 | |
|             NewAnd->takeName(Op);
 | |
|             return BinaryOperator::CreateXor(NewAnd, AndRHS);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Shl: {
 | |
|     // We know that the AND will not produce any of the bits shifted in, so if
 | |
|     // the anded constant includes them, clear them now!
 | |
|     //
 | |
|     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
 | |
|     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
 | |
|     APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
 | |
|     ConstantInt *CI = ConstantInt::get(*Context, AndRHS->getValue() & ShlMask);
 | |
| 
 | |
|     if (CI->getValue() == ShlMask) { 
 | |
|     // Masking out bits that the shift already masks
 | |
|       return ReplaceInstUsesWith(TheAnd, Op);   // No need for the and.
 | |
|     } else if (CI != AndRHS) {                  // Reducing bits set in and.
 | |
|       TheAnd.setOperand(1, CI);
 | |
|       return &TheAnd;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::LShr:
 | |
|   {
 | |
|     // We know that the AND will not produce any of the bits shifted in, so if
 | |
|     // the anded constant includes them, clear them now!  This only applies to
 | |
|     // unsigned shifts, because a signed shr may bring in set bits!
 | |
|     //
 | |
|     uint32_t BitWidth = AndRHS->getType()->getBitWidth();
 | |
|     uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
 | |
|     APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
 | |
|     ConstantInt *CI = ConstantInt::get(*Context, AndRHS->getValue() & ShrMask);
 | |
| 
 | |
|     if (CI->getValue() == ShrMask) {   
 | |
|     // Masking out bits that the shift already masks.
 | |
|       return ReplaceInstUsesWith(TheAnd, Op);
 | |
|     } else if (CI != AndRHS) {
 | |
|       TheAnd.setOperand(1, CI);  // Reduce bits set in and cst.
 | |
|       return &TheAnd;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::AShr:
 | |
|     // Signed shr.
 | |
|     // See if this is shifting in some sign extension, then masking it out
 | |
|     // with an and.
 | |
|     if (Op->hasOneUse()) {
 | |
|       uint32_t BitWidth = AndRHS->getType()->getBitWidth();
 | |
|       uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
 | |
|       APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
 | |
|       Constant *C = ConstantInt::get(*Context, AndRHS->getValue() & ShrMask);
 | |
|       if (C == AndRHS) {          // Masking out bits shifted in.
 | |
|         // (Val ashr C1) & C2 -> (Val lshr C1) & C2
 | |
|         // Make the argument unsigned.
 | |
|         Value *ShVal = Op->getOperand(0);
 | |
|         ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
 | |
|         return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
 | |
| /// true, otherwise (V < Lo || V >= Hi).  In pratice, we emit the more efficient
 | |
| /// (V-Lo) <u Hi-Lo.  This method expects that Lo <= Hi. isSigned indicates
 | |
| /// whether to treat the V, Lo and HI as signed or not. IB is the location to
 | |
| /// insert new instructions.
 | |
| Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
 | |
|                                            bool isSigned, bool Inside, 
 | |
|                                            Instruction &IB) {
 | |
|   assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ? 
 | |
|             ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
 | |
|          "Lo is not <= Hi in range emission code!");
 | |
|     
 | |
|   if (Inside) {
 | |
|     if (Lo == Hi)  // Trivially false.
 | |
|       return new ICmpInst(ICmpInst::ICMP_NE, V, V);
 | |
| 
 | |
|     // V >= Min && V < Hi --> V < Hi
 | |
|     if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
 | |
|       ICmpInst::Predicate pred = (isSigned ? 
 | |
|         ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
 | |
|       return new ICmpInst(pred, V, Hi);
 | |
|     }
 | |
| 
 | |
|     // Emit V-Lo <u Hi-Lo
 | |
|     Constant *NegLo = ConstantExpr::getNeg(Lo);
 | |
|     Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
 | |
|     Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
 | |
|     return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
 | |
|   }
 | |
| 
 | |
|   if (Lo == Hi)  // Trivially true.
 | |
|     return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
 | |
| 
 | |
|   // V < Min || V >= Hi -> V > Hi-1
 | |
|   Hi = SubOne(cast<ConstantInt>(Hi));
 | |
|   if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
 | |
|     ICmpInst::Predicate pred = (isSigned ? 
 | |
|         ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
 | |
|     return new ICmpInst(pred, V, Hi);
 | |
|   }
 | |
| 
 | |
|   // Emit V-Lo >u Hi-1-Lo
 | |
|   // Note that Hi has already had one subtracted from it, above.
 | |
|   ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
 | |
|   Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
 | |
|   Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
 | |
|   return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
 | |
| }
 | |
| 
 | |
| // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
 | |
| // any number of 0s on either side.  The 1s are allowed to wrap from LSB to
 | |
| // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.  0x0F0F0000 is
 | |
| // not, since all 1s are not contiguous.
 | |
| static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
 | |
|   const APInt& V = Val->getValue();
 | |
|   uint32_t BitWidth = Val->getType()->getBitWidth();
 | |
|   if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
 | |
| 
 | |
|   // look for the first zero bit after the run of ones
 | |
|   MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
 | |
|   // look for the first non-zero bit
 | |
|   ME = V.getActiveBits(); 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
 | |
| /// where isSub determines whether the operator is a sub.  If we can fold one of
 | |
| /// the following xforms:
 | |
| /// 
 | |
| /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
 | |
| /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
 | |
| /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
 | |
| ///
 | |
| /// return (A +/- B).
 | |
| ///
 | |
| Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
 | |
|                                         ConstantInt *Mask, bool isSub,
 | |
|                                         Instruction &I) {
 | |
|   Instruction *LHSI = dyn_cast<Instruction>(LHS);
 | |
|   if (!LHSI || LHSI->getNumOperands() != 2 ||
 | |
|       !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
 | |
| 
 | |
|   ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
 | |
| 
 | |
|   switch (LHSI->getOpcode()) {
 | |
|   default: return 0;
 | |
|   case Instruction::And:
 | |
|     if (ConstantExpr::getAnd(N, Mask) == Mask) {
 | |
|       // If the AndRHS is a power of two minus one (0+1+), this is simple.
 | |
|       if ((Mask->getValue().countLeadingZeros() + 
 | |
|            Mask->getValue().countPopulation()) == 
 | |
|           Mask->getValue().getBitWidth())
 | |
|         break;
 | |
| 
 | |
|       // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
 | |
|       // part, we don't need any explicit masks to take them out of A.  If that
 | |
|       // is all N is, ignore it.
 | |
|       uint32_t MB = 0, ME = 0;
 | |
|       if (isRunOfOnes(Mask, MB, ME)) {  // begin/end bit of run, inclusive
 | |
|         uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
 | |
|         APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
 | |
|         if (MaskedValueIsZero(RHS, Mask))
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     return 0;
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
 | |
|     if ((Mask->getValue().countLeadingZeros() + 
 | |
|          Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
 | |
|         && ConstantExpr::getAnd(N, Mask)->isNullValue())
 | |
|       break;
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   if (isSub)
 | |
|     return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
 | |
|   return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
 | |
| }
 | |
| 
 | |
| /// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
 | |
| Instruction *InstCombiner::FoldAndOfICmps(Instruction &I,
 | |
|                                           ICmpInst *LHS, ICmpInst *RHS) {
 | |
|   Value *Val, *Val2;
 | |
|   ConstantInt *LHSCst, *RHSCst;
 | |
|   ICmpInst::Predicate LHSCC, RHSCC;
 | |
|   
 | |
|   // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
 | |
|   if (!match(LHS, m_ICmp(LHSCC, m_Value(Val),
 | |
|                          m_ConstantInt(LHSCst))) ||
 | |
|       !match(RHS, m_ICmp(RHSCC, m_Value(Val2),
 | |
|                          m_ConstantInt(RHSCst))))
 | |
|     return 0;
 | |
|   
 | |
|   // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
 | |
|   // where C is a power of 2
 | |
|   if (LHSCst == RHSCst && LHSCC == RHSCC && LHSCC == ICmpInst::ICMP_ULT &&
 | |
|       LHSCst->getValue().isPowerOf2()) {
 | |
|     Value *NewOr = Builder->CreateOr(Val, Val2);
 | |
|     return new ICmpInst(LHSCC, NewOr, LHSCst);
 | |
|   }
 | |
|   
 | |
|   // From here on, we only handle:
 | |
|   //    (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
 | |
|   if (Val != Val2) return 0;
 | |
|   
 | |
|   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
 | |
|   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
 | |
|       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
 | |
|       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
 | |
|       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
 | |
|     return 0;
 | |
|   
 | |
|   // We can't fold (ugt x, C) & (sgt x, C2).
 | |
|   if (!PredicatesFoldable(LHSCC, RHSCC))
 | |
|     return 0;
 | |
|     
 | |
|   // Ensure that the larger constant is on the RHS.
 | |
|   bool ShouldSwap;
 | |
|   if (ICmpInst::isSignedPredicate(LHSCC) ||
 | |
|       (ICmpInst::isEquality(LHSCC) && 
 | |
|        ICmpInst::isSignedPredicate(RHSCC)))
 | |
|     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
 | |
|   else
 | |
|     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
 | |
|     
 | |
|   if (ShouldSwap) {
 | |
|     std::swap(LHS, RHS);
 | |
|     std::swap(LHSCst, RHSCst);
 | |
|     std::swap(LHSCC, RHSCC);
 | |
|   }
 | |
| 
 | |
|   // At this point, we know we have have two icmp instructions
 | |
|   // comparing a value against two constants and and'ing the result
 | |
|   // together.  Because of the above check, we know that we only have
 | |
|   // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know 
 | |
|   // (from the FoldICmpLogical check above), that the two constants 
 | |
|   // are not equal and that the larger constant is on the RHS
 | |
|   assert(LHSCst != RHSCst && "Compares not folded above?");
 | |
| 
 | |
|   switch (LHSCC) {
 | |
|   default: llvm_unreachable("Unknown integer condition code!");
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X == 13 & X == 15) -> false
 | |
|     case ICmpInst::ICMP_UGT:        // (X == 13 & X >  15) -> false
 | |
|     case ICmpInst::ICMP_SGT:        // (X == 13 & X >  15) -> false
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|     case ICmpInst::ICMP_NE:         // (X == 13 & X != 15) -> X == 13
 | |
|     case ICmpInst::ICMP_ULT:        // (X == 13 & X <  15) -> X == 13
 | |
|     case ICmpInst::ICMP_SLT:        // (X == 13 & X <  15) -> X == 13
 | |
|       return ReplaceInstUsesWith(I, LHS);
 | |
|     }
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
 | |
|         return new ICmpInst(ICmpInst::ICMP_ULT, Val, LHSCst);
 | |
|       break;                        // (X != 13 & X u< 15) -> no change
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
 | |
|         return new ICmpInst(ICmpInst::ICMP_SLT, Val, LHSCst);
 | |
|       break;                        // (X != 13 & X s< 15) -> no change
 | |
|     case ICmpInst::ICMP_EQ:         // (X != 13 & X == 15) -> X == 15
 | |
|     case ICmpInst::ICMP_UGT:        // (X != 13 & X u> 15) -> X u> 15
 | |
|     case ICmpInst::ICMP_SGT:        // (X != 13 & X s> 15) -> X s> 15
 | |
|       return ReplaceInstUsesWith(I, RHS);
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
 | |
|         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | |
|         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
 | |
|         return new ICmpInst(ICmpInst::ICMP_UGT, Add,
 | |
|                             ConstantInt::get(Add->getType(), 1));
 | |
|       }
 | |
|       break;                        // (X != 13 & X != 15) -> no change
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X u< 13 & X == 15) -> false
 | |
|     case ICmpInst::ICMP_UGT:        // (X u< 13 & X u> 15) -> false
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|     case ICmpInst::ICMP_SGT:        // (X u< 13 & X s> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X u< 13 & X != 15) -> X u< 13
 | |
|     case ICmpInst::ICMP_ULT:        // (X u< 13 & X u< 15) -> X u< 13
 | |
|       return ReplaceInstUsesWith(I, LHS);
 | |
|     case ICmpInst::ICMP_SLT:        // (X u< 13 & X s< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X s< 13 & X == 15) -> false
 | |
|     case ICmpInst::ICMP_SGT:        // (X s< 13 & X s> 15) -> false
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|     case ICmpInst::ICMP_UGT:        // (X s< 13 & X u> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X s< 13 & X != 15) -> X < 13
 | |
|     case ICmpInst::ICMP_SLT:        // (X s< 13 & X s< 15) -> X < 13
 | |
|       return ReplaceInstUsesWith(I, LHS);
 | |
|     case ICmpInst::ICMP_ULT:        // (X s< 13 & X u< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X u> 13 & X == 15) -> X == 15
 | |
|     case ICmpInst::ICMP_UGT:        // (X u> 13 & X u> 15) -> X u> 15
 | |
|       return ReplaceInstUsesWith(I, RHS);
 | |
|     case ICmpInst::ICMP_SGT:        // (X u> 13 & X s> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
 | |
|         return new ICmpInst(LHSCC, Val, RHSCst);
 | |
|       break;                        // (X u> 13 & X != 15) -> no change
 | |
|     case ICmpInst::ICMP_ULT:        // (X u> 13 & X u< 15) -> (X-14) <u 1
 | |
|       return InsertRangeTest(Val, AddOne(LHSCst),
 | |
|                              RHSCst, false, true, I);
 | |
|     case ICmpInst::ICMP_SLT:        // (X u> 13 & X s< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X s> 13 & X == 15) -> X == 15
 | |
|     case ICmpInst::ICMP_SGT:        // (X s> 13 & X s> 15) -> X s> 15
 | |
|       return ReplaceInstUsesWith(I, RHS);
 | |
|     case ICmpInst::ICMP_UGT:        // (X s> 13 & X u> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
 | |
|         return new ICmpInst(LHSCC, Val, RHSCst);
 | |
|       break;                        // (X s> 13 & X != 15) -> no change
 | |
|     case ICmpInst::ICMP_SLT:        // (X s> 13 & X s< 15) -> (X-14) s< 1
 | |
|       return InsertRangeTest(Val, AddOne(LHSCst),
 | |
|                              RHSCst, true, true, I);
 | |
|     case ICmpInst::ICMP_ULT:        // (X s> 13 & X u< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|  
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::FoldAndOfFCmps(Instruction &I, FCmpInst *LHS,
 | |
|                                           FCmpInst *RHS) {
 | |
|   
 | |
|   if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
 | |
|       RHS->getPredicate() == FCmpInst::FCMP_ORD) {
 | |
|     // (fcmp ord x, c) & (fcmp ord y, c)  -> (fcmp ord x, y)
 | |
|     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
 | |
|       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
 | |
|         // If either of the constants are nans, then the whole thing returns
 | |
|         // false.
 | |
|         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|         return new FCmpInst(FCmpInst::FCMP_ORD,
 | |
|                             LHS->getOperand(0), RHS->getOperand(0));
 | |
|       }
 | |
|     
 | |
|     // Handle vector zeros.  This occurs because the canonical form of
 | |
|     // "fcmp ord x,x" is "fcmp ord x, 0".
 | |
|     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
 | |
|         isa<ConstantAggregateZero>(RHS->getOperand(1)))
 | |
|       return new FCmpInst(FCmpInst::FCMP_ORD,
 | |
|                           LHS->getOperand(0), RHS->getOperand(0));
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
 | |
|   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
 | |
|   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
 | |
|   
 | |
|   
 | |
|   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
 | |
|     // Swap RHS operands to match LHS.
 | |
|     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
 | |
|     std::swap(Op1LHS, Op1RHS);
 | |
|   }
 | |
|   
 | |
|   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
 | |
|     // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
 | |
|     if (Op0CC == Op1CC)
 | |
|       return new FCmpInst((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
 | |
|     
 | |
|     if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|     if (Op0CC == FCmpInst::FCMP_TRUE)
 | |
|       return ReplaceInstUsesWith(I, RHS);
 | |
|     if (Op1CC == FCmpInst::FCMP_TRUE)
 | |
|       return ReplaceInstUsesWith(I, LHS);
 | |
|     
 | |
|     bool Op0Ordered;
 | |
|     bool Op1Ordered;
 | |
|     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
 | |
|     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
 | |
|     if (Op1Pred == 0) {
 | |
|       std::swap(LHS, RHS);
 | |
|       std::swap(Op0Pred, Op1Pred);
 | |
|       std::swap(Op0Ordered, Op1Ordered);
 | |
|     }
 | |
|     if (Op0Pred == 0) {
 | |
|       // uno && ueq -> uno && (uno || eq) -> ueq
 | |
|       // ord && olt -> ord && (ord && lt) -> olt
 | |
|       if (Op0Ordered == Op1Ordered)
 | |
|         return ReplaceInstUsesWith(I, RHS);
 | |
|       
 | |
|       // uno && oeq -> uno && (ord && eq) -> false
 | |
|       // uno && ord -> false
 | |
|       if (!Op0Ordered)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|       // ord && ueq -> ord && (uno || eq) -> oeq
 | |
|       return cast<Instruction>(getFCmpValue(true, Op1Pred,
 | |
|                                             Op0LHS, Op0RHS, Context));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Op1))                         // X & undef -> 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // and X, X = X
 | |
|   if (Op0 == Op1)
 | |
|     return ReplaceInstUsesWith(I, Op1);
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
|   if (isa<VectorType>(I.getType())) {
 | |
|     if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
 | |
|       if (CP->isAllOnesValue())            // X & <-1,-1> -> X
 | |
|         return ReplaceInstUsesWith(I, I.getOperand(0));
 | |
|     } else if (isa<ConstantAggregateZero>(Op1)) {
 | |
|       return ReplaceInstUsesWith(I, Op1);  // X & <0,0> -> <0,0>
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     const APInt& AndRHSMask = AndRHS->getValue();
 | |
|     APInt NotAndRHS(~AndRHSMask);
 | |
| 
 | |
|     // Optimize a variety of ((val OP C1) & C2) combinations...
 | |
|     if (isa<BinaryOperator>(Op0)) {
 | |
|       Instruction *Op0I = cast<Instruction>(Op0);
 | |
|       Value *Op0LHS = Op0I->getOperand(0);
 | |
|       Value *Op0RHS = Op0I->getOperand(1);
 | |
|       switch (Op0I->getOpcode()) {
 | |
|       case Instruction::Xor:
 | |
|       case Instruction::Or:
 | |
|         // If the mask is only needed on one incoming arm, push it up.
 | |
|         if (Op0I->hasOneUse()) {
 | |
|           if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
 | |
|             // Not masking anything out for the LHS, move to RHS.
 | |
|             Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
 | |
|                                                Op0RHS->getName()+".masked");
 | |
|             return BinaryOperator::Create(
 | |
|                        cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
 | |
|           }
 | |
|           if (!isa<Constant>(Op0RHS) &&
 | |
|               MaskedValueIsZero(Op0RHS, NotAndRHS)) {
 | |
|             // Not masking anything out for the RHS, move to LHS.
 | |
|             Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
 | |
|                                                Op0LHS->getName()+".masked");
 | |
|             return BinaryOperator::Create(
 | |
|                        cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|       case Instruction::Add:
 | |
|         // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
 | |
|         // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
 | |
|         // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
 | |
|         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
 | |
|           return BinaryOperator::CreateAnd(V, AndRHS);
 | |
|         if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
 | |
|           return BinaryOperator::CreateAnd(V, AndRHS);  // Add commutes
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Sub:
 | |
|         // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
 | |
|         // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
 | |
|         // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
 | |
|         if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
 | |
|           return BinaryOperator::CreateAnd(V, AndRHS);
 | |
| 
 | |
|         // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
 | |
|         // has 1's for all bits that the subtraction with A might affect.
 | |
|         if (Op0I->hasOneUse()) {
 | |
|           uint32_t BitWidth = AndRHSMask.getBitWidth();
 | |
|           uint32_t Zeros = AndRHSMask.countLeadingZeros();
 | |
|           APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
 | |
| 
 | |
|           ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
 | |
|           if (!(A && A->isZero()) &&               // avoid infinite recursion.
 | |
|               MaskedValueIsZero(Op0LHS, Mask)) {
 | |
|             Value *NewNeg = Builder->CreateNeg(Op0RHS);
 | |
|             return BinaryOperator::CreateAnd(NewNeg, AndRHS);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case Instruction::Shl:
 | |
|       case Instruction::LShr:
 | |
|         // (1 << x) & 1 --> zext(x == 0)
 | |
|         // (1 >> x) & 1 --> zext(x == 0)
 | |
|         if (AndRHSMask == 1 && Op0LHS == AndRHS) {
 | |
|           Value *NewICmp =
 | |
|             Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
 | |
|           return new ZExtInst(NewICmp, I.getType());
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
 | |
|         if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
 | |
|           return Res;
 | |
|     } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
 | |
|       // If this is an integer truncation or change from signed-to-unsigned, and
 | |
|       // if the source is an and/or with immediate, transform it.  This
 | |
|       // frequently occurs for bitfield accesses.
 | |
|       if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
 | |
|         if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
 | |
|             CastOp->getNumOperands() == 2)
 | |
|           if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1))) {
 | |
|             if (CastOp->getOpcode() == Instruction::And) {
 | |
|               // Change: and (cast (and X, C1) to T), C2
 | |
|               // into  : and (cast X to T), trunc_or_bitcast(C1)&C2
 | |
|               // This will fold the two constants together, which may allow 
 | |
|               // other simplifications.
 | |
|               Value *NewCast = Builder->CreateTruncOrBitCast(
 | |
|                 CastOp->getOperand(0), I.getType(), 
 | |
|                 CastOp->getName()+".shrunk");
 | |
|               // trunc_or_bitcast(C1)&C2
 | |
|               Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
 | |
|               C3 = ConstantExpr::getAnd(C3, AndRHS);
 | |
|               return BinaryOperator::CreateAnd(NewCast, C3);
 | |
|             } else if (CastOp->getOpcode() == Instruction::Or) {
 | |
|               // Change: and (cast (or X, C1) to T), C2
 | |
|               // into  : trunc(C1)&C2 iff trunc(C1)&C2 == C2
 | |
|               Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
 | |
|               if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)
 | |
|                 // trunc(C1)&C2
 | |
|                 return ReplaceInstUsesWith(I, AndRHS);
 | |
|             }
 | |
|           }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   Value *Op0NotVal = dyn_castNotVal(Op0);
 | |
|   Value *Op1NotVal = dyn_castNotVal(Op1);
 | |
| 
 | |
|   if (Op0NotVal == Op1 || Op1NotVal == Op0)  // A & ~A  == ~A & A == 0
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
| 
 | |
|   // (~A & ~B) == (~(A | B)) - De Morgan's Law
 | |
|   if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | |
|     Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
 | |
|                                   I.getName()+".demorgan");
 | |
|     return BinaryOperator::CreateNot(Or);
 | |
|   }
 | |
|   
 | |
|   {
 | |
|     Value *A = 0, *B = 0, *C = 0, *D = 0;
 | |
|     if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
 | |
|       if (A == Op1 || B == Op1)    // (A | ?) & A  --> A
 | |
|         return ReplaceInstUsesWith(I, Op1);
 | |
|     
 | |
|       // (A|B) & ~(A&B) -> A^B
 | |
|       if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
 | |
|         if ((A == C && B == D) || (A == D && B == C))
 | |
|           return BinaryOperator::CreateXor(A, B);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
 | |
|       if (A == Op0 || B == Op0)    // A & (A | ?)  --> A
 | |
|         return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|       // ~(A&B) & (A|B) -> A^B
 | |
|       if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
 | |
|         if ((A == C && B == D) || (A == D && B == C))
 | |
|           return BinaryOperator::CreateXor(A, B);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (Op0->hasOneUse() &&
 | |
|         match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
 | |
|       if (A == Op1) {                                // (A^B)&A -> A&(A^B)
 | |
|         I.swapOperands();     // Simplify below
 | |
|         std::swap(Op0, Op1);
 | |
|       } else if (B == Op1) {                         // (A^B)&B -> B&(B^A)
 | |
|         cast<BinaryOperator>(Op0)->swapOperands();
 | |
|         I.swapOperands();     // Simplify below
 | |
|         std::swap(Op0, Op1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Op1->hasOneUse() &&
 | |
|         match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
 | |
|       if (B == Op0) {                                // B&(A^B) -> B&(B^A)
 | |
|         cast<BinaryOperator>(Op1)->swapOperands();
 | |
|         std::swap(A, B);
 | |
|       }
 | |
|       if (A == Op0)                                // A&(A^B) -> A & ~B
 | |
|         return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp"));
 | |
|     }
 | |
| 
 | |
|     // (A&((~A)|B)) -> A&B
 | |
|     if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
 | |
|         match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
 | |
|       return BinaryOperator::CreateAnd(A, Op1);
 | |
|     if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
 | |
|         match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
 | |
|       return BinaryOperator::CreateAnd(A, Op0);
 | |
|   }
 | |
|   
 | |
|   if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
 | |
|     // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
 | |
|     if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
 | |
|       return R;
 | |
| 
 | |
|     if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
 | |
|       if (Instruction *Res = FoldAndOfICmps(I, LHS, RHS))
 | |
|         return Res;
 | |
|   }
 | |
| 
 | |
|   // fold (and (cast A), (cast B)) -> (cast (and A, B))
 | |
|   if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
 | |
|     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
 | |
|       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
 | |
|         const Type *SrcTy = Op0C->getOperand(0)->getType();
 | |
|         if (SrcTy == Op1C->getOperand(0)->getType() &&
 | |
|             SrcTy->isIntOrIntVector() &&
 | |
|             // Only do this if the casts both really cause code to be generated.
 | |
|             ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
 | |
|                               I.getType(), TD) &&
 | |
|             ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
 | |
|                               I.getType(), TD)) {
 | |
|           Value *NewOp = Builder->CreateAnd(Op0C->getOperand(0),
 | |
|                                             Op1C->getOperand(0), I.getName());
 | |
|           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
 | |
|         }
 | |
|       }
 | |
|     
 | |
|   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
 | |
|   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
 | |
|     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
 | |
|       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && 
 | |
|           SI0->getOperand(1) == SI1->getOperand(1) &&
 | |
|           (SI0->hasOneUse() || SI1->hasOneUse())) {
 | |
|         Value *NewOp =
 | |
|           Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
 | |
|                              SI0->getName());
 | |
|         return BinaryOperator::Create(SI1->getOpcode(), NewOp, 
 | |
|                                       SI1->getOperand(1));
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If and'ing two fcmp, try combine them into one.
 | |
|   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
 | |
|     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
 | |
|       if (Instruction *Res = FoldAndOfFCmps(I, LHS, RHS))
 | |
|         return Res;
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| /// CollectBSwapParts - Analyze the specified subexpression and see if it is
 | |
| /// capable of providing pieces of a bswap.  The subexpression provides pieces
 | |
| /// of a bswap if it is proven that each of the non-zero bytes in the output of
 | |
| /// the expression came from the corresponding "byte swapped" byte in some other
 | |
| /// value.  For example, if the current subexpression is "(shl i32 %X, 24)" then
 | |
| /// we know that the expression deposits the low byte of %X into the high byte
 | |
| /// of the bswap result and that all other bytes are zero.  This expression is
 | |
| /// accepted, the high byte of ByteValues is set to X to indicate a correct
 | |
| /// match.
 | |
| ///
 | |
| /// This function returns true if the match was unsuccessful and false if so.
 | |
| /// On entry to the function the "OverallLeftShift" is a signed integer value
 | |
| /// indicating the number of bytes that the subexpression is later shifted.  For
 | |
| /// example, if the expression is later right shifted by 16 bits, the
 | |
| /// OverallLeftShift value would be -2 on entry.  This is used to specify which
 | |
| /// byte of ByteValues is actually being set.
 | |
| ///
 | |
| /// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
 | |
| /// byte is masked to zero by a user.  For example, in (X & 255), X will be
 | |
| /// processed with a bytemask of 1.  Because bytemask is 32-bits, this limits
 | |
| /// this function to working on up to 32-byte (256 bit) values.  ByteMask is
 | |
| /// always in the local (OverallLeftShift) coordinate space.
 | |
| ///
 | |
| static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
 | |
|                               SmallVector<Value*, 8> &ByteValues) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     // If this is an or instruction, it may be an inner node of the bswap.
 | |
|     if (I->getOpcode() == Instruction::Or) {
 | |
|       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
 | |
|                                ByteValues) ||
 | |
|              CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
 | |
|                                ByteValues);
 | |
|     }
 | |
|   
 | |
|     // If this is a logical shift by a constant multiple of 8, recurse with
 | |
|     // OverallLeftShift and ByteMask adjusted.
 | |
|     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
 | |
|       unsigned ShAmt = 
 | |
|         cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
 | |
|       // Ensure the shift amount is defined and of a byte value.
 | |
|       if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
 | |
|         return true;
 | |
| 
 | |
|       unsigned ByteShift = ShAmt >> 3;
 | |
|       if (I->getOpcode() == Instruction::Shl) {
 | |
|         // X << 2 -> collect(X, +2)
 | |
|         OverallLeftShift += ByteShift;
 | |
|         ByteMask >>= ByteShift;
 | |
|       } else {
 | |
|         // X >>u 2 -> collect(X, -2)
 | |
|         OverallLeftShift -= ByteShift;
 | |
|         ByteMask <<= ByteShift;
 | |
|         ByteMask &= (~0U >> (32-ByteValues.size()));
 | |
|       }
 | |
| 
 | |
|       if (OverallLeftShift >= (int)ByteValues.size()) return true;
 | |
|       if (OverallLeftShift <= -(int)ByteValues.size()) return true;
 | |
| 
 | |
|       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, 
 | |
|                                ByteValues);
 | |
|     }
 | |
| 
 | |
|     // If this is a logical 'and' with a mask that clears bytes, clear the
 | |
|     // corresponding bytes in ByteMask.
 | |
|     if (I->getOpcode() == Instruction::And &&
 | |
|         isa<ConstantInt>(I->getOperand(1))) {
 | |
|       // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
 | |
|       unsigned NumBytes = ByteValues.size();
 | |
|       APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
 | |
|       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
 | |
|       
 | |
|       for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
 | |
|         // If this byte is masked out by a later operation, we don't care what
 | |
|         // the and mask is.
 | |
|         if ((ByteMask & (1 << i)) == 0)
 | |
|           continue;
 | |
|         
 | |
|         // If the AndMask is all zeros for this byte, clear the bit.
 | |
|         APInt MaskB = AndMask & Byte;
 | |
|         if (MaskB == 0) {
 | |
|           ByteMask &= ~(1U << i);
 | |
|           continue;
 | |
|         }
 | |
|         
 | |
|         // If the AndMask is not all ones for this byte, it's not a bytezap.
 | |
|         if (MaskB != Byte)
 | |
|           return true;
 | |
| 
 | |
|         // Otherwise, this byte is kept.
 | |
|       }
 | |
| 
 | |
|       return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask, 
 | |
|                                ByteValues);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
 | |
|   // the input value to the bswap.  Some observations: 1) if more than one byte
 | |
|   // is demanded from this input, then it could not be successfully assembled
 | |
|   // into a byteswap.  At least one of the two bytes would not be aligned with
 | |
|   // their ultimate destination.
 | |
|   if (!isPowerOf2_32(ByteMask)) return true;
 | |
|   unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
 | |
|   
 | |
|   // 2) The input and ultimate destinations must line up: if byte 3 of an i32
 | |
|   // is demanded, it needs to go into byte 0 of the result.  This means that the
 | |
|   // byte needs to be shifted until it lands in the right byte bucket.  The
 | |
|   // shift amount depends on the position: if the byte is coming from the high
 | |
|   // part of the value (e.g. byte 3) then it must be shifted right.  If from the
 | |
|   // low part, it must be shifted left.
 | |
|   unsigned DestByteNo = InputByteNo + OverallLeftShift;
 | |
|   if (InputByteNo < ByteValues.size()/2) {
 | |
|     if (ByteValues.size()-1-DestByteNo != InputByteNo)
 | |
|       return true;
 | |
|   } else {
 | |
|     if (ByteValues.size()-1-DestByteNo != InputByteNo)
 | |
|       return true;
 | |
|   }
 | |
|   
 | |
|   // If the destination byte value is already defined, the values are or'd
 | |
|   // together, which isn't a bswap (unless it's an or of the same bits).
 | |
|   if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
 | |
|     return true;
 | |
|   ByteValues[DestByteNo] = V;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
 | |
| /// If so, insert the new bswap intrinsic and return it.
 | |
| Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
 | |
|   const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
 | |
|   if (!ITy || ITy->getBitWidth() % 16 || 
 | |
|       // ByteMask only allows up to 32-byte values.
 | |
|       ITy->getBitWidth() > 32*8) 
 | |
|     return 0;   // Can only bswap pairs of bytes.  Can't do vectors.
 | |
|   
 | |
|   /// ByteValues - For each byte of the result, we keep track of which value
 | |
|   /// defines each byte.
 | |
|   SmallVector<Value*, 8> ByteValues;
 | |
|   ByteValues.resize(ITy->getBitWidth()/8);
 | |
|     
 | |
|   // Try to find all the pieces corresponding to the bswap.
 | |
|   uint32_t ByteMask = ~0U >> (32-ByteValues.size());
 | |
|   if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
 | |
|     return 0;
 | |
|   
 | |
|   // Check to see if all of the bytes come from the same value.
 | |
|   Value *V = ByteValues[0];
 | |
|   if (V == 0) return 0;  // Didn't find a byte?  Must be zero.
 | |
|   
 | |
|   // Check to make sure that all of the bytes come from the same value.
 | |
|   for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
 | |
|     if (ByteValues[i] != V)
 | |
|       return 0;
 | |
|   const Type *Tys[] = { ITy };
 | |
|   Module *M = I.getParent()->getParent()->getParent();
 | |
|   Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
 | |
|   return CallInst::Create(F, V);
 | |
| }
 | |
| 
 | |
| /// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D).  Check
 | |
| /// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
 | |
| /// we can simplify this expression to "cond ? C : D or B".
 | |
| static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
 | |
|                                          Value *C, Value *D,
 | |
|                                          LLVMContext *Context) {
 | |
|   // If A is not a select of -1/0, this cannot match.
 | |
|   Value *Cond = 0;
 | |
|   if (!match(A, m_SelectCst<-1, 0>(m_Value(Cond))))
 | |
|     return 0;
 | |
| 
 | |
|   // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
 | |
|   if (match(D, m_SelectCst<0, -1>(m_Specific(Cond))))
 | |
|     return SelectInst::Create(Cond, C, B);
 | |
|   if (match(D, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
 | |
|     return SelectInst::Create(Cond, C, B);
 | |
|   // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
 | |
|   if (match(B, m_SelectCst<0, -1>(m_Specific(Cond))))
 | |
|     return SelectInst::Create(Cond, C, D);
 | |
|   if (match(B, m_Not(m_SelectCst<-1, 0>(m_Specific(Cond)))))
 | |
|     return SelectInst::Create(Cond, C, D);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
 | |
| Instruction *InstCombiner::FoldOrOfICmps(Instruction &I,
 | |
|                                          ICmpInst *LHS, ICmpInst *RHS) {
 | |
|   Value *Val, *Val2;
 | |
|   ConstantInt *LHSCst, *RHSCst;
 | |
|   ICmpInst::Predicate LHSCC, RHSCC;
 | |
|   
 | |
|   // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
 | |
|   if (!match(LHS, m_ICmp(LHSCC, m_Value(Val),
 | |
|              m_ConstantInt(LHSCst))) ||
 | |
|       !match(RHS, m_ICmp(RHSCC, m_Value(Val2),
 | |
|              m_ConstantInt(RHSCst))))
 | |
|     return 0;
 | |
|   
 | |
|   // From here on, we only handle:
 | |
|   //    (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
 | |
|   if (Val != Val2) return 0;
 | |
|   
 | |
|   // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
 | |
|   if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
 | |
|       RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
 | |
|       LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
 | |
|       RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
 | |
|     return 0;
 | |
|   
 | |
|   // We can't fold (ugt x, C) | (sgt x, C2).
 | |
|   if (!PredicatesFoldable(LHSCC, RHSCC))
 | |
|     return 0;
 | |
|   
 | |
|   // Ensure that the larger constant is on the RHS.
 | |
|   bool ShouldSwap;
 | |
|   if (ICmpInst::isSignedPredicate(LHSCC) ||
 | |
|       (ICmpInst::isEquality(LHSCC) && 
 | |
|        ICmpInst::isSignedPredicate(RHSCC)))
 | |
|     ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
 | |
|   else
 | |
|     ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
 | |
|   
 | |
|   if (ShouldSwap) {
 | |
|     std::swap(LHS, RHS);
 | |
|     std::swap(LHSCst, RHSCst);
 | |
|     std::swap(LHSCC, RHSCC);
 | |
|   }
 | |
|   
 | |
|   // At this point, we know we have have two icmp instructions
 | |
|   // comparing a value against two constants and or'ing the result
 | |
|   // together.  Because of the above check, we know that we only have
 | |
|   // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
 | |
|   // FoldICmpLogical check above), that the two constants are not
 | |
|   // equal.
 | |
|   assert(LHSCst != RHSCst && "Compares not folded above?");
 | |
| 
 | |
|   switch (LHSCC) {
 | |
|   default: llvm_unreachable("Unknown integer condition code!");
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|       if (LHSCst == SubOne(RHSCst)) {
 | |
|         // (X == 13 | X == 14) -> X-13 <u 2
 | |
|         Constant *AddCST = ConstantExpr::getNeg(LHSCst);
 | |
|         Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
 | |
|         AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
 | |
|         return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
 | |
|       }
 | |
|       break;                         // (X == 13 | X == 15) -> no change
 | |
|     case ICmpInst::ICMP_UGT:         // (X == 13 | X u> 14) -> no change
 | |
|     case ICmpInst::ICMP_SGT:         // (X == 13 | X s> 14) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:          // (X == 13 | X != 15) -> X != 15
 | |
|     case ICmpInst::ICMP_ULT:         // (X == 13 | X u< 15) -> X u< 15
 | |
|     case ICmpInst::ICMP_SLT:         // (X == 13 | X s< 15) -> X s< 15
 | |
|       return ReplaceInstUsesWith(I, RHS);
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:          // (X != 13 | X == 15) -> X != 13
 | |
|     case ICmpInst::ICMP_UGT:         // (X != 13 | X u> 15) -> X != 13
 | |
|     case ICmpInst::ICMP_SGT:         // (X != 13 | X s> 15) -> X != 13
 | |
|       return ReplaceInstUsesWith(I, LHS);
 | |
|     case ICmpInst::ICMP_NE:          // (X != 13 | X != 15) -> true
 | |
|     case ICmpInst::ICMP_ULT:         // (X != 13 | X u< 15) -> true
 | |
|     case ICmpInst::ICMP_SLT:         // (X != 13 | X s< 15) -> true
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X u< 13 | X == 14) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGT:        // (X u< 13 | X u> 15) -> (X-13) u> 2
 | |
|       // If RHSCst is [us]MAXINT, it is always false.  Not handling
 | |
|       // this can cause overflow.
 | |
|       if (RHSCst->isMaxValue(false))
 | |
|         return ReplaceInstUsesWith(I, LHS);
 | |
|       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
 | |
|                              false, false, I);
 | |
|     case ICmpInst::ICMP_SGT:        // (X u< 13 | X s> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X u< 13 | X != 15) -> X != 15
 | |
|     case ICmpInst::ICMP_ULT:        // (X u< 13 | X u< 15) -> X u< 15
 | |
|       return ReplaceInstUsesWith(I, RHS);
 | |
|     case ICmpInst::ICMP_SLT:        // (X u< 13 | X s< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X s< 13 | X == 14) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:        // (X s< 13 | X s> 15) -> (X-13) s> 2
 | |
|       // If RHSCst is [us]MAXINT, it is always false.  Not handling
 | |
|       // this can cause overflow.
 | |
|       if (RHSCst->isMaxValue(true))
 | |
|         return ReplaceInstUsesWith(I, LHS);
 | |
|       return InsertRangeTest(Val, LHSCst, AddOne(RHSCst),
 | |
|                              true, false, I);
 | |
|     case ICmpInst::ICMP_UGT:        // (X s< 13 | X u> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X s< 13 | X != 15) -> X != 15
 | |
|     case ICmpInst::ICMP_SLT:        // (X s< 13 | X s< 15) -> X s< 15
 | |
|       return ReplaceInstUsesWith(I, RHS);
 | |
|     case ICmpInst::ICMP_ULT:        // (X s< 13 | X u< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X u> 13 | X == 15) -> X u> 13
 | |
|     case ICmpInst::ICMP_UGT:        // (X u> 13 | X u> 15) -> X u> 13
 | |
|       return ReplaceInstUsesWith(I, LHS);
 | |
|     case ICmpInst::ICMP_SGT:        // (X u> 13 | X s> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X u> 13 | X != 15) -> true
 | |
|     case ICmpInst::ICMP_ULT:        // (X u> 13 | X u< 15) -> true
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|     case ICmpInst::ICMP_SLT:        // (X u> 13 | X s< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     switch (RHSCC) {
 | |
|     default: llvm_unreachable("Unknown integer condition code!");
 | |
|     case ICmpInst::ICMP_EQ:         // (X s> 13 | X == 15) -> X > 13
 | |
|     case ICmpInst::ICMP_SGT:        // (X s> 13 | X s> 15) -> X > 13
 | |
|       return ReplaceInstUsesWith(I, LHS);
 | |
|     case ICmpInst::ICMP_UGT:        // (X s> 13 | X u> 15) -> no change
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:         // (X s> 13 | X != 15) -> true
 | |
|     case ICmpInst::ICMP_SLT:        // (X s> 13 | X s< 15) -> true
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|     case ICmpInst::ICMP_ULT:        // (X s> 13 | X u< 15) -> no change
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::FoldOrOfFCmps(Instruction &I, FCmpInst *LHS,
 | |
|                                          FCmpInst *RHS) {
 | |
|   if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
 | |
|       RHS->getPredicate() == FCmpInst::FCMP_UNO && 
 | |
|       LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
 | |
|     if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
 | |
|       if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
 | |
|         // If either of the constants are nans, then the whole thing returns
 | |
|         // true.
 | |
|         if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|         
 | |
|         // Otherwise, no need to compare the two constants, compare the
 | |
|         // rest.
 | |
|         return new FCmpInst(FCmpInst::FCMP_UNO,
 | |
|                             LHS->getOperand(0), RHS->getOperand(0));
 | |
|       }
 | |
|     
 | |
|     // Handle vector zeros.  This occurs because the canonical form of
 | |
|     // "fcmp uno x,x" is "fcmp uno x, 0".
 | |
|     if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
 | |
|         isa<ConstantAggregateZero>(RHS->getOperand(1)))
 | |
|       return new FCmpInst(FCmpInst::FCMP_UNO,
 | |
|                           LHS->getOperand(0), RHS->getOperand(0));
 | |
|     
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
 | |
|   Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
 | |
|   FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
 | |
|   
 | |
|   if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
 | |
|     // Swap RHS operands to match LHS.
 | |
|     Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
 | |
|     std::swap(Op1LHS, Op1RHS);
 | |
|   }
 | |
|   if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
 | |
|     // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
 | |
|     if (Op0CC == Op1CC)
 | |
|       return new FCmpInst((FCmpInst::Predicate)Op0CC,
 | |
|                           Op0LHS, Op0RHS);
 | |
|     if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|     if (Op0CC == FCmpInst::FCMP_FALSE)
 | |
|       return ReplaceInstUsesWith(I, RHS);
 | |
|     if (Op1CC == FCmpInst::FCMP_FALSE)
 | |
|       return ReplaceInstUsesWith(I, LHS);
 | |
|     bool Op0Ordered;
 | |
|     bool Op1Ordered;
 | |
|     unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
 | |
|     unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
 | |
|     if (Op0Ordered == Op1Ordered) {
 | |
|       // If both are ordered or unordered, return a new fcmp with
 | |
|       // or'ed predicates.
 | |
|       Value *RV = getFCmpValue(Op0Ordered, Op0Pred|Op1Pred,
 | |
|                                Op0LHS, Op0RHS, Context);
 | |
|       if (Instruction *I = dyn_cast<Instruction>(RV))
 | |
|         return I;
 | |
|       // Otherwise, it's a constant boolean value...
 | |
|       return ReplaceInstUsesWith(I, RV);
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FoldOrWithConstants - This helper function folds:
 | |
| ///
 | |
| ///     ((A | B) & C1) | (B & C2)
 | |
| ///
 | |
| /// into:
 | |
| /// 
 | |
| ///     (A & C1) | B
 | |
| ///
 | |
| /// when the XOR of the two constants is "all ones" (-1).
 | |
| Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
 | |
|                                                Value *A, Value *B, Value *C) {
 | |
|   ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
 | |
|   if (!CI1) return 0;
 | |
| 
 | |
|   Value *V1 = 0;
 | |
|   ConstantInt *CI2 = 0;
 | |
|   if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
 | |
| 
 | |
|   APInt Xor = CI1->getValue() ^ CI2->getValue();
 | |
|   if (!Xor.isAllOnesValue()) return 0;
 | |
| 
 | |
|   if (V1 == A || V1 == B) {
 | |
|     Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
 | |
|     return BinaryOperator::CreateOr(NewOp, V1);
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitOr(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Op1))                       // X | undef -> -1
 | |
|     return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   // or X, X = X
 | |
|   if (Op0 == Op1)
 | |
|     return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
|   if (isa<VectorType>(I.getType())) {
 | |
|     if (isa<ConstantAggregateZero>(Op1)) {
 | |
|       return ReplaceInstUsesWith(I, Op0);  // X | <0,0> -> X
 | |
|     } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
 | |
|       if (CP->isAllOnesValue())            // X | <-1,-1> -> <-1,-1>
 | |
|         return ReplaceInstUsesWith(I, I.getOperand(1));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // or X, -1 == -1
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     ConstantInt *C1 = 0; Value *X = 0;
 | |
|     // (X & C1) | C2 --> (X | C2) & (C1|C2)
 | |
|     if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
 | |
|         isOnlyUse(Op0)) {
 | |
|       Value *Or = Builder->CreateOr(X, RHS);
 | |
|       Or->takeName(Op0);
 | |
|       return BinaryOperator::CreateAnd(Or, 
 | |
|                ConstantInt::get(*Context, RHS->getValue() | C1->getValue()));
 | |
|     }
 | |
| 
 | |
|     // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
 | |
|     if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
 | |
|         isOnlyUse(Op0)) {
 | |
|       Value *Or = Builder->CreateOr(X, RHS);
 | |
|       Or->takeName(Op0);
 | |
|       return BinaryOperator::CreateXor(Or,
 | |
|                  ConstantInt::get(*Context, C1->getValue() & ~RHS->getValue()));
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   Value *A = 0, *B = 0;
 | |
|   ConstantInt *C1 = 0, *C2 = 0;
 | |
| 
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(B))))
 | |
|     if (A == Op1 || B == Op1)    // (A & ?) | A  --> A
 | |
|       return ReplaceInstUsesWith(I, Op1);
 | |
|   if (match(Op1, m_And(m_Value(A), m_Value(B))))
 | |
|     if (A == Op0 || B == Op0)    // A | (A & ?)  --> A
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|   // (A | B) | C  and  A | (B | C)                  -> bswap if possible.
 | |
|   // (A >> B) | (C << D)  and  (A << B) | (B >> C)  -> bswap if possible.
 | |
|   if (match(Op0, m_Or(m_Value(), m_Value())) ||
 | |
|       match(Op1, m_Or(m_Value(), m_Value())) ||
 | |
|       (match(Op0, m_Shift(m_Value(), m_Value())) &&
 | |
|        match(Op1, m_Shift(m_Value(), m_Value())))) {
 | |
|     if (Instruction *BSwap = MatchBSwap(I))
 | |
|       return BSwap;
 | |
|   }
 | |
|   
 | |
|   // (X^C)|Y -> (X|Y)^C iff Y&C == 0
 | |
|   if (Op0->hasOneUse() &&
 | |
|       match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
 | |
|       MaskedValueIsZero(Op1, C1->getValue())) {
 | |
|     Value *NOr = Builder->CreateOr(A, Op1);
 | |
|     NOr->takeName(Op0);
 | |
|     return BinaryOperator::CreateXor(NOr, C1);
 | |
|   }
 | |
| 
 | |
|   // Y|(X^C) -> (X|Y)^C iff Y&C == 0
 | |
|   if (Op1->hasOneUse() &&
 | |
|       match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
 | |
|       MaskedValueIsZero(Op0, C1->getValue())) {
 | |
|     Value *NOr = Builder->CreateOr(A, Op0);
 | |
|     NOr->takeName(Op0);
 | |
|     return BinaryOperator::CreateXor(NOr, C1);
 | |
|   }
 | |
| 
 | |
|   // (A & C)|(B & D)
 | |
|   Value *C = 0, *D = 0;
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
 | |
|       match(Op1, m_And(m_Value(B), m_Value(D)))) {
 | |
|     Value *V1 = 0, *V2 = 0, *V3 = 0;
 | |
|     C1 = dyn_cast<ConstantInt>(C);
 | |
|     C2 = dyn_cast<ConstantInt>(D);
 | |
|     if (C1 && C2) {  // (A & C1)|(B & C2)
 | |
|       // If we have: ((V + N) & C1) | (V & C2)
 | |
|       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
 | |
|       // replace with V+N.
 | |
|       if (C1->getValue() == ~C2->getValue()) {
 | |
|         if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
 | |
|             match(A, m_Add(m_Value(V1), m_Value(V2)))) {
 | |
|           // Add commutes, try both ways.
 | |
|           if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
 | |
|             return ReplaceInstUsesWith(I, A);
 | |
|           if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
 | |
|             return ReplaceInstUsesWith(I, A);
 | |
|         }
 | |
|         // Or commutes, try both ways.
 | |
|         if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
 | |
|             match(B, m_Add(m_Value(V1), m_Value(V2)))) {
 | |
|           // Add commutes, try both ways.
 | |
|           if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
 | |
|             return ReplaceInstUsesWith(I, B);
 | |
|           if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
 | |
|             return ReplaceInstUsesWith(I, B);
 | |
|         }
 | |
|       }
 | |
|       V1 = 0; V2 = 0; V3 = 0;
 | |
|     }
 | |
|     
 | |
|     // Check to see if we have any common things being and'ed.  If so, find the
 | |
|     // terms for V1 & (V2|V3).
 | |
|     if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
 | |
|       if (A == B)      // (A & C)|(A & D) == A & (C|D)
 | |
|         V1 = A, V2 = C, V3 = D;
 | |
|       else if (A == D) // (A & C)|(B & A) == A & (B|C)
 | |
|         V1 = A, V2 = B, V3 = C;
 | |
|       else if (C == B) // (A & C)|(C & D) == C & (A|D)
 | |
|         V1 = C, V2 = A, V3 = D;
 | |
|       else if (C == D) // (A & C)|(B & C) == C & (A|B)
 | |
|         V1 = C, V2 = A, V3 = B;
 | |
|       
 | |
|       if (V1) {
 | |
|         Value *Or = Builder->CreateOr(V2, V3, "tmp");
 | |
|         return BinaryOperator::CreateAnd(V1, Or);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) ->  C0 ? A : B, and commuted variants
 | |
|     if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D, Context))
 | |
|       return Match;
 | |
|     if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C, Context))
 | |
|       return Match;
 | |
|     if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D, Context))
 | |
|       return Match;
 | |
|     if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C, Context))
 | |
|       return Match;
 | |
| 
 | |
|     // ((A&~B)|(~A&B)) -> A^B
 | |
|     if ((match(C, m_Not(m_Specific(D))) &&
 | |
|          match(B, m_Not(m_Specific(A)))))
 | |
|       return BinaryOperator::CreateXor(A, D);
 | |
|     // ((~B&A)|(~A&B)) -> A^B
 | |
|     if ((match(A, m_Not(m_Specific(D))) &&
 | |
|          match(B, m_Not(m_Specific(C)))))
 | |
|       return BinaryOperator::CreateXor(C, D);
 | |
|     // ((A&~B)|(B&~A)) -> A^B
 | |
|     if ((match(C, m_Not(m_Specific(B))) &&
 | |
|          match(D, m_Not(m_Specific(A)))))
 | |
|       return BinaryOperator::CreateXor(A, B);
 | |
|     // ((~B&A)|(B&~A)) -> A^B
 | |
|     if ((match(A, m_Not(m_Specific(B))) &&
 | |
|          match(D, m_Not(m_Specific(C)))))
 | |
|       return BinaryOperator::CreateXor(C, B);
 | |
|   }
 | |
|   
 | |
|   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
 | |
|   if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
 | |
|     if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
 | |
|       if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() && 
 | |
|           SI0->getOperand(1) == SI1->getOperand(1) &&
 | |
|           (SI0->hasOneUse() || SI1->hasOneUse())) {
 | |
|         Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
 | |
|                                          SI0->getName());
 | |
|         return BinaryOperator::Create(SI1->getOpcode(), NewOp, 
 | |
|                                       SI1->getOperand(1));
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // ((A|B)&1)|(B&-2) -> (A&1) | B
 | |
|   if (match(Op0, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
 | |
|       match(Op0, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
 | |
|     Instruction *Ret = FoldOrWithConstants(I, Op1, A, B, C);
 | |
|     if (Ret) return Ret;
 | |
|   }
 | |
|   // (B&-2)|((A|B)&1) -> (A&1) | B
 | |
|   if (match(Op1, m_And(m_Or(m_Value(A), m_Value(B)), m_Value(C))) ||
 | |
|       match(Op1, m_And(m_Value(C), m_Or(m_Value(A), m_Value(B))))) {
 | |
|     Instruction *Ret = FoldOrWithConstants(I, Op0, A, B, C);
 | |
|     if (Ret) return Ret;
 | |
|   }
 | |
| 
 | |
|   if (match(Op0, m_Not(m_Value(A)))) {   // ~A | Op1
 | |
|     if (A == Op1)   // ~A | A == -1
 | |
|       return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
 | |
|   } else {
 | |
|     A = 0;
 | |
|   }
 | |
|   // Note, A is still live here!
 | |
|   if (match(Op1, m_Not(m_Value(B)))) {   // Op0 | ~B
 | |
|     if (Op0 == B)
 | |
|       return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
 | |
| 
 | |
|     // (~A | ~B) == (~(A & B)) - De Morgan's Law
 | |
|     if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
 | |
|       Value *And = Builder->CreateAnd(A, B, I.getName()+".demorgan");
 | |
|       return BinaryOperator::CreateNot(And);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
 | |
|   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
 | |
|     if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
 | |
|       return R;
 | |
| 
 | |
|     if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
 | |
|       if (Instruction *Res = FoldOrOfICmps(I, LHS, RHS))
 | |
|         return Res;
 | |
|   }
 | |
|     
 | |
|   // fold (or (cast A), (cast B)) -> (cast (or A, B))
 | |
|   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
 | |
|     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
 | |
|       if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
 | |
|         if (!isa<ICmpInst>(Op0C->getOperand(0)) ||
 | |
|             !isa<ICmpInst>(Op1C->getOperand(0))) {
 | |
|           const Type *SrcTy = Op0C->getOperand(0)->getType();
 | |
|           if (SrcTy == Op1C->getOperand(0)->getType() &&
 | |
|               SrcTy->isIntOrIntVector() &&
 | |
|               // Only do this if the casts both really cause code to be
 | |
|               // generated.
 | |
|               ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
 | |
|                                 I.getType(), TD) &&
 | |
|               ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
 | |
|                                 I.getType(), TD)) {
 | |
|             Value *NewOp = Builder->CreateOr(Op0C->getOperand(0),
 | |
|                                              Op1C->getOperand(0), I.getName());
 | |
|             return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|   }
 | |
|   
 | |
|     
 | |
|   // (fcmp uno x, c) | (fcmp uno y, c)  -> (fcmp uno x, y)
 | |
|   if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
 | |
|     if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
 | |
|       if (Instruction *Res = FoldOrOfFCmps(I, LHS, RHS))
 | |
|         return Res;
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // XorSelf - Implements: X ^ X --> 0
 | |
| struct XorSelf {
 | |
|   Value *RHS;
 | |
|   XorSelf(Value *rhs) : RHS(rhs) {}
 | |
|   bool shouldApply(Value *LHS) const { return LHS == RHS; }
 | |
|   Instruction *apply(BinaryOperator &Xor) const {
 | |
|     return &Xor;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitXor(BinaryOperator &I) {
 | |
|   bool Changed = SimplifyCommutative(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Op1)) {
 | |
|     if (isa<UndefValue>(Op0))
 | |
|       // Handle undef ^ undef -> 0 special case. This is a common
 | |
|       // idiom (misuse).
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|     return ReplaceInstUsesWith(I, Op1);  // X ^ undef -> undef
 | |
|   }
 | |
| 
 | |
|   // xor X, X = 0, even if X is nested in a sequence of Xor's.
 | |
|   if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
 | |
|     assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
 | |
|     return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   }
 | |
|   
 | |
|   // See if we can simplify any instructions used by the instruction whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
|   if (isa<VectorType>(I.getType()))
 | |
|     if (isa<ConstantAggregateZero>(Op1))
 | |
|       return ReplaceInstUsesWith(I, Op0);  // X ^ <0,0> -> X
 | |
| 
 | |
|   // Is this a ~ operation?
 | |
|   if (Value *NotOp = dyn_castNotVal(&I)) {
 | |
|     // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
 | |
|     // ~(~X | Y) === (X & ~Y) - De Morgan's Law
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
 | |
|       if (Op0I->getOpcode() == Instruction::And || 
 | |
|           Op0I->getOpcode() == Instruction::Or) {
 | |
|         if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
 | |
|         if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
 | |
|           Value *NotY =
 | |
|             Builder->CreateNot(Op0I->getOperand(1),
 | |
|                                Op0I->getOperand(1)->getName()+".not");
 | |
|           if (Op0I->getOpcode() == Instruction::And)
 | |
|             return BinaryOperator::CreateOr(Op0NotVal, NotY);
 | |
|           return BinaryOperator::CreateAnd(Op0NotVal, NotY);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   
 | |
|   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
 | |
|     if (RHS == ConstantInt::getTrue(*Context) && Op0->hasOneUse()) {
 | |
|       // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
 | |
|       if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
 | |
|         return new ICmpInst(ICI->getInversePredicate(),
 | |
|                             ICI->getOperand(0), ICI->getOperand(1));
 | |
| 
 | |
|       if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
 | |
|         return new FCmpInst(FCI->getInversePredicate(),
 | |
|                             FCI->getOperand(0), FCI->getOperand(1));
 | |
|     }
 | |
| 
 | |
|     // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
 | |
|     if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
 | |
|       if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
 | |
|         if (CI->hasOneUse() && Op0C->hasOneUse()) {
 | |
|           Instruction::CastOps Opcode = Op0C->getOpcode();
 | |
|           if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
 | |
|               (RHS == ConstantExpr::getCast(Opcode, 
 | |
|                                             ConstantInt::getTrue(*Context),
 | |
|                                             Op0C->getDestTy()))) {
 | |
|             CI->setPredicate(CI->getInversePredicate());
 | |
|             return CastInst::Create(Opcode, CI, Op0C->getType());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | |
|       // ~(c-X) == X-c-1 == X+(-c-1)
 | |
|       if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
 | |
|         if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
 | |
|           Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
 | |
|           Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
 | |
|                                       ConstantInt::get(I.getType(), 1));
 | |
|           return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
 | |
|         }
 | |
|           
 | |
|       if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
 | |
|         if (Op0I->getOpcode() == Instruction::Add) {
 | |
|           // ~(X-c) --> (-c-1)-X
 | |
|           if (RHS->isAllOnesValue()) {
 | |
|             Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
 | |
|             return BinaryOperator::CreateSub(
 | |
|                            ConstantExpr::getSub(NegOp0CI,
 | |
|                                       ConstantInt::get(I.getType(), 1)),
 | |
|                                       Op0I->getOperand(0));
 | |
|           } else if (RHS->getValue().isSignBit()) {
 | |
|             // (X + C) ^ signbit -> (X + C + signbit)
 | |
|             Constant *C = ConstantInt::get(*Context,
 | |
|                                            RHS->getValue() + Op0CI->getValue());
 | |
|             return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
 | |
| 
 | |
|           }
 | |
|         } else if (Op0I->getOpcode() == Instruction::Or) {
 | |
|           // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
 | |
|           if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
 | |
|             Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
 | |
|             // Anything in both C1 and C2 is known to be zero, remove it from
 | |
|             // NewRHS.
 | |
|             Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
 | |
|             NewRHS = ConstantExpr::getAnd(NewRHS, 
 | |
|                                        ConstantExpr::getNot(CommonBits));
 | |
|             Worklist.Add(Op0I);
 | |
|             I.setOperand(0, Op0I->getOperand(0));
 | |
|             I.setOperand(1, NewRHS);
 | |
|             return &I;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Try to fold constant and into select arguments.
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
|     if (isa<PHINode>(Op0))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|         return NV;
 | |
|   }
 | |
| 
 | |
|   if (Value *X = dyn_castNotVal(Op0))   // ~A ^ A == -1
 | |
|     if (X == Op1)
 | |
|       return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   if (Value *X = dyn_castNotVal(Op1))   // A ^ ~A == -1
 | |
|     if (X == Op0)
 | |
|       return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
 | |
| 
 | |
|   
 | |
|   BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
 | |
|   if (Op1I) {
 | |
|     Value *A, *B;
 | |
|     if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
 | |
|       if (A == Op0) {              // B^(B|A) == (A|B)^B
 | |
|         Op1I->swapOperands();
 | |
|         I.swapOperands();
 | |
|         std::swap(Op0, Op1);
 | |
|       } else if (B == Op0) {       // B^(A|B) == (A|B)^B
 | |
|         I.swapOperands();     // Simplified below.
 | |
|         std::swap(Op0, Op1);
 | |
|       }
 | |
|     } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
 | |
|       return ReplaceInstUsesWith(I, B);                      // A^(A^B) == B
 | |
|     } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
 | |
|       return ReplaceInstUsesWith(I, A);                      // A^(B^A) == B
 | |
|     } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && 
 | |
|                Op1I->hasOneUse()){
 | |
|       if (A == Op0) {                                      // A^(A&B) -> A^(B&A)
 | |
|         Op1I->swapOperands();
 | |
|         std::swap(A, B);
 | |
|       }
 | |
|       if (B == Op0) {                                      // A^(B&A) -> (B&A)^A
 | |
|         I.swapOperands();     // Simplified below.
 | |
|         std::swap(Op0, Op1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
 | |
|   if (Op0I) {
 | |
|     Value *A, *B;
 | |
|     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         Op0I->hasOneUse()) {
 | |
|       if (A == Op1)                                  // (B|A)^B == (A|B)^B
 | |
|         std::swap(A, B);
 | |
|       if (B == Op1)                                  // (A|B)^B == A & ~B
 | |
|         return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp"));
 | |
|     } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
 | |
|       return ReplaceInstUsesWith(I, B);                      // (A^B)^A == B
 | |
|     } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
 | |
|       return ReplaceInstUsesWith(I, A);                      // (B^A)^A == B
 | |
|     } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && 
 | |
|                Op0I->hasOneUse()){
 | |
|       if (A == Op1)                                        // (A&B)^A -> (B&A)^A
 | |
|         std::swap(A, B);
 | |
|       if (B == Op1 &&                                      // (B&A)^A == ~B & A
 | |
|           !isa<ConstantInt>(Op1)) {  // Canonical form is (B&C)^C
 | |
|         return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
 | |
|   if (Op0I && Op1I && Op0I->isShift() && 
 | |
|       Op0I->getOpcode() == Op1I->getOpcode() && 
 | |
|       Op0I->getOperand(1) == Op1I->getOperand(1) &&
 | |
|       (Op1I->hasOneUse() || Op1I->hasOneUse())) {
 | |
|     Value *NewOp =
 | |
|       Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
 | |
|                          Op0I->getName());
 | |
|     return BinaryOperator::Create(Op1I->getOpcode(), NewOp, 
 | |
|                                   Op1I->getOperand(1));
 | |
|   }
 | |
|     
 | |
|   if (Op0I && Op1I) {
 | |
|     Value *A, *B, *C, *D;
 | |
|     // (A & B)^(A | B) -> A ^ B
 | |
|     if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
 | |
|       if ((A == C && B == D) || (A == D && B == C)) 
 | |
|         return BinaryOperator::CreateXor(A, B);
 | |
|     }
 | |
|     // (A | B)^(A & B) -> A ^ B
 | |
|     if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
 | |
|       if ((A == C && B == D) || (A == D && B == C)) 
 | |
|         return BinaryOperator::CreateXor(A, B);
 | |
|     }
 | |
|     
 | |
|     // (A & B)^(C & D)
 | |
|     if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
 | |
|         match(Op0I, m_And(m_Value(A), m_Value(B))) &&
 | |
|         match(Op1I, m_And(m_Value(C), m_Value(D)))) {
 | |
|       // (X & Y)^(X & Y) -> (Y^Z) & X
 | |
|       Value *X = 0, *Y = 0, *Z = 0;
 | |
|       if (A == C)
 | |
|         X = A, Y = B, Z = D;
 | |
|       else if (A == D)
 | |
|         X = A, Y = B, Z = C;
 | |
|       else if (B == C)
 | |
|         X = B, Y = A, Z = D;
 | |
|       else if (B == D)
 | |
|         X = B, Y = A, Z = C;
 | |
|       
 | |
|       if (X) {
 | |
|         Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName());
 | |
|         return BinaryOperator::CreateAnd(NewOp, X);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
 | |
|   if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
 | |
|     if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
 | |
|       return R;
 | |
| 
 | |
|   // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
 | |
|   if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
 | |
|     if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
 | |
|       if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
 | |
|         const Type *SrcTy = Op0C->getOperand(0)->getType();
 | |
|         if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
 | |
|             // Only do this if the casts both really cause code to be generated.
 | |
|             ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0), 
 | |
|                               I.getType(), TD) &&
 | |
|             ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0), 
 | |
|                               I.getType(), TD)) {
 | |
|           Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
 | |
|                                             Op1C->getOperand(0), I.getName());
 | |
|           return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| static ConstantInt *ExtractElement(Constant *V, Constant *Idx,
 | |
|                                    LLVMContext *Context) {
 | |
|   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
 | |
| }
 | |
| 
 | |
| static bool HasAddOverflow(ConstantInt *Result,
 | |
|                            ConstantInt *In1, ConstantInt *In2,
 | |
|                            bool IsSigned) {
 | |
|   if (IsSigned)
 | |
|     if (In2->getValue().isNegative())
 | |
|       return Result->getValue().sgt(In1->getValue());
 | |
|     else
 | |
|       return Result->getValue().slt(In1->getValue());
 | |
|   else
 | |
|     return Result->getValue().ult(In1->getValue());
 | |
| }
 | |
| 
 | |
| /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
 | |
| /// overflowed for this type.
 | |
| static bool AddWithOverflow(Constant *&Result, Constant *In1,
 | |
|                             Constant *In2, LLVMContext *Context,
 | |
|                             bool IsSigned = false) {
 | |
|   Result = ConstantExpr::getAdd(In1, In2);
 | |
| 
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
 | |
|     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
 | |
|       Constant *Idx = ConstantInt::get(Type::getInt32Ty(*Context), i);
 | |
|       if (HasAddOverflow(ExtractElement(Result, Idx, Context),
 | |
|                          ExtractElement(In1, Idx, Context),
 | |
|                          ExtractElement(In2, Idx, Context),
 | |
|                          IsSigned))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return HasAddOverflow(cast<ConstantInt>(Result),
 | |
|                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
 | |
|                         IsSigned);
 | |
| }
 | |
| 
 | |
| static bool HasSubOverflow(ConstantInt *Result,
 | |
|                            ConstantInt *In1, ConstantInt *In2,
 | |
|                            bool IsSigned) {
 | |
|   if (IsSigned)
 | |
|     if (In2->getValue().isNegative())
 | |
|       return Result->getValue().slt(In1->getValue());
 | |
|     else
 | |
|       return Result->getValue().sgt(In1->getValue());
 | |
|   else
 | |
|     return Result->getValue().ugt(In1->getValue());
 | |
| }
 | |
| 
 | |
| /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
 | |
| /// overflowed for this type.
 | |
| static bool SubWithOverflow(Constant *&Result, Constant *In1,
 | |
|                             Constant *In2, LLVMContext *Context,
 | |
|                             bool IsSigned = false) {
 | |
|   Result = ConstantExpr::getSub(In1, In2);
 | |
| 
 | |
|   if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
 | |
|     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
 | |
|       Constant *Idx = ConstantInt::get(Type::getInt32Ty(*Context), i);
 | |
|       if (HasSubOverflow(ExtractElement(Result, Idx, Context),
 | |
|                          ExtractElement(In1, Idx, Context),
 | |
|                          ExtractElement(In2, Idx, Context),
 | |
|                          IsSigned))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return HasSubOverflow(cast<ConstantInt>(Result),
 | |
|                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
 | |
|                         IsSigned);
 | |
| }
 | |
| 
 | |
| /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
 | |
| /// code necessary to compute the offset from the base pointer (without adding
 | |
| /// in the base pointer).  Return the result as a signed integer of intptr size.
 | |
| static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
 | |
|   TargetData &TD = *IC.getTargetData();
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   const Type *IntPtrTy = TD.getIntPtrType(I.getContext());
 | |
|   Value *Result = Constant::getNullValue(IntPtrTy);
 | |
| 
 | |
|   // Build a mask for high order bits.
 | |
|   unsigned IntPtrWidth = TD.getPointerSizeInBits();
 | |
|   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
 | |
| 
 | |
|   for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
 | |
|        ++i, ++GTI) {
 | |
|     Value *Op = *i;
 | |
|     uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
 | |
|     if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
 | |
|       if (OpC->isZero()) continue;
 | |
|       
 | |
|       // Handle a struct index, which adds its field offset to the pointer.
 | |
|       if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|         Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
 | |
|         
 | |
|         Result = IC.Builder->CreateAdd(Result,
 | |
|                                        ConstantInt::get(IntPtrTy, Size),
 | |
|                                        GEP->getName()+".offs");
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       Constant *Scale = ConstantInt::get(IntPtrTy, Size);
 | |
|       Constant *OC =
 | |
|               ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
 | |
|       Scale = ConstantExpr::getMul(OC, Scale);
 | |
|       // Emit an add instruction.
 | |
|       Result = IC.Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
 | |
|       continue;
 | |
|     }
 | |
|     // Convert to correct type.
 | |
|     if (Op->getType() != IntPtrTy)
 | |
|       Op = IC.Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
 | |
|     if (Size != 1) {
 | |
|       Constant *Scale = ConstantInt::get(IntPtrTy, Size);
 | |
|       // We'll let instcombine(mul) convert this to a shl if possible.
 | |
|       Op = IC.Builder->CreateMul(Op, Scale, GEP->getName()+".idx");
 | |
|     }
 | |
| 
 | |
|     // Emit an add instruction.
 | |
|     Result = IC.Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
 | |
| /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
 | |
| /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
 | |
| /// be complex, and scales are involved.  The above expression would also be
 | |
| /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
 | |
| /// This later form is less amenable to optimization though, and we are allowed
 | |
| /// to generate the first by knowing that pointer arithmetic doesn't overflow.
 | |
| ///
 | |
| /// If we can't emit an optimized form for this expression, this returns null.
 | |
| /// 
 | |
| static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
 | |
|                                           InstCombiner &IC) {
 | |
|   TargetData &TD = *IC.getTargetData();
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
| 
 | |
|   // Check to see if this gep only has a single variable index.  If so, and if
 | |
|   // any constant indices are a multiple of its scale, then we can compute this
 | |
|   // in terms of the scale of the variable index.  For example, if the GEP
 | |
|   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
 | |
|   // because the expression will cross zero at the same point.
 | |
|   unsigned i, e = GEP->getNumOperands();
 | |
|   int64_t Offset = 0;
 | |
|   for (i = 1; i != e; ++i, ++GTI) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
 | |
|       // Compute the aggregate offset of constant indices.
 | |
|       if (CI->isZero()) continue;
 | |
| 
 | |
|       // Handle a struct index, which adds its field offset to the pointer.
 | |
|       if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|         Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
 | |
|       } else {
 | |
|         uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
 | |
|         Offset += Size*CI->getSExtValue();
 | |
|       }
 | |
|     } else {
 | |
|       // Found our variable index.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If there are no variable indices, we must have a constant offset, just
 | |
|   // evaluate it the general way.
 | |
|   if (i == e) return 0;
 | |
|   
 | |
|   Value *VariableIdx = GEP->getOperand(i);
 | |
|   // Determine the scale factor of the variable element.  For example, this is
 | |
|   // 4 if the variable index is into an array of i32.
 | |
|   uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
 | |
|   
 | |
|   // Verify that there are no other variable indices.  If so, emit the hard way.
 | |
|   for (++i, ++GTI; i != e; ++i, ++GTI) {
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | |
|     if (!CI) return 0;
 | |
|    
 | |
|     // Compute the aggregate offset of constant indices.
 | |
|     if (CI->isZero()) continue;
 | |
|     
 | |
|     // Handle a struct index, which adds its field offset to the pointer.
 | |
|     if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|       Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
 | |
|     } else {
 | |
|       uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
 | |
|       Offset += Size*CI->getSExtValue();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Okay, we know we have a single variable index, which must be a
 | |
|   // pointer/array/vector index.  If there is no offset, life is simple, return
 | |
|   // the index.
 | |
|   unsigned IntPtrWidth = TD.getPointerSizeInBits();
 | |
|   if (Offset == 0) {
 | |
|     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
 | |
|     // we don't need to bother extending: the extension won't affect where the
 | |
|     // computation crosses zero.
 | |
|     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
 | |
|       VariableIdx = new TruncInst(VariableIdx, 
 | |
|                                   TD.getIntPtrType(VariableIdx->getContext()),
 | |
|                                   VariableIdx->getName(), &I);
 | |
|     return VariableIdx;
 | |
|   }
 | |
|   
 | |
|   // Otherwise, there is an index.  The computation we will do will be modulo
 | |
|   // the pointer size, so get it.
 | |
|   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
 | |
|   
 | |
|   Offset &= PtrSizeMask;
 | |
|   VariableScale &= PtrSizeMask;
 | |
| 
 | |
|   // To do this transformation, any constant index must be a multiple of the
 | |
|   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
 | |
|   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
 | |
|   // multiple of the variable scale.
 | |
|   int64_t NewOffs = Offset / (int64_t)VariableScale;
 | |
|   if (Offset != NewOffs*(int64_t)VariableScale)
 | |
|     return 0;
 | |
| 
 | |
|   // Okay, we can do this evaluation.  Start by converting the index to intptr.
 | |
|   const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
 | |
|   if (VariableIdx->getType() != IntPtrTy)
 | |
|     VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
 | |
|                                               true /*SExt*/, 
 | |
|                                               VariableIdx->getName(), &I);
 | |
|   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
 | |
|   return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
 | |
| /// else.  At this point we know that the GEP is on the LHS of the comparison.
 | |
| Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
 | |
|                                        ICmpInst::Predicate Cond,
 | |
|                                        Instruction &I) {
 | |
|   // Look through bitcasts.
 | |
|   if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
 | |
|     RHS = BCI->getOperand(0);
 | |
| 
 | |
|   Value *PtrBase = GEPLHS->getOperand(0);
 | |
|   if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
 | |
|     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
 | |
|     // This transformation (ignoring the base and scales) is valid because we
 | |
|     // know pointers can't overflow since the gep is inbounds.  See if we can
 | |
|     // output an optimized form.
 | |
|     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
 | |
|     
 | |
|     // If not, synthesize the offset the hard way.
 | |
|     if (Offset == 0)
 | |
|       Offset = EmitGEPOffset(GEPLHS, I, *this);
 | |
|     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
 | |
|                         Constant::getNullValue(Offset->getType()));
 | |
|   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
 | |
|     // If the base pointers are different, but the indices are the same, just
 | |
|     // compare the base pointer.
 | |
|     if (PtrBase != GEPRHS->getOperand(0)) {
 | |
|       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
 | |
|       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
 | |
|                         GEPRHS->getOperand(0)->getType();
 | |
|       if (IndicesTheSame)
 | |
|         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
 | |
|           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | |
|             IndicesTheSame = false;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|       // If all indices are the same, just compare the base pointers.
 | |
|       if (IndicesTheSame)
 | |
|         return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
 | |
|                             GEPLHS->getOperand(0), GEPRHS->getOperand(0));
 | |
| 
 | |
|       // Otherwise, the base pointers are different and the indices are
 | |
|       // different, bail out.
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|     // If one of the GEPs has all zero indices, recurse.
 | |
|     bool AllZeros = true;
 | |
|     for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<Constant>(GEPLHS->getOperand(i)) ||
 | |
|           !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
 | |
|         AllZeros = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllZeros)
 | |
|       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
 | |
|                           ICmpInst::getSwappedPredicate(Cond), I);
 | |
| 
 | |
|     // If the other GEP has all zero indices, recurse.
 | |
|     AllZeros = true;
 | |
|     for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<Constant>(GEPRHS->getOperand(i)) ||
 | |
|           !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
 | |
|         AllZeros = false;
 | |
|         break;
 | |
|       }
 | |
|     if (AllZeros)
 | |
|       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
 | |
| 
 | |
|     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
 | |
|       // If the GEPs only differ by one index, compare it.
 | |
|       unsigned NumDifferences = 0;  // Keep track of # differences.
 | |
|       unsigned DiffOperand = 0;     // The operand that differs.
 | |
|       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
 | |
|         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
 | |
|           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
 | |
|                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
 | |
|             // Irreconcilable differences.
 | |
|             NumDifferences = 2;
 | |
|             break;
 | |
|           } else {
 | |
|             if (NumDifferences++) break;
 | |
|             DiffOperand = i;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       if (NumDifferences == 0)   // SAME GEP?
 | |
|         return ReplaceInstUsesWith(I, // No comparison is needed here.
 | |
|                                    ConstantInt::get(Type::getInt1Ty(*Context),
 | |
|                                              ICmpInst::isTrueWhenEqual(Cond)));
 | |
| 
 | |
|       else if (NumDifferences == 1) {
 | |
|         Value *LHSV = GEPLHS->getOperand(DiffOperand);
 | |
|         Value *RHSV = GEPRHS->getOperand(DiffOperand);
 | |
|         // Make sure we do a signed comparison here.
 | |
|         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Only lower this if the icmp is the only user of the GEP or if we expect
 | |
|     // the result to fold to a constant!
 | |
|     if (TD &&
 | |
|         (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
 | |
|         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
 | |
|       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
 | |
|       Value *L = EmitGEPOffset(GEPLHS, I, *this);
 | |
|       Value *R = EmitGEPOffset(GEPRHS, I, *this);
 | |
|       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
 | |
| ///
 | |
| Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
 | |
|                                                 Instruction *LHSI,
 | |
|                                                 Constant *RHSC) {
 | |
|   if (!isa<ConstantFP>(RHSC)) return 0;
 | |
|   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
 | |
|   
 | |
|   // Get the width of the mantissa.  We don't want to hack on conversions that
 | |
|   // might lose information from the integer, e.g. "i64 -> float"
 | |
|   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
 | |
|   if (MantissaWidth == -1) return 0;  // Unknown.
 | |
|   
 | |
|   // Check to see that the input is converted from an integer type that is small
 | |
|   // enough that preserves all bits.  TODO: check here for "known" sign bits.
 | |
|   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
 | |
|   unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
 | |
|   
 | |
|   // If this is a uitofp instruction, we need an extra bit to hold the sign.
 | |
|   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
 | |
|   if (LHSUnsigned)
 | |
|     ++InputSize;
 | |
|   
 | |
|   // If the conversion would lose info, don't hack on this.
 | |
|   if ((int)InputSize > MantissaWidth)
 | |
|     return 0;
 | |
|   
 | |
|   // Otherwise, we can potentially simplify the comparison.  We know that it
 | |
|   // will always come through as an integer value and we know the constant is
 | |
|   // not a NAN (it would have been previously simplified).
 | |
|   assert(!RHS.isNaN() && "NaN comparison not already folded!");
 | |
|   
 | |
|   ICmpInst::Predicate Pred;
 | |
|   switch (I.getPredicate()) {
 | |
|   default: llvm_unreachable("Unexpected predicate!");
 | |
|   case FCmpInst::FCMP_UEQ:
 | |
|   case FCmpInst::FCMP_OEQ:
 | |
|     Pred = ICmpInst::ICMP_EQ;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_UGT:
 | |
|   case FCmpInst::FCMP_OGT:
 | |
|     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_UGE:
 | |
|   case FCmpInst::FCMP_OGE:
 | |
|     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_ULT:
 | |
|   case FCmpInst::FCMP_OLT:
 | |
|     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_ULE:
 | |
|   case FCmpInst::FCMP_OLE:
 | |
|     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_UNE:
 | |
|   case FCmpInst::FCMP_ONE:
 | |
|     Pred = ICmpInst::ICMP_NE;
 | |
|     break;
 | |
|   case FCmpInst::FCMP_ORD:
 | |
|     return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|   case FCmpInst::FCMP_UNO:
 | |
|     return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|   }
 | |
|   
 | |
|   const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
 | |
|   
 | |
|   // Now we know that the APFloat is a normal number, zero or inf.
 | |
|   
 | |
|   // See if the FP constant is too large for the integer.  For example,
 | |
|   // comparing an i8 to 300.0.
 | |
|   unsigned IntWidth = IntTy->getScalarSizeInBits();
 | |
|   
 | |
|   if (!LHSUnsigned) {
 | |
|     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
 | |
|     // and large values.
 | |
|     APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
 | |
|     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
 | |
|                           APFloat::rmNearestTiesToEven);
 | |
|     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
 | |
|       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
 | |
|           Pred == ICmpInst::ICMP_SLE)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|     }
 | |
|   } else {
 | |
|     // If the RHS value is > UnsignedMax, fold the comparison. This handles
 | |
|     // +INF and large values.
 | |
|     APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
 | |
|     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
 | |
|                           APFloat::rmNearestTiesToEven);
 | |
|     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
 | |
|       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
 | |
|           Pred == ICmpInst::ICMP_ULE)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (!LHSUnsigned) {
 | |
|     // See if the RHS value is < SignedMin.
 | |
|     APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
 | |
|     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
 | |
|                           APFloat::rmNearestTiesToEven);
 | |
|     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
 | |
|       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
 | |
|           Pred == ICmpInst::ICMP_SGE)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
 | |
|   // [0, UMAX], but it may still be fractional.  See if it is fractional by
 | |
|   // casting the FP value to the integer value and back, checking for equality.
 | |
|   // Don't do this for zero, because -0.0 is not fractional.
 | |
|   Constant *RHSInt = LHSUnsigned
 | |
|     ? ConstantExpr::getFPToUI(RHSC, IntTy)
 | |
|     : ConstantExpr::getFPToSI(RHSC, IntTy);
 | |
|   if (!RHS.isZero()) {
 | |
|     bool Equal = LHSUnsigned
 | |
|       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
 | |
|       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
 | |
|     if (!Equal) {
 | |
|       // If we had a comparison against a fractional value, we have to adjust
 | |
|       // the compare predicate and sometimes the value.  RHSC is rounded towards
 | |
|       // zero at this point.
 | |
|       switch (Pred) {
 | |
|       default: llvm_unreachable("Unexpected integer comparison!");
 | |
|       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|       case ICmpInst::ICMP_ULE:
 | |
|         // (float)int <= 4.4   --> int <= 4
 | |
|         // (float)int <= -4.4  --> false
 | |
|         if (RHS.isNegative())
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SLE:
 | |
|         // (float)int <= 4.4   --> int <= 4
 | |
|         // (float)int <= -4.4  --> int < -4
 | |
|         if (RHS.isNegative())
 | |
|           Pred = ICmpInst::ICMP_SLT;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_ULT:
 | |
|         // (float)int < -4.4   --> false
 | |
|         // (float)int < 4.4    --> int <= 4
 | |
|         if (RHS.isNegative())
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|         Pred = ICmpInst::ICMP_ULE;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SLT:
 | |
|         // (float)int < -4.4   --> int < -4
 | |
|         // (float)int < 4.4    --> int <= 4
 | |
|         if (!RHS.isNegative())
 | |
|           Pred = ICmpInst::ICMP_SLE;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_UGT:
 | |
|         // (float)int > 4.4    --> int > 4
 | |
|         // (float)int > -4.4   --> true
 | |
|         if (RHS.isNegative())
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SGT:
 | |
|         // (float)int > 4.4    --> int > 4
 | |
|         // (float)int > -4.4   --> int >= -4
 | |
|         if (RHS.isNegative())
 | |
|           Pred = ICmpInst::ICMP_SGE;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_UGE:
 | |
|         // (float)int >= -4.4   --> true
 | |
|         // (float)int >= 4.4    --> int > 4
 | |
|         if (!RHS.isNegative())
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|         Pred = ICmpInst::ICMP_UGT;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SGE:
 | |
|         // (float)int >= -4.4   --> int >= -4
 | |
|         // (float)int >= 4.4    --> int > 4
 | |
|         if (!RHS.isNegative())
 | |
|           Pred = ICmpInst::ICMP_SGT;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Lower this FP comparison into an appropriate integer version of the
 | |
|   // comparison.
 | |
|   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
 | |
|   bool Changed = SimplifyCompare(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // Fold trivial predicates.
 | |
|   if (I.getPredicate() == FCmpInst::FCMP_FALSE)
 | |
|     return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 0));
 | |
|   if (I.getPredicate() == FCmpInst::FCMP_TRUE)
 | |
|     return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 1));
 | |
|   
 | |
|   // Simplify 'fcmp pred X, X'
 | |
|   if (Op0 == Op1) {
 | |
|     switch (I.getPredicate()) {
 | |
|     default: llvm_unreachable("Unknown predicate!");
 | |
|     case FCmpInst::FCMP_UEQ:    // True if unordered or equal
 | |
|     case FCmpInst::FCMP_UGE:    // True if unordered, greater than, or equal
 | |
|     case FCmpInst::FCMP_ULE:    // True if unordered, less than, or equal
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 1));
 | |
|     case FCmpInst::FCMP_OGT:    // True if ordered and greater than
 | |
|     case FCmpInst::FCMP_OLT:    // True if ordered and less than
 | |
|     case FCmpInst::FCMP_ONE:    // True if ordered and operands are unequal
 | |
|       return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), 0));
 | |
|       
 | |
|     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
 | |
|     case FCmpInst::FCMP_ULT:    // True if unordered or less than
 | |
|     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
 | |
|     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
 | |
|       // Canonicalize these to be 'fcmp uno %X, 0.0'.
 | |
|       I.setPredicate(FCmpInst::FCMP_UNO);
 | |
|       I.setOperand(1, Constant::getNullValue(Op0->getType()));
 | |
|       return &I;
 | |
|       
 | |
|     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
 | |
|     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
 | |
|     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
 | |
|     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
 | |
|       // Canonicalize these to be 'fcmp ord %X, 0.0'.
 | |
|       I.setPredicate(FCmpInst::FCMP_ORD);
 | |
|       I.setOperand(1, Constant::getNullValue(Op0->getType()));
 | |
|       return &I;
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   if (isa<UndefValue>(Op1))                  // fcmp pred X, undef -> undef
 | |
|     return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
 | |
| 
 | |
|   // Handle fcmp with constant RHS
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
 | |
|     // If the constant is a nan, see if we can fold the comparison based on it.
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
 | |
|       if (CFP->getValueAPF().isNaN()) {
 | |
|         if (FCmpInst::isOrdered(I.getPredicate()))   // True if ordered and...
 | |
|           return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|         assert(FCmpInst::isUnordered(I.getPredicate()) &&
 | |
|                "Comparison must be either ordered or unordered!");
 | |
|         // True if unordered.
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | |
|       switch (LHSI->getOpcode()) {
 | |
|       case Instruction::PHI:
 | |
|         // Only fold fcmp into the PHI if the phi and fcmp are in the same
 | |
|         // block.  If in the same block, we're encouraging jump threading.  If
 | |
|         // not, we are just pessimizing the code by making an i1 phi.
 | |
|         if (LHSI->getParent() == I.getParent())
 | |
|           if (Instruction *NV = FoldOpIntoPhi(I, true))
 | |
|             return NV;
 | |
|         break;
 | |
|       case Instruction::SIToFP:
 | |
|       case Instruction::UIToFP:
 | |
|         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
 | |
|           return NV;
 | |
|         break;
 | |
|       case Instruction::Select:
 | |
|         // If either operand of the select is a constant, we can fold the
 | |
|         // comparison into the select arms, which will cause one to be
 | |
|         // constant folded and the select turned into a bitwise or.
 | |
|         Value *Op1 = 0, *Op2 = 0;
 | |
|         if (LHSI->hasOneUse()) {
 | |
|           if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
 | |
|             // Fold the known value into the constant operand.
 | |
|             Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
 | |
|             // Insert a new FCmp of the other select operand.
 | |
|             Op2 = Builder->CreateFCmp(I.getPredicate(),
 | |
|                                       LHSI->getOperand(2), RHSC, I.getName());
 | |
|           } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
 | |
|             // Fold the known value into the constant operand.
 | |
|             Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
 | |
|             // Insert a new FCmp of the other select operand.
 | |
|             Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
 | |
|                                       RHSC, I.getName());
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (Op1)
 | |
|           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
 | |
|   bool Changed = SimplifyCompare(I);
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
|   const Type *Ty = Op0->getType();
 | |
| 
 | |
|   // icmp X, X
 | |
|   if (Op0 == Op1)
 | |
|     return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(),
 | |
|                                                    I.isTrueWhenEqual()));
 | |
| 
 | |
|   if (isa<UndefValue>(Op1))                  // X icmp undef -> undef
 | |
|     return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
 | |
|   
 | |
|   // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
 | |
|   // addresses never equal each other!  We already know that Op0 != Op1.
 | |
|   if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) || 
 | |
|        isa<ConstantPointerNull>(Op0)) &&
 | |
|       (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) || 
 | |
|        isa<ConstantPointerNull>(Op1)))
 | |
|     return ReplaceInstUsesWith(I, ConstantInt::get(Type::getInt1Ty(*Context), 
 | |
|                                                    !I.isTrueWhenEqual()));
 | |
| 
 | |
|   // icmp's with boolean values can always be turned into bitwise operations
 | |
|   if (Ty == Type::getInt1Ty(*Context)) {
 | |
|     switch (I.getPredicate()) {
 | |
|     default: llvm_unreachable("Invalid icmp instruction!");
 | |
|     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
 | |
|       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
 | |
|       return BinaryOperator::CreateNot(Xor);
 | |
|     }
 | |
|     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
 | |
|       return BinaryOperator::CreateXor(Op0, Op1);
 | |
| 
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
 | |
|       // FALL THROUGH
 | |
|     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
 | |
|       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
 | |
|       return BinaryOperator::CreateAnd(Not, Op1);
 | |
|     }
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
 | |
|       // FALL THROUGH
 | |
|     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
 | |
|       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
 | |
|       return BinaryOperator::CreateAnd(Not, Op0);
 | |
|     }
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
 | |
|       // FALL THROUGH
 | |
|     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
 | |
|       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
 | |
|       return BinaryOperator::CreateOr(Not, Op1);
 | |
|     }
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
 | |
|       // FALL THROUGH
 | |
|     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
 | |
|       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
 | |
|       return BinaryOperator::CreateOr(Not, Op0);
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned BitWidth = 0;
 | |
|   if (TD)
 | |
|     BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
 | |
|   else if (Ty->isIntOrIntVector())
 | |
|     BitWidth = Ty->getScalarSizeInBits();
 | |
| 
 | |
|   bool isSignBit = false;
 | |
| 
 | |
|   // See if we are doing a comparison with a constant.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     Value *A = 0, *B = 0;
 | |
|     
 | |
|     // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
 | |
|     if (I.isEquality() && CI->isNullValue() &&
 | |
|         match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
 | |
|       // (icmp cond A B) if cond is equality
 | |
|       return new ICmpInst(I.getPredicate(), A, B);
 | |
|     }
 | |
|     
 | |
|     // If we have an icmp le or icmp ge instruction, turn it into the
 | |
|     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
 | |
|     // them being folded in the code below.
 | |
|     switch (I.getPredicate()) {
 | |
|     default: break;
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
 | |
|                           AddOne(CI));
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
 | |
|                           AddOne(CI));
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       if (CI->isMinValue(false))                 // A >=u MIN -> TRUE
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
 | |
|                           SubOne(CI));
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       if (CI->isMinValue(true))                  // A >=s MIN -> TRUE
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
 | |
|                           SubOne(CI));
 | |
|     }
 | |
|     
 | |
|     // If this comparison is a normal comparison, it demands all
 | |
|     // bits, if it is a sign bit comparison, it only demands the sign bit.
 | |
|     bool UnusedBit;
 | |
|     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
 | |
|   }
 | |
| 
 | |
|   // See if we can fold the comparison based on range information we can get
 | |
|   // by checking whether bits are known to be zero or one in the input.
 | |
|   if (BitWidth != 0) {
 | |
|     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
 | |
|     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
 | |
| 
 | |
|     if (SimplifyDemandedBits(I.getOperandUse(0),
 | |
|                              isSignBit ? APInt::getSignBit(BitWidth)
 | |
|                                        : APInt::getAllOnesValue(BitWidth),
 | |
|                              Op0KnownZero, Op0KnownOne, 0))
 | |
|       return &I;
 | |
|     if (SimplifyDemandedBits(I.getOperandUse(1),
 | |
|                              APInt::getAllOnesValue(BitWidth),
 | |
|                              Op1KnownZero, Op1KnownOne, 0))
 | |
|       return &I;
 | |
| 
 | |
|     // Given the known and unknown bits, compute a range that the LHS could be
 | |
|     // in.  Compute the Min, Max and RHS values based on the known bits. For the
 | |
|     // EQ and NE we use unsigned values.
 | |
|     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
 | |
|     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
 | |
|     if (ICmpInst::isSignedPredicate(I.getPredicate())) {
 | |
|       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
 | |
|                                              Op0Min, Op0Max);
 | |
|       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
 | |
|                                              Op1Min, Op1Max);
 | |
|     } else {
 | |
|       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
 | |
|                                                Op0Min, Op0Max);
 | |
|       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
 | |
|                                                Op1Min, Op1Max);
 | |
|     }
 | |
| 
 | |
|     // If Min and Max are known to be the same, then SimplifyDemandedBits
 | |
|     // figured out that the LHS is a constant.  Just constant fold this now so
 | |
|     // that code below can assume that Min != Max.
 | |
|     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
 | |
|       return new ICmpInst(I.getPredicate(),
 | |
|                           ConstantInt::get(*Context, Op0Min), Op1);
 | |
|     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
 | |
|       return new ICmpInst(I.getPredicate(), Op0,
 | |
|                           ConstantInt::get(*Context, Op1Min));
 | |
| 
 | |
|     // Based on the range information we know about the LHS, see if we can
 | |
|     // simplify this comparison.  For example, (x&4) < 8  is always true.
 | |
|     switch (I.getPredicate()) {
 | |
|     default: llvm_unreachable("Unknown icmp opcode!");
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       break;
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
 | |
|         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
 | |
|           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | |
|                               SubOne(CI));
 | |
| 
 | |
|         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
 | |
|         if (CI->isMinValue(true))
 | |
|           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
 | |
|                            Constant::getAllOnesValue(Op0->getType()));
 | |
|       }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
| 
 | |
|       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
 | |
|         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
 | |
|           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | |
|                               AddOne(CI));
 | |
| 
 | |
|         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
 | |
|         if (CI->isMaxValue(true))
 | |
|           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
 | |
|                               Constant::getNullValue(Op0->getType()));
 | |
|       }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
 | |
|         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
 | |
|           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | |
|                               SubOne(CI));
 | |
|       }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
| 
 | |
|       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
 | |
|         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
 | |
|           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
 | |
|                               AddOne(CI));
 | |
|       }
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
 | |
|       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
 | |
|       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
 | |
|       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|       break;
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
 | |
|       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getTrue(*Context));
 | |
|       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
 | |
|         return ReplaceInstUsesWith(I, ConstantInt::getFalse(*Context));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Turn a signed comparison into an unsigned one if both operands
 | |
|     // are known to have the same sign.
 | |
|     if (I.isSignedPredicate() &&
 | |
|         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
 | |
|          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
 | |
|       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // Test if the ICmpInst instruction is used exclusively by a select as
 | |
|   // part of a minimum or maximum operation. If so, refrain from doing
 | |
|   // any other folding. This helps out other analyses which understand
 | |
|   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
 | |
|   // and CodeGen. And in this case, at least one of the comparison
 | |
|   // operands has at least one user besides the compare (the select),
 | |
|   // which would often largely negate the benefit of folding anyway.
 | |
|   if (I.hasOneUse())
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
 | |
|       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
 | |
|           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
 | |
|         return 0;
 | |
| 
 | |
|   // See if we are doing a comparison between a constant and an instruction that
 | |
|   // can be folded into the comparison.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
 | |
|     // Since the RHS is a ConstantInt (CI), if the left hand side is an 
 | |
|     // instruction, see if that instruction also has constants so that the 
 | |
|     // instruction can be folded into the icmp 
 | |
|     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | |
|       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
 | |
|         return Res;
 | |
|   }
 | |
| 
 | |
|   // Handle icmp with constant (but not simple integer constant) RHS
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
 | |
|     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
 | |
|       switch (LHSI->getOpcode()) {
 | |
|       case Instruction::GetElementPtr:
 | |
|         if (RHSC->isNullValue()) {
 | |
|           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
 | |
|           bool isAllZeros = true;
 | |
|           for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
 | |
|             if (!isa<Constant>(LHSI->getOperand(i)) ||
 | |
|                 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
 | |
|               isAllZeros = false;
 | |
|               break;
 | |
|             }
 | |
|           if (isAllZeros)
 | |
|             return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
 | |
|                     Constant::getNullValue(LHSI->getOperand(0)->getType()));
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case Instruction::PHI:
 | |
|         // Only fold icmp into the PHI if the phi and icmp are in the same
 | |
|         // block.  If in the same block, we're encouraging jump threading.  If
 | |
|         // not, we are just pessimizing the code by making an i1 phi.
 | |
|         if (LHSI->getParent() == I.getParent())
 | |
|           if (Instruction *NV = FoldOpIntoPhi(I, true))
 | |
|             return NV;
 | |
|         break;
 | |
|       case Instruction::Select: {
 | |
|         // If either operand of the select is a constant, we can fold the
 | |
|         // comparison into the select arms, which will cause one to be
 | |
|         // constant folded and the select turned into a bitwise or.
 | |
|         Value *Op1 = 0, *Op2 = 0;
 | |
|         if (LHSI->hasOneUse()) {
 | |
|           if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
 | |
|             // Fold the known value into the constant operand.
 | |
|             Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
 | |
|             // Insert a new ICmp of the other select operand.
 | |
|             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
 | |
|                                       RHSC, I.getName());
 | |
|           } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
 | |
|             // Fold the known value into the constant operand.
 | |
|             Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
 | |
|             // Insert a new ICmp of the other select operand.
 | |
|             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
 | |
|                                       RHSC, I.getName());
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (Op1)
 | |
|           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
 | |
|         break;
 | |
|       }
 | |
|       case Instruction::Malloc:
 | |
|         // If we have (malloc != null), and if the malloc has a single use, we
 | |
|         // can assume it is successful and remove the malloc.
 | |
|         if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
 | |
|           Worklist.Add(LHSI);
 | |
|           return ReplaceInstUsesWith(I,
 | |
|                                      ConstantInt::get(Type::getInt1Ty(*Context),
 | |
|                                                       !I.isTrueWhenEqual()));
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Call:
 | |
|         // If we have (malloc != null), and if the malloc has a single use, we
 | |
|         // can assume it is successful and remove the malloc.
 | |
|         if (isMalloc(LHSI) && LHSI->hasOneUse() &&
 | |
|             isa<ConstantPointerNull>(RHSC)) {
 | |
|           Worklist.Add(LHSI);
 | |
|           return ReplaceInstUsesWith(I,
 | |
|                                      ConstantInt::get(Type::getInt1Ty(*Context),
 | |
|                                                       !I.isTrueWhenEqual()));
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
 | |
|   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
 | |
|     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
 | |
|       return NI;
 | |
|   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
 | |
|     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
 | |
|                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
 | |
|       return NI;
 | |
| 
 | |
|   // Test to see if the operands of the icmp are casted versions of other
 | |
|   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
 | |
|   // now.
 | |
|   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
 | |
|     if (isa<PointerType>(Op0->getType()) && 
 | |
|         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) { 
 | |
|       // We keep moving the cast from the left operand over to the right
 | |
|       // operand, where it can often be eliminated completely.
 | |
|       Op0 = CI->getOperand(0);
 | |
| 
 | |
|       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
 | |
|       // so eliminate it as well.
 | |
|       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
 | |
|         Op1 = CI2->getOperand(0);
 | |
| 
 | |
|       // If Op1 is a constant, we can fold the cast into the constant.
 | |
|       if (Op0->getType() != Op1->getType()) {
 | |
|         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | |
|           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
 | |
|         } else {
 | |
|           // Otherwise, cast the RHS right before the icmp
 | |
|           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
 | |
|         }
 | |
|       }
 | |
|       return new ICmpInst(I.getPredicate(), Op0, Op1);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (isa<CastInst>(Op0)) {
 | |
|     // Handle the special case of: icmp (cast bool to X), <cst>
 | |
|     // This comes up when you have code like
 | |
|     //   int X = A < B;
 | |
|     //   if (X) ...
 | |
|     // For generality, we handle any zero-extension of any operand comparison
 | |
|     // with a constant or another cast from the same type.
 | |
|     if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
 | |
|       if (Instruction *R = visitICmpInstWithCastAndCast(I))
 | |
|         return R;
 | |
|   }
 | |
|   
 | |
|   // See if it's the same type of instruction on the left and right.
 | |
|   if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
 | |
|     if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
 | |
|       if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
 | |
|           Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
 | |
|         switch (Op0I->getOpcode()) {
 | |
|         default: break;
 | |
|         case Instruction::Add:
 | |
|         case Instruction::Sub:
 | |
|         case Instruction::Xor:
 | |
|           if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
 | |
|             return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
 | |
|                                 Op1I->getOperand(0));
 | |
|           // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
 | |
|             if (CI->getValue().isSignBit()) {
 | |
|               ICmpInst::Predicate Pred = I.isSignedPredicate()
 | |
|                                              ? I.getUnsignedPredicate()
 | |
|                                              : I.getSignedPredicate();
 | |
|               return new ICmpInst(Pred, Op0I->getOperand(0),
 | |
|                                   Op1I->getOperand(0));
 | |
|             }
 | |
|             
 | |
|             if (CI->getValue().isMaxSignedValue()) {
 | |
|               ICmpInst::Predicate Pred = I.isSignedPredicate()
 | |
|                                              ? I.getUnsignedPredicate()
 | |
|                                              : I.getSignedPredicate();
 | |
|               Pred = I.getSwappedPredicate(Pred);
 | |
|               return new ICmpInst(Pred, Op0I->getOperand(0),
 | |
|                                   Op1I->getOperand(0));
 | |
|             }
 | |
|           }
 | |
|           break;
 | |
|         case Instruction::Mul:
 | |
|           if (!I.isEquality())
 | |
|             break;
 | |
| 
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
 | |
|             // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
 | |
|             // Mask = -1 >> count-trailing-zeros(Cst).
 | |
|             if (!CI->isZero() && !CI->isOne()) {
 | |
|               const APInt &AP = CI->getValue();
 | |
|               ConstantInt *Mask = ConstantInt::get(*Context, 
 | |
|                                       APInt::getLowBitsSet(AP.getBitWidth(),
 | |
|                                                            AP.getBitWidth() -
 | |
|                                                       AP.countTrailingZeros()));
 | |
|               Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
 | |
|               Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
 | |
|               return new ICmpInst(I.getPredicate(), And1, And2);
 | |
|             }
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // ~x < ~y --> y < x
 | |
|   { Value *A, *B;
 | |
|     if (match(Op0, m_Not(m_Value(A))) &&
 | |
|         match(Op1, m_Not(m_Value(B))))
 | |
|       return new ICmpInst(I.getPredicate(), B, A);
 | |
|   }
 | |
|   
 | |
|   if (I.isEquality()) {
 | |
|     Value *A, *B, *C, *D;
 | |
|     
 | |
|     // -x == -y --> x == y
 | |
|     if (match(Op0, m_Neg(m_Value(A))) &&
 | |
|         match(Op1, m_Neg(m_Value(B))))
 | |
|       return new ICmpInst(I.getPredicate(), A, B);
 | |
|     
 | |
|     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
 | |
|       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
 | |
|         Value *OtherVal = A == Op1 ? B : A;
 | |
|         return new ICmpInst(I.getPredicate(), OtherVal,
 | |
|                             Constant::getNullValue(A->getType()));
 | |
|       }
 | |
| 
 | |
|       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
 | |
|         // A^c1 == C^c2 --> A == C^(c1^c2)
 | |
|         ConstantInt *C1, *C2;
 | |
|         if (match(B, m_ConstantInt(C1)) &&
 | |
|             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
 | |
|           Constant *NC = 
 | |
|                    ConstantInt::get(*Context, C1->getValue() ^ C2->getValue());
 | |
|           Value *Xor = Builder->CreateXor(C, NC, "tmp");
 | |
|           return new ICmpInst(I.getPredicate(), A, Xor);
 | |
|         }
 | |
|         
 | |
|         // A^B == A^D -> B == D
 | |
|         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
 | |
|         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
 | |
|         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
 | |
|         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|         (A == Op0 || B == Op0)) {
 | |
|       // A == (A^B)  ->  B == 0
 | |
|       Value *OtherVal = A == Op0 ? B : A;
 | |
|       return new ICmpInst(I.getPredicate(), OtherVal,
 | |
|                           Constant::getNullValue(A->getType()));
 | |
|     }
 | |
| 
 | |
|     // (A-B) == A  ->  B == 0
 | |
|     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
 | |
|       return new ICmpInst(I.getPredicate(), B, 
 | |
|                           Constant::getNullValue(B->getType()));
 | |
| 
 | |
|     // A == (A-B)  ->  B == 0
 | |
|     if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
 | |
|       return new ICmpInst(I.getPredicate(), B,
 | |
|                           Constant::getNullValue(B->getType()));
 | |
|     
 | |
|     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
 | |
|     if (Op0->hasOneUse() && Op1->hasOneUse() &&
 | |
|         match(Op0, m_And(m_Value(A), m_Value(B))) && 
 | |
|         match(Op1, m_And(m_Value(C), m_Value(D)))) {
 | |
|       Value *X = 0, *Y = 0, *Z = 0;
 | |
|       
 | |
|       if (A == C) {
 | |
|         X = B; Y = D; Z = A;
 | |
|       } else if (A == D) {
 | |
|         X = B; Y = C; Z = A;
 | |
|       } else if (B == C) {
 | |
|         X = A; Y = D; Z = B;
 | |
|       } else if (B == D) {
 | |
|         X = A; Y = C; Z = B;
 | |
|       }
 | |
|       
 | |
|       if (X) {   // Build (X^Y) & Z
 | |
|         Op1 = Builder->CreateXor(X, Y, "tmp");
 | |
|         Op1 = Builder->CreateAnd(Op1, Z, "tmp");
 | |
|         I.setOperand(0, Op1);
 | |
|         I.setOperand(1, Constant::getNullValue(Op1->getType()));
 | |
|         return &I;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Changed ? &I : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
 | |
| /// and CmpRHS are both known to be integer constants.
 | |
| Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
 | |
|                                           ConstantInt *DivRHS) {
 | |
|   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
 | |
|   const APInt &CmpRHSV = CmpRHS->getValue();
 | |
|   
 | |
|   // FIXME: If the operand types don't match the type of the divide 
 | |
|   // then don't attempt this transform. The code below doesn't have the
 | |
|   // logic to deal with a signed divide and an unsigned compare (and
 | |
|   // vice versa). This is because (x /s C1) <s C2  produces different 
 | |
|   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
 | |
|   // (x /u C1) <u C2.  Simply casting the operands and result won't 
 | |
|   // work. :(  The if statement below tests that condition and bails 
 | |
|   // if it finds it. 
 | |
|   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
 | |
|   if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
 | |
|     return 0;
 | |
|   if (DivRHS->isZero())
 | |
|     return 0; // The ProdOV computation fails on divide by zero.
 | |
|   if (DivIsSigned && DivRHS->isAllOnesValue())
 | |
|     return 0; // The overflow computation also screws up here
 | |
|   if (DivRHS->isOne())
 | |
|     return 0; // Not worth bothering, and eliminates some funny cases
 | |
|               // with INT_MIN.
 | |
| 
 | |
|   // Compute Prod = CI * DivRHS. We are essentially solving an equation
 | |
|   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and 
 | |
|   // C2 (CI). By solving for X we can turn this into a range check 
 | |
|   // instead of computing a divide. 
 | |
|   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
 | |
| 
 | |
|   // Determine if the product overflows by seeing if the product is
 | |
|   // not equal to the divide. Make sure we do the same kind of divide
 | |
|   // as in the LHS instruction that we're folding. 
 | |
|   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
 | |
|                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
 | |
| 
 | |
|   // Get the ICmp opcode
 | |
|   ICmpInst::Predicate Pred = ICI.getPredicate();
 | |
| 
 | |
|   // Figure out the interval that is being checked.  For example, a comparison
 | |
|   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5). 
 | |
|   // Compute this interval based on the constants involved and the signedness of
 | |
|   // the compare/divide.  This computes a half-open interval, keeping track of
 | |
|   // whether either value in the interval overflows.  After analysis each
 | |
|   // overflow variable is set to 0 if it's corresponding bound variable is valid
 | |
|   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
 | |
|   int LoOverflow = 0, HiOverflow = 0;
 | |
|   Constant *LoBound = 0, *HiBound = 0;
 | |
|   
 | |
|   if (!DivIsSigned) {  // udiv
 | |
|     // e.g. X/5 op 3  --> [15, 20)
 | |
|     LoBound = Prod;
 | |
|     HiOverflow = LoOverflow = ProdOV;
 | |
|     if (!HiOverflow)
 | |
|       HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, Context, false);
 | |
|   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
 | |
|     if (CmpRHSV == 0) {       // (X / pos) op 0
 | |
|       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
 | |
|       LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
 | |
|       HiBound = DivRHS;
 | |
|     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
 | |
|       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
 | |
|       HiOverflow = LoOverflow = ProdOV;
 | |
|       if (!HiOverflow)
 | |
|         HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, Context, true);
 | |
|     } else {                       // (X / pos) op neg
 | |
|       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
 | |
|       HiBound = AddOne(Prod);
 | |
|       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
 | |
|       if (!LoOverflow) {
 | |
|         ConstantInt* DivNeg =
 | |
|                          cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
 | |
|         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, Context,
 | |
|                                      true) ? -1 : 0;
 | |
|        }
 | |
|     }
 | |
|   } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
 | |
|     if (CmpRHSV == 0) {       // (X / neg) op 0
 | |
|       // e.g. X/-5 op 0  --> [-4, 5)
 | |
|       LoBound = AddOne(DivRHS);
 | |
|       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
 | |
|       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
 | |
|         HiOverflow = 1;            // [INTMIN+1, overflow)
 | |
|         HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
 | |
|       }
 | |
|     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
 | |
|       // e.g. X/-5 op 3  --> [-19, -14)
 | |
|       HiBound = AddOne(Prod);
 | |
|       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
 | |
|       if (!LoOverflow)
 | |
|         LoOverflow = AddWithOverflow(LoBound, HiBound,
 | |
|                                      DivRHS, Context, true) ? -1 : 0;
 | |
|     } else {                       // (X / neg) op neg
 | |
|       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
 | |
|       LoOverflow = HiOverflow = ProdOV;
 | |
|       if (!HiOverflow)
 | |
|         HiOverflow = SubWithOverflow(HiBound, Prod, DivRHS, Context, true);
 | |
|     }
 | |
|     
 | |
|     // Dividing by a negative swaps the condition.  LT <-> GT
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   Value *X = DivI->getOperand(0);
 | |
|   switch (Pred) {
 | |
|   default: llvm_unreachable("Unhandled icmp opcode!");
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|     if (LoOverflow && HiOverflow)
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
 | |
|     else if (HiOverflow)
 | |
|       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
 | |
|                           ICmpInst::ICMP_UGE, X, LoBound);
 | |
|     else if (LoOverflow)
 | |
|       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
 | |
|                           ICmpInst::ICMP_ULT, X, HiBound);
 | |
|     else
 | |
|       return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     if (LoOverflow && HiOverflow)
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
 | |
|     else if (HiOverflow)
 | |
|       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
 | |
|                           ICmpInst::ICMP_ULT, X, LoBound);
 | |
|     else if (LoOverflow)
 | |
|       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
 | |
|                           ICmpInst::ICMP_UGE, X, HiBound);
 | |
|     else
 | |
|       return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     if (LoOverflow == +1)   // Low bound is greater than input range.
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
 | |
|     if (LoOverflow == -1)   // Low bound is less than input range.
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
 | |
|     return new ICmpInst(Pred, X, LoBound);
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     if (HiOverflow == +1)       // High bound greater than input range.
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
 | |
|     else if (HiOverflow == -1)  // High bound less than input range.
 | |
|       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
 | |
|     if (Pred == ICmpInst::ICMP_UGT)
 | |
|       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
 | |
|     else
 | |
|       return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
 | |
| ///
 | |
| Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
 | |
|                                                           Instruction *LHSI,
 | |
|                                                           ConstantInt *RHS) {
 | |
|   const APInt &RHSV = RHS->getValue();
 | |
|   
 | |
|   switch (LHSI->getOpcode()) {
 | |
|   case Instruction::Trunc:
 | |
|     if (ICI.isEquality() && LHSI->hasOneUse()) {
 | |
|       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
 | |
|       // of the high bits truncated out of x are known.
 | |
|       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
 | |
|              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
 | |
|       APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
 | |
|       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
 | |
|       ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
 | |
|       
 | |
|       // If all the high bits are known, we can do this xform.
 | |
|       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
 | |
|         // Pull in the high bits from known-ones set.
 | |
|         APInt NewRHS(RHS->getValue());
 | |
|         NewRHS.zext(SrcBits);
 | |
|         NewRHS |= KnownOne;
 | |
|         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
 | |
|                             ConstantInt::get(*Context, NewRHS));
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|       
 | |
|   case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
 | |
|     if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
 | |
|       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
 | |
|       // fold the xor.
 | |
|       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
 | |
|           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
 | |
|         Value *CompareVal = LHSI->getOperand(0);
 | |
|         
 | |
|         // If the sign bit of the XorCST is not set, there is no change to
 | |
|         // the operation, just stop using the Xor.
 | |
|         if (!XorCST->getValue().isNegative()) {
 | |
|           ICI.setOperand(0, CompareVal);
 | |
|           Worklist.Add(LHSI);
 | |
|           return &ICI;
 | |
|         }
 | |
|         
 | |
|         // Was the old condition true if the operand is positive?
 | |
|         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
 | |
|         
 | |
|         // If so, the new one isn't.
 | |
|         isTrueIfPositive ^= true;
 | |
|         
 | |
|         if (isTrueIfPositive)
 | |
|           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
 | |
|                               SubOne(RHS));
 | |
|         else
 | |
|           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
 | |
|                               AddOne(RHS));
 | |
|       }
 | |
| 
 | |
|       if (LHSI->hasOneUse()) {
 | |
|         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
 | |
|         if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
 | |
|           const APInt &SignBit = XorCST->getValue();
 | |
|           ICmpInst::Predicate Pred = ICI.isSignedPredicate()
 | |
|                                          ? ICI.getUnsignedPredicate()
 | |
|                                          : ICI.getSignedPredicate();
 | |
|           return new ICmpInst(Pred, LHSI->getOperand(0),
 | |
|                               ConstantInt::get(*Context, RHSV ^ SignBit));
 | |
|         }
 | |
| 
 | |
|         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
 | |
|         if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
 | |
|           const APInt &NotSignBit = XorCST->getValue();
 | |
|           ICmpInst::Predicate Pred = ICI.isSignedPredicate()
 | |
|                                          ? ICI.getUnsignedPredicate()
 | |
|                                          : ICI.getSignedPredicate();
 | |
|           Pred = ICI.getSwappedPredicate(Pred);
 | |
|           return new ICmpInst(Pred, LHSI->getOperand(0),
 | |
|                               ConstantInt::get(*Context, RHSV ^ NotSignBit));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
 | |
|     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
 | |
|         LHSI->getOperand(0)->hasOneUse()) {
 | |
|       ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
 | |
|       
 | |
|       // If the LHS is an AND of a truncating cast, we can widen the
 | |
|       // and/compare to be the input width without changing the value
 | |
|       // produced, eliminating a cast.
 | |
|       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
 | |
|         // We can do this transformation if either the AND constant does not
 | |
|         // have its sign bit set or if it is an equality comparison. 
 | |
|         // Extending a relational comparison when we're checking the sign
 | |
|         // bit would not work.
 | |
|         if (Cast->hasOneUse() &&
 | |
|             (ICI.isEquality() ||
 | |
|              (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
 | |
|           uint32_t BitWidth = 
 | |
|             cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
 | |
|           APInt NewCST = AndCST->getValue();
 | |
|           NewCST.zext(BitWidth);
 | |
|           APInt NewCI = RHSV;
 | |
|           NewCI.zext(BitWidth);
 | |
|           Value *NewAnd = 
 | |
|             Builder->CreateAnd(Cast->getOperand(0),
 | |
|                            ConstantInt::get(*Context, NewCST), LHSI->getName());
 | |
|           return new ICmpInst(ICI.getPredicate(), NewAnd,
 | |
|                               ConstantInt::get(*Context, NewCI));
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
 | |
|       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
 | |
|       // happens a LOT in code produced by the C front-end, for bitfield
 | |
|       // access.
 | |
|       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
 | |
|       if (Shift && !Shift->isShift())
 | |
|         Shift = 0;
 | |
|       
 | |
|       ConstantInt *ShAmt;
 | |
|       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
 | |
|       const Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
 | |
|       const Type *AndTy = AndCST->getType();          // Type of the and.
 | |
|       
 | |
|       // We can fold this as long as we can't shift unknown bits
 | |
|       // into the mask.  This can only happen with signed shift
 | |
|       // rights, as they sign-extend.
 | |
|       if (ShAmt) {
 | |
|         bool CanFold = Shift->isLogicalShift();
 | |
|         if (!CanFold) {
 | |
|           // To test for the bad case of the signed shr, see if any
 | |
|           // of the bits shifted in could be tested after the mask.
 | |
|           uint32_t TyBits = Ty->getPrimitiveSizeInBits();
 | |
|           int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
 | |
|           
 | |
|           uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
 | |
|           if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) & 
 | |
|                AndCST->getValue()) == 0)
 | |
|             CanFold = true;
 | |
|         }
 | |
|         
 | |
|         if (CanFold) {
 | |
|           Constant *NewCst;
 | |
|           if (Shift->getOpcode() == Instruction::Shl)
 | |
|             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
 | |
|           else
 | |
|             NewCst = ConstantExpr::getShl(RHS, ShAmt);
 | |
|           
 | |
|           // Check to see if we are shifting out any of the bits being
 | |
|           // compared.
 | |
|           if (ConstantExpr::get(Shift->getOpcode(),
 | |
|                                        NewCst, ShAmt) != RHS) {
 | |
|             // If we shifted bits out, the fold is not going to work out.
 | |
|             // As a special case, check to see if this means that the
 | |
|             // result is always true or false now.
 | |
|             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
 | |
|               return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
 | |
|             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
 | |
|               return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
 | |
|           } else {
 | |
|             ICI.setOperand(1, NewCst);
 | |
|             Constant *NewAndCST;
 | |
|             if (Shift->getOpcode() == Instruction::Shl)
 | |
|               NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
 | |
|             else
 | |
|               NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
 | |
|             LHSI->setOperand(1, NewAndCST);
 | |
|             LHSI->setOperand(0, Shift->getOperand(0));
 | |
|             Worklist.Add(Shift); // Shift is dead.
 | |
|             return &ICI;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
 | |
|       // preferable because it allows the C<<Y expression to be hoisted out
 | |
|       // of a loop if Y is invariant and X is not.
 | |
|       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
 | |
|           ICI.isEquality() && !Shift->isArithmeticShift() &&
 | |
|           !isa<Constant>(Shift->getOperand(0))) {
 | |
|         // Compute C << Y.
 | |
|         Value *NS;
 | |
|         if (Shift->getOpcode() == Instruction::LShr) {
 | |
|           NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
 | |
|         } else {
 | |
|           // Insert a logical shift.
 | |
|           NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
 | |
|         }
 | |
|         
 | |
|         // Compute X & (C << Y).
 | |
|         Value *NewAnd = 
 | |
|           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
 | |
|         
 | |
|         ICI.setOperand(0, NewAnd);
 | |
|         return &ICI;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|     
 | |
|   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
 | |
|     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
 | |
|     if (!ShAmt) break;
 | |
|     
 | |
|     uint32_t TypeBits = RHSV.getBitWidth();
 | |
|     
 | |
|     // Check that the shift amount is in range.  If not, don't perform
 | |
|     // undefined shifts.  When the shift is visited it will be
 | |
|     // simplified.
 | |
|     if (ShAmt->uge(TypeBits))
 | |
|       break;
 | |
|     
 | |
|     if (ICI.isEquality()) {
 | |
|       // If we are comparing against bits always shifted out, the
 | |
|       // comparison cannot succeed.
 | |
|       Constant *Comp =
 | |
|         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
 | |
|                                                                  ShAmt);
 | |
|       if (Comp != RHS) {// Comparing against a bit that we know is zero.
 | |
|         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
 | |
|         Constant *Cst = ConstantInt::get(Type::getInt1Ty(*Context), IsICMP_NE);
 | |
|         return ReplaceInstUsesWith(ICI, Cst);
 | |
|       }
 | |
|       
 | |
|       if (LHSI->hasOneUse()) {
 | |
|         // Otherwise strength reduce the shift into an and.
 | |
|         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
 | |
|         Constant *Mask =
 | |
|           ConstantInt::get(*Context, APInt::getLowBitsSet(TypeBits, 
 | |
|                                                        TypeBits-ShAmtVal));
 | |
|         
 | |
|         Value *And =
 | |
|           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
 | |
|         return new ICmpInst(ICI.getPredicate(), And,
 | |
|                             ConstantInt::get(*Context, RHSV.lshr(ShAmtVal)));
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
 | |
|     bool TrueIfSigned = false;
 | |
|     if (LHSI->hasOneUse() &&
 | |
|         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
 | |
|       // (X << 31) <s 0  --> (X&1) != 0
 | |
|       Constant *Mask = ConstantInt::get(*Context, APInt(TypeBits, 1) <<
 | |
|                                            (TypeBits-ShAmt->getZExtValue()-1));
 | |
|       Value *And =
 | |
|         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
 | |
|       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
 | |
|                           And, Constant::getNullValue(And->getType()));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|     
 | |
|   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
 | |
|   case Instruction::AShr: {
 | |
|     // Only handle equality comparisons of shift-by-constant.
 | |
|     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
 | |
|     if (!ShAmt || !ICI.isEquality()) break;
 | |
| 
 | |
|     // Check that the shift amount is in range.  If not, don't perform
 | |
|     // undefined shifts.  When the shift is visited it will be
 | |
|     // simplified.
 | |
|     uint32_t TypeBits = RHSV.getBitWidth();
 | |
|     if (ShAmt->uge(TypeBits))
 | |
|       break;
 | |
|     
 | |
|     uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
 | |
|       
 | |
|     // If we are comparing against bits always shifted out, the
 | |
|     // comparison cannot succeed.
 | |
|     APInt Comp = RHSV << ShAmtVal;
 | |
|     if (LHSI->getOpcode() == Instruction::LShr)
 | |
|       Comp = Comp.lshr(ShAmtVal);
 | |
|     else
 | |
|       Comp = Comp.ashr(ShAmtVal);
 | |
|     
 | |
|     if (Comp != RHSV) { // Comparing against a bit that we know is zero.
 | |
|       bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
 | |
|       Constant *Cst = ConstantInt::get(Type::getInt1Ty(*Context), IsICMP_NE);
 | |
|       return ReplaceInstUsesWith(ICI, Cst);
 | |
|     }
 | |
|     
 | |
|     // Otherwise, check to see if the bits shifted out are known to be zero.
 | |
|     // If so, we can compare against the unshifted value:
 | |
|     //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
 | |
|     if (LHSI->hasOneUse() &&
 | |
|         MaskedValueIsZero(LHSI->getOperand(0), 
 | |
|                           APInt::getLowBitsSet(Comp.getBitWidth(), ShAmtVal))) {
 | |
|       return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
 | |
|                           ConstantExpr::getShl(RHS, ShAmt));
 | |
|     }
 | |
|       
 | |
|     if (LHSI->hasOneUse()) {
 | |
|       // Otherwise strength reduce the shift into an and.
 | |
|       APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
 | |
|       Constant *Mask = ConstantInt::get(*Context, Val);
 | |
|       
 | |
|       Value *And = Builder->CreateAnd(LHSI->getOperand(0),
 | |
|                                       Mask, LHSI->getName()+".mask");
 | |
|       return new ICmpInst(ICI.getPredicate(), And,
 | |
|                           ConstantExpr::getShl(RHS, ShAmt));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|     
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::UDiv:
 | |
|     // Fold: icmp pred ([us]div X, C1), C2 -> range test
 | |
|     // Fold this div into the comparison, producing a range check. 
 | |
|     // Determine, based on the divide type, what the range is being 
 | |
|     // checked.  If there is an overflow on the low or high side, remember 
 | |
|     // it, otherwise compute the range [low, hi) bounding the new value.
 | |
|     // See: InsertRangeTest above for the kinds of replacements possible.
 | |
|     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
 | |
|       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
 | |
|                                           DivRHS))
 | |
|         return R;
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Add:
 | |
|     // Fold: icmp pred (add, X, C1), C2
 | |
| 
 | |
|     if (!ICI.isEquality()) {
 | |
|       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
 | |
|       if (!LHSC) break;
 | |
|       const APInt &LHSV = LHSC->getValue();
 | |
| 
 | |
|       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
 | |
|                             .subtract(LHSV);
 | |
| 
 | |
|       if (ICI.isSignedPredicate()) {
 | |
|         if (CR.getLower().isSignBit()) {
 | |
|           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
 | |
|                               ConstantInt::get(*Context, CR.getUpper()));
 | |
|         } else if (CR.getUpper().isSignBit()) {
 | |
|           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
 | |
|                               ConstantInt::get(*Context, CR.getLower()));
 | |
|         }
 | |
|       } else {
 | |
|         if (CR.getLower().isMinValue()) {
 | |
|           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
 | |
|                               ConstantInt::get(*Context, CR.getUpper()));
 | |
|         } else if (CR.getUpper().isMinValue()) {
 | |
|           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
 | |
|                               ConstantInt::get(*Context, CR.getLower()));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
 | |
|   if (ICI.isEquality()) {
 | |
|     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
 | |
|     
 | |
|     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and 
 | |
|     // the second operand is a constant, simplify a bit.
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
 | |
|       switch (BO->getOpcode()) {
 | |
|       case Instruction::SRem:
 | |
|         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
 | |
|         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
 | |
|           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
 | |
|           if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
 | |
|             Value *NewRem =
 | |
|               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
 | |
|                                   BO->getName());
 | |
|             return new ICmpInst(ICI.getPredicate(), NewRem,
 | |
|                                 Constant::getNullValue(BO->getType()));
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Add:
 | |
|         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
 | |
|         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | |
|           if (BO->hasOneUse())
 | |
|             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
 | |
|                                 ConstantExpr::getSub(RHS, BOp1C));
 | |
|         } else if (RHSV == 0) {
 | |
|           // Replace ((add A, B) != 0) with (A != -B) if A or B is
 | |
|           // efficiently invertible, or if the add has just this one use.
 | |
|           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
 | |
|           
 | |
|           if (Value *NegVal = dyn_castNegVal(BOp1))
 | |
|             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
 | |
|           else if (Value *NegVal = dyn_castNegVal(BOp0))
 | |
|             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
 | |
|           else if (BO->hasOneUse()) {
 | |
|             Value *Neg = Builder->CreateNeg(BOp1);
 | |
|             Neg->takeName(BO);
 | |
|             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Xor:
 | |
|         // For the xor case, we can xor two constants together, eliminating
 | |
|         // the explicit xor.
 | |
|         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
 | |
|           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), 
 | |
|                               ConstantExpr::getXor(RHS, BOC));
 | |
|         
 | |
|         // FALLTHROUGH
 | |
|       case Instruction::Sub:
 | |
|         // Replace (([sub|xor] A, B) != 0) with (A != B)
 | |
|         if (RHSV == 0)
 | |
|           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
 | |
|                               BO->getOperand(1));
 | |
|         break;
 | |
|         
 | |
|       case Instruction::Or:
 | |
|         // If bits are being or'd in that are not present in the constant we
 | |
|         // are comparing against, then the comparison could never succeed!
 | |
|         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
 | |
|           Constant *NotCI = ConstantExpr::getNot(RHS);
 | |
|           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
 | |
|             return ReplaceInstUsesWith(ICI,
 | |
|                                        ConstantInt::get(Type::getInt1Ty(*Context), 
 | |
|                                        isICMP_NE));
 | |
|         }
 | |
|         break;
 | |
|         
 | |
|       case Instruction::And:
 | |
|         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
 | |
|           // If bits are being compared against that are and'd out, then the
 | |
|           // comparison can never succeed!
 | |
|           if ((RHSV & ~BOC->getValue()) != 0)
 | |
|             return ReplaceInstUsesWith(ICI,
 | |
|                                        ConstantInt::get(Type::getInt1Ty(*Context),
 | |
|                                        isICMP_NE));
 | |
|           
 | |
|           // If we have ((X & C) == C), turn it into ((X & C) != 0).
 | |
|           if (RHS == BOC && RHSV.isPowerOf2())
 | |
|             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
 | |
|                                 ICmpInst::ICMP_NE, LHSI,
 | |
|                                 Constant::getNullValue(RHS->getType()));
 | |
|           
 | |
|           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
 | |
|           if (BOC->getValue().isSignBit()) {
 | |
|             Value *X = BO->getOperand(0);
 | |
|             Constant *Zero = Constant::getNullValue(X->getType());
 | |
|             ICmpInst::Predicate pred = isICMP_NE ? 
 | |
|               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
 | |
|             return new ICmpInst(pred, X, Zero);
 | |
|           }
 | |
|           
 | |
|           // ((X & ~7) == 0) --> X < 8
 | |
|           if (RHSV == 0 && isHighOnes(BOC)) {
 | |
|             Value *X = BO->getOperand(0);
 | |
|             Constant *NegX = ConstantExpr::getNeg(BOC);
 | |
|             ICmpInst::Predicate pred = isICMP_NE ? 
 | |
|               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
 | |
|             return new ICmpInst(pred, X, NegX);
 | |
|           }
 | |
|         }
 | |
|       default: break;
 | |
|       }
 | |
|     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
 | |
|       // Handle icmp {eq|ne} <intrinsic>, intcst.
 | |
|       if (II->getIntrinsicID() == Intrinsic::bswap) {
 | |
|         Worklist.Add(II);
 | |
|         ICI.setOperand(0, II->getOperand(1));
 | |
|         ICI.setOperand(1, ConstantInt::get(*Context, RHSV.byteSwap()));
 | |
|         return &ICI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
 | |
| /// We only handle extending casts so far.
 | |
| ///
 | |
| Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
 | |
|   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
 | |
|   Value *LHSCIOp        = LHSCI->getOperand(0);
 | |
|   const Type *SrcTy     = LHSCIOp->getType();
 | |
|   const Type *DestTy    = LHSCI->getType();
 | |
|   Value *RHSCIOp;
 | |
| 
 | |
|   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the 
 | |
|   // integer type is the same size as the pointer type.
 | |
|   if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
 | |
|       TD->getPointerSizeInBits() ==
 | |
|          cast<IntegerType>(DestTy)->getBitWidth()) {
 | |
|     Value *RHSOp = 0;
 | |
|     if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
 | |
|       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
 | |
|     } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
 | |
|       RHSOp = RHSC->getOperand(0);
 | |
|       // If the pointer types don't match, insert a bitcast.
 | |
|       if (LHSCIOp->getType() != RHSOp->getType())
 | |
|         RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
 | |
|     }
 | |
| 
 | |
|     if (RHSOp)
 | |
|       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
 | |
|   }
 | |
|   
 | |
|   // The code below only handles extension cast instructions, so far.
 | |
|   // Enforce this.
 | |
|   if (LHSCI->getOpcode() != Instruction::ZExt &&
 | |
|       LHSCI->getOpcode() != Instruction::SExt)
 | |
|     return 0;
 | |
| 
 | |
|   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
 | |
|   bool isSignedCmp = ICI.isSignedPredicate();
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
 | |
|     // Not an extension from the same type?
 | |
|     RHSCIOp = CI->getOperand(0);
 | |
|     if (RHSCIOp->getType() != LHSCIOp->getType()) 
 | |
|       return 0;
 | |
|     
 | |
|     // If the signedness of the two casts doesn't agree (i.e. one is a sext
 | |
|     // and the other is a zext), then we can't handle this.
 | |
|     if (CI->getOpcode() != LHSCI->getOpcode())
 | |
|       return 0;
 | |
| 
 | |
|     // Deal with equality cases early.
 | |
|     if (ICI.isEquality())
 | |
|       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
 | |
| 
 | |
|     // A signed comparison of sign extended values simplifies into a
 | |
|     // signed comparison.
 | |
|     if (isSignedCmp && isSignedExt)
 | |
|       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
 | |
| 
 | |
|     // The other three cases all fold into an unsigned comparison.
 | |
|     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
 | |
|   }
 | |
| 
 | |
|   // If we aren't dealing with a constant on the RHS, exit early
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
 | |
|   if (!CI)
 | |
|     return 0;
 | |
| 
 | |
|   // Compute the constant that would happen if we truncated to SrcTy then
 | |
|   // reextended to DestTy.
 | |
|   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
 | |
|   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
 | |
|                                                 Res1, DestTy);
 | |
| 
 | |
|   // If the re-extended constant didn't change...
 | |
|   if (Res2 == CI) {
 | |
|     // Make sure that sign of the Cmp and the sign of the Cast are the same.
 | |
|     // For example, we might have:
 | |
|     //    %A = sext i16 %X to i32
 | |
|     //    %B = icmp ugt i32 %A, 1330
 | |
|     // It is incorrect to transform this into 
 | |
|     //    %B = icmp ugt i16 %X, 1330
 | |
|     // because %A may have negative value. 
 | |
|     //
 | |
|     // However, we allow this when the compare is EQ/NE, because they are
 | |
|     // signless.
 | |
|     if (isSignedExt == isSignedCmp || ICI.isEquality())
 | |
|       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // The re-extended constant changed so the constant cannot be represented 
 | |
|   // in the shorter type. Consequently, we cannot emit a simple comparison.
 | |
| 
 | |
|   // First, handle some easy cases. We know the result cannot be equal at this
 | |
|   // point so handle the ICI.isEquality() cases
 | |
|   if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
 | |
|     return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(*Context));
 | |
|   if (ICI.getPredicate() == ICmpInst::ICMP_NE)
 | |
|     return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(*Context));
 | |
| 
 | |
|   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
 | |
|   // should have been folded away previously and not enter in here.
 | |
|   Value *Result;
 | |
|   if (isSignedCmp) {
 | |
|     // We're performing a signed comparison.
 | |
|     if (cast<ConstantInt>(CI)->getValue().isNegative())
 | |
|       Result = ConstantInt::getFalse(*Context);          // X < (small) --> false
 | |
|     else
 | |
|       Result = ConstantInt::getTrue(*Context);           // X < (large) --> true
 | |
|   } else {
 | |
|     // We're performing an unsigned comparison.
 | |
|     if (isSignedExt) {
 | |
|       // We're performing an unsigned comp with a sign extended value.
 | |
|       // This is true if the input is >= 0. [aka >s -1]
 | |
|       Constant *NegOne = Constant::getAllOnesValue(SrcTy);
 | |
|       Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
 | |
|     } else {
 | |
|       // Unsigned extend & unsigned compare -> always true.
 | |
|       Result = ConstantInt::getTrue(*Context);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finally, return the value computed.
 | |
|   if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
 | |
|       ICI.getPredicate() == ICmpInst::ICMP_SLT)
 | |
|     return ReplaceInstUsesWith(ICI, Result);
 | |
| 
 | |
|   assert((ICI.getPredicate()==ICmpInst::ICMP_UGT || 
 | |
|           ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
 | |
|          "ICmp should be folded!");
 | |
|   if (Constant *CI = dyn_cast<Constant>(Result))
 | |
|     return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
 | |
|   return BinaryOperator::CreateNot(Result);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitShl(BinaryOperator &I) {
 | |
|   return commonShiftTransforms(I);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
 | |
|   return commonShiftTransforms(I);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
 | |
|   if (Instruction *R = commonShiftTransforms(I))
 | |
|     return R;
 | |
|   
 | |
|   Value *Op0 = I.getOperand(0);
 | |
|   
 | |
|   // ashr int -1, X = -1   (for any arithmetic shift rights of ~0)
 | |
|   if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
 | |
|     if (CSI->isAllOnesValue())
 | |
|       return ReplaceInstUsesWith(I, CSI);
 | |
| 
 | |
|   // See if we can turn a signed shr into an unsigned shr.
 | |
|   if (MaskedValueIsZero(Op0,
 | |
|                         APInt::getSignBit(I.getType()->getScalarSizeInBits())))
 | |
|     return BinaryOperator::CreateLShr(Op0, I.getOperand(1));
 | |
| 
 | |
|   // Arithmetic shifting an all-sign-bit value is a no-op.
 | |
|   unsigned NumSignBits = ComputeNumSignBits(Op0);
 | |
|   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
 | |
|     return ReplaceInstUsesWith(I, Op0);
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
 | |
|   assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
 | |
|   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
 | |
| 
 | |
|   // shl X, 0 == X and shr X, 0 == X
 | |
|   // shl 0, X == 0 and shr 0, X == 0
 | |
|   if (Op1 == Constant::getNullValue(Op1->getType()) ||
 | |
|       Op0 == Constant::getNullValue(Op0->getType()))
 | |
|     return ReplaceInstUsesWith(I, Op0);
 | |
|   
 | |
|   if (isa<UndefValue>(Op0)) {            
 | |
|     if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
 | |
|       return ReplaceInstUsesWith(I, Op0);
 | |
|     else                                    // undef << X -> 0, undef >>u X -> 0
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   }
 | |
|   if (isa<UndefValue>(Op1)) {
 | |
|     if (I.getOpcode() == Instruction::AShr)  // X >>s undef -> X
 | |
|       return ReplaceInstUsesWith(I, Op0);          
 | |
|     else                                     // X << undef, X >>u undef -> 0
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|   }
 | |
| 
 | |
|   // See if we can fold away this shift.
 | |
|   if (SimplifyDemandedInstructionBits(I))
 | |
|     return &I;
 | |
| 
 | |
|   // Try to fold constant and into select arguments.
 | |
|   if (isa<Constant>(Op0))
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
 | |
|       if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|         return R;
 | |
| 
 | |
|   if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
 | |
|     if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
 | |
|       return Res;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
 | |
|                                                BinaryOperator &I) {
 | |
|   bool isLeftShift = I.getOpcode() == Instruction::Shl;
 | |
| 
 | |
|   // See if we can simplify any instructions used by the instruction whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   uint32_t TypeBits = Op0->getType()->getScalarSizeInBits();
 | |
|   
 | |
|   // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate
 | |
|   // a signed shift.
 | |
|   //
 | |
|   if (Op1->uge(TypeBits)) {
 | |
|     if (I.getOpcode() != Instruction::AShr)
 | |
|       return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
 | |
|     else {
 | |
|       I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
 | |
|       return &I;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // ((X*C1) << C2) == (X * (C1 << C2))
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
 | |
|     if (BO->getOpcode() == Instruction::Mul && isLeftShift)
 | |
|       if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
 | |
|         return BinaryOperator::CreateMul(BO->getOperand(0),
 | |
|                                         ConstantExpr::getShl(BOOp, Op1));
 | |
|   
 | |
|   // Try to fold constant and into select arguments.
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
 | |
|     if (Instruction *R = FoldOpIntoSelect(I, SI, this))
 | |
|       return R;
 | |
|   if (isa<PHINode>(Op0))
 | |
|     if (Instruction *NV = FoldOpIntoPhi(I))
 | |
|       return NV;
 | |
|   
 | |
|   // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
 | |
|   if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
 | |
|     Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
 | |
|     // If 'shift2' is an ashr, we would have to get the sign bit into a funny
 | |
|     // place.  Don't try to do this transformation in this case.  Also, we
 | |
|     // require that the input operand is a shift-by-constant so that we have
 | |
|     // confidence that the shifts will get folded together.  We could do this
 | |
|     // xform in more cases, but it is unlikely to be profitable.
 | |
|     if (TrOp && I.isLogicalShift() && TrOp->isShift() && 
 | |
|         isa<ConstantInt>(TrOp->getOperand(1))) {
 | |
|       // Okay, we'll do this xform.  Make the shift of shift.
 | |
|       Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType());
 | |
|       // (shift2 (shift1 & 0x00FF), c2)
 | |
|       Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName());
 | |
| 
 | |
|       // For logical shifts, the truncation has the effect of making the high
 | |
|       // part of the register be zeros.  Emulate this by inserting an AND to
 | |
|       // clear the top bits as needed.  This 'and' will usually be zapped by
 | |
|       // other xforms later if dead.
 | |
|       unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
 | |
|       unsigned DstSize = TI->getType()->getScalarSizeInBits();
 | |
|       APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
 | |
|       
 | |
|       // The mask we constructed says what the trunc would do if occurring
 | |
|       // between the shifts.  We want to know the effect *after* the second
 | |
|       // shift.  We know that it is a logical shift by a constant, so adjust the
 | |
|       // mask as appropriate.
 | |
|       if (I.getOpcode() == Instruction::Shl)
 | |
|         MaskV <<= Op1->getZExtValue();
 | |
|       else {
 | |
|         assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
 | |
|         MaskV = MaskV.lshr(Op1->getZExtValue());
 | |
|       }
 | |
| 
 | |
|       // shift1 & 0x00FF
 | |
|       Value *And = Builder->CreateAnd(NSh, ConstantInt::get(*Context, MaskV),
 | |
|                                       TI->getName());
 | |
| 
 | |
|       // Return the value truncated to the interesting size.
 | |
|       return new TruncInst(And, I.getType());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (Op0->hasOneUse()) {
 | |
|     if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
 | |
|       // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
 | |
|       Value *V1, *V2;
 | |
|       ConstantInt *CC;
 | |
|       switch (Op0BO->getOpcode()) {
 | |
|         default: break;
 | |
|         case Instruction::Add:
 | |
|         case Instruction::And:
 | |
|         case Instruction::Or:
 | |
|         case Instruction::Xor: {
 | |
|           // These operators commute.
 | |
|           // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
 | |
|           if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
 | |
|               match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
 | |
|                     m_Specific(Op1)))) {
 | |
|             Value *YS =         // (Y << C)
 | |
|               Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
 | |
|             // (X + (Y << C))
 | |
|             Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1,
 | |
|                                             Op0BO->getOperand(1)->getName());
 | |
|             uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
 | |
|             return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context,
 | |
|                        APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
 | |
|           }
 | |
|           
 | |
|           // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
 | |
|           Value *Op0BOOp1 = Op0BO->getOperand(1);
 | |
|           if (isLeftShift && Op0BOOp1->hasOneUse() &&
 | |
|               match(Op0BOOp1, 
 | |
|                     m_And(m_Shr(m_Value(V1), m_Specific(Op1)),
 | |
|                           m_ConstantInt(CC))) &&
 | |
|               cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse()) {
 | |
|             Value *YS =   // (Y << C)
 | |
|               Builder->CreateShl(Op0BO->getOperand(0), Op1,
 | |
|                                            Op0BO->getName());
 | |
|             // X & (CC << C)
 | |
|             Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
 | |
|                                            V1->getName()+".mask");
 | |
|             return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
 | |
|           }
 | |
|         }
 | |
|           
 | |
|         // FALL THROUGH.
 | |
|         case Instruction::Sub: {
 | |
|           // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
 | |
|           if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
 | |
|               match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
 | |
|                     m_Specific(Op1)))) {
 | |
|             Value *YS =  // (Y << C)
 | |
|               Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
 | |
|             // (X + (Y << C))
 | |
|             Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS,
 | |
|                                             Op0BO->getOperand(0)->getName());
 | |
|             uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
 | |
|             return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context,
 | |
|                        APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
 | |
|           }
 | |
|           
 | |
|           // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
 | |
|           if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
 | |
|               match(Op0BO->getOperand(0),
 | |
|                     m_And(m_Shr(m_Value(V1), m_Value(V2)),
 | |
|                           m_ConstantInt(CC))) && V2 == Op1 &&
 | |
|               cast<BinaryOperator>(Op0BO->getOperand(0))
 | |
|                   ->getOperand(0)->hasOneUse()) {
 | |
|             Value *YS = // (Y << C)
 | |
|               Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
 | |
|             // X & (CC << C)
 | |
|             Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
 | |
|                                            V1->getName()+".mask");
 | |
|             
 | |
|             return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
 | |
|           }
 | |
|           
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       
 | |
|       // If the operand is an bitwise operator with a constant RHS, and the
 | |
|       // shift is the only use, we can pull it out of the shift.
 | |
|       if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
 | |
|         bool isValid = true;     // Valid only for And, Or, Xor
 | |
|         bool highBitSet = false; // Transform if high bit of constant set?
 | |
|         
 | |
|         switch (Op0BO->getOpcode()) {
 | |
|           default: isValid = false; break;   // Do not perform transform!
 | |
|           case Instruction::Add:
 | |
|             isValid = isLeftShift;
 | |
|             break;
 | |
|           case Instruction::Or:
 | |
|           case Instruction::Xor:
 | |
|             highBitSet = false;
 | |
|             break;
 | |
|           case Instruction::And:
 | |
|             highBitSet = true;
 | |
|             break;
 | |
|         }
 | |
|         
 | |
|         // If this is a signed shift right, and the high bit is modified
 | |
|         // by the logical operation, do not perform the transformation.
 | |
|         // The highBitSet boolean indicates the value of the high bit of
 | |
|         // the constant which would cause it to be modified for this
 | |
|         // operation.
 | |
|         //
 | |
|         if (isValid && I.getOpcode() == Instruction::AShr)
 | |
|           isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
 | |
|         
 | |
|         if (isValid) {
 | |
|           Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
 | |
|           
 | |
|           Value *NewShift =
 | |
|             Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
 | |
|           NewShift->takeName(Op0BO);
 | |
|           
 | |
|           return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
 | |
|                                         NewRHS);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Find out if this is a shift of a shift by a constant.
 | |
|   BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
 | |
|   if (ShiftOp && !ShiftOp->isShift())
 | |
|     ShiftOp = 0;
 | |
|   
 | |
|   if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
 | |
|     ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
 | |
|     uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
 | |
|     uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
 | |
|     assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
 | |
|     if (ShiftAmt1 == 0) return 0;  // Will be simplified in the future.
 | |
|     Value *X = ShiftOp->getOperand(0);
 | |
|     
 | |
|     uint32_t AmtSum = ShiftAmt1+ShiftAmt2;   // Fold into one big shift.
 | |
|     
 | |
|     const IntegerType *Ty = cast<IntegerType>(I.getType());
 | |
|     
 | |
|     // Check for (X << c1) << c2  and  (X >> c1) >> c2
 | |
|     if (I.getOpcode() == ShiftOp->getOpcode()) {
 | |
|       // If this is oversized composite shift, then unsigned shifts get 0, ashr
 | |
|       // saturates.
 | |
|       if (AmtSum >= TypeBits) {
 | |
|         if (I.getOpcode() != Instruction::AShr)
 | |
|           return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|         AmtSum = TypeBits-1;  // Saturate to 31 for i32 ashr.
 | |
|       }
 | |
|       
 | |
|       return BinaryOperator::Create(I.getOpcode(), X,
 | |
|                                     ConstantInt::get(Ty, AmtSum));
 | |
|     }
 | |
|     
 | |
|     if (ShiftOp->getOpcode() == Instruction::LShr &&
 | |
|         I.getOpcode() == Instruction::AShr) {
 | |
|       if (AmtSum >= TypeBits)
 | |
|         return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
 | |
|       
 | |
|       // ((X >>u C1) >>s C2) -> (X >>u (C1+C2))  since C1 != 0.
 | |
|       return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
 | |
|     }
 | |
|     
 | |
|     if (ShiftOp->getOpcode() == Instruction::AShr &&
 | |
|         I.getOpcode() == Instruction::LShr) {
 | |
|       // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
 | |
|       if (AmtSum >= TypeBits)
 | |
|         AmtSum = TypeBits-1;
 | |
|       
 | |
|       Value *Shift = Builder->CreateAShr(X, ConstantInt::get(Ty, AmtSum));
 | |
| 
 | |
|       APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
 | |
|       return BinaryOperator::CreateAnd(Shift, ConstantInt::get(*Context, Mask));
 | |
|     }
 | |
|     
 | |
|     // Okay, if we get here, one shift must be left, and the other shift must be
 | |
|     // right.  See if the amounts are equal.
 | |
|     if (ShiftAmt1 == ShiftAmt2) {
 | |
|       // If we have ((X >>? C) << C), turn this into X & (-1 << C).
 | |
|       if (I.getOpcode() == Instruction::Shl) {
 | |
|         APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
 | |
|         return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, Mask));
 | |
|       }
 | |
|       // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
 | |
|       if (I.getOpcode() == Instruction::LShr) {
 | |
|         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
 | |
|         return BinaryOperator::CreateAnd(X, ConstantInt::get(*Context, Mask));
 | |
|       }
 | |
|       // We can simplify ((X << C) >>s C) into a trunc + sext.
 | |
|       // NOTE: we could do this for any C, but that would make 'unusual' integer
 | |
|       // types.  For now, just stick to ones well-supported by the code
 | |
|       // generators.
 | |
|       const Type *SExtType = 0;
 | |
|       switch (Ty->getBitWidth() - ShiftAmt1) {
 | |
|       case 1  :
 | |
|       case 8  :
 | |
|       case 16 :
 | |
|       case 32 :
 | |
|       case 64 :
 | |
|       case 128:
 | |
|         SExtType = IntegerType::get(*Context, Ty->getBitWidth() - ShiftAmt1);
 | |
|         break;
 | |
|       default: break;
 | |
|       }
 | |
|       if (SExtType)
 | |
|         return new SExtInst(Builder->CreateTrunc(X, SExtType, "sext"), Ty);
 | |
|       // Otherwise, we can't handle it yet.
 | |
|     } else if (ShiftAmt1 < ShiftAmt2) {
 | |
|       uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
 | |
|       
 | |
|       // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
 | |
|       if (I.getOpcode() == Instruction::Shl) {
 | |
|         assert(ShiftOp->getOpcode() == Instruction::LShr ||
 | |
|                ShiftOp->getOpcode() == Instruction::AShr);
 | |
|         Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
 | |
|         
 | |
|         APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
 | |
|         return BinaryOperator::CreateAnd(Shift,
 | |
|                                          ConstantInt::get(*Context, Mask));
 | |
|       }
 | |
|       
 | |
|       // (X << C1) >>u C2  --> X >>u (C2-C1) & (-1 >> C2)
 | |
|       if (I.getOpcode() == Instruction::LShr) {
 | |
|         assert(ShiftOp->getOpcode() == Instruction::Shl);
 | |
|         Value *Shift = Builder->CreateLShr(X, ConstantInt::get(Ty, ShiftDiff));
 | |
|         
 | |
|         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
 | |
|         return BinaryOperator::CreateAnd(Shift,
 | |
|                                          ConstantInt::get(*Context, Mask));
 | |
|       }
 | |
|       
 | |
|       // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
 | |
|     } else {
 | |
|       assert(ShiftAmt2 < ShiftAmt1);
 | |
|       uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
 | |
| 
 | |
|       // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
 | |
|       if (I.getOpcode() == Instruction::Shl) {
 | |
|         assert(ShiftOp->getOpcode() == Instruction::LShr ||
 | |
|                ShiftOp->getOpcode() == Instruction::AShr);
 | |
|         Value *Shift = Builder->CreateBinOp(ShiftOp->getOpcode(), X,
 | |
|                                             ConstantInt::get(Ty, ShiftDiff));
 | |
|         
 | |
|         APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
 | |
|         return BinaryOperator::CreateAnd(Shift,
 | |
|                                          ConstantInt::get(*Context, Mask));
 | |
|       }
 | |
|       
 | |
|       // (X << C1) >>u C2  --> X << (C1-C2) & (-1 >> C2)
 | |
|       if (I.getOpcode() == Instruction::LShr) {
 | |
|         assert(ShiftOp->getOpcode() == Instruction::Shl);
 | |
|         Value *Shift = Builder->CreateShl(X, ConstantInt::get(Ty, ShiftDiff));
 | |
|         
 | |
|         APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
 | |
|         return BinaryOperator::CreateAnd(Shift,
 | |
|                                          ConstantInt::get(*Context, Mask));
 | |
|       }
 | |
|       
 | |
|       // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
 | |
| /// expression.  If so, decompose it, returning some value X, such that Val is
 | |
| /// X*Scale+Offset.
 | |
| ///
 | |
| static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
 | |
|                                         int &Offset, LLVMContext *Context) {
 | |
|   assert(Val->getType() == Type::getInt32Ty(*Context) && 
 | |
|          "Unexpected allocation size type!");
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
 | |
|     Offset = CI->getZExtValue();
 | |
|     Scale  = 0;
 | |
|     return ConstantInt::get(Type::getInt32Ty(*Context), 0);
 | |
|   } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
 | |
|     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       if (I->getOpcode() == Instruction::Shl) {
 | |
|         // This is a value scaled by '1 << the shift amt'.
 | |
|         Scale = 1U << RHS->getZExtValue();
 | |
|         Offset = 0;
 | |
|         return I->getOperand(0);
 | |
|       } else if (I->getOpcode() == Instruction::Mul) {
 | |
|         // This value is scaled by 'RHS'.
 | |
|         Scale = RHS->getZExtValue();
 | |
|         Offset = 0;
 | |
|         return I->getOperand(0);
 | |
|       } else if (I->getOpcode() == Instruction::Add) {
 | |
|         // We have X+C.  Check to see if we really have (X*C2)+C1, 
 | |
|         // where C1 is divisible by C2.
 | |
|         unsigned SubScale;
 | |
|         Value *SubVal = 
 | |
|           DecomposeSimpleLinearExpr(I->getOperand(0), SubScale,
 | |
|                                     Offset, Context);
 | |
|         Offset += RHS->getZExtValue();
 | |
|         Scale = SubScale;
 | |
|         return SubVal;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we can't look past this.
 | |
|   Scale = 1;
 | |
|   Offset = 0;
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
 | |
| /// try to eliminate the cast by moving the type information into the alloc.
 | |
| Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
 | |
|                                                    AllocationInst &AI) {
 | |
|   const PointerType *PTy = cast<PointerType>(CI.getType());
 | |
|   
 | |
|   BuilderTy AllocaBuilder(*Builder);
 | |
|   AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
 | |
|   
 | |
|   // Remove any uses of AI that are dead.
 | |
|   assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
 | |
|   
 | |
|   for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
 | |
|     Instruction *User = cast<Instruction>(*UI++);
 | |
|     if (isInstructionTriviallyDead(User)) {
 | |
|       while (UI != E && *UI == User)
 | |
|         ++UI; // If this instruction uses AI more than once, don't break UI.
 | |
|       
 | |
|       ++NumDeadInst;
 | |
|       DEBUG(errs() << "IC: DCE: " << *User << '\n');
 | |
|       EraseInstFromFunction(*User);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This requires TargetData to get the alloca alignment and size information.
 | |
|   if (!TD) return 0;
 | |
| 
 | |
|   // Get the type really allocated and the type casted to.
 | |
|   const Type *AllocElTy = AI.getAllocatedType();
 | |
|   const Type *CastElTy = PTy->getElementType();
 | |
|   if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
 | |
| 
 | |
|   unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
 | |
|   unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
 | |
|   if (CastElTyAlign < AllocElTyAlign) return 0;
 | |
| 
 | |
|   // If the allocation has multiple uses, only promote it if we are strictly
 | |
|   // increasing the alignment of the resultant allocation.  If we keep it the
 | |
|   // same, we open the door to infinite loops of various kinds.  (A reference
 | |
|   // from a dbg.declare doesn't count as a use for this purpose.)
 | |
|   if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
 | |
|       CastElTyAlign == AllocElTyAlign) return 0;
 | |
| 
 | |
|   uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
 | |
|   uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
 | |
|   if (CastElTySize == 0 || AllocElTySize == 0) return 0;
 | |
| 
 | |
|   // See if we can satisfy the modulus by pulling a scale out of the array
 | |
|   // size argument.
 | |
|   unsigned ArraySizeScale;
 | |
|   int ArrayOffset;
 | |
|   Value *NumElements = // See if the array size is a decomposable linear expr.
 | |
|     DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale,
 | |
|                               ArrayOffset, Context);
 | |
|  
 | |
|   // If we can now satisfy the modulus, by using a non-1 scale, we really can
 | |
|   // do the xform.
 | |
|   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
 | |
|       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
 | |
| 
 | |
|   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
 | |
|   Value *Amt = 0;
 | |
|   if (Scale == 1) {
 | |
|     Amt = NumElements;
 | |
|   } else {
 | |
|     Amt = ConstantInt::get(Type::getInt32Ty(*Context), Scale);
 | |
|     // Insert before the alloca, not before the cast.
 | |
|     Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
 | |
|   }
 | |
|   
 | |
|   if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
 | |
|     Value *Off = ConstantInt::get(Type::getInt32Ty(*Context), Offset, true);
 | |
|     Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
 | |
|   }
 | |
|   
 | |
|   AllocationInst *New;
 | |
|   if (isa<MallocInst>(AI))
 | |
|     New = AllocaBuilder.CreateMalloc(CastElTy, Amt);
 | |
|   else
 | |
|     New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
 | |
|   New->setAlignment(AI.getAlignment());
 | |
|   New->takeName(&AI);
 | |
|   
 | |
|   // If the allocation has one real use plus a dbg.declare, just remove the
 | |
|   // declare.
 | |
|   if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
 | |
|     EraseInstFromFunction(*DI);
 | |
|   }
 | |
|   // If the allocation has multiple real uses, insert a cast and change all
 | |
|   // things that used it to use the new cast.  This will also hack on CI, but it
 | |
|   // will die soon.
 | |
|   else if (!AI.hasOneUse()) {
 | |
|     // New is the allocation instruction, pointer typed. AI is the original
 | |
|     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
 | |
|     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
 | |
|     AI.replaceAllUsesWith(NewCast);
 | |
|   }
 | |
|   return ReplaceInstUsesWith(CI, New);
 | |
| }
 | |
| 
 | |
| /// CanEvaluateInDifferentType - Return true if we can take the specified value
 | |
| /// and return it as type Ty without inserting any new casts and without
 | |
| /// changing the computed value.  This is used by code that tries to decide
 | |
| /// whether promoting or shrinking integer operations to wider or smaller types
 | |
| /// will allow us to eliminate a truncate or extend.
 | |
| ///
 | |
| /// This is a truncation operation if Ty is smaller than V->getType(), or an
 | |
| /// extension operation if Ty is larger.
 | |
| ///
 | |
| /// If CastOpc is a truncation, then Ty will be a type smaller than V.  We
 | |
| /// should return true if trunc(V) can be computed by computing V in the smaller
 | |
| /// type.  If V is an instruction, then trunc(inst(x,y)) can be computed as
 | |
| /// inst(trunc(x),trunc(y)), which only makes sense if x and y can be
 | |
| /// efficiently truncated.
 | |
| ///
 | |
| /// If CastOpc is a sext or zext, we are asking if the low bits of the value can
 | |
| /// bit computed in a larger type, which is then and'd or sext_in_reg'd to get
 | |
| /// the final result.
 | |
| bool InstCombiner::CanEvaluateInDifferentType(Value *V, const Type *Ty,
 | |
|                                               unsigned CastOpc,
 | |
|                                               int &NumCastsRemoved){
 | |
|   // We can always evaluate constants in another type.
 | |
|   if (isa<Constant>(V))
 | |
|     return true;
 | |
|   
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
|   
 | |
|   const Type *OrigTy = V->getType();
 | |
|   
 | |
|   // If this is an extension or truncate, we can often eliminate it.
 | |
|   if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
 | |
|     // If this is a cast from the destination type, we can trivially eliminate
 | |
|     // it, and this will remove a cast overall.
 | |
|     if (I->getOperand(0)->getType() == Ty) {
 | |
|       // If the first operand is itself a cast, and is eliminable, do not count
 | |
|       // this as an eliminable cast.  We would prefer to eliminate those two
 | |
|       // casts first.
 | |
|       if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
 | |
|         ++NumCastsRemoved;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We can't extend or shrink something that has multiple uses: doing so would
 | |
|   // require duplicating the instruction in general, which isn't profitable.
 | |
|   if (!I->hasOneUse()) return false;
 | |
| 
 | |
|   unsigned Opc = I->getOpcode();
 | |
|   switch (Opc) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     // These operators can all arbitrarily be extended or truncated.
 | |
|     return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
 | |
|                                       NumCastsRemoved) &&
 | |
|            CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
 | |
|                                       NumCastsRemoved);
 | |
| 
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::URem: {
 | |
|     // UDiv and URem can be truncated if all the truncated bits are zero.
 | |
|     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | |
|     uint32_t BitWidth = Ty->getScalarSizeInBits();
 | |
|     if (BitWidth < OrigBitWidth) {
 | |
|       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
 | |
|       if (MaskedValueIsZero(I->getOperand(0), Mask) &&
 | |
|           MaskedValueIsZero(I->getOperand(1), Mask)) {
 | |
|         return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
 | |
|                                           NumCastsRemoved) &&
 | |
|                CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
 | |
|                                           NumCastsRemoved);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Shl:
 | |
|     // If we are truncating the result of this SHL, and if it's a shift of a
 | |
|     // constant amount, we can always perform a SHL in a smaller type.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       uint32_t BitWidth = Ty->getScalarSizeInBits();
 | |
|       if (BitWidth < OrigTy->getScalarSizeInBits() &&
 | |
|           CI->getLimitedValue(BitWidth) < BitWidth)
 | |
|         return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
 | |
|                                           NumCastsRemoved);
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::LShr:
 | |
|     // If this is a truncate of a logical shr, we can truncate it to a smaller
 | |
|     // lshr iff we know that the bits we would otherwise be shifting in are
 | |
|     // already zeros.
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
 | |
|       uint32_t BitWidth = Ty->getScalarSizeInBits();
 | |
|       if (BitWidth < OrigBitWidth &&
 | |
|           MaskedValueIsZero(I->getOperand(0),
 | |
|             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
 | |
|           CI->getLimitedValue(BitWidth) < BitWidth) {
 | |
|         return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
 | |
|                                           NumCastsRemoved);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::Trunc:
 | |
|     // If this is the same kind of case as our original (e.g. zext+zext), we
 | |
|     // can safely replace it.  Note that replacing it does not reduce the number
 | |
|     // of casts in the input.
 | |
|     if (Opc == CastOpc)
 | |
|       return true;
 | |
| 
 | |
|     // sext (zext ty1), ty2 -> zext ty2
 | |
|     if (CastOpc == Instruction::SExt && Opc == Instruction::ZExt)
 | |
|       return true;
 | |
|     break;
 | |
|   case Instruction::Select: {
 | |
|     SelectInst *SI = cast<SelectInst>(I);
 | |
|     return CanEvaluateInDifferentType(SI->getTrueValue(), Ty, CastOpc,
 | |
|                                       NumCastsRemoved) &&
 | |
|            CanEvaluateInDifferentType(SI->getFalseValue(), Ty, CastOpc,
 | |
|                                       NumCastsRemoved);
 | |
|   }
 | |
|   case Instruction::PHI: {
 | |
|     // We can change a phi if we can change all operands.
 | |
|     PHINode *PN = cast<PHINode>(I);
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (!CanEvaluateInDifferentType(PN->getIncomingValue(i), Ty, CastOpc,
 | |
|                                       NumCastsRemoved))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   default:
 | |
|     // TODO: Can handle more cases here.
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// EvaluateInDifferentType - Given an expression that 
 | |
| /// CanEvaluateInDifferentType returns true for, actually insert the code to
 | |
| /// evaluate the expression.
 | |
| Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty, 
 | |
|                                              bool isSigned) {
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return ConstantExpr::getIntegerCast(C, Ty,
 | |
|                                                isSigned /*Sext or ZExt*/);
 | |
| 
 | |
|   // Otherwise, it must be an instruction.
 | |
|   Instruction *I = cast<Instruction>(V);
 | |
|   Instruction *Res = 0;
 | |
|   unsigned Opc = I->getOpcode();
 | |
|   switch (Opc) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::URem: {
 | |
|     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
 | |
|     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | |
|     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
 | |
|     break;
 | |
|   }    
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|     // If the source type of the cast is the type we're trying for then we can
 | |
|     // just return the source.  There's no need to insert it because it is not
 | |
|     // new.
 | |
|     if (I->getOperand(0)->getType() == Ty)
 | |
|       return I->getOperand(0);
 | |
|     
 | |
|     // Otherwise, must be the same type of cast, so just reinsert a new one.
 | |
|     Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
 | |
|                            Ty);
 | |
|     break;
 | |
|   case Instruction::Select: {
 | |
|     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
 | |
|     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
 | |
|     Res = SelectInst::Create(I->getOperand(0), True, False);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::PHI: {
 | |
|     PHINode *OPN = cast<PHINode>(I);
 | |
|     PHINode *NPN = PHINode::Create(Ty);
 | |
|     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
 | |
|       Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
 | |
|       NPN->addIncoming(V, OPN->getIncomingBlock(i));
 | |
|     }
 | |
|     Res = NPN;
 | |
|     break;
 | |
|   }
 | |
|   default: 
 | |
|     // TODO: Can handle more cases here.
 | |
|     llvm_unreachable("Unreachable!");
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   Res->takeName(I);
 | |
|   return InsertNewInstBefore(Res, *I);
 | |
| }
 | |
| 
 | |
| /// @brief Implement the transforms common to all CastInst visitors.
 | |
| Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
 | |
|   Value *Src = CI.getOperand(0);
 | |
| 
 | |
|   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
 | |
|   // eliminate it now.
 | |
|   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
 | |
|     if (Instruction::CastOps opc = 
 | |
|         isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
 | |
|       // The first cast (CSrc) is eliminable so we need to fix up or replace
 | |
|       // the second cast (CI). CSrc will then have a good chance of being dead.
 | |
|       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are casting a select then fold the cast into the select
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
 | |
|     if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
 | |
|       return NV;
 | |
| 
 | |
|   // If we are casting a PHI then fold the cast into the PHI
 | |
|   if (isa<PHINode>(Src))
 | |
|     if (Instruction *NV = FoldOpIntoPhi(CI))
 | |
|       return NV;
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FindElementAtOffset - Given a type and a constant offset, determine whether
 | |
| /// or not there is a sequence of GEP indices into the type that will land us at
 | |
| /// the specified offset.  If so, fill them into NewIndices and return the
 | |
| /// resultant element type, otherwise return null.
 | |
| static const Type *FindElementAtOffset(const Type *Ty, int64_t Offset, 
 | |
|                                        SmallVectorImpl<Value*> &NewIndices,
 | |
|                                        const TargetData *TD,
 | |
|                                        LLVMContext *Context) {
 | |
|   if (!TD) return 0;
 | |
|   if (!Ty->isSized()) return 0;
 | |
|   
 | |
|   // Start with the index over the outer type.  Note that the type size
 | |
|   // might be zero (even if the offset isn't zero) if the indexed type
 | |
|   // is something like [0 x {int, int}]
 | |
|   const Type *IntPtrTy = TD->getIntPtrType(*Context);
 | |
|   int64_t FirstIdx = 0;
 | |
|   if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
 | |
|     FirstIdx = Offset/TySize;
 | |
|     Offset -= FirstIdx*TySize;
 | |
|     
 | |
|     // Handle hosts where % returns negative instead of values [0..TySize).
 | |
|     if (Offset < 0) {
 | |
|       --FirstIdx;
 | |
|       Offset += TySize;
 | |
|       assert(Offset >= 0);
 | |
|     }
 | |
|     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
 | |
|   }
 | |
|   
 | |
|   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
 | |
|     
 | |
|   // Index into the types.  If we fail, set OrigBase to null.
 | |
|   while (Offset) {
 | |
|     // Indexing into tail padding between struct/array elements.
 | |
|     if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
 | |
|       return 0;
 | |
|     
 | |
|     if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|       const StructLayout *SL = TD->getStructLayout(STy);
 | |
|       assert(Offset < (int64_t)SL->getSizeInBytes() &&
 | |
|              "Offset must stay within the indexed type");
 | |
|       
 | |
|       unsigned Elt = SL->getElementContainingOffset(Offset);
 | |
|       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(*Context), Elt));
 | |
|       
 | |
|       Offset -= SL->getElementOffset(Elt);
 | |
|       Ty = STy->getElementType(Elt);
 | |
|     } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
 | |
|       uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
 | |
|       assert(EltSize && "Cannot index into a zero-sized array");
 | |
|       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
 | |
|       Offset %= EltSize;
 | |
|       Ty = AT->getElementType();
 | |
|     } else {
 | |
|       // Otherwise, we can't index into the middle of this atomic type, bail.
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
 | |
| Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
 | |
|     // If casting the result of a getelementptr instruction with no offset, turn
 | |
|     // this into a cast of the original pointer!
 | |
|     if (GEP->hasAllZeroIndices()) {
 | |
|       // Changing the cast operand is usually not a good idea but it is safe
 | |
|       // here because the pointer operand is being replaced with another 
 | |
|       // pointer operand so the opcode doesn't need to change.
 | |
|       Worklist.Add(GEP);
 | |
|       CI.setOperand(0, GEP->getOperand(0));
 | |
|       return &CI;
 | |
|     }
 | |
|     
 | |
|     // If the GEP has a single use, and the base pointer is a bitcast, and the
 | |
|     // GEP computes a constant offset, see if we can convert these three
 | |
|     // instructions into fewer.  This typically happens with unions and other
 | |
|     // non-type-safe code.
 | |
|     if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
 | |
|       if (GEP->hasAllConstantIndices()) {
 | |
|         // We are guaranteed to get a constant from EmitGEPOffset.
 | |
|         ConstantInt *OffsetV =
 | |
|                       cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
 | |
|         int64_t Offset = OffsetV->getSExtValue();
 | |
|         
 | |
|         // Get the base pointer input of the bitcast, and the type it points to.
 | |
|         Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
 | |
|         const Type *GEPIdxTy =
 | |
|           cast<PointerType>(OrigBase->getType())->getElementType();
 | |
|         SmallVector<Value*, 8> NewIndices;
 | |
|         if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices, TD, Context)) {
 | |
|           // If we were able to index down into an element, create the GEP
 | |
|           // and bitcast the result.  This eliminates one bitcast, potentially
 | |
|           // two.
 | |
|           Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
 | |
|             Builder->CreateInBoundsGEP(OrigBase,
 | |
|                                        NewIndices.begin(), NewIndices.end()) :
 | |
|             Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
 | |
|           NGEP->takeName(GEP);
 | |
|           
 | |
|           if (isa<BitCastInst>(CI))
 | |
|             return new BitCastInst(NGEP, CI.getType());
 | |
|           assert(isa<PtrToIntInst>(CI));
 | |
|           return new PtrToIntInst(NGEP, CI.getType());
 | |
|         }
 | |
|       }      
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| /// isSafeIntegerType - Return true if this is a basic integer type, not a crazy
 | |
| /// type like i42.  We don't want to introduce operations on random non-legal
 | |
| /// integer types where they don't already exist in the code.  In the future,
 | |
| /// we should consider making this based off target-data, so that 32-bit targets
 | |
| /// won't get i64 operations etc.
 | |
| static bool isSafeIntegerType(const Type *Ty) {
 | |
|   switch (Ty->getPrimitiveSizeInBits()) {
 | |
|   case 8:
 | |
|   case 16:
 | |
|   case 32:
 | |
|   case 64:
 | |
|     return true;
 | |
|   default: 
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// commonIntCastTransforms - This function implements the common transforms
 | |
| /// for trunc, zext, and sext.
 | |
| Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
 | |
|   if (Instruction *Result = commonCastTransforms(CI))
 | |
|     return Result;
 | |
| 
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   const Type *SrcTy = Src->getType();
 | |
|   const Type *DestTy = CI.getType();
 | |
|   uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
 | |
|   uint32_t DestBitSize = DestTy->getScalarSizeInBits();
 | |
| 
 | |
|   // See if we can simplify any instructions used by the LHS whose sole 
 | |
|   // purpose is to compute bits we don't care about.
 | |
|   if (SimplifyDemandedInstructionBits(CI))
 | |
|     return &CI;
 | |
| 
 | |
|   // If the source isn't an instruction or has more than one use then we
 | |
|   // can't do anything more. 
 | |
|   Instruction *SrcI = dyn_cast<Instruction>(Src);
 | |
|   if (!SrcI || !Src->hasOneUse())
 | |
|     return 0;
 | |
| 
 | |
|   // Attempt to propagate the cast into the instruction for int->int casts.
 | |
|   int NumCastsRemoved = 0;
 | |
|   // Only do this if the dest type is a simple type, don't convert the
 | |
|   // expression tree to something weird like i93 unless the source is also
 | |
|   // strange.
 | |
|   if ((isSafeIntegerType(DestTy->getScalarType()) ||
 | |
|        !isSafeIntegerType(SrcI->getType()->getScalarType())) &&
 | |
|       CanEvaluateInDifferentType(SrcI, DestTy,
 | |
|                                  CI.getOpcode(), NumCastsRemoved)) {
 | |
|     // If this cast is a truncate, evaluting in a different type always
 | |
|     // eliminates the cast, so it is always a win.  If this is a zero-extension,
 | |
|     // we need to do an AND to maintain the clear top-part of the computation,
 | |
|     // so we require that the input have eliminated at least one cast.  If this
 | |
|     // is a sign extension, we insert two new casts (to do the extension) so we
 | |
|     // require that two casts have been eliminated.
 | |
|     bool DoXForm = false;
 | |
|     bool JustReplace = false;
 | |
|     switch (CI.getOpcode()) {
 | |
|     default:
 | |
|       // All the others use floating point so we shouldn't actually 
 | |
|       // get here because of the check above.
 | |
|       llvm_unreachable("Unknown cast type");
 | |
|     case Instruction::Trunc:
 | |
|       DoXForm = true;
 | |
|       break;
 | |
|     case Instruction::ZExt: {
 | |
|       DoXForm = NumCastsRemoved >= 1;
 | |
|       if (!DoXForm && 0) {
 | |
|         // If it's unnecessary to issue an AND to clear the high bits, it's
 | |
|         // always profitable to do this xform.
 | |
|         Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, false);
 | |
|         APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
 | |
|         if (MaskedValueIsZero(TryRes, Mask))
 | |
|           return ReplaceInstUsesWith(CI, TryRes);
 | |
|         
 | |
|         if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
 | |
|           if (TryI->use_empty())
 | |
|             EraseInstFromFunction(*TryI);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::SExt: {
 | |
|       DoXForm = NumCastsRemoved >= 2;
 | |
|       if (!DoXForm && !isa<TruncInst>(SrcI) && 0) {
 | |
|         // If we do not have to emit the truncate + sext pair, then it's always
 | |
|         // profitable to do this xform.
 | |
|         //
 | |
|         // It's not safe to eliminate the trunc + sext pair if one of the
 | |
|         // eliminated cast is a truncate. e.g.
 | |
|         // t2 = trunc i32 t1 to i16
 | |
|         // t3 = sext i16 t2 to i32
 | |
|         // !=
 | |
|         // i32 t1
 | |
|         Value *TryRes = EvaluateInDifferentType(SrcI, DestTy, true);
 | |
|         unsigned NumSignBits = ComputeNumSignBits(TryRes);
 | |
|         if (NumSignBits > (DestBitSize - SrcBitSize))
 | |
|           return ReplaceInstUsesWith(CI, TryRes);
 | |
|         
 | |
|         if (Instruction *TryI = dyn_cast<Instruction>(TryRes))
 | |
|           if (TryI->use_empty())
 | |
|             EraseInstFromFunction(*TryI);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     
 | |
|     if (DoXForm) {
 | |
|       DEBUG(errs() << "ICE: EvaluateInDifferentType converting expression type"
 | |
|             " to avoid cast: " << CI);
 | |
|       Value *Res = EvaluateInDifferentType(SrcI, DestTy, 
 | |
|                                            CI.getOpcode() == Instruction::SExt);
 | |
|       if (JustReplace)
 | |
|         // Just replace this cast with the result.
 | |
|         return ReplaceInstUsesWith(CI, Res);
 | |
| 
 | |
|       assert(Res->getType() == DestTy);
 | |
|       switch (CI.getOpcode()) {
 | |
|       default: llvm_unreachable("Unknown cast type!");
 | |
|       case Instruction::Trunc:
 | |
|         // Just replace this cast with the result.
 | |
|         return ReplaceInstUsesWith(CI, Res);
 | |
|       case Instruction::ZExt: {
 | |
|         assert(SrcBitSize < DestBitSize && "Not a zext?");
 | |
| 
 | |
|         // If the high bits are already zero, just replace this cast with the
 | |
|         // result.
 | |
|         APInt Mask(APInt::getBitsSet(DestBitSize, SrcBitSize, DestBitSize));
 | |
|         if (MaskedValueIsZero(Res, Mask))
 | |
|           return ReplaceInstUsesWith(CI, Res);
 | |
| 
 | |
|         // We need to emit an AND to clear the high bits.
 | |
|         Constant *C = ConstantInt::get(*Context, 
 | |
|                                  APInt::getLowBitsSet(DestBitSize, SrcBitSize));
 | |
|         return BinaryOperator::CreateAnd(Res, C);
 | |
|       }
 | |
|       case Instruction::SExt: {
 | |
|         // If the high bits are already filled with sign bit, just replace this
 | |
|         // cast with the result.
 | |
|         unsigned NumSignBits = ComputeNumSignBits(Res);
 | |
|         if (NumSignBits > (DestBitSize - SrcBitSize))
 | |
|           return ReplaceInstUsesWith(CI, Res);
 | |
| 
 | |
|         // We need to emit a cast to truncate, then a cast to sext.
 | |
|         return new SExtInst(Builder->CreateTrunc(Res, Src->getType()), DestTy);
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
 | |
|   Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
 | |
| 
 | |
|   switch (SrcI->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     // If we are discarding information, rewrite.
 | |
|     if (DestBitSize < SrcBitSize && DestBitSize != 1) {
 | |
|       // Don't insert two casts unless at least one can be eliminated.
 | |
|       if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
 | |
|           !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
 | |
|         Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
 | |
|         Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
 | |
|         return BinaryOperator::Create(
 | |
|             cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // cast (xor bool X, true) to int  --> xor (cast bool X to int), 1
 | |
|     if (isa<ZExtInst>(CI) && SrcBitSize == 1 && 
 | |
|         SrcI->getOpcode() == Instruction::Xor &&
 | |
|         Op1 == ConstantInt::getTrue(*Context) &&
 | |
|         (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
 | |
|       Value *New = Builder->CreateZExt(Op0, DestTy, Op0->getName());
 | |
|       return BinaryOperator::CreateXor(New,
 | |
|                                       ConstantInt::get(CI.getType(), 1));
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Shl: {
 | |
|     // Canonicalize trunc inside shl, if we can.
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(Op1);
 | |
|     if (CI && DestBitSize < SrcBitSize &&
 | |
|         CI->getLimitedValue(DestBitSize) < DestBitSize) {
 | |
|       Value *Op0c = Builder->CreateTrunc(Op0, DestTy, Op0->getName());
 | |
|       Value *Op1c = Builder->CreateTrunc(Op1, DestTy, Op1->getName());
 | |
|       return BinaryOperator::CreateShl(Op0c, Op1c);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
 | |
|   if (Instruction *Result = commonIntCastTransforms(CI))
 | |
|     return Result;
 | |
|   
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   const Type *Ty = CI.getType();
 | |
|   uint32_t DestBitWidth = Ty->getScalarSizeInBits();
 | |
|   uint32_t SrcBitWidth = Src->getType()->getScalarSizeInBits();
 | |
| 
 | |
|   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0)
 | |
|   if (DestBitWidth == 1) {
 | |
|     Constant *One = ConstantInt::get(Src->getType(), 1);
 | |
|     Src = Builder->CreateAnd(Src, One, "tmp");
 | |
|     Value *Zero = Constant::getNullValue(Src->getType());
 | |
|     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
 | |
|   }
 | |
| 
 | |
|   // Optimize trunc(lshr(), c) to pull the shift through the truncate.
 | |
|   ConstantInt *ShAmtV = 0;
 | |
|   Value *ShiftOp = 0;
 | |
|   if (Src->hasOneUse() &&
 | |
|       match(Src, m_LShr(m_Value(ShiftOp), m_ConstantInt(ShAmtV)))) {
 | |
|     uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
 | |
|     
 | |
|     // Get a mask for the bits shifting in.
 | |
|     APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
 | |
|     if (MaskedValueIsZero(ShiftOp, Mask)) {
 | |
|       if (ShAmt >= DestBitWidth)        // All zeros.
 | |
|         return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
 | |
|       
 | |
|       // Okay, we can shrink this.  Truncate the input, then return a new
 | |
|       // shift.
 | |
|       Value *V1 = Builder->CreateTrunc(ShiftOp, Ty, ShiftOp->getName());
 | |
|       Value *V2 = ConstantExpr::getTrunc(ShAmtV, Ty);
 | |
|       return BinaryOperator::CreateLShr(V1, V2);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
 | |
| /// in order to eliminate the icmp.
 | |
| Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
 | |
|                                              bool DoXform) {
 | |
|   // If we are just checking for a icmp eq of a single bit and zext'ing it
 | |
|   // to an integer, then shift the bit to the appropriate place and then
 | |
|   // cast to integer to avoid the comparison.
 | |
|   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
 | |
|     const APInt &Op1CV = Op1C->getValue();
 | |
|       
 | |
|     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
 | |
|     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
 | |
|     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
 | |
|         (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
 | |
|       if (!DoXform) return ICI;
 | |
| 
 | |
|       Value *In = ICI->getOperand(0);
 | |
|       Value *Sh = ConstantInt::get(In->getType(),
 | |
|                                    In->getType()->getScalarSizeInBits()-1);
 | |
|       In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
 | |
|       if (In->getType() != CI.getType())
 | |
|         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
 | |
| 
 | |
|       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
 | |
|         Constant *One = ConstantInt::get(In->getType(), 1);
 | |
|         In = Builder->CreateXor(In, One, In->getName()+".not");
 | |
|       }
 | |
| 
 | |
|       return ReplaceInstUsesWith(CI, In);
 | |
|     }
 | |
|       
 | |
|       
 | |
|       
 | |
|     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
 | |
|     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
 | |
|     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
 | |
|     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
 | |
|     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
 | |
|     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
 | |
|     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
 | |
|     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
 | |
|     if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 
 | |
|         // This only works for EQ and NE
 | |
|         ICI->isEquality()) {
 | |
|       // If Op1C some other power of two, convert:
 | |
|       uint32_t BitWidth = Op1C->getType()->getBitWidth();
 | |
|       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | |
|       APInt TypeMask(APInt::getAllOnesValue(BitWidth));
 | |
|       ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
 | |
|         
 | |
|       APInt KnownZeroMask(~KnownZero);
 | |
|       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
 | |
|         if (!DoXform) return ICI;
 | |
| 
 | |
|         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
 | |
|         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
 | |
|           // (X&4) == 2 --> false
 | |
|           // (X&4) != 2 --> true
 | |
|           Constant *Res = ConstantInt::get(Type::getInt1Ty(*Context), isNE);
 | |
|           Res = ConstantExpr::getZExt(Res, CI.getType());
 | |
|           return ReplaceInstUsesWith(CI, Res);
 | |
|         }
 | |
|           
 | |
|         uint32_t ShiftAmt = KnownZeroMask.logBase2();
 | |
|         Value *In = ICI->getOperand(0);
 | |
|         if (ShiftAmt) {
 | |
|           // Perform a logical shr by shiftamt.
 | |
|           // Insert the shift to put the result in the low bit.
 | |
|           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
 | |
|                                    In->getName()+".lobit");
 | |
|         }
 | |
|           
 | |
|         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
 | |
|           Constant *One = ConstantInt::get(In->getType(), 1);
 | |
|           In = Builder->CreateXor(In, One, "tmp");
 | |
|         }
 | |
|           
 | |
|         if (CI.getType() == In->getType())
 | |
|           return ReplaceInstUsesWith(CI, In);
 | |
|         else
 | |
|           return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
 | |
|   // If one of the common conversion will work ..
 | |
|   if (Instruction *Result = commonIntCastTransforms(CI))
 | |
|     return Result;
 | |
| 
 | |
|   Value *Src = CI.getOperand(0);
 | |
| 
 | |
|   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
 | |
|   // types and if the sizes are just right we can convert this into a logical
 | |
|   // 'and' which will be much cheaper than the pair of casts.
 | |
|   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
 | |
|     // Get the sizes of the types involved.  We know that the intermediate type
 | |
|     // will be smaller than A or C, but don't know the relation between A and C.
 | |
|     Value *A = CSrc->getOperand(0);
 | |
|     unsigned SrcSize = A->getType()->getScalarSizeInBits();
 | |
|     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
 | |
|     unsigned DstSize = CI.getType()->getScalarSizeInBits();
 | |
|     // If we're actually extending zero bits, then if
 | |
|     // SrcSize <  DstSize: zext(a & mask)
 | |
|     // SrcSize == DstSize: a & mask
 | |
|     // SrcSize  > DstSize: trunc(a) & mask
 | |
|     if (SrcSize < DstSize) {
 | |
|       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
 | |
|       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
 | |
|       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
 | |
|       return new ZExtInst(And, CI.getType());
 | |
|     }
 | |
|     
 | |
|     if (SrcSize == DstSize) {
 | |
|       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
 | |
|       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
 | |
|                                                            AndValue));
 | |
|     }
 | |
|     if (SrcSize > DstSize) {
 | |
|       Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
 | |
|       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
 | |
|       return BinaryOperator::CreateAnd(Trunc, 
 | |
|                                        ConstantInt::get(Trunc->getType(),
 | |
|                                                                AndValue));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
 | |
|     return transformZExtICmp(ICI, CI);
 | |
| 
 | |
|   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
 | |
|   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
 | |
|     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
 | |
|     // of the (zext icmp) will be transformed.
 | |
|     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
 | |
|     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
 | |
|     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
 | |
|         (transformZExtICmp(LHS, CI, false) ||
 | |
|          transformZExtICmp(RHS, CI, false))) {
 | |
|       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
 | |
|       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
 | |
|       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // zext(trunc(t) & C) -> (t & zext(C)).
 | |
|   if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
 | |
|       if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
 | |
|         Value *TI0 = TI->getOperand(0);
 | |
|         if (TI0->getType() == CI.getType())
 | |
|           return
 | |
|             BinaryOperator::CreateAnd(TI0,
 | |
|                                 ConstantExpr::getZExt(C, CI.getType()));
 | |
|       }
 | |
| 
 | |
|   // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
 | |
|   if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
 | |
|       if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
 | |
|         if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
 | |
|             And->getOperand(1) == C)
 | |
|           if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
 | |
|             Value *TI0 = TI->getOperand(0);
 | |
|             if (TI0->getType() == CI.getType()) {
 | |
|               Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
 | |
|               Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
 | |
|               return BinaryOperator::CreateXor(NewAnd, ZC);
 | |
|             }
 | |
|           }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSExt(SExtInst &CI) {
 | |
|   if (Instruction *I = commonIntCastTransforms(CI))
 | |
|     return I;
 | |
|   
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   
 | |
|   // Canonicalize sign-extend from i1 to a select.
 | |
|   if (Src->getType() == Type::getInt1Ty(*Context))
 | |
|     return SelectInst::Create(Src,
 | |
|                               Constant::getAllOnesValue(CI.getType()),
 | |
|                               Constant::getNullValue(CI.getType()));
 | |
| 
 | |
|   // See if the value being truncated is already sign extended.  If so, just
 | |
|   // eliminate the trunc/sext pair.
 | |
|   if (Operator::getOpcode(Src) == Instruction::Trunc) {
 | |
|     Value *Op = cast<User>(Src)->getOperand(0);
 | |
|     unsigned OpBits   = Op->getType()->getScalarSizeInBits();
 | |
|     unsigned MidBits  = Src->getType()->getScalarSizeInBits();
 | |
|     unsigned DestBits = CI.getType()->getScalarSizeInBits();
 | |
|     unsigned NumSignBits = ComputeNumSignBits(Op);
 | |
| 
 | |
|     if (OpBits == DestBits) {
 | |
|       // Op is i32, Mid is i8, and Dest is i32.  If Op has more than 24 sign
 | |
|       // bits, it is already ready.
 | |
|       if (NumSignBits > DestBits-MidBits)
 | |
|         return ReplaceInstUsesWith(CI, Op);
 | |
|     } else if (OpBits < DestBits) {
 | |
|       // Op is i32, Mid is i8, and Dest is i64.  If Op has more than 24 sign
 | |
|       // bits, just sext from i32.
 | |
|       if (NumSignBits > OpBits-MidBits)
 | |
|         return new SExtInst(Op, CI.getType(), "tmp");
 | |
|     } else {
 | |
|       // Op is i64, Mid is i8, and Dest is i32.  If Op has more than 56 sign
 | |
|       // bits, just truncate to i32.
 | |
|       if (NumSignBits > OpBits-MidBits)
 | |
|         return new TruncInst(Op, CI.getType(), "tmp");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the input is a shl/ashr pair of a same constant, then this is a sign
 | |
|   // extension from a smaller value.  If we could trust arbitrary bitwidth
 | |
|   // integers, we could turn this into a truncate to the smaller bit and then
 | |
|   // use a sext for the whole extension.  Since we don't, look deeper and check
 | |
|   // for a truncate.  If the source and dest are the same type, eliminate the
 | |
|   // trunc and extend and just do shifts.  For example, turn:
 | |
|   //   %a = trunc i32 %i to i8
 | |
|   //   %b = shl i8 %a, 6
 | |
|   //   %c = ashr i8 %b, 6
 | |
|   //   %d = sext i8 %c to i32
 | |
|   // into:
 | |
|   //   %a = shl i32 %i, 30
 | |
|   //   %d = ashr i32 %a, 30
 | |
|   Value *A = 0;
 | |
|   ConstantInt *BA = 0, *CA = 0;
 | |
|   if (match(Src, m_AShr(m_Shl(m_Value(A), m_ConstantInt(BA)),
 | |
|                         m_ConstantInt(CA))) &&
 | |
|       BA == CA && isa<TruncInst>(A)) {
 | |
|     Value *I = cast<TruncInst>(A)->getOperand(0);
 | |
|     if (I->getType() == CI.getType()) {
 | |
|       unsigned MidSize = Src->getType()->getScalarSizeInBits();
 | |
|       unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
 | |
|       unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
 | |
|       Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
 | |
|       I = Builder->CreateShl(I, ShAmtV, CI.getName());
 | |
|       return BinaryOperator::CreateAShr(I, ShAmtV);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
 | |
| /// in the specified FP type without changing its value.
 | |
| static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem,
 | |
|                               LLVMContext *Context) {
 | |
|   bool losesInfo;
 | |
|   APFloat F = CFP->getValueAPF();
 | |
|   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
 | |
|   if (!losesInfo)
 | |
|     return ConstantFP::get(*Context, F);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// LookThroughFPExtensions - If this is an fp extension instruction, look
 | |
| /// through it until we get the source value.
 | |
| static Value *LookThroughFPExtensions(Value *V, LLVMContext *Context) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     if (I->getOpcode() == Instruction::FPExt)
 | |
|       return LookThroughFPExtensions(I->getOperand(0), Context);
 | |
|   
 | |
|   // If this value is a constant, return the constant in the smallest FP type
 | |
|   // that can accurately represent it.  This allows us to turn
 | |
|   // (float)((double)X+2.0) into x+2.0f.
 | |
|   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
 | |
|     if (CFP->getType() == Type::getPPC_FP128Ty(*Context))
 | |
|       return V;  // No constant folding of this.
 | |
|     // See if the value can be truncated to float and then reextended.
 | |
|     if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle, Context))
 | |
|       return V;
 | |
|     if (CFP->getType() == Type::getDoubleTy(*Context))
 | |
|       return V;  // Won't shrink.
 | |
|     if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble, Context))
 | |
|       return V;
 | |
|     // Don't try to shrink to various long double types.
 | |
|   }
 | |
|   
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
 | |
|   if (Instruction *I = commonCastTransforms(CI))
 | |
|     return I;
 | |
|   
 | |
|   // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
 | |
|   // smaller than the destination type, we can eliminate the truncate by doing
 | |
|   // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well as
 | |
|   // many builtins (sqrt, etc).
 | |
|   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
 | |
|   if (OpI && OpI->hasOneUse()) {
 | |
|     switch (OpI->getOpcode()) {
 | |
|     default: break;
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::FRem:
 | |
|       const Type *SrcTy = OpI->getType();
 | |
|       Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0), Context);
 | |
|       Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1), Context);
 | |
|       if (LHSTrunc->getType() != SrcTy && 
 | |
|           RHSTrunc->getType() != SrcTy) {
 | |
|         unsigned DstSize = CI.getType()->getScalarSizeInBits();
 | |
|         // If the source types were both smaller than the destination type of
 | |
|         // the cast, do this xform.
 | |
|         if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
 | |
|             RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
 | |
|           LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
 | |
|           RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
 | |
|           return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
 | |
|         }
 | |
|       }
 | |
|       break;  
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFPExt(CastInst &CI) {
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
 | |
|   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
 | |
|   if (OpI == 0)
 | |
|     return commonCastTransforms(FI);
 | |
| 
 | |
|   // fptoui(uitofp(X)) --> X
 | |
|   // fptoui(sitofp(X)) --> X
 | |
|   // This is safe if the intermediate type has enough bits in its mantissa to
 | |
|   // accurately represent all values of X.  For example, do not do this with
 | |
|   // i64->float->i64.  This is also safe for sitofp case, because any negative
 | |
|   // 'X' value would cause an undefined result for the fptoui. 
 | |
|   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
 | |
|       OpI->getOperand(0)->getType() == FI.getType() &&
 | |
|       (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
 | |
|                     OpI->getType()->getFPMantissaWidth())
 | |
|     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
 | |
| 
 | |
|   return commonCastTransforms(FI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
 | |
|   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
 | |
|   if (OpI == 0)
 | |
|     return commonCastTransforms(FI);
 | |
|   
 | |
|   // fptosi(sitofp(X)) --> X
 | |
|   // fptosi(uitofp(X)) --> X
 | |
|   // This is safe if the intermediate type has enough bits in its mantissa to
 | |
|   // accurately represent all values of X.  For example, do not do this with
 | |
|   // i64->float->i64.  This is also safe for sitofp case, because any negative
 | |
|   // 'X' value would cause an undefined result for the fptoui. 
 | |
|   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
 | |
|       OpI->getOperand(0)->getType() == FI.getType() &&
 | |
|       (int)FI.getType()->getScalarSizeInBits() <=
 | |
|                     OpI->getType()->getFPMantissaWidth())
 | |
|     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
 | |
|   
 | |
|   return commonCastTransforms(FI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
 | |
|   return commonCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
 | |
|   // If the destination integer type is smaller than the intptr_t type for
 | |
|   // this target, do a ptrtoint to intptr_t then do a trunc.  This allows the
 | |
|   // trunc to be exposed to other transforms.  Don't do this for extending
 | |
|   // ptrtoint's, because we don't know if the target sign or zero extends its
 | |
|   // pointers.
 | |
|   if (TD &&
 | |
|       CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
 | |
|     Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
 | |
|                                        TD->getIntPtrType(CI.getContext()),
 | |
|                                        "tmp");
 | |
|     return new TruncInst(P, CI.getType());
 | |
|   }
 | |
|   
 | |
|   return commonPointerCastTransforms(CI);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
 | |
|   // If the source integer type is larger than the intptr_t type for
 | |
|   // this target, do a trunc to the intptr_t type, then inttoptr of it.  This
 | |
|   // allows the trunc to be exposed to other transforms.  Don't do this for
 | |
|   // extending inttoptr's, because we don't know if the target sign or zero
 | |
|   // extends to pointers.
 | |
|   if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
 | |
|       TD->getPointerSizeInBits()) {
 | |
|     Value *P = Builder->CreateTrunc(CI.getOperand(0),
 | |
|                                     TD->getIntPtrType(CI.getContext()), "tmp");
 | |
|     return new IntToPtrInst(P, CI.getType());
 | |
|   }
 | |
|   
 | |
|   if (Instruction *I = commonCastTransforms(CI))
 | |
|     return I;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
 | |
|   // If the operands are integer typed then apply the integer transforms,
 | |
|   // otherwise just apply the common ones.
 | |
|   Value *Src = CI.getOperand(0);
 | |
|   const Type *SrcTy = Src->getType();
 | |
|   const Type *DestTy = CI.getType();
 | |
| 
 | |
|   if (isa<PointerType>(SrcTy)) {
 | |
|     if (Instruction *I = commonPointerCastTransforms(CI))
 | |
|       return I;
 | |
|   } else {
 | |
|     if (Instruction *Result = commonCastTransforms(CI))
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Get rid of casts from one type to the same type. These are useless and can
 | |
|   // be replaced by the operand.
 | |
|   if (DestTy == Src->getType())
 | |
|     return ReplaceInstUsesWith(CI, Src);
 | |
| 
 | |
|   if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
 | |
|     const PointerType *SrcPTy = cast<PointerType>(SrcTy);
 | |
|     const Type *DstElTy = DstPTy->getElementType();
 | |
|     const Type *SrcElTy = SrcPTy->getElementType();
 | |
|     
 | |
|     // If the address spaces don't match, don't eliminate the bitcast, which is
 | |
|     // required for changing types.
 | |
|     if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
 | |
|       return 0;
 | |
|     
 | |
|     // If we are casting a alloca to a pointer to a type of the same
 | |
|     // size, rewrite the allocation instruction to allocate the "right" type.
 | |
|     // There is no need to modify malloc calls because it is their bitcast that
 | |
|     // needs to be cleaned up.
 | |
|     if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
 | |
|       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
 | |
|         return V;
 | |
|     
 | |
|     // If the source and destination are pointers, and this cast is equivalent
 | |
|     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
 | |
|     // This can enhance SROA and other transforms that want type-safe pointers.
 | |
|     Constant *ZeroUInt = Constant::getNullValue(Type::getInt32Ty(*Context));
 | |
|     unsigned NumZeros = 0;
 | |
|     while (SrcElTy != DstElTy && 
 | |
|            isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
 | |
|            SrcElTy->getNumContainedTypes() /* not "{}" */) {
 | |
|       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
 | |
|       ++NumZeros;
 | |
|     }
 | |
| 
 | |
|     // If we found a path from the src to dest, create the getelementptr now.
 | |
|     if (SrcElTy == DstElTy) {
 | |
|       SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
 | |
|       return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(), "",
 | |
|                                                ((Instruction*) NULL));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
 | |
|     if (DestVTy->getNumElements() == 1) {
 | |
|       if (!isa<VectorType>(SrcTy)) {
 | |
|         Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
 | |
|         return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
 | |
|                             Constant::getNullValue(Type::getInt32Ty(*Context)));
 | |
|       }
 | |
|       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
 | |
|     if (SrcVTy->getNumElements() == 1) {
 | |
|       if (!isa<VectorType>(DestTy)) {
 | |
|         Value *Elem = 
 | |
|           Builder->CreateExtractElement(Src,
 | |
|                             Constant::getNullValue(Type::getInt32Ty(*Context)));
 | |
|         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
 | |
|     if (SVI->hasOneUse()) {
 | |
|       // Okay, we have (bitconvert (shuffle ..)).  Check to see if this is
 | |
|       // a bitconvert to a vector with the same # elts.
 | |
|       if (isa<VectorType>(DestTy) && 
 | |
|           cast<VectorType>(DestTy)->getNumElements() ==
 | |
|                 SVI->getType()->getNumElements() &&
 | |
|           SVI->getType()->getNumElements() ==
 | |
|             cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
 | |
|         CastInst *Tmp;
 | |
|         // If either of the operands is a cast from CI.getType(), then
 | |
|         // evaluating the shuffle in the casted destination's type will allow
 | |
|         // us to eliminate at least one cast.
 | |
|         if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) && 
 | |
|              Tmp->getOperand(0)->getType() == DestTy) ||
 | |
|             ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) && 
 | |
|              Tmp->getOperand(0)->getType() == DestTy)) {
 | |
|           Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
 | |
|           Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
 | |
|           // Return a new shuffle vector.  Use the same element ID's, as we
 | |
|           // know the vector types match #elts.
 | |
|           return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// GetSelectFoldableOperands - We want to turn code that looks like this:
 | |
| ///   %C = or %A, %B
 | |
| ///   %D = select %cond, %C, %A
 | |
| /// into:
 | |
| ///   %C = select %cond, %B, 0
 | |
| ///   %D = or %A, %C
 | |
| ///
 | |
| /// Assuming that the specified instruction is an operand to the select, return
 | |
| /// a bitmask indicating which operands of this instruction are foldable if they
 | |
| /// equal the other incoming value of the select.
 | |
| ///
 | |
| static unsigned GetSelectFoldableOperands(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     return 3;              // Can fold through either operand.
 | |
|   case Instruction::Sub:   // Can only fold on the amount subtracted.
 | |
|   case Instruction::Shl:   // Can only fold on the shift amount.
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     return 1;
 | |
|   default:
 | |
|     return 0;              // Cannot fold
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GetSelectFoldableConstant - For the same transformation as the previous
 | |
| /// function, return the identity constant that goes into the select.
 | |
| static Constant *GetSelectFoldableConstant(Instruction *I,
 | |
|                                            LLVMContext *Context) {
 | |
|   switch (I->getOpcode()) {
 | |
|   default: llvm_unreachable("This cannot happen!");
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     return Constant::getNullValue(I->getType());
 | |
|   case Instruction::And:
 | |
|     return Constant::getAllOnesValue(I->getType());
 | |
|   case Instruction::Mul:
 | |
|     return ConstantInt::get(I->getType(), 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
 | |
| /// have the same opcode and only one use each.  Try to simplify this.
 | |
| Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
 | |
|                                           Instruction *FI) {
 | |
|   if (TI->getNumOperands() == 1) {
 | |
|     // If this is a non-volatile load or a cast from the same type,
 | |
|     // merge.
 | |
|     if (TI->isCast()) {
 | |
|       if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
 | |
|         return 0;
 | |
|     } else {
 | |
|       return 0;  // unknown unary op.
 | |
|     }
 | |
| 
 | |
|     // Fold this by inserting a select from the input values.
 | |
|     SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
 | |
|                                           FI->getOperand(0), SI.getName()+".v");
 | |
|     InsertNewInstBefore(NewSI, SI);
 | |
|     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 
 | |
|                             TI->getType());
 | |
|   }
 | |
| 
 | |
|   // Only handle binary operators here.
 | |
|   if (!isa<BinaryOperator>(TI))
 | |
|     return 0;
 | |
| 
 | |
|   // Figure out if the operations have any operands in common.
 | |
|   Value *MatchOp, *OtherOpT, *OtherOpF;
 | |
|   bool MatchIsOpZero;
 | |
|   if (TI->getOperand(0) == FI->getOperand(0)) {
 | |
|     MatchOp  = TI->getOperand(0);
 | |
|     OtherOpT = TI->getOperand(1);
 | |
|     OtherOpF = FI->getOperand(1);
 | |
|     MatchIsOpZero = true;
 | |
|   } else if (TI->getOperand(1) == FI->getOperand(1)) {
 | |
|     MatchOp  = TI->getOperand(1);
 | |
|     OtherOpT = TI->getOperand(0);
 | |
|     OtherOpF = FI->getOperand(0);
 | |
|     MatchIsOpZero = false;
 | |
|   } else if (!TI->isCommutative()) {
 | |
|     return 0;
 | |
|   } else if (TI->getOperand(0) == FI->getOperand(1)) {
 | |
|     MatchOp  = TI->getOperand(0);
 | |
|     OtherOpT = TI->getOperand(1);
 | |
|     OtherOpF = FI->getOperand(0);
 | |
|     MatchIsOpZero = true;
 | |
|   } else if (TI->getOperand(1) == FI->getOperand(0)) {
 | |
|     MatchOp  = TI->getOperand(1);
 | |
|     OtherOpT = TI->getOperand(0);
 | |
|     OtherOpF = FI->getOperand(1);
 | |
|     MatchIsOpZero = true;
 | |
|   } else {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // If we reach here, they do have operations in common.
 | |
|   SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
 | |
|                                          OtherOpF, SI.getName()+".v");
 | |
|   InsertNewInstBefore(NewSI, SI);
 | |
| 
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
 | |
|     if (MatchIsOpZero)
 | |
|       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
 | |
|     else
 | |
|       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
 | |
|   }
 | |
|   llvm_unreachable("Shouldn't get here");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static bool isSelect01(Constant *C1, Constant *C2) {
 | |
|   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
 | |
|   if (!C1I)
 | |
|     return false;
 | |
|   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
 | |
|   if (!C2I)
 | |
|     return false;
 | |
|   return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne());
 | |
| }
 | |
| 
 | |
| /// FoldSelectIntoOp - Try fold the select into one of the operands to
 | |
| /// facilitate further optimization.
 | |
| Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
 | |
|                                             Value *FalseVal) {
 | |
|   // See the comment above GetSelectFoldableOperands for a description of the
 | |
|   // transformation we are doing here.
 | |
|   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
 | |
|     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
 | |
|         !isa<Constant>(FalseVal)) {
 | |
|       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
 | |
|         unsigned OpToFold = 0;
 | |
|         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
 | |
|           OpToFold = 1;
 | |
|         } else  if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
 | |
|           OpToFold = 2;
 | |
|         }
 | |
| 
 | |
|         if (OpToFold) {
 | |
|           Constant *C = GetSelectFoldableConstant(TVI, Context);
 | |
|           Value *OOp = TVI->getOperand(2-OpToFold);
 | |
|           // Avoid creating select between 2 constants unless it's selecting
 | |
|           // between 0 and 1.
 | |
|           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
 | |
|             Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
 | |
|             InsertNewInstBefore(NewSel, SI);
 | |
|             NewSel->takeName(TVI);
 | |
|             if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
 | |
|               return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
 | |
|             llvm_unreachable("Unknown instruction!!");
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
 | |
|     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
 | |
|         !isa<Constant>(TrueVal)) {
 | |
|       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
 | |
|         unsigned OpToFold = 0;
 | |
|         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
 | |
|           OpToFold = 1;
 | |
|         } else  if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
 | |
|           OpToFold = 2;
 | |
|         }
 | |
| 
 | |
|         if (OpToFold) {
 | |
|           Constant *C = GetSelectFoldableConstant(FVI, Context);
 | |
|           Value *OOp = FVI->getOperand(2-OpToFold);
 | |
|           // Avoid creating select between 2 constants unless it's selecting
 | |
|           // between 0 and 1.
 | |
|           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
 | |
|             Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
 | |
|             InsertNewInstBefore(NewSel, SI);
 | |
|             NewSel->takeName(FVI);
 | |
|             if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
 | |
|               return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
 | |
|             llvm_unreachable("Unknown instruction!!");
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// visitSelectInstWithICmp - Visit a SelectInst that has an
 | |
| /// ICmpInst as its first operand.
 | |
| ///
 | |
| Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
 | |
|                                                    ICmpInst *ICI) {
 | |
|   bool Changed = false;
 | |
|   ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
|   Value *CmpLHS = ICI->getOperand(0);
 | |
|   Value *CmpRHS = ICI->getOperand(1);
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
| 
 | |
|   // Check cases where the comparison is with a constant that
 | |
|   // can be adjusted to fit the min/max idiom. We may edit ICI in
 | |
|   // place here, so make sure the select is the only user.
 | |
|   if (ICI->hasOneUse())
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
 | |
|       switch (Pred) {
 | |
|       default: break;
 | |
|       case ICmpInst::ICMP_ULT:
 | |
|       case ICmpInst::ICMP_SLT: {
 | |
|         // X < MIN ? T : F  -->  F
 | |
|         if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
 | |
|           return ReplaceInstUsesWith(SI, FalseVal);
 | |
|         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
 | |
|         Constant *AdjustedRHS = SubOne(CI);
 | |
|         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
 | |
|             (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
 | |
|           Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|           CmpRHS = AdjustedRHS;
 | |
|           std::swap(FalseVal, TrueVal);
 | |
|           ICI->setPredicate(Pred);
 | |
|           ICI->setOperand(1, CmpRHS);
 | |
|           SI.setOperand(1, TrueVal);
 | |
|           SI.setOperand(2, FalseVal);
 | |
|           Changed = true;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       case ICmpInst::ICMP_UGT:
 | |
|       case ICmpInst::ICMP_SGT: {
 | |
|         // X > MAX ? T : F  -->  F
 | |
|         if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
 | |
|           return ReplaceInstUsesWith(SI, FalseVal);
 | |
|         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
 | |
|         Constant *AdjustedRHS = AddOne(CI);
 | |
|         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
 | |
|             (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
 | |
|           Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|           CmpRHS = AdjustedRHS;
 | |
|           std::swap(FalseVal, TrueVal);
 | |
|           ICI->setPredicate(Pred);
 | |
|           ICI->setOperand(1, CmpRHS);
 | |
|           SI.setOperand(1, TrueVal);
 | |
|           SI.setOperand(2, FalseVal);
 | |
|           Changed = true;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
| 
 | |
|       // (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed
 | |
|       // (x >s -1) ? -1 : 0 -> ashr x, 31  -> all ones if not signed
 | |
|       CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
 | |
|       if (match(TrueVal, m_ConstantInt<-1>()) &&
 | |
|           match(FalseVal, m_ConstantInt<0>()))
 | |
|         Pred = ICI->getPredicate();
 | |
|       else if (match(TrueVal, m_ConstantInt<0>()) &&
 | |
|                match(FalseVal, m_ConstantInt<-1>()))
 | |
|         Pred = CmpInst::getInversePredicate(ICI->getPredicate());
 | |
|       
 | |
|       if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
 | |
|         // If we are just checking for a icmp eq of a single bit and zext'ing it
 | |
|         // to an integer, then shift the bit to the appropriate place and then
 | |
|         // cast to integer to avoid the comparison.
 | |
|         const APInt &Op1CV = CI->getValue();
 | |
|     
 | |
|         // sext (x <s  0) to i32 --> x>>s31      true if signbit set.
 | |
|         // sext (x >s -1) to i32 --> (x>>s31)^-1  true if signbit clear.
 | |
|         if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
 | |
|             (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
 | |
|           Value *In = ICI->getOperand(0);
 | |
|           Value *Sh = ConstantInt::get(In->getType(),
 | |
|                                        In->getType()->getScalarSizeInBits()-1);
 | |
|           In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
 | |
|                                                         In->getName()+".lobit"),
 | |
|                                    *ICI);
 | |
|           if (In->getType() != SI.getType())
 | |
|             In = CastInst::CreateIntegerCast(In, SI.getType(),
 | |
|                                              true/*SExt*/, "tmp", ICI);
 | |
|     
 | |
|           if (Pred == ICmpInst::ICMP_SGT)
 | |
|             In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
 | |
|                                        In->getName()+".not"), *ICI);
 | |
|     
 | |
|           return ReplaceInstUsesWith(SI, In);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
 | |
|     // Transform (X == Y) ? X : Y  -> Y
 | |
|     if (Pred == ICmpInst::ICMP_EQ)
 | |
|       return ReplaceInstUsesWith(SI, FalseVal);
 | |
|     // Transform (X != Y) ? X : Y  -> X
 | |
|     if (Pred == ICmpInst::ICMP_NE)
 | |
|       return ReplaceInstUsesWith(SI, TrueVal);
 | |
|     /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
 | |
| 
 | |
|   } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
 | |
|     // Transform (X == Y) ? Y : X  -> X
 | |
|     if (Pred == ICmpInst::ICMP_EQ)
 | |
|       return ReplaceInstUsesWith(SI, FalseVal);
 | |
|     // Transform (X != Y) ? Y : X  -> Y
 | |
|     if (Pred == ICmpInst::ICMP_NE)
 | |
|       return ReplaceInstUsesWith(SI, TrueVal);
 | |
|     /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
 | |
|   }
 | |
| 
 | |
|   /// NOTE: if we wanted to, this is where to detect integer ABS
 | |
| 
 | |
|   return Changed ? &SI : 0;
 | |
| }
 | |
| 
 | |
| /// isDefinedInBB - Return true if the value is an instruction defined in the
 | |
| /// specified basicblock.
 | |
| static bool isDefinedInBB(const Value *V, const BasicBlock *BB) {
 | |
|   const Instruction *I = dyn_cast<Instruction>(V);
 | |
|   return I != 0 && I->getParent() == BB;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
 | |
|   Value *CondVal = SI.getCondition();
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
| 
 | |
|   // select true, X, Y  -> X
 | |
|   // select false, X, Y -> Y
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
 | |
|     return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
 | |
| 
 | |
|   // select C, X, X -> X
 | |
|   if (TrueVal == FalseVal)
 | |
|     return ReplaceInstUsesWith(SI, TrueVal);
 | |
| 
 | |
|   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
 | |
|     return ReplaceInstUsesWith(SI, FalseVal);
 | |
|   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
 | |
|     return ReplaceInstUsesWith(SI, TrueVal);
 | |
|   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
 | |
|     if (isa<Constant>(TrueVal))
 | |
|       return ReplaceInstUsesWith(SI, TrueVal);
 | |
|     else
 | |
|       return ReplaceInstUsesWith(SI, FalseVal);
 | |
|   }
 | |
| 
 | |
|   if (SI.getType() == Type::getInt1Ty(*Context)) {
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
 | |
|       if (C->getZExtValue()) {
 | |
|         // Change: A = select B, true, C --> A = or B, C
 | |
|         return BinaryOperator::CreateOr(CondVal, FalseVal);
 | |
|       } else {
 | |
|         // Change: A = select B, false, C --> A = and !B, C
 | |
|         Value *NotCond =
 | |
|           InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
 | |
|                                              "not."+CondVal->getName()), SI);
 | |
|         return BinaryOperator::CreateAnd(NotCond, FalseVal);
 | |
|       }
 | |
|     } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
 | |
|       if (C->getZExtValue() == false) {
 | |
|         // Change: A = select B, C, false --> A = and B, C
 | |
|         return BinaryOperator::CreateAnd(CondVal, TrueVal);
 | |
|       } else {
 | |
|         // Change: A = select B, C, true --> A = or !B, C
 | |
|         Value *NotCond =
 | |
|           InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
 | |
|                                              "not."+CondVal->getName()), SI);
 | |
|         return BinaryOperator::CreateOr(NotCond, TrueVal);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // select a, b, a  -> a&b
 | |
|     // select a, a, b  -> a|b
 | |
|     if (CondVal == TrueVal)
 | |
|       return BinaryOperator::CreateOr(CondVal, FalseVal);
 | |
|     else if (CondVal == FalseVal)
 | |
|       return BinaryOperator::CreateAnd(CondVal, TrueVal);
 | |
|   }
 | |
| 
 | |
|   // Selecting between two integer constants?
 | |
|   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
 | |
|     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
 | |
|       // select C, 1, 0 -> zext C to int
 | |
|       if (FalseValC->isZero() && TrueValC->getValue() == 1) {
 | |
|         return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
 | |
|       } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
 | |
|         // select C, 0, 1 -> zext !C to int
 | |
|         Value *NotCond =
 | |
|           InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
 | |
|                                                "not."+CondVal->getName()), SI);
 | |
|         return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
 | |
|       }
 | |
| 
 | |
|       if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
 | |
|         // If one of the constants is zero (we know they can't both be) and we
 | |
|         // have an icmp instruction with zero, and we have an 'and' with the
 | |
|         // non-constant value, eliminate this whole mess.  This corresponds to
 | |
|         // cases like this: ((X & 27) ? 27 : 0)
 | |
|         if (TrueValC->isZero() || FalseValC->isZero())
 | |
|           if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
 | |
|               cast<Constant>(IC->getOperand(1))->isNullValue())
 | |
|             if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
 | |
|               if (ICA->getOpcode() == Instruction::And &&
 | |
|                   isa<ConstantInt>(ICA->getOperand(1)) &&
 | |
|                   (ICA->getOperand(1) == TrueValC ||
 | |
|                    ICA->getOperand(1) == FalseValC) &&
 | |
|                   isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
 | |
|                 // Okay, now we know that everything is set up, we just don't
 | |
|                 // know whether we have a icmp_ne or icmp_eq and whether the 
 | |
|                 // true or false val is the zero.
 | |
|                 bool ShouldNotVal = !TrueValC->isZero();
 | |
|                 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
 | |
|                 Value *V = ICA;
 | |
|                 if (ShouldNotVal)
 | |
|                   V = InsertNewInstBefore(BinaryOperator::Create(
 | |
|                                   Instruction::Xor, V, ICA->getOperand(1)), SI);
 | |
|                 return ReplaceInstUsesWith(SI, V);
 | |
|               }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // See if we are selecting two values based on a comparison of the two values.
 | |
|   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
 | |
|     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
 | |
|       // Transform (X == Y) ? X : Y  -> Y
 | |
|       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
 | |
|         // This is not safe in general for floating point:  
 | |
|         // consider X== -0, Y== +0.
 | |
|         // It becomes safe if either operand is a nonzero constant.
 | |
|         ConstantFP *CFPt, *CFPf;
 | |
|         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
 | |
|               !CFPt->getValueAPF().isZero()) ||
 | |
|             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
 | |
|              !CFPf->getValueAPF().isZero()))
 | |
|         return ReplaceInstUsesWith(SI, FalseVal);
 | |
|       }
 | |
|       // Transform (X != Y) ? X : Y  -> X
 | |
|       if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
 | |
|         return ReplaceInstUsesWith(SI, TrueVal);
 | |
|       // NOTE: if we wanted to, this is where to detect MIN/MAX
 | |
| 
 | |
|     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
 | |
|       // Transform (X == Y) ? Y : X  -> X
 | |
|       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
 | |
|         // This is not safe in general for floating point:  
 | |
|         // consider X== -0, Y== +0.
 | |
|         // It becomes safe if either operand is a nonzero constant.
 | |
|         ConstantFP *CFPt, *CFPf;
 | |
|         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
 | |
|               !CFPt->getValueAPF().isZero()) ||
 | |
|             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
 | |
|              !CFPf->getValueAPF().isZero()))
 | |
|           return ReplaceInstUsesWith(SI, FalseVal);
 | |
|       }
 | |
|       // Transform (X != Y) ? Y : X  -> Y
 | |
|       if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
 | |
|         return ReplaceInstUsesWith(SI, TrueVal);
 | |
|       // NOTE: if we wanted to, this is where to detect MIN/MAX
 | |
|     }
 | |
|     // NOTE: if we wanted to, this is where to detect ABS
 | |
|   }
 | |
| 
 | |
|   // See if we are selecting two values based on a comparison of the two values.
 | |
|   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
 | |
|     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
 | |
|       return Result;
 | |
| 
 | |
|   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
 | |
|     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
 | |
|       if (TI->hasOneUse() && FI->hasOneUse()) {
 | |
|         Instruction *AddOp = 0, *SubOp = 0;
 | |
| 
 | |
|         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
 | |
|         if (TI->getOpcode() == FI->getOpcode())
 | |
|           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
 | |
|             return IV;
 | |
| 
 | |
|         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
 | |
|         // even legal for FP.
 | |
|         if ((TI->getOpcode() == Instruction::Sub &&
 | |
|              FI->getOpcode() == Instruction::Add) ||
 | |
|             (TI->getOpcode() == Instruction::FSub &&
 | |
|              FI->getOpcode() == Instruction::FAdd)) {
 | |
|           AddOp = FI; SubOp = TI;
 | |
|         } else if ((FI->getOpcode() == Instruction::Sub &&
 | |
|                     TI->getOpcode() == Instruction::Add) ||
 | |
|                    (FI->getOpcode() == Instruction::FSub &&
 | |
|                     TI->getOpcode() == Instruction::FAdd)) {
 | |
|           AddOp = TI; SubOp = FI;
 | |
|         }
 | |
| 
 | |
|         if (AddOp) {
 | |
|           Value *OtherAddOp = 0;
 | |
|           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
 | |
|             OtherAddOp = AddOp->getOperand(1);
 | |
|           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
 | |
|             OtherAddOp = AddOp->getOperand(0);
 | |
|           }
 | |
| 
 | |
|           if (OtherAddOp) {
 | |
|             // So at this point we know we have (Y -> OtherAddOp):
 | |
|             //        select C, (add X, Y), (sub X, Z)
 | |
|             Value *NegVal;  // Compute -Z
 | |
|             if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
 | |
|               NegVal = ConstantExpr::getNeg(C);
 | |
|             } else {
 | |
|               NegVal = InsertNewInstBefore(
 | |
|                     BinaryOperator::CreateNeg(SubOp->getOperand(1),
 | |
|                                               "tmp"), SI);
 | |
|             }
 | |
| 
 | |
|             Value *NewTrueOp = OtherAddOp;
 | |
|             Value *NewFalseOp = NegVal;
 | |
|             if (AddOp != TI)
 | |
|               std::swap(NewTrueOp, NewFalseOp);
 | |
|             Instruction *NewSel =
 | |
|               SelectInst::Create(CondVal, NewTrueOp,
 | |
|                                  NewFalseOp, SI.getName() + ".p");
 | |
| 
 | |
|             NewSel = InsertNewInstBefore(NewSel, SI);
 | |
|             return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   // See if we can fold the select into one of our operands.
 | |
|   if (SI.getType()->isInteger()) {
 | |
|     Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal);
 | |
|     if (FoldI)
 | |
|       return FoldI;
 | |
|   }
 | |
| 
 | |
|   // See if we can fold the select into a phi node.  The true/false values have
 | |
|   // to be live in the predecessor blocks.  If they are instructions in SI's
 | |
|   // block, we can't map to the predecessor.
 | |
|   if (isa<PHINode>(SI.getCondition()) &&
 | |
|       (!isDefinedInBB(SI.getTrueValue(), SI.getParent()) ||
 | |
|        isa<PHINode>(SI.getTrueValue())) &&
 | |
|       (!isDefinedInBB(SI.getFalseValue(), SI.getParent()) ||
 | |
|        isa<PHINode>(SI.getFalseValue())))
 | |
|     if (Instruction *NV = FoldOpIntoPhi(SI))
 | |
|       return NV;
 | |
| 
 | |
|   if (BinaryOperator::isNot(CondVal)) {
 | |
|     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
 | |
|     SI.setOperand(1, FalseVal);
 | |
|     SI.setOperand(2, TrueVal);
 | |
|     return &SI;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// EnforceKnownAlignment - If the specified pointer points to an object that
 | |
| /// we control, modify the object's alignment to PrefAlign. This isn't
 | |
| /// often possible though. If alignment is important, a more reliable approach
 | |
| /// is to simply align all global variables and allocation instructions to
 | |
| /// their preferred alignment from the beginning.
 | |
| ///
 | |
| static unsigned EnforceKnownAlignment(Value *V,
 | |
|                                       unsigned Align, unsigned PrefAlign) {
 | |
| 
 | |
|   User *U = dyn_cast<User>(V);
 | |
|   if (!U) return Align;
 | |
| 
 | |
|   switch (Operator::getOpcode(U)) {
 | |
|   default: break;
 | |
|   case Instruction::BitCast:
 | |
|     return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
 | |
|   case Instruction::GetElementPtr: {
 | |
|     // If all indexes are zero, it is just the alignment of the base pointer.
 | |
|     bool AllZeroOperands = true;
 | |
|     for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
 | |
|       if (!isa<Constant>(*i) ||
 | |
|           !cast<Constant>(*i)->isNullValue()) {
 | |
|         AllZeroOperands = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     if (AllZeroOperands) {
 | |
|       // Treat this like a bitcast.
 | |
|       return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     // If there is a large requested alignment and we can, bump up the alignment
 | |
|     // of the global.
 | |
|     if (!GV->isDeclaration()) {
 | |
|       if (GV->getAlignment() >= PrefAlign)
 | |
|         Align = GV->getAlignment();
 | |
|       else {
 | |
|         GV->setAlignment(PrefAlign);
 | |
|         Align = PrefAlign;
 | |
|       }
 | |
|     }
 | |
|   } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | |
|     // If there is a requested alignment and if this is an alloca, round up.
 | |
|     if (AI->getAlignment() >= PrefAlign)
 | |
|       Align = AI->getAlignment();
 | |
|     else {
 | |
|       AI->setAlignment(PrefAlign);
 | |
|       Align = PrefAlign;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| /// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
 | |
| /// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
 | |
| /// and it is more than the alignment of the ultimate object, see if we can
 | |
| /// increase the alignment of the ultimate object, making this check succeed.
 | |
| unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
 | |
|                                                   unsigned PrefAlign) {
 | |
|   unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
 | |
|                       sizeof(PrefAlign) * CHAR_BIT;
 | |
|   APInt Mask = APInt::getAllOnesValue(BitWidth);
 | |
|   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | |
|   ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
 | |
|   unsigned TrailZ = KnownZero.countTrailingOnes();
 | |
|   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
 | |
| 
 | |
|   if (PrefAlign > Align)
 | |
|     Align = EnforceKnownAlignment(V, Align, PrefAlign);
 | |
|   
 | |
|     // We don't need to make any adjustment.
 | |
|   return Align;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
 | |
|   unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
 | |
|   unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
 | |
|   unsigned MinAlign = std::min(DstAlign, SrcAlign);
 | |
|   unsigned CopyAlign = MI->getAlignment();
 | |
| 
 | |
|   if (CopyAlign < MinAlign) {
 | |
|     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), 
 | |
|                                              MinAlign, false));
 | |
|     return MI;
 | |
|   }
 | |
|   
 | |
|   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
 | |
|   // load/store.
 | |
|   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
 | |
|   if (MemOpLength == 0) return 0;
 | |
|   
 | |
|   // Source and destination pointer types are always "i8*" for intrinsic.  See
 | |
|   // if the size is something we can handle with a single primitive load/store.
 | |
|   // A single load+store correctly handles overlapping memory in the memmove
 | |
|   // case.
 | |
|   unsigned Size = MemOpLength->getZExtValue();
 | |
|   if (Size == 0) return MI;  // Delete this mem transfer.
 | |
|   
 | |
|   if (Size > 8 || (Size&(Size-1)))
 | |
|     return 0;  // If not 1/2/4/8 bytes, exit.
 | |
|   
 | |
|   // Use an integer load+store unless we can find something better.
 | |
|   Type *NewPtrTy =
 | |
|                 PointerType::getUnqual(IntegerType::get(*Context, Size<<3));
 | |
|   
 | |
|   // Memcpy forces the use of i8* for the source and destination.  That means
 | |
|   // that if you're using memcpy to move one double around, you'll get a cast
 | |
|   // from double* to i8*.  We'd much rather use a double load+store rather than
 | |
|   // an i64 load+store, here because this improves the odds that the source or
 | |
|   // dest address will be promotable.  See if we can find a better type than the
 | |
|   // integer datatype.
 | |
|   if (Value *Op = getBitCastOperand(MI->getOperand(1))) {
 | |
|     const Type *SrcETy = cast<PointerType>(Op->getType())->getElementType();
 | |
|     if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
 | |
|       // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
 | |
|       // down through these levels if so.
 | |
|       while (!SrcETy->isSingleValueType()) {
 | |
|         if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
 | |
|           if (STy->getNumElements() == 1)
 | |
|             SrcETy = STy->getElementType(0);
 | |
|           else
 | |
|             break;
 | |
|         } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
 | |
|           if (ATy->getNumElements() == 1)
 | |
|             SrcETy = ATy->getElementType();
 | |
|           else
 | |
|             break;
 | |
|         } else
 | |
|           break;
 | |
|       }
 | |
|       
 | |
|       if (SrcETy->isSingleValueType())
 | |
|         NewPtrTy = PointerType::getUnqual(SrcETy);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // If the memcpy/memmove provides better alignment info than we can
 | |
|   // infer, use it.
 | |
|   SrcAlign = std::max(SrcAlign, CopyAlign);
 | |
|   DstAlign = std::max(DstAlign, CopyAlign);
 | |
|   
 | |
|   Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
 | |
|   Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
 | |
|   Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
 | |
|   InsertNewInstBefore(L, *MI);
 | |
|   InsertNewInstBefore(new StoreInst(L, Dest, false, DstAlign), *MI);
 | |
| 
 | |
|   // Set the size of the copy to 0, it will be deleted on the next iteration.
 | |
|   MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
 | |
|   return MI;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
 | |
|   unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
 | |
|   if (MI->getAlignment() < Alignment) {
 | |
|     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
 | |
|                                              Alignment, false));
 | |
|     return MI;
 | |
|   }
 | |
|   
 | |
|   // Extract the length and alignment and fill if they are constant.
 | |
|   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
 | |
|   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
 | |
|   if (!LenC || !FillC || FillC->getType() != Type::getInt8Ty(*Context))
 | |
|     return 0;
 | |
|   uint64_t Len = LenC->getZExtValue();
 | |
|   Alignment = MI->getAlignment();
 | |
|   
 | |
|   // If the length is zero, this is a no-op
 | |
|   if (Len == 0) return MI; // memset(d,c,0,a) -> noop
 | |
|   
 | |
|   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
 | |
|   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
 | |
|     const Type *ITy = IntegerType::get(*Context, Len*8);  // n=1 -> i8.
 | |
|     
 | |
|     Value *Dest = MI->getDest();
 | |
|     Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
 | |
| 
 | |
|     // Alignment 0 is identity for alignment 1 for memset, but not store.
 | |
|     if (Alignment == 0) Alignment = 1;
 | |
|     
 | |
|     // Extract the fill value and store.
 | |
|     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
 | |
|     InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
 | |
|                                       Dest, false, Alignment), *MI);
 | |
|     
 | |
|     // Set the size of the copy to 0, it will be deleted on the next iteration.
 | |
|     MI->setLength(Constant::getNullValue(LenC->getType()));
 | |
|     return MI;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// visitCallInst - CallInst simplification.  This mostly only handles folding 
 | |
| /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
 | |
| /// the heavy lifting.
 | |
| ///
 | |
| Instruction *InstCombiner::visitCallInst(CallInst &CI) {
 | |
|   // If the caller function is nounwind, mark the call as nounwind, even if the
 | |
|   // callee isn't.
 | |
|   if (CI.getParent()->getParent()->doesNotThrow() &&
 | |
|       !CI.doesNotThrow()) {
 | |
|     CI.setDoesNotThrow();
 | |
|     return &CI;
 | |
|   }
 | |
|   
 | |
|   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
 | |
|   if (!II) return visitCallSite(&CI);
 | |
|   
 | |
|   // Intrinsics cannot occur in an invoke, so handle them here instead of in
 | |
|   // visitCallSite.
 | |
|   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
 | |
|     bool Changed = false;
 | |
| 
 | |
|     // memmove/cpy/set of zero bytes is a noop.
 | |
|     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
 | |
|       if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
 | |
| 
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
 | |
|         if (CI->getZExtValue() == 1) {
 | |
|           // Replace the instruction with just byte operations.  We would
 | |
|           // transform other cases to loads/stores, but we don't know if
 | |
|           // alignment is sufficient.
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If we have a memmove and the source operation is a constant global,
 | |
|     // then the source and dest pointers can't alias, so we can change this
 | |
|     // into a call to memcpy.
 | |
|     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
 | |
|       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
 | |
|         if (GVSrc->isConstant()) {
 | |
|           Module *M = CI.getParent()->getParent()->getParent();
 | |
|           Intrinsic::ID MemCpyID = Intrinsic::memcpy;
 | |
|           const Type *Tys[1];
 | |
|           Tys[0] = CI.getOperand(3)->getType();
 | |
|           CI.setOperand(0, 
 | |
|                         Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
 | |
|           Changed = true;
 | |
|         }
 | |
| 
 | |
|       // memmove(x,x,size) -> noop.
 | |
|       if (MMI->getSource() == MMI->getDest())
 | |
|         return EraseInstFromFunction(CI);
 | |
|     }
 | |
| 
 | |
|     // If we can determine a pointer alignment that is bigger than currently
 | |
|     // set, update the alignment.
 | |
|     if (isa<MemTransferInst>(MI)) {
 | |
|       if (Instruction *I = SimplifyMemTransfer(MI))
 | |
|         return I;
 | |
|     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
 | |
|       if (Instruction *I = SimplifyMemSet(MSI))
 | |
|         return I;
 | |
|     }
 | |
|           
 | |
|     if (Changed) return II;
 | |
|   }
 | |
|   
 | |
|   switch (II->getIntrinsicID()) {
 | |
|   default: break;
 | |
|   case Intrinsic::bswap:
 | |
|     // bswap(bswap(x)) -> x
 | |
|     if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
 | |
|       if (Operand->getIntrinsicID() == Intrinsic::bswap)
 | |
|         return ReplaceInstUsesWith(CI, Operand->getOperand(1));
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_lvx:
 | |
|   case Intrinsic::ppc_altivec_lvxl:
 | |
|   case Intrinsic::x86_sse_loadu_ps:
 | |
|   case Intrinsic::x86_sse2_loadu_pd:
 | |
|   case Intrinsic::x86_sse2_loadu_dq:
 | |
|     // Turn PPC lvx     -> load if the pointer is known aligned.
 | |
|     // Turn X86 loadups -> load if the pointer is known aligned.
 | |
|     if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
 | |
|                                          PointerType::getUnqual(II->getType()));
 | |
|       return new LoadInst(Ptr);
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::ppc_altivec_stvx:
 | |
|   case Intrinsic::ppc_altivec_stvxl:
 | |
|     // Turn stvx -> store if the pointer is known aligned.
 | |
|     if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
 | |
|       const Type *OpPtrTy = 
 | |
|         PointerType::getUnqual(II->getOperand(1)->getType());
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
 | |
|       return new StoreInst(II->getOperand(1), Ptr);
 | |
|     }
 | |
|     break;
 | |
|   case Intrinsic::x86_sse_storeu_ps:
 | |
|   case Intrinsic::x86_sse2_storeu_pd:
 | |
|   case Intrinsic::x86_sse2_storeu_dq:
 | |
|     // Turn X86 storeu -> store if the pointer is known aligned.
 | |
|     if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
 | |
|       const Type *OpPtrTy = 
 | |
|         PointerType::getUnqual(II->getOperand(2)->getType());
 | |
|       Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
 | |
|       return new StoreInst(II->getOperand(2), Ptr);
 | |
|     }
 | |
|     break;
 | |
|     
 | |
|   case Intrinsic::x86_sse_cvttss2si: {
 | |
|     // These intrinsics only demands the 0th element of its input vector.  If
 | |
|     // we can simplify the input based on that, do so now.
 | |
|     unsigned VWidth =
 | |
|       cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
 | |
|     APInt DemandedElts(VWidth, 1);
 | |
|     APInt UndefElts(VWidth, 0);
 | |
|     if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
 | |
|                                               UndefElts)) {
 | |
|       II->setOperand(1, V);
 | |
|       return II;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|     
 | |
|   case Intrinsic::ppc_altivec_vperm:
 | |
|     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
 | |
|     if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
 | |
|       assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
 | |
|       
 | |
|       // Check that all of the elements are integer constants or undefs.
 | |
|       bool AllEltsOk = true;
 | |
|       for (unsigned i = 0; i != 16; ++i) {
 | |
|         if (!isa<ConstantInt>(Mask->getOperand(i)) && 
 | |
|             !isa<UndefValue>(Mask->getOperand(i))) {
 | |
|           AllEltsOk = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       if (AllEltsOk) {
 | |
|         // Cast the input vectors to byte vectors.
 | |
|         Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
 | |
|         Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
 | |
|         Value *Result = UndefValue::get(Op0->getType());
 | |
|         
 | |
|         // Only extract each element once.
 | |
|         Value *ExtractedElts[32];
 | |
|         memset(ExtractedElts, 0, sizeof(ExtractedElts));
 | |
|         
 | |
|         for (unsigned i = 0; i != 16; ++i) {
 | |
|           if (isa<UndefValue>(Mask->getOperand(i)))
 | |
|             continue;
 | |
|           unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
 | |
|           Idx &= 31;  // Match the hardware behavior.
 | |
|           
 | |
|           if (ExtractedElts[Idx] == 0) {
 | |
|             ExtractedElts[Idx] = 
 | |
|               Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1, 
 | |
|                   ConstantInt::get(Type::getInt32Ty(*Context), Idx&15, false),
 | |
|                                             "tmp");
 | |
|           }
 | |
|         
 | |
|           // Insert this value into the result vector.
 | |
|           Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
 | |
|                          ConstantInt::get(Type::getInt32Ty(*Context), i, false),
 | |
|                                                 "tmp");
 | |
|         }
 | |
|         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Intrinsic::stackrestore: {
 | |
|     // If the save is right next to the restore, remove the restore.  This can
 | |
|     // happen when variable allocas are DCE'd.
 | |
|     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
 | |
|       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
 | |
|         BasicBlock::iterator BI = SS;
 | |
|         if (&*++BI == II)
 | |
|           return EraseInstFromFunction(CI);
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Scan down this block to see if there is another stack restore in the
 | |
|     // same block without an intervening call/alloca.
 | |
|     BasicBlock::iterator BI = II;
 | |
|     TerminatorInst *TI = II->getParent()->getTerminator();
 | |
|     bool CannotRemove = false;
 | |
|     for (++BI; &*BI != TI; ++BI) {
 | |
|       if (isa<AllocaInst>(BI) || isMalloc(BI)) {
 | |
|         CannotRemove = true;
 | |
|         break;
 | |
|       }
 | |
|       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
 | |
|         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
 | |
|           // If there is a stackrestore below this one, remove this one.
 | |
|           if (II->getIntrinsicID() == Intrinsic::stackrestore)
 | |
|             return EraseInstFromFunction(CI);
 | |
|           // Otherwise, ignore the intrinsic.
 | |
|         } else {
 | |
|           // If we found a non-intrinsic call, we can't remove the stack
 | |
|           // restore.
 | |
|           CannotRemove = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // If the stack restore is in a return/unwind block and if there are no
 | |
|     // allocas or calls between the restore and the return, nuke the restore.
 | |
|     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
 | |
|       return EraseInstFromFunction(CI);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return visitCallSite(II);
 | |
| }
 | |
| 
 | |
| // InvokeInst simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
 | |
|   return visitCallSite(&II);
 | |
| }
 | |
| 
 | |
| /// isSafeToEliminateVarargsCast - If this cast does not affect the value 
 | |
| /// passed through the varargs area, we can eliminate the use of the cast.
 | |
| static bool isSafeToEliminateVarargsCast(const CallSite CS,
 | |
|                                          const CastInst * const CI,
 | |
|                                          const TargetData * const TD,
 | |
|                                          const int ix) {
 | |
|   if (!CI->isLosslessCast())
 | |
|     return false;
 | |
| 
 | |
|   // The size of ByVal arguments is derived from the type, so we
 | |
|   // can't change to a type with a different size.  If the size were
 | |
|   // passed explicitly we could avoid this check.
 | |
|   if (!CS.paramHasAttr(ix, Attribute::ByVal))
 | |
|     return true;
 | |
| 
 | |
|   const Type* SrcTy = 
 | |
|             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
 | |
|   const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
 | |
|   if (!SrcTy->isSized() || !DstTy->isSized())
 | |
|     return false;
 | |
|   if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // visitCallSite - Improvements for call and invoke instructions.
 | |
| //
 | |
| Instruction *InstCombiner::visitCallSite(CallSite CS) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // If the callee is a constexpr cast of a function, attempt to move the cast
 | |
|   // to the arguments of the call/invoke.
 | |
|   if (transformConstExprCastCall(CS)) return 0;
 | |
| 
 | |
|   Value *Callee = CS.getCalledValue();
 | |
| 
 | |
|   if (Function *CalleeF = dyn_cast<Function>(Callee))
 | |
|     if (CalleeF->getCallingConv() != CS.getCallingConv()) {
 | |
|       Instruction *OldCall = CS.getInstruction();
 | |
|       // If the call and callee calling conventions don't match, this call must
 | |
|       // be unreachable, as the call is undefined.
 | |
|       new StoreInst(ConstantInt::getTrue(*Context),
 | |
|                 UndefValue::get(PointerType::getUnqual(Type::getInt1Ty(*Context))), 
 | |
|                                   OldCall);
 | |
|       if (!OldCall->use_empty())
 | |
|         OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
 | |
|       if (isa<CallInst>(OldCall))   // Not worth removing an invoke here.
 | |
|         return EraseInstFromFunction(*OldCall);
 | |
|       return 0;
 | |
|     }
 | |
| 
 | |
|   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | |
|     // This instruction is not reachable, just remove it.  We insert a store to
 | |
|     // undef so that we know that this code is not reachable, despite the fact
 | |
|     // that we can't modify the CFG here.
 | |
|     new StoreInst(ConstantInt::getTrue(*Context),
 | |
|                UndefValue::get(PointerType::getUnqual(Type::getInt1Ty(*Context))),
 | |
|                   CS.getInstruction());
 | |
| 
 | |
|     if (!CS.getInstruction()->use_empty())
 | |
|       CS.getInstruction()->
 | |
|         replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
 | |
| 
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
 | |
|       // Don't break the CFG, insert a dummy cond branch.
 | |
|       BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
 | |
|                          ConstantInt::getTrue(*Context), II);
 | |
|     }
 | |
|     return EraseInstFromFunction(*CS.getInstruction());
 | |
|   }
 | |
| 
 | |
|   if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
 | |
|     if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
 | |
|       if (In->getIntrinsicID() == Intrinsic::init_trampoline)
 | |
|         return transformCallThroughTrampoline(CS);
 | |
| 
 | |
|   const PointerType *PTy = cast<PointerType>(Callee->getType());
 | |
|   const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|   if (FTy->isVarArg()) {
 | |
|     int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
 | |
|     // See if we can optimize any arguments passed through the varargs area of
 | |
|     // the call.
 | |
|     for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
 | |
|            E = CS.arg_end(); I != E; ++I, ++ix) {
 | |
|       CastInst *CI = dyn_cast<CastInst>(*I);
 | |
|       if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
 | |
|         *I = CI->getOperand(0);
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
 | |
|     // Inline asm calls cannot throw - mark them 'nounwind'.
 | |
|     CS.setDoesNotThrow();
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed ? CS.getInstruction() : 0;
 | |
| }
 | |
| 
 | |
| // transformConstExprCastCall - If the callee is a constexpr cast of a function,
 | |
| // attempt to move the cast to the arguments of the call/invoke.
 | |
| //
 | |
| bool InstCombiner::transformConstExprCastCall(CallSite CS) {
 | |
|   if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
 | |
|   ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
 | |
|   if (CE->getOpcode() != Instruction::BitCast || 
 | |
|       !isa<Function>(CE->getOperand(0)))
 | |
|     return false;
 | |
|   Function *Callee = cast<Function>(CE->getOperand(0));
 | |
|   Instruction *Caller = CS.getInstruction();
 | |
|   const AttrListPtr &CallerPAL = CS.getAttributes();
 | |
| 
 | |
|   // Okay, this is a cast from a function to a different type.  Unless doing so
 | |
|   // would cause a type conversion of one of our arguments, change this call to
 | |
|   // be a direct call with arguments casted to the appropriate types.
 | |
|   //
 | |
|   const FunctionType *FT = Callee->getFunctionType();
 | |
|   const Type *OldRetTy = Caller->getType();
 | |
|   const Type *NewRetTy = FT->getReturnType();
 | |
| 
 | |
|   if (isa<StructType>(NewRetTy))
 | |
|     return false; // TODO: Handle multiple return values.
 | |
| 
 | |
|   // Check to see if we are changing the return type...
 | |
|   if (OldRetTy != NewRetTy) {
 | |
|     if (Callee->isDeclaration() &&
 | |
|         // Conversion is ok if changing from one pointer type to another or from
 | |
|         // a pointer to an integer of the same size.
 | |
|         !((isa<PointerType>(OldRetTy) || !TD ||
 | |
|            OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
 | |
|           (isa<PointerType>(NewRetTy) || !TD ||
 | |
|            NewRetTy == TD->getIntPtrType(Caller->getContext()))))
 | |
|       return false;   // Cannot transform this return value.
 | |
| 
 | |
|     if (!Caller->use_empty() &&
 | |
|         // void -> non-void is handled specially
 | |
|         NewRetTy != Type::getVoidTy(*Context) && !CastInst::isCastable(NewRetTy, OldRetTy))
 | |
|       return false;   // Cannot transform this return value.
 | |
| 
 | |
|     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
 | |
|       Attributes RAttrs = CallerPAL.getRetAttributes();
 | |
|       if (RAttrs & Attribute::typeIncompatible(NewRetTy))
 | |
|         return false;   // Attribute not compatible with transformed value.
 | |
|     }
 | |
| 
 | |
|     // If the callsite is an invoke instruction, and the return value is used by
 | |
|     // a PHI node in a successor, we cannot change the return type of the call
 | |
|     // because there is no place to put the cast instruction (without breaking
 | |
|     // the critical edge).  Bail out in this case.
 | |
|     if (!Caller->use_empty())
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
 | |
|         for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
 | |
|              UI != E; ++UI)
 | |
|           if (PHINode *PN = dyn_cast<PHINode>(*UI))
 | |
|             if (PN->getParent() == II->getNormalDest() ||
 | |
|                 PN->getParent() == II->getUnwindDest())
 | |
|               return false;
 | |
|   }
 | |
| 
 | |
|   unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
 | |
|   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
 | |
| 
 | |
|   CallSite::arg_iterator AI = CS.arg_begin();
 | |
|   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
 | |
|     const Type *ParamTy = FT->getParamType(i);
 | |
|     const Type *ActTy = (*AI)->getType();
 | |
| 
 | |
|     if (!CastInst::isCastable(ActTy, ParamTy))
 | |
|       return false;   // Cannot transform this parameter value.
 | |
| 
 | |
|     if (CallerPAL.getParamAttributes(i + 1) 
 | |
|         & Attribute::typeIncompatible(ParamTy))
 | |
|       return false;   // Attribute not compatible with transformed value.
 | |
| 
 | |
|     // Converting from one pointer type to another or between a pointer and an
 | |
|     // integer of the same size is safe even if we do not have a body.
 | |
|     bool isConvertible = ActTy == ParamTy ||
 | |
|       (TD && ((isa<PointerType>(ParamTy) ||
 | |
|       ParamTy == TD->getIntPtrType(Caller->getContext())) &&
 | |
|               (isa<PointerType>(ActTy) ||
 | |
|               ActTy == TD->getIntPtrType(Caller->getContext()))));
 | |
|     if (Callee->isDeclaration() && !isConvertible) return false;
 | |
|   }
 | |
| 
 | |
|   if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
 | |
|       Callee->isDeclaration())
 | |
|     return false;   // Do not delete arguments unless we have a function body.
 | |
| 
 | |
|   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
 | |
|       !CallerPAL.isEmpty())
 | |
|     // In this case we have more arguments than the new function type, but we
 | |
|     // won't be dropping them.  Check that these extra arguments have attributes
 | |
|     // that are compatible with being a vararg call argument.
 | |
|     for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
 | |
|       if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
 | |
|         break;
 | |
|       Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
 | |
|       if (PAttrs & Attribute::VarArgsIncompatible)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|   // Okay, we decided that this is a safe thing to do: go ahead and start
 | |
|   // inserting cast instructions as necessary...
 | |
|   std::vector<Value*> Args;
 | |
|   Args.reserve(NumActualArgs);
 | |
|   SmallVector<AttributeWithIndex, 8> attrVec;
 | |
|   attrVec.reserve(NumCommonArgs);
 | |
| 
 | |
|   // Get any return attributes.
 | |
|   Attributes RAttrs = CallerPAL.getRetAttributes();
 | |
| 
 | |
|   // If the return value is not being used, the type may not be compatible
 | |
|   // with the existing attributes.  Wipe out any problematic attributes.
 | |
|   RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
 | |
| 
 | |
|   // Add the new return attributes.
 | |
|   if (RAttrs)
 | |
|     attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
 | |
| 
 | |
|   AI = CS.arg_begin();
 | |
|   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
 | |
|     const Type *ParamTy = FT->getParamType(i);
 | |
|     if ((*AI)->getType() == ParamTy) {
 | |
|       Args.push_back(*AI);
 | |
|     } else {
 | |
|       Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
 | |
|           false, ParamTy, false);
 | |
|       Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
 | |
|     }
 | |
| 
 | |
|     // Add any parameter attributes.
 | |
|     if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
 | |
|       attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
 | |
|   }
 | |
| 
 | |
|   // If the function takes more arguments than the call was taking, add them
 | |
|   // now.
 | |
|   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
 | |
|     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
 | |
| 
 | |
|   // If we are removing arguments to the function, emit an obnoxious warning.
 | |
|   if (FT->getNumParams() < NumActualArgs) {
 | |
|     if (!FT->isVarArg()) {
 | |
|       errs() << "WARNING: While resolving call to function '"
 | |
|              << Callee->getName() << "' arguments were dropped!\n";
 | |
|     } else {
 | |
|       // Add all of the arguments in their promoted form to the arg list.
 | |
|       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
 | |
|         const Type *PTy = getPromotedType((*AI)->getType());
 | |
|         if (PTy != (*AI)->getType()) {
 | |
|           // Must promote to pass through va_arg area!
 | |
|           Instruction::CastOps opcode =
 | |
|             CastInst::getCastOpcode(*AI, false, PTy, false);
 | |
|           Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
 | |
|         } else {
 | |
|           Args.push_back(*AI);
 | |
|         }
 | |
| 
 | |
|         // Add any parameter attributes.
 | |
|         if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
 | |
|           attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
 | |
|     attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
 | |
| 
 | |
|   if (NewRetTy == Type::getVoidTy(*Context))
 | |
|     Caller->setName("");   // Void type should not have a name.
 | |
| 
 | |
|   const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
 | |
|                                                      attrVec.end());
 | |
| 
 | |
|   Instruction *NC;
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|     NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
 | |
|                             Args.begin(), Args.end(),
 | |
|                             Caller->getName(), Caller);
 | |
|     cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
 | |
|     cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
 | |
|   } else {
 | |
|     NC = CallInst::Create(Callee, Args.begin(), Args.end(),
 | |
|                           Caller->getName(), Caller);
 | |
|     CallInst *CI = cast<CallInst>(Caller);
 | |
|     if (CI->isTailCall())
 | |
|       cast<CallInst>(NC)->setTailCall();
 | |
|     cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
 | |
|     cast<CallInst>(NC)->setAttributes(NewCallerPAL);
 | |
|   }
 | |
| 
 | |
|   // Insert a cast of the return type as necessary.
 | |
|   Value *NV = NC;
 | |
|   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
 | |
|     if (NV->getType() != Type::getVoidTy(*Context)) {
 | |
|       Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, 
 | |
|                                                             OldRetTy, false);
 | |
|       NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
 | |
| 
 | |
|       // If this is an invoke instruction, we should insert it after the first
 | |
|       // non-phi, instruction in the normal successor block.
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|         BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
 | |
|         InsertNewInstBefore(NC, *I);
 | |
|       } else {
 | |
|         // Otherwise, it's a call, just insert cast right after the call instr
 | |
|         InsertNewInstBefore(NC, *Caller);
 | |
|       }
 | |
|       Worklist.AddUsersToWorkList(*Caller);
 | |
|     } else {
 | |
|       NV = UndefValue::get(Caller->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   
 | |
|   if (!Caller->use_empty())
 | |
|     Caller->replaceAllUsesWith(NV);
 | |
|   
 | |
|   EraseInstFromFunction(*Caller);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // transformCallThroughTrampoline - Turn a call to a function created by the
 | |
| // init_trampoline intrinsic into a direct call to the underlying function.
 | |
| //
 | |
| Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
 | |
|   Value *Callee = CS.getCalledValue();
 | |
|   const PointerType *PTy = cast<PointerType>(Callee->getType());
 | |
|   const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | |
|   const AttrListPtr &Attrs = CS.getAttributes();
 | |
| 
 | |
|   // If the call already has the 'nest' attribute somewhere then give up -
 | |
|   // otherwise 'nest' would occur twice after splicing in the chain.
 | |
|   if (Attrs.hasAttrSomewhere(Attribute::Nest))
 | |
|     return 0;
 | |
| 
 | |
|   IntrinsicInst *Tramp =
 | |
|     cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
 | |
| 
 | |
|   Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
 | |
|   const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
 | |
|   const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
 | |
| 
 | |
|   const AttrListPtr &NestAttrs = NestF->getAttributes();
 | |
|   if (!NestAttrs.isEmpty()) {
 | |
|     unsigned NestIdx = 1;
 | |
|     const Type *NestTy = 0;
 | |
|     Attributes NestAttr = Attribute::None;
 | |
| 
 | |
|     // Look for a parameter marked with the 'nest' attribute.
 | |
|     for (FunctionType::param_iterator I = NestFTy->param_begin(),
 | |
|          E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
 | |
|       if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
 | |
|         // Record the parameter type and any other attributes.
 | |
|         NestTy = *I;
 | |
|         NestAttr = NestAttrs.getParamAttributes(NestIdx);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     if (NestTy) {
 | |
|       Instruction *Caller = CS.getInstruction();
 | |
|       std::vector<Value*> NewArgs;
 | |
|       NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
 | |
| 
 | |
|       SmallVector<AttributeWithIndex, 8> NewAttrs;
 | |
|       NewAttrs.reserve(Attrs.getNumSlots() + 1);
 | |
| 
 | |
|       // Insert the nest argument into the call argument list, which may
 | |
|       // mean appending it.  Likewise for attributes.
 | |
| 
 | |
|       // Add any result attributes.
 | |
|       if (Attributes Attr = Attrs.getRetAttributes())
 | |
|         NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
 | |
| 
 | |
|       {
 | |
|         unsigned Idx = 1;
 | |
|         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | |
|         do {
 | |
|           if (Idx == NestIdx) {
 | |
|             // Add the chain argument and attributes.
 | |
|             Value *NestVal = Tramp->getOperand(3);
 | |
|             if (NestVal->getType() != NestTy)
 | |
|               NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
 | |
|             NewArgs.push_back(NestVal);
 | |
|             NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
 | |
|           }
 | |
| 
 | |
|           if (I == E)
 | |
|             break;
 | |
| 
 | |
|           // Add the original argument and attributes.
 | |
|           NewArgs.push_back(*I);
 | |
|           if (Attributes Attr = Attrs.getParamAttributes(Idx))
 | |
|             NewAttrs.push_back
 | |
|               (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
 | |
| 
 | |
|           ++Idx, ++I;
 | |
|         } while (1);
 | |
|       }
 | |
| 
 | |
|       // Add any function attributes.
 | |
|       if (Attributes Attr = Attrs.getFnAttributes())
 | |
|         NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
 | |
| 
 | |
|       // The trampoline may have been bitcast to a bogus type (FTy).
 | |
|       // Handle this by synthesizing a new function type, equal to FTy
 | |
|       // with the chain parameter inserted.
 | |
| 
 | |
|       std::vector<const Type*> NewTypes;
 | |
|       NewTypes.reserve(FTy->getNumParams()+1);
 | |
| 
 | |
|       // Insert the chain's type into the list of parameter types, which may
 | |
|       // mean appending it.
 | |
|       {
 | |
|         unsigned Idx = 1;
 | |
|         FunctionType::param_iterator I = FTy->param_begin(),
 | |
|           E = FTy->param_end();
 | |
| 
 | |
|         do {
 | |
|           if (Idx == NestIdx)
 | |
|             // Add the chain's type.
 | |
|             NewTypes.push_back(NestTy);
 | |
| 
 | |
|           if (I == E)
 | |
|             break;
 | |
| 
 | |
|           // Add the original type.
 | |
|           NewTypes.push_back(*I);
 | |
| 
 | |
|           ++Idx, ++I;
 | |
|         } while (1);
 | |
|       }
 | |
| 
 | |
|       // Replace the trampoline call with a direct call.  Let the generic
 | |
|       // code sort out any function type mismatches.
 | |
|       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, 
 | |
|                                                 FTy->isVarArg());
 | |
|       Constant *NewCallee =
 | |
|         NestF->getType() == PointerType::getUnqual(NewFTy) ?
 | |
|         NestF : ConstantExpr::getBitCast(NestF, 
 | |
|                                          PointerType::getUnqual(NewFTy));
 | |
|       const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
 | |
|                                                    NewAttrs.end());
 | |
| 
 | |
|       Instruction *NewCaller;
 | |
|       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | |
|         NewCaller = InvokeInst::Create(NewCallee,
 | |
|                                        II->getNormalDest(), II->getUnwindDest(),
 | |
|                                        NewArgs.begin(), NewArgs.end(),
 | |
|                                        Caller->getName(), Caller);
 | |
|         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
 | |
|         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
 | |
|       } else {
 | |
|         NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
 | |
|                                      Caller->getName(), Caller);
 | |
|         if (cast<CallInst>(Caller)->isTailCall())
 | |
|           cast<CallInst>(NewCaller)->setTailCall();
 | |
|         cast<CallInst>(NewCaller)->
 | |
|           setCallingConv(cast<CallInst>(Caller)->getCallingConv());
 | |
|         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
 | |
|       }
 | |
|       if (Caller->getType() != Type::getVoidTy(*Context) && !Caller->use_empty())
 | |
|         Caller->replaceAllUsesWith(NewCaller);
 | |
|       Caller->eraseFromParent();
 | |
|       Worklist.Remove(Caller);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Replace the trampoline call with a direct call.  Since there is no 'nest'
 | |
|   // parameter, there is no need to adjust the argument list.  Let the generic
 | |
|   // code sort out any function type mismatches.
 | |
|   Constant *NewCallee =
 | |
|     NestF->getType() == PTy ? NestF : 
 | |
|                               ConstantExpr::getBitCast(NestF, PTy);
 | |
|   CS.setCalledFunction(NewCallee);
 | |
|   return CS.getInstruction();
 | |
| }
 | |
| 
 | |
| /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
 | |
| /// and if a/b/c and the add's all have a single use, turn this into a phi
 | |
| /// and a single binop.
 | |
| Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
 | |
|   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
 | |
|   assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
 | |
|   unsigned Opc = FirstInst->getOpcode();
 | |
|   Value *LHSVal = FirstInst->getOperand(0);
 | |
|   Value *RHSVal = FirstInst->getOperand(1);
 | |
|     
 | |
|   const Type *LHSType = LHSVal->getType();
 | |
|   const Type *RHSType = RHSVal->getType();
 | |
|   
 | |
|   // Scan to see if all operands are the same opcode, and all have one use.
 | |
|   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
 | |
|     Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
 | |
|     if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
 | |
|         // Verify type of the LHS matches so we don't fold cmp's of different
 | |
|         // types or GEP's with different index types.
 | |
|         I->getOperand(0)->getType() != LHSType ||
 | |
|         I->getOperand(1)->getType() != RHSType)
 | |
|       return 0;
 | |
| 
 | |
|     // If they are CmpInst instructions, check their predicates
 | |
|     if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
 | |
|       if (cast<CmpInst>(I)->getPredicate() !=
 | |
|           cast<CmpInst>(FirstInst)->getPredicate())
 | |
|         return 0;
 | |
|     
 | |
|     // Keep track of which operand needs a phi node.
 | |
|     if (I->getOperand(0) != LHSVal) LHSVal = 0;
 | |
|     if (I->getOperand(1) != RHSVal) RHSVal = 0;
 | |
|   }
 | |
| 
 | |
|   // If both LHS and RHS would need a PHI, don't do this transformation,
 | |
|   // because it would increase the number of PHIs entering the block,
 | |
|   // which leads to higher register pressure. This is especially
 | |
|   // bad when the PHIs are in the header of a loop.
 | |
|   if (!LHSVal && !RHSVal)
 | |
|     return 0;
 | |
|   
 | |
|   // Otherwise, this is safe to transform!
 | |
|   
 | |
|   Value *InLHS = FirstInst->getOperand(0);
 | |
|   Value *InRHS = FirstInst->getOperand(1);
 | |
|   PHINode *NewLHS = 0, *NewRHS = 0;
 | |
|   if (LHSVal == 0) {
 | |
|     NewLHS = PHINode::Create(LHSType,
 | |
|                              FirstInst->getOperand(0)->getName() + ".pn");
 | |
|     NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
 | |
|     NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
 | |
|     InsertNewInstBefore(NewLHS, PN);
 | |
|     LHSVal = NewLHS;
 | |
|   }
 | |
|   
 | |
|   if (RHSVal == 0) {
 | |
|     NewRHS = PHINode::Create(RHSType,
 | |
|                              FirstInst->getOperand(1)->getName() + ".pn");
 | |
|     NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
 | |
|     NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
 | |
|     InsertNewInstBefore(NewRHS, PN);
 | |
|     RHSVal = NewRHS;
 | |
|   }
 | |
|   
 | |
|   // Add all operands to the new PHIs.
 | |
|   if (NewLHS || NewRHS) {
 | |
|     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|       Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
 | |
|       if (NewLHS) {
 | |
|         Value *NewInLHS = InInst->getOperand(0);
 | |
|         NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
 | |
|       }
 | |
|       if (NewRHS) {
 | |
|         Value *NewInRHS = InInst->getOperand(1);
 | |
|         NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
 | |
|     return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
 | |
|   CmpInst *CIOp = cast<CmpInst>(FirstInst);
 | |
|   return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
 | |
|                          LHSVal, RHSVal);
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
 | |
|   GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
 | |
|   
 | |
|   SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 
 | |
|                                         FirstInst->op_end());
 | |
|   // This is true if all GEP bases are allocas and if all indices into them are
 | |
|   // constants.
 | |
|   bool AllBasePointersAreAllocas = true;
 | |
| 
 | |
|   // We don't want to replace this phi if the replacement would require
 | |
|   // more than one phi, which leads to higher register pressure. This is
 | |
|   // especially bad when the PHIs are in the header of a loop.
 | |
|   bool NeededPhi = false;
 | |
|   
 | |
|   // Scan to see if all operands are the same opcode, and all have one use.
 | |
|   for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
 | |
|     GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i));
 | |
|     if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
 | |
|       GEP->getNumOperands() != FirstInst->getNumOperands())
 | |
|       return 0;
 | |
| 
 | |
|     // Keep track of whether or not all GEPs are of alloca pointers.
 | |
|     if (AllBasePointersAreAllocas &&
 | |
|         (!isa<AllocaInst>(GEP->getOperand(0)) ||
 | |
|          !GEP->hasAllConstantIndices()))
 | |
|       AllBasePointersAreAllocas = false;
 | |
|     
 | |
|     // Compare the operand lists.
 | |
|     for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
 | |
|       if (FirstInst->getOperand(op) == GEP->getOperand(op))
 | |
|         continue;
 | |
|       
 | |
|       // Don't merge two GEPs when two operands differ (introducing phi nodes)
 | |
|       // if one of the PHIs has a constant for the index.  The index may be
 | |
|       // substantially cheaper to compute for the constants, so making it a
 | |
|       // variable index could pessimize the path.  This also handles the case
 | |
|       // for struct indices, which must always be constant.
 | |
|       if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
 | |
|           isa<ConstantInt>(GEP->getOperand(op)))
 | |
|         return 0;
 | |
|       
 | |
|       if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
 | |
|         return 0;
 | |
| 
 | |
|       // If we already needed a PHI for an earlier operand, and another operand
 | |
|       // also requires a PHI, we'd be introducing more PHIs than we're
 | |
|       // eliminating, which increases register pressure on entry to the PHI's
 | |
|       // block.
 | |
|       if (NeededPhi)
 | |
|         return 0;
 | |
| 
 | |
|       FixedOperands[op] = 0;  // Needs a PHI.
 | |
|       NeededPhi = true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If all of the base pointers of the PHI'd GEPs are from allocas, don't
 | |
|   // bother doing this transformation.  At best, this will just save a bit of
 | |
|   // offset calculation, but all the predecessors will have to materialize the
 | |
|   // stack address into a register anyway.  We'd actually rather *clone* the
 | |
|   // load up into the predecessors so that we have a load of a gep of an alloca,
 | |
|   // which can usually all be folded into the load.
 | |
|   if (AllBasePointersAreAllocas)
 | |
|     return 0;
 | |
|   
 | |
|   // Otherwise, this is safe to transform.  Insert PHI nodes for each operand
 | |
|   // that is variable.
 | |
|   SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
 | |
|   
 | |
|   bool HasAnyPHIs = false;
 | |
|   for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
 | |
|     if (FixedOperands[i]) continue;  // operand doesn't need a phi.
 | |
|     Value *FirstOp = FirstInst->getOperand(i);
 | |
|     PHINode *NewPN = PHINode::Create(FirstOp->getType(),
 | |
|                                      FirstOp->getName()+".pn");
 | |
|     InsertNewInstBefore(NewPN, PN);
 | |
|     
 | |
|     NewPN->reserveOperandSpace(e);
 | |
|     NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
 | |
|     OperandPhis[i] = NewPN;
 | |
|     FixedOperands[i] = NewPN;
 | |
|     HasAnyPHIs = true;
 | |
|   }
 | |
| 
 | |
|   
 | |
|   // Add all operands to the new PHIs.
 | |
|   if (HasAnyPHIs) {
 | |
|     for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|       GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
 | |
|       BasicBlock *InBB = PN.getIncomingBlock(i);
 | |
|       
 | |
|       for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
 | |
|         if (PHINode *OpPhi = OperandPhis[op])
 | |
|           OpPhi->addIncoming(InGEP->getOperand(op), InBB);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   Value *Base = FixedOperands[0];
 | |
|   return cast<GEPOperator>(FirstInst)->isInBounds() ?
 | |
|     GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1,
 | |
|                                       FixedOperands.end()) :
 | |
|     GetElementPtrInst::Create(Base, FixedOperands.begin()+1,
 | |
|                               FixedOperands.end());
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
 | |
| /// sink the load out of the block that defines it.  This means that it must be
 | |
| /// obvious the value of the load is not changed from the point of the load to
 | |
| /// the end of the block it is in.
 | |
| ///
 | |
| /// Finally, it is safe, but not profitable, to sink a load targetting a
 | |
| /// non-address-taken alloca.  Doing so will cause us to not promote the alloca
 | |
| /// to a register.
 | |
| static bool isSafeAndProfitableToSinkLoad(LoadInst *L) {
 | |
|   BasicBlock::iterator BBI = L, E = L->getParent()->end();
 | |
|   
 | |
|   for (++BBI; BBI != E; ++BBI)
 | |
|     if (BBI->mayWriteToMemory())
 | |
|       return false;
 | |
|   
 | |
|   // Check for non-address taken alloca.  If not address-taken already, it isn't
 | |
|   // profitable to do this xform.
 | |
|   if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
 | |
|     bool isAddressTaken = false;
 | |
|     for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | |
|          UI != E; ++UI) {
 | |
|       if (isa<LoadInst>(UI)) continue;
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
 | |
|         // If storing TO the alloca, then the address isn't taken.
 | |
|         if (SI->getOperand(1) == AI) continue;
 | |
|       }
 | |
|       isAddressTaken = true;
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     if (!isAddressTaken && AI->isStaticAlloca())
 | |
|       return false;
 | |
|   }
 | |
|   
 | |
|   // If this load is a load from a GEP with a constant offset from an alloca,
 | |
|   // then we don't want to sink it.  In its present form, it will be
 | |
|   // load [constant stack offset].  Sinking it will cause us to have to
 | |
|   // materialize the stack addresses in each predecessor in a register only to
 | |
|   // do a shared load from register in the successor.
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
 | |
|     if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
 | |
|       if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
 | |
|         return false;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
 | |
| // operator and they all are only used by the PHI, PHI together their
 | |
| // inputs, and do the operation once, to the result of the PHI.
 | |
| Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
 | |
|   Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
 | |
| 
 | |
|   // Scan the instruction, looking for input operations that can be folded away.
 | |
|   // If all input operands to the phi are the same instruction (e.g. a cast from
 | |
|   // the same type or "+42") we can pull the operation through the PHI, reducing
 | |
|   // code size and simplifying code.
 | |
|   Constant *ConstantOp = 0;
 | |
|   const Type *CastSrcTy = 0;
 | |
|   bool isVolatile = false;
 | |
|   if (isa<CastInst>(FirstInst)) {
 | |
|     CastSrcTy = FirstInst->getOperand(0)->getType();
 | |
|   } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
 | |
|     // Can fold binop, compare or shift here if the RHS is a constant, 
 | |
|     // otherwise call FoldPHIArgBinOpIntoPHI.
 | |
|     ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
 | |
|     if (ConstantOp == 0)
 | |
|       return FoldPHIArgBinOpIntoPHI(PN);
 | |
|   } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
 | |
|     isVolatile = LI->isVolatile();
 | |
|     // We can't sink the load if the loaded value could be modified between the
 | |
|     // load and the PHI.
 | |
|     if (LI->getParent() != PN.getIncomingBlock(0) ||
 | |
|         !isSafeAndProfitableToSinkLoad(LI))
 | |
|       return 0;
 | |
|     
 | |
|     // If the PHI is of volatile loads and the load block has multiple
 | |
|     // successors, sinking it would remove a load of the volatile value from
 | |
|     // the path through the other successor.
 | |
|     if (isVolatile &&
 | |
|         LI->getParent()->getTerminator()->getNumSuccessors() != 1)
 | |
|       return 0;
 | |
|     
 | |
|   } else if (isa<GetElementPtrInst>(FirstInst)) {
 | |
|     return FoldPHIArgGEPIntoPHI(PN);
 | |
|   } else {
 | |
|     return 0;  // Cannot fold this operation.
 | |
|   }
 | |
| 
 | |
|   // Check to see if all arguments are the same operation.
 | |
|   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
 | |
|     Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
 | |
|     if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
 | |
|       return 0;
 | |
|     if (CastSrcTy) {
 | |
|       if (I->getOperand(0)->getType() != CastSrcTy)
 | |
|         return 0;  // Cast operation must match.
 | |
|     } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|       // We can't sink the load if the loaded value could be modified between 
 | |
|       // the load and the PHI.
 | |
|       if (LI->isVolatile() != isVolatile ||
 | |
|           LI->getParent() != PN.getIncomingBlock(i) ||
 | |
|           !isSafeAndProfitableToSinkLoad(LI))
 | |
|         return 0;
 | |
|       
 | |
|       // If the PHI is of volatile loads and the load block has multiple
 | |
|       // successors, sinking it would remove a load of the volatile value from
 | |
|       // the path through the other successor.
 | |
|       if (isVolatile &&
 | |
|           LI->getParent()->getTerminator()->getNumSuccessors() != 1)
 | |
|         return 0;
 | |
|       
 | |
|     } else if (I->getOperand(1) != ConstantOp) {
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, they are all the same operation.  Create a new PHI node of the
 | |
|   // correct type, and PHI together all of the LHS's of the instructions.
 | |
|   PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
 | |
|                                    PN.getName()+".in");
 | |
|   NewPN->reserveOperandSpace(PN.getNumOperands()/2);
 | |
| 
 | |
|   Value *InVal = FirstInst->getOperand(0);
 | |
|   NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
 | |
| 
 | |
|   // Add all operands to the new PHI.
 | |
|   for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
 | |
|     if (NewInVal != InVal)
 | |
|       InVal = 0;
 | |
|     NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
 | |
|   }
 | |
| 
 | |
|   Value *PhiVal;
 | |
|   if (InVal) {
 | |
|     // The new PHI unions all of the same values together.  This is really
 | |
|     // common, so we handle it intelligently here for compile-time speed.
 | |
|     PhiVal = InVal;
 | |
|     delete NewPN;
 | |
|   } else {
 | |
|     InsertNewInstBefore(NewPN, PN);
 | |
|     PhiVal = NewPN;
 | |
|   }
 | |
| 
 | |
|   // Insert and return the new operation.
 | |
|   if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
 | |
|     return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType());
 | |
|   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
 | |
|     return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
 | |
|   if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
 | |
|     return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
 | |
|                            PhiVal, ConstantOp);
 | |
|   assert(isa<LoadInst>(FirstInst) && "Unknown operation");
 | |
|   
 | |
|   // If this was a volatile load that we are merging, make sure to loop through
 | |
|   // and mark all the input loads as non-volatile.  If we don't do this, we will
 | |
|   // insert a new volatile load and the old ones will not be deletable.
 | |
|   if (isVolatile)
 | |
|     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|       cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
 | |
|   
 | |
|   return new LoadInst(PhiVal, "", isVolatile);
 | |
| }
 | |
| 
 | |
| /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
 | |
| /// that is dead.
 | |
| static bool DeadPHICycle(PHINode *PN,
 | |
|                          SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
 | |
|   if (PN->use_empty()) return true;
 | |
|   if (!PN->hasOneUse()) return false;
 | |
| 
 | |
|   // Remember this node, and if we find the cycle, return.
 | |
|   if (!PotentiallyDeadPHIs.insert(PN))
 | |
|     return true;
 | |
|   
 | |
|   // Don't scan crazily complex things.
 | |
|   if (PotentiallyDeadPHIs.size() == 16)
 | |
|     return false;
 | |
| 
 | |
|   if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
 | |
|     return DeadPHICycle(PU, PotentiallyDeadPHIs);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// PHIsEqualValue - Return true if this phi node is always equal to
 | |
| /// NonPhiInVal.  This happens with mutually cyclic phi nodes like:
 | |
| ///   z = some value; x = phi (y, z); y = phi (x, z)
 | |
| static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 
 | |
|                            SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
 | |
|   // See if we already saw this PHI node.
 | |
|   if (!ValueEqualPHIs.insert(PN))
 | |
|     return true;
 | |
|   
 | |
|   // Don't scan crazily complex things.
 | |
|   if (ValueEqualPHIs.size() == 16)
 | |
|     return false;
 | |
|  
 | |
|   // Scan the operands to see if they are either phi nodes or are equal to
 | |
|   // the value.
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *Op = PN->getIncomingValue(i);
 | |
|     if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
 | |
|       if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
 | |
|         return false;
 | |
|     } else if (Op != NonPhiInVal)
 | |
|       return false;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // PHINode simplification
 | |
| //
 | |
| Instruction *InstCombiner::visitPHINode(PHINode &PN) {
 | |
|   // If LCSSA is around, don't mess with Phi nodes
 | |
|   if (MustPreserveLCSSA) return 0;
 | |
|   
 | |
|   if (Value *V = PN.hasConstantValue())
 | |
|     return ReplaceInstUsesWith(PN, V);
 | |
| 
 | |
|   // If all PHI operands are the same operation, pull them through the PHI,
 | |
|   // reducing code size.
 | |
|   if (isa<Instruction>(PN.getIncomingValue(0)) &&
 | |
|       isa<Instruction>(PN.getIncomingValue(1)) &&
 | |
|       cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
 | |
|       cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
 | |
|       // FIXME: The hasOneUse check will fail for PHIs that use the value more
 | |
|       // than themselves more than once.
 | |
|       PN.getIncomingValue(0)->hasOneUse())
 | |
|     if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
 | |
|       return Result;
 | |
| 
 | |
|   // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if
 | |
|   // this PHI only has a single use (a PHI), and if that PHI only has one use (a
 | |
|   // PHI)... break the cycle.
 | |
|   if (PN.hasOneUse()) {
 | |
|     Instruction *PHIUser = cast<Instruction>(PN.use_back());
 | |
|     if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
 | |
|       SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
 | |
|       PotentiallyDeadPHIs.insert(&PN);
 | |
|       if (DeadPHICycle(PU, PotentiallyDeadPHIs))
 | |
|         return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
 | |
|     }
 | |
|    
 | |
|     // If this phi has a single use, and if that use just computes a value for
 | |
|     // the next iteration of a loop, delete the phi.  This occurs with unused
 | |
|     // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this
 | |
|     // common case here is good because the only other things that catch this
 | |
|     // are induction variable analysis (sometimes) and ADCE, which is only run
 | |
|     // late.
 | |
|     if (PHIUser->hasOneUse() &&
 | |
|         (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
 | |
|         PHIUser->use_back() == &PN) {
 | |
|       return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We sometimes end up with phi cycles that non-obviously end up being the
 | |
|   // same value, for example:
 | |
|   //   z = some value; x = phi (y, z); y = phi (x, z)
 | |
|   // where the phi nodes don't necessarily need to be in the same block.  Do a
 | |
|   // quick check to see if the PHI node only contains a single non-phi value, if
 | |
|   // so, scan to see if the phi cycle is actually equal to that value.
 | |
|   {
 | |
|     unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
 | |
|     // Scan for the first non-phi operand.
 | |
|     while (InValNo != NumOperandVals && 
 | |
|            isa<PHINode>(PN.getIncomingValue(InValNo)))
 | |
|       ++InValNo;
 | |
| 
 | |
|     if (InValNo != NumOperandVals) {
 | |
|       Value *NonPhiInVal = PN.getOperand(InValNo);
 | |
|       
 | |
|       // Scan the rest of the operands to see if there are any conflicts, if so
 | |
|       // there is no need to recursively scan other phis.
 | |
|       for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
 | |
|         Value *OpVal = PN.getIncomingValue(InValNo);
 | |
|         if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
 | |
|           break;
 | |
|       }
 | |
|       
 | |
|       // If we scanned over all operands, then we have one unique value plus
 | |
|       // phi values.  Scan PHI nodes to see if they all merge in each other or
 | |
|       // the value.
 | |
|       if (InValNo == NumOperandVals) {
 | |
|         SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
 | |
|         if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
 | |
|           return ReplaceInstUsesWith(PN, NonPhiInVal);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   Value *PtrOp = GEP.getOperand(0);
 | |
|   // Eliminate 'getelementptr %P, i32 0' and 'getelementptr %P', they are noops.
 | |
|   if (GEP.getNumOperands() == 1)
 | |
|     return ReplaceInstUsesWith(GEP, PtrOp);
 | |
| 
 | |
|   if (isa<UndefValue>(GEP.getOperand(0)))
 | |
|     return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
 | |
| 
 | |
|   bool HasZeroPointerIndex = false;
 | |
|   if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
 | |
|     HasZeroPointerIndex = C->isNullValue();
 | |
| 
 | |
|   if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
 | |
|     return ReplaceInstUsesWith(GEP, PtrOp);
 | |
| 
 | |
|   // Eliminate unneeded casts for indices.
 | |
|   if (TD) {
 | |
|     bool MadeChange = false;
 | |
|     unsigned PtrSize = TD->getPointerSizeInBits();
 | |
|     
 | |
|     gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|     for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
 | |
|          I != E; ++I, ++GTI) {
 | |
|       if (!isa<SequentialType>(*GTI)) continue;
 | |
|       
 | |
|       // If we are using a wider index than needed for this platform, shrink it
 | |
|       // to what we need.  If narrower, sign-extend it to what we need.  This
 | |
|       // explicit cast can make subsequent optimizations more obvious.
 | |
|       unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
 | |
|       if (OpBits == PtrSize)
 | |
|         continue;
 | |
|       
 | |
|       *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     if (MadeChange) return &GEP;
 | |
|   }
 | |
| 
 | |
|   // Combine Indices - If the source pointer to this getelementptr instruction
 | |
|   // is a getelementptr instruction, combine the indices of the two
 | |
|   // getelementptr instructions into a single instruction.
 | |
|   //
 | |
|   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
 | |
|     // Note that if our source is a gep chain itself that we wait for that
 | |
|     // chain to be resolved before we perform this transformation.  This
 | |
|     // avoids us creating a TON of code in some cases.
 | |
|     //
 | |
|     if (GetElementPtrInst *SrcGEP =
 | |
|           dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
 | |
|       if (SrcGEP->getNumOperands() == 2)
 | |
|         return 0;   // Wait until our source is folded to completion.
 | |
| 
 | |
|     SmallVector<Value*, 8> Indices;
 | |
| 
 | |
|     // Find out whether the last index in the source GEP is a sequential idx.
 | |
|     bool EndsWithSequential = false;
 | |
|     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
 | |
|          I != E; ++I)
 | |
|       EndsWithSequential = !isa<StructType>(*I);
 | |
| 
 | |
|     // Can we combine the two pointer arithmetics offsets?
 | |
|     if (EndsWithSequential) {
 | |
|       // Replace: gep (gep %P, long B), long A, ...
 | |
|       // With:    T = long A+B; gep %P, T, ...
 | |
|       //
 | |
|       Value *Sum;
 | |
|       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
 | |
|       Value *GO1 = GEP.getOperand(1);
 | |
|       if (SO1 == Constant::getNullValue(SO1->getType())) {
 | |
|         Sum = GO1;
 | |
|       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
 | |
|         Sum = SO1;
 | |
|       } else {
 | |
|         // If they aren't the same type, then the input hasn't been processed
 | |
|         // by the loop above yet (which canonicalizes sequential index types to
 | |
|         // intptr_t).  Just avoid transforming this until the input has been
 | |
|         // normalized.
 | |
|         if (SO1->getType() != GO1->getType())
 | |
|           return 0;
 | |
|         Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
 | |
|       }
 | |
| 
 | |
|       // Update the GEP in place if possible.
 | |
|       if (Src->getNumOperands() == 2) {
 | |
|         GEP.setOperand(0, Src->getOperand(0));
 | |
|         GEP.setOperand(1, Sum);
 | |
|         return &GEP;
 | |
|       }
 | |
|       Indices.append(Src->op_begin()+1, Src->op_end()-1);
 | |
|       Indices.push_back(Sum);
 | |
|       Indices.append(GEP.op_begin()+2, GEP.op_end());
 | |
|     } else if (isa<Constant>(*GEP.idx_begin()) &&
 | |
|                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
 | |
|                Src->getNumOperands() != 1) {
 | |
|       // Otherwise we can do the fold if the first index of the GEP is a zero
 | |
|       Indices.append(Src->op_begin()+1, Src->op_end());
 | |
|       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
 | |
|     }
 | |
| 
 | |
|     if (!Indices.empty())
 | |
|       return (cast<GEPOperator>(&GEP)->isInBounds() &&
 | |
|               Src->isInBounds()) ?
 | |
|         GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
 | |
|                                           Indices.end(), GEP.getName()) :
 | |
|         GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
 | |
|                                   Indices.end(), GEP.getName());
 | |
|   }
 | |
|   
 | |
|   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
 | |
|   if (Value *X = getBitCastOperand(PtrOp)) {
 | |
|     assert(isa<PointerType>(X->getType()) && "Must be cast from pointer");
 | |
| 
 | |
|     // If the input bitcast is actually "bitcast(bitcast(x))", then we don't 
 | |
|     // want to change the gep until the bitcasts are eliminated.
 | |
|     if (getBitCastOperand(X)) {
 | |
|       Worklist.AddValue(PtrOp);
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
 | |
|     // into     : GEP [10 x i8]* X, i32 0, ...
 | |
|     //
 | |
|     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
 | |
|     //           into     : GEP i8* X, ...
 | |
|     // 
 | |
|     // This occurs when the program declares an array extern like "int X[];"
 | |
|     if (HasZeroPointerIndex) {
 | |
|       const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
 | |
|       const PointerType *XTy = cast<PointerType>(X->getType());
 | |
|       if (const ArrayType *CATy =
 | |
|           dyn_cast<ArrayType>(CPTy->getElementType())) {
 | |
|         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
 | |
|         if (CATy->getElementType() == XTy->getElementType()) {
 | |
|           // -> GEP i8* X, ...
 | |
|           SmallVector<Value*, 8> Indices(GEP.idx_begin()+1, GEP.idx_end());
 | |
|           return cast<GEPOperator>(&GEP)->isInBounds() ?
 | |
|             GetElementPtrInst::CreateInBounds(X, Indices.begin(), Indices.end(),
 | |
|                                               GEP.getName()) :
 | |
|             GetElementPtrInst::Create(X, Indices.begin(), Indices.end(),
 | |
|                                       GEP.getName());
 | |
|         }
 | |
|         
 | |
|         if (const ArrayType *XATy = dyn_cast<ArrayType>(XTy->getElementType())){
 | |
|           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
 | |
|           if (CATy->getElementType() == XATy->getElementType()) {
 | |
|             // -> GEP [10 x i8]* X, i32 0, ...
 | |
|             // At this point, we know that the cast source type is a pointer
 | |
|             // to an array of the same type as the destination pointer
 | |
|             // array.  Because the array type is never stepped over (there
 | |
|             // is a leading zero) we can fold the cast into this GEP.
 | |
|             GEP.setOperand(0, X);
 | |
|             return &GEP;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else if (GEP.getNumOperands() == 2) {
 | |
|       // Transform things like:
 | |
|       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
 | |
|       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
 | |
|       const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
 | |
|       const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
 | |
|       if (TD && isa<ArrayType>(SrcElTy) &&
 | |
|           TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
 | |
|           TD->getTypeAllocSize(ResElTy)) {
 | |
|         Value *Idx[2];
 | |
|         Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
 | |
|         Idx[1] = GEP.getOperand(1);
 | |
|         Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
 | |
|           Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
 | |
|           Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
 | |
|         // V and GEP are both pointer types --> BitCast
 | |
|         return new BitCastInst(NewGEP, GEP.getType());
 | |
|       }
 | |
|       
 | |
|       // Transform things like:
 | |
|       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
 | |
|       //   (where tmp = 8*tmp2) into:
 | |
|       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
 | |
|       
 | |
|       if (TD && isa<ArrayType>(SrcElTy) && ResElTy == Type::getInt8Ty(*Context)) {
 | |
|         uint64_t ArrayEltSize =
 | |
|             TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
 | |
|         
 | |
|         // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
 | |
|         // allow either a mul, shift, or constant here.
 | |
|         Value *NewIdx = 0;
 | |
|         ConstantInt *Scale = 0;
 | |
|         if (ArrayEltSize == 1) {
 | |
|           NewIdx = GEP.getOperand(1);
 | |
|           Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
 | |
|         } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
 | |
|           NewIdx = ConstantInt::get(CI->getType(), 1);
 | |
|           Scale = CI;
 | |
|         } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
 | |
|           if (Inst->getOpcode() == Instruction::Shl &&
 | |
|               isa<ConstantInt>(Inst->getOperand(1))) {
 | |
|             ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
 | |
|             uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
 | |
|             Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
 | |
|                                      1ULL << ShAmtVal);
 | |
|             NewIdx = Inst->getOperand(0);
 | |
|           } else if (Inst->getOpcode() == Instruction::Mul &&
 | |
|                      isa<ConstantInt>(Inst->getOperand(1))) {
 | |
|             Scale = cast<ConstantInt>(Inst->getOperand(1));
 | |
|             NewIdx = Inst->getOperand(0);
 | |
|           }
 | |
|         }
 | |
|         
 | |
|         // If the index will be to exactly the right offset with the scale taken
 | |
|         // out, perform the transformation. Note, we don't know whether Scale is
 | |
|         // signed or not. We'll use unsigned version of division/modulo
 | |
|         // operation after making sure Scale doesn't have the sign bit set.
 | |
|         if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
 | |
|             Scale->getZExtValue() % ArrayEltSize == 0) {
 | |
|           Scale = ConstantInt::get(Scale->getType(),
 | |
|                                    Scale->getZExtValue() / ArrayEltSize);
 | |
|           if (Scale->getZExtValue() != 1) {
 | |
|             Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
 | |
|                                                        false /*ZExt*/);
 | |
|             NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
 | |
|           }
 | |
| 
 | |
|           // Insert the new GEP instruction.
 | |
|           Value *Idx[2];
 | |
|           Idx[0] = Constant::getNullValue(Type::getInt32Ty(*Context));
 | |
|           Idx[1] = NewIdx;
 | |
|           Value *NewGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
 | |
|             Builder->CreateInBoundsGEP(X, Idx, Idx + 2, GEP.getName()) :
 | |
|             Builder->CreateGEP(X, Idx, Idx + 2, GEP.getName());
 | |
|           // The NewGEP must be pointer typed, so must the old one -> BitCast
 | |
|           return new BitCastInst(NewGEP, GEP.getType());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   /// See if we can simplify:
 | |
|   ///   X = bitcast A* to B*
 | |
|   ///   Y = gep X, <...constant indices...>
 | |
|   /// into a gep of the original struct.  This is important for SROA and alias
 | |
|   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
 | |
|   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
 | |
|     if (TD &&
 | |
|         !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
 | |
|       // Determine how much the GEP moves the pointer.  We are guaranteed to get
 | |
|       // a constant back from EmitGEPOffset.
 | |
|       ConstantInt *OffsetV =
 | |
|                     cast<ConstantInt>(EmitGEPOffset(&GEP, GEP, *this));
 | |
|       int64_t Offset = OffsetV->getSExtValue();
 | |
|       
 | |
|       // If this GEP instruction doesn't move the pointer, just replace the GEP
 | |
|       // with a bitcast of the real input to the dest type.
 | |
|       if (Offset == 0) {
 | |
|         // If the bitcast is of an allocation, and the allocation will be
 | |
|         // converted to match the type of the cast, don't touch this.
 | |
|         if (isa<AllocationInst>(BCI->getOperand(0)) ||
 | |
|             isMalloc(BCI->getOperand(0))) {
 | |
|           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
 | |
|           if (Instruction *I = visitBitCast(*BCI)) {
 | |
|             if (I != BCI) {
 | |
|               I->takeName(BCI);
 | |
|               BCI->getParent()->getInstList().insert(BCI, I);
 | |
|               ReplaceInstUsesWith(*BCI, I);
 | |
|             }
 | |
|             return &GEP;
 | |
|           }
 | |
|         }
 | |
|         return new BitCastInst(BCI->getOperand(0), GEP.getType());
 | |
|       }
 | |
|       
 | |
|       // Otherwise, if the offset is non-zero, we need to find out if there is a
 | |
|       // field at Offset in 'A's type.  If so, we can pull the cast through the
 | |
|       // GEP.
 | |
|       SmallVector<Value*, 8> NewIndices;
 | |
|       const Type *InTy =
 | |
|         cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
 | |
|       if (FindElementAtOffset(InTy, Offset, NewIndices, TD, Context)) {
 | |
|         Value *NGEP = cast<GEPOperator>(&GEP)->isInBounds() ?
 | |
|           Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
 | |
|                                      NewIndices.end()) :
 | |
|           Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
 | |
|                              NewIndices.end());
 | |
|         
 | |
|         if (NGEP->getType() == GEP.getType())
 | |
|           return ReplaceInstUsesWith(GEP, NGEP);
 | |
|         NGEP->takeName(&GEP);
 | |
|         return new BitCastInst(NGEP, GEP.getType());
 | |
|       }
 | |
|     }
 | |
|   }    
 | |
|     
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
 | |
|   // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
 | |
|   if (AI.isArrayAllocation()) {  // Check C != 1
 | |
|     if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
 | |
|       const Type *NewTy = 
 | |
|         ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
 | |
|       AllocationInst *New = 0;
 | |
| 
 | |
|       // Create and insert the replacement instruction...
 | |
|       if (isa<MallocInst>(AI))
 | |
|         New = Builder->CreateMalloc(NewTy, 0, AI.getName());
 | |
|       else {
 | |
|         assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
 | |
|         New = Builder->CreateAlloca(NewTy, 0, AI.getName());
 | |
|       }
 | |
|       New->setAlignment(AI.getAlignment());
 | |
| 
 | |
|       // Scan to the end of the allocation instructions, to skip over a block of
 | |
|       // allocas if possible...also skip interleaved debug info
 | |
|       //
 | |
|       BasicBlock::iterator It = New;
 | |
|       while (isa<AllocationInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
 | |
| 
 | |
|       // Now that I is pointing to the first non-allocation-inst in the block,
 | |
|       // insert our getelementptr instruction...
 | |
|       //
 | |
|       Value *NullIdx = Constant::getNullValue(Type::getInt32Ty(*Context));
 | |
|       Value *Idx[2];
 | |
|       Idx[0] = NullIdx;
 | |
|       Idx[1] = NullIdx;
 | |
|       Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2,
 | |
|                                                    New->getName()+".sub", It);
 | |
| 
 | |
|       // Now make everything use the getelementptr instead of the original
 | |
|       // allocation.
 | |
|       return ReplaceInstUsesWith(AI, V);
 | |
|     } else if (isa<UndefValue>(AI.getArraySize())) {
 | |
|       return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
 | |
|     // If alloca'ing a zero byte object, replace the alloca with a null pointer.
 | |
|     // Note that we only do this for alloca's, because malloc should allocate
 | |
|     // and return a unique pointer, even for a zero byte allocation.
 | |
|     if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
 | |
|       return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | |
| 
 | |
|     // If the alignment is 0 (unspecified), assign it the preferred alignment.
 | |
|     if (AI.getAlignment() == 0)
 | |
|       AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
 | |
|   Value *Op = FI.getOperand(0);
 | |
| 
 | |
|   // free undef -> unreachable.
 | |
|   if (isa<UndefValue>(Op)) {
 | |
|     // Insert a new store to null because we cannot modify the CFG here.
 | |
|     new StoreInst(ConstantInt::getTrue(*Context),
 | |
|            UndefValue::get(PointerType::getUnqual(Type::getInt1Ty(*Context))), &FI);
 | |
|     return EraseInstFromFunction(FI);
 | |
|   }
 | |
|   
 | |
|   // If we have 'free null' delete the instruction.  This can happen in stl code
 | |
|   // when lots of inlining happens.
 | |
|   if (isa<ConstantPointerNull>(Op))
 | |
|     return EraseInstFromFunction(FI);
 | |
|   
 | |
|   // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
 | |
|   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
 | |
|     FI.setOperand(0, CI->getOperand(0));
 | |
|     return &FI;
 | |
|   }
 | |
|   
 | |
|   // Change free (gep X, 0,0,0,0) into free(X)
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
 | |
|     if (GEPI->hasAllZeroIndices()) {
 | |
|       Worklist.Add(GEPI);
 | |
|       FI.setOperand(0, GEPI->getOperand(0));
 | |
|       return &FI;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Change free(malloc) into nothing, if the malloc has a single use.
 | |
|   if (MallocInst *MI = dyn_cast<MallocInst>(Op))
 | |
|     if (MI->hasOneUse()) {
 | |
|       EraseInstFromFunction(FI);
 | |
|       return EraseInstFromFunction(*MI);
 | |
|     }
 | |
|   if (isMalloc(Op)) {
 | |
|     if (CallInst* CI = extractMallocCallFromBitCast(Op)) {
 | |
|       if (Op->hasOneUse() && CI->hasOneUse()) {
 | |
|         EraseInstFromFunction(FI);
 | |
|         EraseInstFromFunction(*CI);
 | |
|         return EraseInstFromFunction(*cast<Instruction>(Op));
 | |
|       }
 | |
|     } else {
 | |
|       // Op is a call to malloc
 | |
|       if (Op->hasOneUse()) {
 | |
|         EraseInstFromFunction(FI);
 | |
|         return EraseInstFromFunction(*cast<Instruction>(Op));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
 | |
| static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
 | |
|                                         const TargetData *TD) {
 | |
|   User *CI = cast<User>(LI.getOperand(0));
 | |
|   Value *CastOp = CI->getOperand(0);
 | |
|   LLVMContext *Context = IC.getContext();
 | |
| 
 | |
|   if (TD) {
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
 | |
|       // Instead of loading constant c string, use corresponding integer value
 | |
|       // directly if string length is small enough.
 | |
|       std::string Str;
 | |
|       if (GetConstantStringInfo(CE->getOperand(0), Str) && !Str.empty()) {
 | |
|         unsigned len = Str.length();
 | |
|         const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
 | |
|         unsigned numBits = Ty->getPrimitiveSizeInBits();
 | |
|         // Replace LI with immediate integer store.
 | |
|         if ((numBits >> 3) == len + 1) {
 | |
|           APInt StrVal(numBits, 0);
 | |
|           APInt SingleChar(numBits, 0);
 | |
|           if (TD->isLittleEndian()) {
 | |
|             for (signed i = len-1; i >= 0; i--) {
 | |
|               SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
 | |
|               StrVal = (StrVal << 8) | SingleChar;
 | |
|             }
 | |
|           } else {
 | |
|             for (unsigned i = 0; i < len; i++) {
 | |
|               SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
 | |
|               StrVal = (StrVal << 8) | SingleChar;
 | |
|             }
 | |
|             // Append NULL at the end.
 | |
|             SingleChar = 0;
 | |
|             StrVal = (StrVal << 8) | SingleChar;
 | |
|           }
 | |
|           Value *NL = ConstantInt::get(*Context, StrVal);
 | |
|           return IC.ReplaceInstUsesWith(LI, NL);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const PointerType *DestTy = cast<PointerType>(CI->getType());
 | |
|   const Type *DestPTy = DestTy->getElementType();
 | |
|   if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
 | |
| 
 | |
|     // If the address spaces don't match, don't eliminate the cast.
 | |
|     if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
 | |
|       return 0;
 | |
| 
 | |
|     const Type *SrcPTy = SrcTy->getElementType();
 | |
| 
 | |
|     if (DestPTy->isInteger() || isa<PointerType>(DestPTy) || 
 | |
|          isa<VectorType>(DestPTy)) {
 | |
|       // If the source is an array, the code below will not succeed.  Check to
 | |
|       // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
 | |
|       // constants.
 | |
|       if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
 | |
|         if (Constant *CSrc = dyn_cast<Constant>(CastOp))
 | |
|           if (ASrcTy->getNumElements() != 0) {
 | |
|             Value *Idxs[2];
 | |
|             Idxs[0] = Idxs[1] = Constant::getNullValue(Type::getInt32Ty(*Context));
 | |
|             CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
 | |
|             SrcTy = cast<PointerType>(CastOp->getType());
 | |
|             SrcPTy = SrcTy->getElementType();
 | |
|           }
 | |
| 
 | |
|       if (IC.getTargetData() &&
 | |
|           (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) || 
 | |
|             isa<VectorType>(SrcPTy)) &&
 | |
|           // Do not allow turning this into a load of an integer, which is then
 | |
|           // casted to a pointer, this pessimizes pointer analysis a lot.
 | |
|           (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
 | |
|           IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
 | |
|                IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
 | |
| 
 | |
|         // Okay, we are casting from one integer or pointer type to another of
 | |
|         // the same size.  Instead of casting the pointer before the load, cast
 | |
|         // the result of the loaded value.
 | |
|         Value *NewLoad = 
 | |
|           IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
 | |
|         // Now cast the result of the load.
 | |
|         return new BitCastInst(NewLoad, LI.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
 | |
|   Value *Op = LI.getOperand(0);
 | |
| 
 | |
|   // Attempt to improve the alignment.
 | |
|   if (TD) {
 | |
|     unsigned KnownAlign =
 | |
|       GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
 | |
|     if (KnownAlign >
 | |
|         (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
 | |
|                                   LI.getAlignment()))
 | |
|       LI.setAlignment(KnownAlign);
 | |
|   }
 | |
| 
 | |
|   // load (cast X) --> cast (load X) iff safe.
 | |
|   if (isa<CastInst>(Op))
 | |
|     if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
 | |
|       return Res;
 | |
| 
 | |
|   // None of the following transforms are legal for volatile loads.
 | |
|   if (LI.isVolatile()) return 0;
 | |
|   
 | |
|   // Do really simple store-to-load forwarding and load CSE, to catch cases
 | |
|   // where there are several consequtive memory accesses to the same location,
 | |
|   // separated by a few arithmetic operations.
 | |
|   BasicBlock::iterator BBI = &LI;
 | |
|   if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
 | |
|     return ReplaceInstUsesWith(LI, AvailableVal);
 | |
| 
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
 | |
|     const Value *GEPI0 = GEPI->getOperand(0);
 | |
|     // TODO: Consider a target hook for valid address spaces for this xform.
 | |
|     if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
 | |
|       // Insert a new store to null instruction before the load to indicate
 | |
|       // that this code is not reachable.  We do this instead of inserting
 | |
|       // an unreachable instruction directly because we cannot modify the
 | |
|       // CFG.
 | |
|       new StoreInst(UndefValue::get(LI.getType()),
 | |
|                     Constant::getNullValue(Op->getType()), &LI);
 | |
|       return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | |
|     }
 | |
|   } 
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(Op)) {
 | |
|     // load null/undef -> undef
 | |
|     // TODO: Consider a target hook for valid address spaces for this xform.
 | |
|     if (isa<UndefValue>(C) ||
 | |
|         (C->isNullValue() && LI.getPointerAddressSpace() == 0)) {
 | |
|       // Insert a new store to null instruction before the load to indicate that
 | |
|       // this code is not reachable.  We do this instead of inserting an
 | |
|       // unreachable instruction directly because we cannot modify the CFG.
 | |
|       new StoreInst(UndefValue::get(LI.getType()),
 | |
|                     Constant::getNullValue(Op->getType()), &LI);
 | |
|       return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | |
|     }
 | |
| 
 | |
|     // Instcombine load (constant global) into the value loaded.
 | |
|     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
 | |
|       if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | |
|         return ReplaceInstUsesWith(LI, GV->getInitializer());
 | |
| 
 | |
|     // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
 | |
|     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) {
 | |
|       if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
 | |
|           if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | |
|             if (Constant *V = 
 | |
|                ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE, 
 | |
|                                                       *Context))
 | |
|               return ReplaceInstUsesWith(LI, V);
 | |
|         if (CE->getOperand(0)->isNullValue()) {
 | |
|           // Insert a new store to null instruction before the load to indicate
 | |
|           // that this code is not reachable.  We do this instead of inserting
 | |
|           // an unreachable instruction directly because we cannot modify the
 | |
|           // CFG.
 | |
|           new StoreInst(UndefValue::get(LI.getType()),
 | |
|                         Constant::getNullValue(Op->getType()), &LI);
 | |
|           return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | |
|         }
 | |
| 
 | |
|       } else if (CE->isCast()) {
 | |
|         if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
 | |
|           return Res;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|     
 | |
|   // If this load comes from anywhere in a constant global, and if the global
 | |
|   // is all undef or zero, we know what it loads.
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op->getUnderlyingObject())){
 | |
|     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
 | |
|       if (GV->getInitializer()->isNullValue())
 | |
|         return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
 | |
|       else if (isa<UndefValue>(GV->getInitializer()))
 | |
|         return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Op->hasOneUse()) {
 | |
|     // Change select and PHI nodes to select values instead of addresses: this
 | |
|     // helps alias analysis out a lot, allows many others simplifications, and
 | |
|     // exposes redundancy in the code.
 | |
|     //
 | |
|     // Note that we cannot do the transformation unless we know that the
 | |
|     // introduced loads cannot trap!  Something like this is valid as long as
 | |
|     // the condition is always false: load (select bool %C, int* null, int* %G),
 | |
|     // but it would not be valid if we transformed it to load from null
 | |
|     // unconditionally.
 | |
|     //
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
 | |
|       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
 | |
|       if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
 | |
|           isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
 | |
|         Value *V1 = Builder->CreateLoad(SI->getOperand(1),
 | |
|                                         SI->getOperand(1)->getName()+".val");
 | |
|         Value *V2 = Builder->CreateLoad(SI->getOperand(2),
 | |
|                                         SI->getOperand(2)->getName()+".val");
 | |
|         return SelectInst::Create(SI->getCondition(), V1, V2);
 | |
|       }
 | |
| 
 | |
|       // load (select (cond, null, P)) -> load P
 | |
|       if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|         if (C->isNullValue()) {
 | |
|           LI.setOperand(0, SI->getOperand(2));
 | |
|           return &LI;
 | |
|         }
 | |
| 
 | |
|       // load (select (cond, P, null)) -> load P
 | |
|       if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
 | |
|         if (C->isNullValue()) {
 | |
|           LI.setOperand(0, SI->getOperand(1));
 | |
|           return &LI;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
 | |
| /// when possible.  This makes it generally easy to do alias analysis and/or
 | |
| /// SROA/mem2reg of the memory object.
 | |
| static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
 | |
|   User *CI = cast<User>(SI.getOperand(1));
 | |
|   Value *CastOp = CI->getOperand(0);
 | |
| 
 | |
|   const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
 | |
|   const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
 | |
|   if (SrcTy == 0) return 0;
 | |
|   
 | |
|   const Type *SrcPTy = SrcTy->getElementType();
 | |
| 
 | |
|   if (!DestPTy->isInteger() && !isa<PointerType>(DestPTy))
 | |
|     return 0;
 | |
|   
 | |
|   /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
 | |
|   /// to its first element.  This allows us to handle things like:
 | |
|   ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
 | |
|   /// on 32-bit hosts.
 | |
|   SmallVector<Value*, 4> NewGEPIndices;
 | |
|   
 | |
|   // If the source is an array, the code below will not succeed.  Check to
 | |
|   // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
 | |
|   // constants.
 | |
|   if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) {
 | |
|     // Index through pointer.
 | |
|     Constant *Zero = Constant::getNullValue(Type::getInt32Ty(*IC.getContext()));
 | |
|     NewGEPIndices.push_back(Zero);
 | |
|     
 | |
|     while (1) {
 | |
|       if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) {
 | |
|         if (!STy->getNumElements()) /* Struct can be empty {} */
 | |
|           break;
 | |
|         NewGEPIndices.push_back(Zero);
 | |
|         SrcPTy = STy->getElementType(0);
 | |
|       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
 | |
|         NewGEPIndices.push_back(Zero);
 | |
|         SrcPTy = ATy->getElementType();
 | |
|       } else {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
 | |
|   }
 | |
| 
 | |
|   if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy))
 | |
|     return 0;
 | |
|   
 | |
|   // If the pointers point into different address spaces or if they point to
 | |
|   // values with different sizes, we can't do the transformation.
 | |
|   if (!IC.getTargetData() ||
 | |
|       SrcTy->getAddressSpace() != 
 | |
|         cast<PointerType>(CI->getType())->getAddressSpace() ||
 | |
|       IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
 | |
|       IC.getTargetData()->getTypeSizeInBits(DestPTy))
 | |
|     return 0;
 | |
| 
 | |
|   // Okay, we are casting from one integer or pointer type to another of
 | |
|   // the same size.  Instead of casting the pointer before 
 | |
|   // the store, cast the value to be stored.
 | |
|   Value *NewCast;
 | |
|   Value *SIOp0 = SI.getOperand(0);
 | |
|   Instruction::CastOps opcode = Instruction::BitCast;
 | |
|   const Type* CastSrcTy = SIOp0->getType();
 | |
|   const Type* CastDstTy = SrcPTy;
 | |
|   if (isa<PointerType>(CastDstTy)) {
 | |
|     if (CastSrcTy->isInteger())
 | |
|       opcode = Instruction::IntToPtr;
 | |
|   } else if (isa<IntegerType>(CastDstTy)) {
 | |
|     if (isa<PointerType>(SIOp0->getType()))
 | |
|       opcode = Instruction::PtrToInt;
 | |
|   }
 | |
|   
 | |
|   // SIOp0 is a pointer to aggregate and this is a store to the first field,
 | |
|   // emit a GEP to index into its first field.
 | |
|   if (!NewGEPIndices.empty())
 | |
|     CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(),
 | |
|                                            NewGEPIndices.end());
 | |
|   
 | |
|   NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
 | |
|                                    SIOp0->getName()+".c");
 | |
|   return new StoreInst(NewCast, CastOp);
 | |
| }
 | |
| 
 | |
| /// equivalentAddressValues - Test if A and B will obviously have the same
 | |
| /// value. This includes recognizing that %t0 and %t1 will have the same
 | |
| /// value in code like this:
 | |
| ///   %t0 = getelementptr \@a, 0, 3
 | |
| ///   store i32 0, i32* %t0
 | |
| ///   %t1 = getelementptr \@a, 0, 3
 | |
| ///   %t2 = load i32* %t1
 | |
| ///
 | |
| static bool equivalentAddressValues(Value *A, Value *B) {
 | |
|   // Test if the values are trivially equivalent.
 | |
|   if (A == B) return true;
 | |
|   
 | |
|   // Test if the values come form identical arithmetic instructions.
 | |
|   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
 | |
|   // its only used to compare two uses within the same basic block, which
 | |
|   // means that they'll always either have the same value or one of them
 | |
|   // will have an undefined value.
 | |
|   if (isa<BinaryOperator>(A) ||
 | |
|       isa<CastInst>(A) ||
 | |
|       isa<PHINode>(A) ||
 | |
|       isa<GetElementPtrInst>(A))
 | |
|     if (Instruction *BI = dyn_cast<Instruction>(B))
 | |
|       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
 | |
|         return true;
 | |
|   
 | |
|   // Otherwise they may not be equivalent.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // If this instruction has two uses, one of which is a llvm.dbg.declare,
 | |
| // return the llvm.dbg.declare.
 | |
| DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) {
 | |
|   if (!V->hasNUses(2))
 | |
|     return 0;
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI))
 | |
|       return DI;
 | |
|     if (isa<BitCastInst>(UI) && UI->hasOneUse()) {
 | |
|       if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin()))
 | |
|         return DI;
 | |
|       }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
 | |
|   Value *Val = SI.getOperand(0);
 | |
|   Value *Ptr = SI.getOperand(1);
 | |
| 
 | |
|   if (isa<UndefValue>(Ptr)) {     // store X, undef -> noop (even if volatile)
 | |
|     EraseInstFromFunction(SI);
 | |
|     ++NumCombined;
 | |
|     return 0;
 | |
|   }
 | |
|   
 | |
|   // If the RHS is an alloca with a single use, zapify the store, making the
 | |
|   // alloca dead.
 | |
|   // If the RHS is an alloca with a two uses, the other one being a 
 | |
|   // llvm.dbg.declare, zapify the store and the declare, making the
 | |
|   // alloca dead.  We must do this to prevent declare's from affecting
 | |
|   // codegen.
 | |
|   if (!SI.isVolatile()) {
 | |
|     if (Ptr->hasOneUse()) {
 | |
|       if (isa<AllocaInst>(Ptr)) {
 | |
|         EraseInstFromFunction(SI);
 | |
|         ++NumCombined;
 | |
|         return 0;
 | |
|       }
 | |
|       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
 | |
|         if (isa<AllocaInst>(GEP->getOperand(0))) {
 | |
|           if (GEP->getOperand(0)->hasOneUse()) {
 | |
|             EraseInstFromFunction(SI);
 | |
|             ++NumCombined;
 | |
|             return 0;
 | |
|           }
 | |
|           if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) {
 | |
|             EraseInstFromFunction(*DI);
 | |
|             EraseInstFromFunction(SI);
 | |
|             ++NumCombined;
 | |
|             return 0;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) {
 | |
|       EraseInstFromFunction(*DI);
 | |
|       EraseInstFromFunction(SI);
 | |
|       ++NumCombined;
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Attempt to improve the alignment.
 | |
|   if (TD) {
 | |
|     unsigned KnownAlign =
 | |
|       GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
 | |
|     if (KnownAlign >
 | |
|         (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
 | |
|                                   SI.getAlignment()))
 | |
|       SI.setAlignment(KnownAlign);
 | |
|   }
 | |
| 
 | |
|   // Do really simple DSE, to catch cases where there are several consecutive
 | |
|   // stores to the same location, separated by a few arithmetic operations. This
 | |
|   // situation often occurs with bitfield accesses.
 | |
|   BasicBlock::iterator BBI = &SI;
 | |
|   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
 | |
|        --ScanInsts) {
 | |
|     --BBI;
 | |
|     // Don't count debug info directives, lest they affect codegen,
 | |
|     // and we skip pointer-to-pointer bitcasts, which are NOPs.
 | |
|     // It is necessary for correctness to skip those that feed into a
 | |
|     // llvm.dbg.declare, as these are not present when debugging is off.
 | |
|     if (isa<DbgInfoIntrinsic>(BBI) ||
 | |
|         (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
 | |
|       ScanInsts++;
 | |
|       continue;
 | |
|     }    
 | |
|     
 | |
|     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
 | |
|       // Prev store isn't volatile, and stores to the same location?
 | |
|       if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
 | |
|                                                           SI.getOperand(1))) {
 | |
|         ++NumDeadStore;
 | |
|         ++BBI;
 | |
|         EraseInstFromFunction(*PrevSI);
 | |
|         continue;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     // If this is a load, we have to stop.  However, if the loaded value is from
 | |
|     // the pointer we're loading and is producing the pointer we're storing,
 | |
|     // then *this* store is dead (X = load P; store X -> P).
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | |
|       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
 | |
|           !SI.isVolatile()) {
 | |
|         EraseInstFromFunction(SI);
 | |
|         ++NumCombined;
 | |
|         return 0;
 | |
|       }
 | |
|       // Otherwise, this is a load from some other location.  Stores before it
 | |
|       // may not be dead.
 | |
|       break;
 | |
|     }
 | |
|     
 | |
|     // Don't skip over loads or things that can modify memory.
 | |
|     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
 | |
|       break;
 | |
|   }
 | |
|   
 | |
|   
 | |
|   if (SI.isVolatile()) return 0;  // Don't hack volatile stores.
 | |
| 
 | |
|   // store X, null    -> turns into 'unreachable' in SimplifyCFG
 | |
|   if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
 | |
|     if (!isa<UndefValue>(Val)) {
 | |
|       SI.setOperand(0, UndefValue::get(Val->getType()));
 | |
|       if (Instruction *U = dyn_cast<Instruction>(Val))
 | |
|         Worklist.Add(U);  // Dropped a use.
 | |
|       ++NumCombined;
 | |
|     }
 | |
|     return 0;  // Do not modify these!
 | |
|   }
 | |
| 
 | |
|   // store undef, Ptr -> noop
 | |
|   if (isa<UndefValue>(Val)) {
 | |
|     EraseInstFromFunction(SI);
 | |
|     ++NumCombined;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // If the pointer destination is a cast, see if we can fold the cast into the
 | |
|   // source instead.
 | |
|   if (isa<CastInst>(Ptr))
 | |
|     if (Instruction *Res = InstCombineStoreToCast(*this, SI))
 | |
|       return Res;
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
 | |
|     if (CE->isCast())
 | |
|       if (Instruction *Res = InstCombineStoreToCast(*this, SI))
 | |
|         return Res;
 | |
| 
 | |
|   
 | |
|   // If this store is the last instruction in the basic block (possibly
 | |
|   // excepting debug info instructions and the pointer bitcasts that feed
 | |
|   // into them), and if the block ends with an unconditional branch, try
 | |
|   // to move it to the successor block.
 | |
|   BBI = &SI; 
 | |
|   do {
 | |
|     ++BBI;
 | |
|   } while (isa<DbgInfoIntrinsic>(BBI) ||
 | |
|            (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType())));
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
 | |
|     if (BI->isUnconditional())
 | |
|       if (SimplifyStoreAtEndOfBlock(SI))
 | |
|         return 0;  // xform done!
 | |
|   
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SimplifyStoreAtEndOfBlock - Turn things like:
 | |
| ///   if () { *P = v1; } else { *P = v2 }
 | |
| /// into a phi node with a store in the successor.
 | |
| ///
 | |
| /// Simplify things like:
 | |
| ///   *P = v1; if () { *P = v2; }
 | |
| /// into a phi node with a store in the successor.
 | |
| ///
 | |
| bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
 | |
|   BasicBlock *StoreBB = SI.getParent();
 | |
|   
 | |
|   // Check to see if the successor block has exactly two incoming edges.  If
 | |
|   // so, see if the other predecessor contains a store to the same location.
 | |
|   // if so, insert a PHI node (if needed) and move the stores down.
 | |
|   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
 | |
|   
 | |
|   // Determine whether Dest has exactly two predecessors and, if so, compute
 | |
|   // the other predecessor.
 | |
|   pred_iterator PI = pred_begin(DestBB);
 | |
|   BasicBlock *OtherBB = 0;
 | |
|   if (*PI != StoreBB)
 | |
|     OtherBB = *PI;
 | |
|   ++PI;
 | |
|   if (PI == pred_end(DestBB))
 | |
|     return false;
 | |
|   
 | |
|   if (*PI != StoreBB) {
 | |
|     if (OtherBB)
 | |
|       return false;
 | |
|     OtherBB = *PI;
 | |
|   }
 | |
|   if (++PI != pred_end(DestBB))
 | |
|     return false;
 | |
| 
 | |
|   // Bail out if all the relevant blocks aren't distinct (this can happen,
 | |
|   // for example, if SI is in an infinite loop)
 | |
|   if (StoreBB == DestBB || OtherBB == DestBB)
 | |
|     return false;
 | |
| 
 | |
|   // Verify that the other block ends in a branch and is not otherwise empty.
 | |
|   BasicBlock::iterator BBI = OtherBB->getTerminator();
 | |
|   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
 | |
|   if (!OtherBr || BBI == OtherBB->begin())
 | |
|     return false;
 | |
|   
 | |
|   // If the other block ends in an unconditional branch, check for the 'if then
 | |
|   // else' case.  there is an instruction before the branch.
 | |
|   StoreInst *OtherStore = 0;
 | |
|   if (OtherBr->isUnconditional()) {
 | |
|     --BBI;
 | |
|     // Skip over debugging info.
 | |
|     while (isa<DbgInfoIntrinsic>(BBI) ||
 | |
|            (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
 | |
|       if (BBI==OtherBB->begin())
 | |
|         return false;
 | |
|       --BBI;
 | |
|     }
 | |
|     // If this isn't a store, or isn't a store to the same location, bail out.
 | |
|     OtherStore = dyn_cast<StoreInst>(BBI);
 | |
|     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
 | |
|       return false;
 | |
|   } else {
 | |
|     // Otherwise, the other block ended with a conditional branch. If one of the
 | |
|     // destinations is StoreBB, then we have the if/then case.
 | |
|     if (OtherBr->getSuccessor(0) != StoreBB && 
 | |
|         OtherBr->getSuccessor(1) != StoreBB)
 | |
|       return false;
 | |
|     
 | |
|     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
 | |
|     // if/then triangle.  See if there is a store to the same ptr as SI that
 | |
|     // lives in OtherBB.
 | |
|     for (;; --BBI) {
 | |
|       // Check to see if we find the matching store.
 | |
|       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
 | |
|         if (OtherStore->getOperand(1) != SI.getOperand(1))
 | |
|           return false;
 | |
|         break;
 | |
|       }
 | |
|       // If we find something that may be using or overwriting the stored
 | |
|       // value, or if we run out of instructions, we can't do the xform.
 | |
|       if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
 | |
|           BBI == OtherBB->begin())
 | |
|         return false;
 | |
|     }
 | |
|     
 | |
|     // In order to eliminate the store in OtherBr, we have to
 | |
|     // make sure nothing reads or overwrites the stored value in
 | |
|     // StoreBB.
 | |
|     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
 | |
|       // FIXME: This should really be AA driven.
 | |
|       if (I->mayReadFromMemory() || I->mayWriteToMemory())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Insert a PHI node now if we need it.
 | |
|   Value *MergedVal = OtherStore->getOperand(0);
 | |
|   if (MergedVal != SI.getOperand(0)) {
 | |
|     PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
 | |
|     PN->reserveOperandSpace(2);
 | |
|     PN->addIncoming(SI.getOperand(0), SI.getParent());
 | |
|     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
 | |
|     MergedVal = InsertNewInstBefore(PN, DestBB->front());
 | |
|   }
 | |
|   
 | |
|   // Advance to a place where it is safe to insert the new store and
 | |
|   // insert it.
 | |
|   BBI = DestBB->getFirstNonPHI();
 | |
|   InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
 | |
|                                     OtherStore->isVolatile()), *BBI);
 | |
|   
 | |
|   // Nuke the old stores.
 | |
|   EraseInstFromFunction(SI);
 | |
|   EraseInstFromFunction(*OtherStore);
 | |
|   ++NumCombined;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
 | |
|   // Change br (not X), label True, label False to: br X, label False, True
 | |
|   Value *X = 0;
 | |
|   BasicBlock *TrueDest;
 | |
|   BasicBlock *FalseDest;
 | |
|   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
 | |
|       !isa<Constant>(X)) {
 | |
|     // Swap Destinations and condition...
 | |
|     BI.setCondition(X);
 | |
|     BI.setSuccessor(0, FalseDest);
 | |
|     BI.setSuccessor(1, TrueDest);
 | |
|     return &BI;
 | |
|   }
 | |
| 
 | |
|   // Cannonicalize fcmp_one -> fcmp_oeq
 | |
|   FCmpInst::Predicate FPred; Value *Y;
 | |
|   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 
 | |
|                              TrueDest, FalseDest)) &&
 | |
|       BI.getCondition()->hasOneUse())
 | |
|     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
 | |
|         FPred == FCmpInst::FCMP_OGE) {
 | |
|       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
 | |
|       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
 | |
|       
 | |
|       // Swap Destinations and condition.
 | |
|       BI.setSuccessor(0, FalseDest);
 | |
|       BI.setSuccessor(1, TrueDest);
 | |
|       Worklist.Add(Cond);
 | |
|       return &BI;
 | |
|     }
 | |
| 
 | |
|   // Cannonicalize icmp_ne -> icmp_eq
 | |
|   ICmpInst::Predicate IPred;
 | |
|   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
 | |
|                       TrueDest, FalseDest)) &&
 | |
|       BI.getCondition()->hasOneUse())
 | |
|     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
 | |
|         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
 | |
|         IPred == ICmpInst::ICMP_SGE) {
 | |
|       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
 | |
|       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
 | |
|       // Swap Destinations and condition.
 | |
|       BI.setSuccessor(0, FalseDest);
 | |
|       BI.setSuccessor(1, TrueDest);
 | |
|       Worklist.Add(Cond);
 | |
|       return &BI;
 | |
|     }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
 | |
|   Value *Cond = SI.getCondition();
 | |
|   if (Instruction *I = dyn_cast<Instruction>(Cond)) {
 | |
|     if (I->getOpcode() == Instruction::Add)
 | |
|       if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|         // change 'switch (X+4) case 1:' into 'switch (X) case -3'
 | |
|         for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
 | |
|           SI.setOperand(i,
 | |
|                    ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
 | |
|                                                 AddRHS));
 | |
|         SI.setOperand(0, I->getOperand(0));
 | |
|         Worklist.Add(I);
 | |
|         return &SI;
 | |
|       }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
 | |
|   Value *Agg = EV.getAggregateOperand();
 | |
| 
 | |
|   if (!EV.hasIndices())
 | |
|     return ReplaceInstUsesWith(EV, Agg);
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(Agg)) {
 | |
|     if (isa<UndefValue>(C))
 | |
|       return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
 | |
|       
 | |
|     if (isa<ConstantAggregateZero>(C))
 | |
|       return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
 | |
| 
 | |
|     if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
 | |
|       // Extract the element indexed by the first index out of the constant
 | |
|       Value *V = C->getOperand(*EV.idx_begin());
 | |
|       if (EV.getNumIndices() > 1)
 | |
|         // Extract the remaining indices out of the constant indexed by the
 | |
|         // first index
 | |
|         return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
 | |
|       else
 | |
|         return ReplaceInstUsesWith(EV, V);
 | |
|     }
 | |
|     return 0; // Can't handle other constants
 | |
|   } 
 | |
|   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
 | |
|     // We're extracting from an insertvalue instruction, compare the indices
 | |
|     const unsigned *exti, *exte, *insi, *inse;
 | |
|     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
 | |
|          exte = EV.idx_end(), inse = IV->idx_end();
 | |
|          exti != exte && insi != inse;
 | |
|          ++exti, ++insi) {
 | |
|       if (*insi != *exti)
 | |
|         // The insert and extract both reference distinctly different elements.
 | |
|         // This means the extract is not influenced by the insert, and we can
 | |
|         // replace the aggregate operand of the extract with the aggregate
 | |
|         // operand of the insert. i.e., replace
 | |
|         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
 | |
|         // %E = extractvalue { i32, { i32 } } %I, 0
 | |
|         // with
 | |
|         // %E = extractvalue { i32, { i32 } } %A, 0
 | |
|         return ExtractValueInst::Create(IV->getAggregateOperand(),
 | |
|                                         EV.idx_begin(), EV.idx_end());
 | |
|     }
 | |
|     if (exti == exte && insi == inse)
 | |
|       // Both iterators are at the end: Index lists are identical. Replace
 | |
|       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
 | |
|       // %C = extractvalue { i32, { i32 } } %B, 1, 0
 | |
|       // with "i32 42"
 | |
|       return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
 | |
|     if (exti == exte) {
 | |
|       // The extract list is a prefix of the insert list. i.e. replace
 | |
|       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
 | |
|       // %E = extractvalue { i32, { i32 } } %I, 1
 | |
|       // with
 | |
|       // %X = extractvalue { i32, { i32 } } %A, 1
 | |
|       // %E = insertvalue { i32 } %X, i32 42, 0
 | |
|       // by switching the order of the insert and extract (though the
 | |
|       // insertvalue should be left in, since it may have other uses).
 | |
|       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
 | |
|                                                  EV.idx_begin(), EV.idx_end());
 | |
|       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
 | |
|                                      insi, inse);
 | |
|     }
 | |
|     if (insi == inse)
 | |
|       // The insert list is a prefix of the extract list
 | |
|       // We can simply remove the common indices from the extract and make it
 | |
|       // operate on the inserted value instead of the insertvalue result.
 | |
|       // i.e., replace
 | |
|       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
 | |
|       // %E = extractvalue { i32, { i32 } } %I, 1, 0
 | |
|       // with
 | |
|       // %E extractvalue { i32 } { i32 42 }, 0
 | |
|       return ExtractValueInst::Create(IV->getInsertedValueOperand(), 
 | |
|                                       exti, exte);
 | |
|   }
 | |
|   // Can't simplify extracts from other values. Note that nested extracts are
 | |
|   // already simplified implicitely by the above (extract ( extract (insert) )
 | |
|   // will be translated into extract ( insert ( extract ) ) first and then just
 | |
|   // the value inserted, if appropriate).
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CheapToScalarize - Return true if the value is cheaper to scalarize than it
 | |
| /// is to leave as a vector operation.
 | |
| static bool CheapToScalarize(Value *V, bool isConstant) {
 | |
|   if (isa<ConstantAggregateZero>(V)) 
 | |
|     return true;
 | |
|   if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
 | |
|     if (isConstant) return true;
 | |
|     // If all elts are the same, we can extract.
 | |
|     Constant *Op0 = C->getOperand(0);
 | |
|     for (unsigned i = 1; i < C->getNumOperands(); ++i)
 | |
|       if (C->getOperand(i) != Op0)
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
|   
 | |
|   // Insert element gets simplified to the inserted element or is deleted if
 | |
|   // this is constant idx extract element and its a constant idx insertelt.
 | |
|   if (I->getOpcode() == Instruction::InsertElement && isConstant &&
 | |
|       isa<ConstantInt>(I->getOperand(2)))
 | |
|     return true;
 | |
|   if (I->getOpcode() == Instruction::Load && I->hasOneUse())
 | |
|     return true;
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
 | |
|     if (BO->hasOneUse() &&
 | |
|         (CheapToScalarize(BO->getOperand(0), isConstant) ||
 | |
|          CheapToScalarize(BO->getOperand(1), isConstant)))
 | |
|       return true;
 | |
|   if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|     if (CI->hasOneUse() &&
 | |
|         (CheapToScalarize(CI->getOperand(0), isConstant) ||
 | |
|          CheapToScalarize(CI->getOperand(1), isConstant)))
 | |
|       return true;
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Read and decode a shufflevector mask.
 | |
| ///
 | |
| /// It turns undef elements into values that are larger than the number of
 | |
| /// elements in the input.
 | |
| static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
 | |
|   unsigned NElts = SVI->getType()->getNumElements();
 | |
|   if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
 | |
|     return std::vector<unsigned>(NElts, 0);
 | |
|   if (isa<UndefValue>(SVI->getOperand(2)))
 | |
|     return std::vector<unsigned>(NElts, 2*NElts);
 | |
| 
 | |
|   std::vector<unsigned> Result;
 | |
|   const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
 | |
|   for (User::const_op_iterator i = CP->op_begin(), e = CP->op_end(); i!=e; ++i)
 | |
|     if (isa<UndefValue>(*i))
 | |
|       Result.push_back(NElts*2);  // undef -> 8
 | |
|     else
 | |
|       Result.push_back(cast<ConstantInt>(*i)->getZExtValue());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// FindScalarElement - Given a vector and an element number, see if the scalar
 | |
| /// value is already around as a register, for example if it were inserted then
 | |
| /// extracted from the vector.
 | |
| static Value *FindScalarElement(Value *V, unsigned EltNo,
 | |
|                                 LLVMContext *Context) {
 | |
|   assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
 | |
|   const VectorType *PTy = cast<VectorType>(V->getType());
 | |
|   unsigned Width = PTy->getNumElements();
 | |
|   if (EltNo >= Width)  // Out of range access.
 | |
|     return UndefValue::get(PTy->getElementType());
 | |
|   
 | |
|   if (isa<UndefValue>(V))
 | |
|     return UndefValue::get(PTy->getElementType());
 | |
|   else if (isa<ConstantAggregateZero>(V))
 | |
|     return Constant::getNullValue(PTy->getElementType());
 | |
|   else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
 | |
|     return CP->getOperand(EltNo);
 | |
|   else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert to a variable element, we don't know what it is.
 | |
|     if (!isa<ConstantInt>(III->getOperand(2))) 
 | |
|       return 0;
 | |
|     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
 | |
|     
 | |
|     // If this is an insert to the element we are looking for, return the
 | |
|     // inserted value.
 | |
|     if (EltNo == IIElt) 
 | |
|       return III->getOperand(1);
 | |
|     
 | |
|     // Otherwise, the insertelement doesn't modify the value, recurse on its
 | |
|     // vector input.
 | |
|     return FindScalarElement(III->getOperand(0), EltNo, Context);
 | |
|   } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
 | |
|     unsigned LHSWidth =
 | |
|       cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
 | |
|     unsigned InEl = getShuffleMask(SVI)[EltNo];
 | |
|     if (InEl < LHSWidth)
 | |
|       return FindScalarElement(SVI->getOperand(0), InEl, Context);
 | |
|     else if (InEl < LHSWidth*2)
 | |
|       return FindScalarElement(SVI->getOperand(1), InEl - LHSWidth, Context);
 | |
|     else
 | |
|       return UndefValue::get(PTy->getElementType());
 | |
|   }
 | |
|   
 | |
|   // Otherwise, we don't know.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
 | |
|   // If vector val is undef, replace extract with scalar undef.
 | |
|   if (isa<UndefValue>(EI.getOperand(0)))
 | |
|     return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | |
| 
 | |
|   // If vector val is constant 0, replace extract with scalar 0.
 | |
|   if (isa<ConstantAggregateZero>(EI.getOperand(0)))
 | |
|     return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
 | |
|   
 | |
|   if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
 | |
|     // If vector val is constant with all elements the same, replace EI with
 | |
|     // that element. When the elements are not identical, we cannot replace yet
 | |
|     // (we do that below, but only when the index is constant).
 | |
|     Constant *op0 = C->getOperand(0);
 | |
|     for (unsigned i = 1; i != C->getNumOperands(); ++i)
 | |
|       if (C->getOperand(i) != op0) {
 | |
|         op0 = 0; 
 | |
|         break;
 | |
|       }
 | |
|     if (op0)
 | |
|       return ReplaceInstUsesWith(EI, op0);
 | |
|   }
 | |
|   
 | |
|   // If extracting a specified index from the vector, see if we can recursively
 | |
|   // find a previously computed scalar that was inserted into the vector.
 | |
|   if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
 | |
|     unsigned IndexVal = IdxC->getZExtValue();
 | |
|     unsigned VectorWidth = EI.getVectorOperandType()->getNumElements();
 | |
|       
 | |
|     // If this is extracting an invalid index, turn this into undef, to avoid
 | |
|     // crashing the code below.
 | |
|     if (IndexVal >= VectorWidth)
 | |
|       return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | |
|     
 | |
|     // This instruction only demands the single element from the input vector.
 | |
|     // If the input vector has a single use, simplify it based on this use
 | |
|     // property.
 | |
|     if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
 | |
|       APInt UndefElts(VectorWidth, 0);
 | |
|       APInt DemandedMask(VectorWidth, 1 << IndexVal);
 | |
|       if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
 | |
|                                                 DemandedMask, UndefElts)) {
 | |
|         EI.setOperand(0, V);
 | |
|         return &EI;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal, Context))
 | |
|       return ReplaceInstUsesWith(EI, Elt);
 | |
|     
 | |
|     // If the this extractelement is directly using a bitcast from a vector of
 | |
|     // the same number of elements, see if we can find the source element from
 | |
|     // it.  In this case, we will end up needing to bitcast the scalars.
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
 | |
|       if (const VectorType *VT = 
 | |
|               dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
 | |
|         if (VT->getNumElements() == VectorWidth)
 | |
|           if (Value *Elt = FindScalarElement(BCI->getOperand(0),
 | |
|                                              IndexVal, Context))
 | |
|             return new BitCastInst(Elt, EI.getType());
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
 | |
|     // Push extractelement into predecessor operation if legal and
 | |
|     // profitable to do so
 | |
|     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
 | |
|       if (I->hasOneUse() &&
 | |
|           CheapToScalarize(BO, isa<ConstantInt>(EI.getOperand(1)))) {
 | |
|         Value *newEI0 =
 | |
|           Builder->CreateExtractElement(BO->getOperand(0), EI.getOperand(1),
 | |
|                                         EI.getName()+".lhs");
 | |
|         Value *newEI1 =
 | |
|           Builder->CreateExtractElement(BO->getOperand(1), EI.getOperand(1),
 | |
|                                         EI.getName()+".rhs");
 | |
|         return BinaryOperator::Create(BO->getOpcode(), newEI0, newEI1);
 | |
|       }
 | |
|     } else if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
 | |
|       // Extracting the inserted element?
 | |
|       if (IE->getOperand(2) == EI.getOperand(1))
 | |
|         return ReplaceInstUsesWith(EI, IE->getOperand(1));
 | |
|       // If the inserted and extracted elements are constants, they must not
 | |
|       // be the same value, extract from the pre-inserted value instead.
 | |
|       if (isa<Constant>(IE->getOperand(2)) && isa<Constant>(EI.getOperand(1))) {
 | |
|         Worklist.AddValue(EI.getOperand(0));
 | |
|         EI.setOperand(0, IE->getOperand(0));
 | |
|         return &EI;
 | |
|       }
 | |
|     } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
 | |
|       // If this is extracting an element from a shufflevector, figure out where
 | |
|       // it came from and extract from the appropriate input element instead.
 | |
|       if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
 | |
|         unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
 | |
|         Value *Src;
 | |
|         unsigned LHSWidth =
 | |
|           cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements();
 | |
| 
 | |
|         if (SrcIdx < LHSWidth)
 | |
|           Src = SVI->getOperand(0);
 | |
|         else if (SrcIdx < LHSWidth*2) {
 | |
|           SrcIdx -= LHSWidth;
 | |
|           Src = SVI->getOperand(1);
 | |
|         } else {
 | |
|           return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
 | |
|         }
 | |
|         return ExtractElementInst::Create(Src,
 | |
|                          ConstantInt::get(Type::getInt32Ty(*Context), SrcIdx,
 | |
|                                           false));
 | |
|       }
 | |
|     }
 | |
|     // FIXME: Canonicalize extractelement(bitcast) -> bitcast(extractelement)
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
 | |
| /// elements from either LHS or RHS, return the shuffle mask and true. 
 | |
| /// Otherwise, return false.
 | |
| static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
 | |
|                                          std::vector<Constant*> &Mask,
 | |
|                                          LLVMContext *Context) {
 | |
|   assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
 | |
|          "Invalid CollectSingleShuffleElements");
 | |
|   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
 | |
| 
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(*Context)));
 | |
|     return true;
 | |
|   } else if (V == LHS) {
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i));
 | |
|     return true;
 | |
|   } else if (V == RHS) {
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i+NumElts));
 | |
|     return true;
 | |
|   } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert of an extract from some other vector, include it.
 | |
|     Value *VecOp    = IEI->getOperand(0);
 | |
|     Value *ScalarOp = IEI->getOperand(1);
 | |
|     Value *IdxOp    = IEI->getOperand(2);
 | |
|     
 | |
|     if (!isa<ConstantInt>(IdxOp))
 | |
|       return false;
 | |
|     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | |
|     
 | |
|     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
 | |
|       // Okay, we can handle this if the vector we are insertinting into is
 | |
|       // transitively ok.
 | |
|       if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask, Context)) {
 | |
|         // If so, update the mask to reflect the inserted undef.
 | |
|         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(*Context));
 | |
|         return true;
 | |
|       }      
 | |
|     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
 | |
|       if (isa<ConstantInt>(EI->getOperand(1)) &&
 | |
|           EI->getOperand(0)->getType() == V->getType()) {
 | |
|         unsigned ExtractedIdx =
 | |
|           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | |
|         
 | |
|         // This must be extracting from either LHS or RHS.
 | |
|         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
 | |
|           // Okay, we can handle this if the vector we are insertinting into is
 | |
|           // transitively ok.
 | |
|           if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask, Context)) {
 | |
|             // If so, update the mask to reflect the inserted value.
 | |
|             if (EI->getOperand(0) == LHS) {
 | |
|               Mask[InsertedIdx % NumElts] = 
 | |
|                  ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx);
 | |
|             } else {
 | |
|               assert(EI->getOperand(0) == RHS);
 | |
|               Mask[InsertedIdx % NumElts] = 
 | |
|                 ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx+NumElts);
 | |
|               
 | |
|             }
 | |
|             return true;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // TODO: Handle shufflevector here!
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CollectShuffleElements - We are building a shuffle of V, using RHS as the
 | |
| /// RHS of the shuffle instruction, if it is not null.  Return a shuffle mask
 | |
| /// that computes V and the LHS value of the shuffle.
 | |
| static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
 | |
|                                      Value *&RHS, LLVMContext *Context) {
 | |
|   assert(isa<VectorType>(V->getType()) && 
 | |
|          (RHS == 0 || V->getType() == RHS->getType()) &&
 | |
|          "Invalid shuffle!");
 | |
|   unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
 | |
| 
 | |
|   if (isa<UndefValue>(V)) {
 | |
|     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(*Context)));
 | |
|     return V;
 | |
|   } else if (isa<ConstantAggregateZero>(V)) {
 | |
|     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(*Context), 0));
 | |
|     return V;
 | |
|   } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert of an extract from some other vector, include it.
 | |
|     Value *VecOp    = IEI->getOperand(0);
 | |
|     Value *ScalarOp = IEI->getOperand(1);
 | |
|     Value *IdxOp    = IEI->getOperand(2);
 | |
|     
 | |
|     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | |
|       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
 | |
|           EI->getOperand(0)->getType() == V->getType()) {
 | |
|         unsigned ExtractedIdx =
 | |
|           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | |
|         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | |
|         
 | |
|         // Either the extracted from or inserted into vector must be RHSVec,
 | |
|         // otherwise we'd end up with a shuffle of three inputs.
 | |
|         if (EI->getOperand(0) == RHS || RHS == 0) {
 | |
|           RHS = EI->getOperand(0);
 | |
|           Value *V = CollectShuffleElements(VecOp, Mask, RHS, Context);
 | |
|           Mask[InsertedIdx % NumElts] = 
 | |
|             ConstantInt::get(Type::getInt32Ty(*Context), NumElts+ExtractedIdx);
 | |
|           return V;
 | |
|         }
 | |
|         
 | |
|         if (VecOp == RHS) {
 | |
|           Value *V = CollectShuffleElements(EI->getOperand(0), Mask,
 | |
|                                             RHS, Context);
 | |
|           // Everything but the extracted element is replaced with the RHS.
 | |
|           for (unsigned i = 0; i != NumElts; ++i) {
 | |
|             if (i != InsertedIdx)
 | |
|               Mask[i] = ConstantInt::get(Type::getInt32Ty(*Context), NumElts+i);
 | |
|           }
 | |
|           return V;
 | |
|         }
 | |
|         
 | |
|         // If this insertelement is a chain that comes from exactly these two
 | |
|         // vectors, return the vector and the effective shuffle.
 | |
|         if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask,
 | |
|                                          Context))
 | |
|           return EI->getOperand(0);
 | |
|         
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // TODO: Handle shufflevector here!
 | |
|   
 | |
|   // Otherwise, can't do anything fancy.  Return an identity vector.
 | |
|   for (unsigned i = 0; i != NumElts; ++i)
 | |
|     Mask.push_back(ConstantInt::get(Type::getInt32Ty(*Context), i));
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
 | |
|   Value *VecOp    = IE.getOperand(0);
 | |
|   Value *ScalarOp = IE.getOperand(1);
 | |
|   Value *IdxOp    = IE.getOperand(2);
 | |
|   
 | |
|   // Inserting an undef or into an undefined place, remove this.
 | |
|   if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
 | |
|     ReplaceInstUsesWith(IE, VecOp);
 | |
|   
 | |
|   // If the inserted element was extracted from some other vector, and if the 
 | |
|   // indexes are constant, try to turn this into a shufflevector operation.
 | |
|   if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
 | |
|     if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
 | |
|         EI->getOperand(0)->getType() == IE.getType()) {
 | |
|       unsigned NumVectorElts = IE.getType()->getNumElements();
 | |
|       unsigned ExtractedIdx =
 | |
|         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
 | |
|       unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
 | |
|       
 | |
|       if (ExtractedIdx >= NumVectorElts) // Out of range extract.
 | |
|         return ReplaceInstUsesWith(IE, VecOp);
 | |
|       
 | |
|       if (InsertedIdx >= NumVectorElts)  // Out of range insert.
 | |
|         return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
 | |
|       
 | |
|       // If we are extracting a value from a vector, then inserting it right
 | |
|       // back into the same place, just use the input vector.
 | |
|       if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
 | |
|         return ReplaceInstUsesWith(IE, VecOp);      
 | |
|       
 | |
|       // We could theoretically do this for ANY input.  However, doing so could
 | |
|       // turn chains of insertelement instructions into a chain of shufflevector
 | |
|       // instructions, and right now we do not merge shufflevectors.  As such,
 | |
|       // only do this in a situation where it is clear that there is benefit.
 | |
|       if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
 | |
|         // Turn this into shuffle(EIOp0, VecOp, Mask).  The result has all of
 | |
|         // the values of VecOp, except then one read from EIOp0.
 | |
|         // Build a new shuffle mask.
 | |
|         std::vector<Constant*> Mask;
 | |
|         if (isa<UndefValue>(VecOp))
 | |
|           Mask.assign(NumVectorElts, UndefValue::get(Type::getInt32Ty(*Context)));
 | |
|         else {
 | |
|           assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
 | |
|           Mask.assign(NumVectorElts, ConstantInt::get(Type::getInt32Ty(*Context),
 | |
|                                                        NumVectorElts));
 | |
|         } 
 | |
|         Mask[InsertedIdx] = 
 | |
|                            ConstantInt::get(Type::getInt32Ty(*Context), ExtractedIdx);
 | |
|         return new ShuffleVectorInst(EI->getOperand(0), VecOp,
 | |
|                                      ConstantVector::get(Mask));
 | |
|       }
 | |
|       
 | |
|       // If this insertelement isn't used by some other insertelement, turn it
 | |
|       // (and any insertelements it points to), into one big shuffle.
 | |
|       if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
 | |
|         std::vector<Constant*> Mask;
 | |
|         Value *RHS = 0;
 | |
|         Value *LHS = CollectShuffleElements(&IE, Mask, RHS, Context);
 | |
|         if (RHS == 0) RHS = UndefValue::get(LHS->getType());
 | |
|         // We now have a shuffle of LHS, RHS, Mask.
 | |
|         return new ShuffleVectorInst(LHS, RHS,
 | |
|                                      ConstantVector::get(Mask));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned VWidth = cast<VectorType>(VecOp->getType())->getNumElements();
 | |
|   APInt UndefElts(VWidth, 0);
 | |
|   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | |
|   if (SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts))
 | |
|     return &IE;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
 | |
|   Value *LHS = SVI.getOperand(0);
 | |
|   Value *RHS = SVI.getOperand(1);
 | |
|   std::vector<unsigned> Mask = getShuffleMask(&SVI);
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Undefined shuffle mask -> undefined value.
 | |
|   if (isa<UndefValue>(SVI.getOperand(2)))
 | |
|     return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
 | |
| 
 | |
|   unsigned VWidth = cast<VectorType>(SVI.getType())->getNumElements();
 | |
| 
 | |
|   if (VWidth != cast<VectorType>(LHS->getType())->getNumElements())
 | |
|     return 0;
 | |
| 
 | |
|   APInt UndefElts(VWidth, 0);
 | |
|   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | |
|   if (SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
 | |
|     LHS = SVI.getOperand(0);
 | |
|     RHS = SVI.getOperand(1);
 | |
|     MadeChange = true;
 | |
|   }
 | |
|   
 | |
|   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
 | |
|   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
 | |
|   if (LHS == RHS || isa<UndefValue>(LHS)) {
 | |
|     if (isa<UndefValue>(LHS) && LHS == RHS) {
 | |
|       // shuffle(undef,undef,mask) -> undef.
 | |
|       return ReplaceInstUsesWith(SVI, LHS);
 | |
|     }
 | |
|     
 | |
|     // Remap any references to RHS to use LHS.
 | |
|     std::vector<Constant*> Elts;
 | |
|     for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | |
|       if (Mask[i] >= 2*e)
 | |
|         Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
 | |
|       else {
 | |
|         if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
 | |
|             (Mask[i] <  e && isa<UndefValue>(LHS))) {
 | |
|           Mask[i] = 2*e;     // Turn into undef.
 | |
|           Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
 | |
|         } else {
 | |
|           Mask[i] = Mask[i] % e;  // Force to LHS.
 | |
|           Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context), Mask[i]));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     SVI.setOperand(0, SVI.getOperand(1));
 | |
|     SVI.setOperand(1, UndefValue::get(RHS->getType()));
 | |
|     SVI.setOperand(2, ConstantVector::get(Elts));
 | |
|     LHS = SVI.getOperand(0);
 | |
|     RHS = SVI.getOperand(1);
 | |
|     MadeChange = true;
 | |
|   }
 | |
|   
 | |
|   // Analyze the shuffle, are the LHS or RHS and identity shuffles?
 | |
|   bool isLHSID = true, isRHSID = true;
 | |
|     
 | |
|   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
 | |
|     if (Mask[i] >= e*2) continue;  // Ignore undef values.
 | |
|     // Is this an identity shuffle of the LHS value?
 | |
|     isLHSID &= (Mask[i] == i);
 | |
|       
 | |
|     // Is this an identity shuffle of the RHS value?
 | |
|     isRHSID &= (Mask[i]-e == i);
 | |
|   }
 | |
| 
 | |
|   // Eliminate identity shuffles.
 | |
|   if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
 | |
|   if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
 | |
|   
 | |
|   // If the LHS is a shufflevector itself, see if we can combine it with this
 | |
|   // one without producing an unusual shuffle.  Here we are really conservative:
 | |
|   // we are absolutely afraid of producing a shuffle mask not in the input
 | |
|   // program, because the code gen may not be smart enough to turn a merged
 | |
|   // shuffle into two specific shuffles: it may produce worse code.  As such,
 | |
|   // we only merge two shuffles if the result is one of the two input shuffle
 | |
|   // masks.  In this case, merging the shuffles just removes one instruction,
 | |
|   // which we know is safe.  This is good for things like turning:
 | |
|   // (splat(splat)) -> splat.
 | |
|   if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
 | |
|     if (isa<UndefValue>(RHS)) {
 | |
|       std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
 | |
| 
 | |
|       std::vector<unsigned> NewMask;
 | |
|       for (unsigned i = 0, e = Mask.size(); i != e; ++i)
 | |
|         if (Mask[i] >= 2*e)
 | |
|           NewMask.push_back(2*e);
 | |
|         else
 | |
|           NewMask.push_back(LHSMask[Mask[i]]);
 | |
|       
 | |
|       // If the result mask is equal to the src shuffle or this shuffle mask, do
 | |
|       // the replacement.
 | |
|       if (NewMask == LHSMask || NewMask == Mask) {
 | |
|         unsigned LHSInNElts =
 | |
|           cast<VectorType>(LHSSVI->getOperand(0)->getType())->getNumElements();
 | |
|         std::vector<Constant*> Elts;
 | |
|         for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
 | |
|           if (NewMask[i] >= LHSInNElts*2) {
 | |
|             Elts.push_back(UndefValue::get(Type::getInt32Ty(*Context)));
 | |
|           } else {
 | |
|             Elts.push_back(ConstantInt::get(Type::getInt32Ty(*Context), NewMask[i]));
 | |
|           }
 | |
|         }
 | |
|         return new ShuffleVectorInst(LHSSVI->getOperand(0),
 | |
|                                      LHSSVI->getOperand(1),
 | |
|                                      ConstantVector::get(Elts));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange ? &SVI : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /// TryToSinkInstruction - Try to move the specified instruction from its
 | |
| /// current block into the beginning of DestBlock, which can only happen if it's
 | |
| /// safe to move the instruction past all of the instructions between it and the
 | |
| /// end of its block.
 | |
| static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
 | |
|   assert(I->hasOneUse() && "Invariants didn't hold!");
 | |
| 
 | |
|   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
 | |
|   if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
 | |
|     return false;
 | |
| 
 | |
|   // Do not sink alloca instructions out of the entry block.
 | |
|   if (isa<AllocaInst>(I) && I->getParent() ==
 | |
|         &DestBlock->getParent()->getEntryBlock())
 | |
|     return false;
 | |
| 
 | |
|   // We can only sink load instructions if there is nothing between the load and
 | |
|   // the end of block that could change the value.
 | |
|   if (I->mayReadFromMemory()) {
 | |
|     for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
 | |
|          Scan != E; ++Scan)
 | |
|       if (Scan->mayWriteToMemory())
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
 | |
| 
 | |
|   CopyPrecedingStopPoint(I, InsertPos);
 | |
|   I->moveBefore(InsertPos);
 | |
|   ++NumSunkInst;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
 | |
| /// all reachable code to the worklist.
 | |
| ///
 | |
| /// This has a couple of tricks to make the code faster and more powerful.  In
 | |
| /// particular, we constant fold and DCE instructions as we go, to avoid adding
 | |
| /// them to the worklist (this significantly speeds up instcombine on code where
 | |
| /// many instructions are dead or constant).  Additionally, if we find a branch
 | |
| /// whose condition is a known constant, we only visit the reachable successors.
 | |
| ///
 | |
| static void AddReachableCodeToWorklist(BasicBlock *BB, 
 | |
|                                        SmallPtrSet<BasicBlock*, 64> &Visited,
 | |
|                                        InstCombiner &IC,
 | |
|                                        const TargetData *TD) {
 | |
|   SmallVector<BasicBlock*, 256> Worklist;
 | |
|   Worklist.push_back(BB);
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     BB = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
|     
 | |
|     // We have now visited this block!  If we've already been here, ignore it.
 | |
|     if (!Visited.insert(BB)) continue;
 | |
| 
 | |
|     DbgInfoIntrinsic *DBI_Prev = NULL;
 | |
|     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | |
|       Instruction *Inst = BBI++;
 | |
|       
 | |
|       // DCE instruction if trivially dead.
 | |
|       if (isInstructionTriviallyDead(Inst)) {
 | |
|         ++NumDeadInst;
 | |
|         DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
 | |
|         Inst->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // ConstantProp instruction if trivially constant.
 | |
|       if (Constant *C = ConstantFoldInstruction(Inst, BB->getContext(), TD)) {
 | |
|         DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
 | |
|                      << *Inst << '\n');
 | |
|         Inst->replaceAllUsesWith(C);
 | |
|         ++NumConstProp;
 | |
|         Inst->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|      
 | |
|       // If there are two consecutive llvm.dbg.stoppoint calls then
 | |
|       // it is likely that the optimizer deleted code in between these
 | |
|       // two intrinsics. 
 | |
|       DbgInfoIntrinsic *DBI_Next = dyn_cast<DbgInfoIntrinsic>(Inst);
 | |
|       if (DBI_Next) {
 | |
|         if (DBI_Prev
 | |
|             && DBI_Prev->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint
 | |
|             && DBI_Next->getIntrinsicID() == llvm::Intrinsic::dbg_stoppoint) {
 | |
|           IC.Worklist.Remove(DBI_Prev);
 | |
|           DBI_Prev->eraseFromParent();
 | |
|         }
 | |
|         DBI_Prev = DBI_Next;
 | |
|       } else {
 | |
|         DBI_Prev = 0;
 | |
|       }
 | |
| 
 | |
|       IC.Worklist.Add(Inst);
 | |
|     }
 | |
| 
 | |
|     // Recursively visit successors.  If this is a branch or switch on a
 | |
|     // constant, only visit the reachable successor.
 | |
|     TerminatorInst *TI = BB->getTerminator();
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
 | |
|         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
 | |
|         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
 | |
|         Worklist.push_back(ReachableBB);
 | |
|         continue;
 | |
|       }
 | |
|     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
 | |
|         // See if this is an explicit destination.
 | |
|         for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
 | |
|           if (SI->getCaseValue(i) == Cond) {
 | |
|             BasicBlock *ReachableBB = SI->getSuccessor(i);
 | |
|             Worklist.push_back(ReachableBB);
 | |
|             continue;
 | |
|           }
 | |
|         
 | |
|         // Otherwise it is the default destination.
 | |
|         Worklist.push_back(SI->getSuccessor(0));
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|       Worklist.push_back(TI->getSuccessor(i));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
 | |
|   MadeIRChange = false;
 | |
|   TD = getAnalysisIfAvailable<TargetData>();
 | |
|   
 | |
|   DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
 | |
|         << F.getNameStr() << "\n");
 | |
| 
 | |
|   {
 | |
|     // Do a depth-first traversal of the function, populate the worklist with
 | |
|     // the reachable instructions.  Ignore blocks that are not reachable.  Keep
 | |
|     // track of which blocks we visit.
 | |
|     SmallPtrSet<BasicBlock*, 64> Visited;
 | |
|     AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
 | |
| 
 | |
|     // Do a quick scan over the function.  If we find any blocks that are
 | |
|     // unreachable, remove any instructions inside of them.  This prevents
 | |
|     // the instcombine code from having to deal with some bad special cases.
 | |
|     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | |
|       if (!Visited.count(BB)) {
 | |
|         Instruction *Term = BB->getTerminator();
 | |
|         while (Term != BB->begin()) {   // Remove instrs bottom-up
 | |
|           BasicBlock::iterator I = Term; --I;
 | |
| 
 | |
|           DEBUG(errs() << "IC: DCE: " << *I << '\n');
 | |
|           // A debug intrinsic shouldn't force another iteration if we weren't
 | |
|           // going to do one without it.
 | |
|           if (!isa<DbgInfoIntrinsic>(I)) {
 | |
|             ++NumDeadInst;
 | |
|             MadeIRChange = true;
 | |
|           }
 | |
|           if (!I->use_empty())
 | |
|             I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | |
|           I->eraseFromParent();
 | |
|         }
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   while (!Worklist.isEmpty()) {
 | |
|     Instruction *I = Worklist.RemoveOne();
 | |
|     if (I == 0) continue;  // skip null values.
 | |
| 
 | |
|     // Check to see if we can DCE the instruction.
 | |
|     if (isInstructionTriviallyDead(I)) {
 | |
|       DEBUG(errs() << "IC: DCE: " << *I << '\n');
 | |
|       EraseInstFromFunction(*I);
 | |
|       ++NumDeadInst;
 | |
|       MadeIRChange = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Instruction isn't dead, see if we can constant propagate it.
 | |
|     if (Constant *C = ConstantFoldInstruction(I, F.getContext(), TD)) {
 | |
|       DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
 | |
| 
 | |
|       // Add operands to the worklist.
 | |
|       ReplaceInstUsesWith(*I, C);
 | |
|       ++NumConstProp;
 | |
|       EraseInstFromFunction(*I);
 | |
|       MadeIRChange = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (TD) {
 | |
|       // See if we can constant fold its operands.
 | |
|       for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
 | |
|         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(i))
 | |
|           if (Constant *NewC = ConstantFoldConstantExpression(CE,   
 | |
|                                   F.getContext(), TD))
 | |
|             if (NewC != CE) {
 | |
|               i->set(NewC);
 | |
|               MadeIRChange = true;
 | |
|             }
 | |
|     }
 | |
| 
 | |
|     // See if we can trivially sink this instruction to a successor basic block.
 | |
|     if (I->hasOneUse()) {
 | |
|       BasicBlock *BB = I->getParent();
 | |
|       BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
 | |
|       if (UserParent != BB) {
 | |
|         bool UserIsSuccessor = false;
 | |
|         // See if the user is one of our successors.
 | |
|         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
 | |
|           if (*SI == UserParent) {
 | |
|             UserIsSuccessor = true;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|         // If the user is one of our immediate successors, and if that successor
 | |
|         // only has us as a predecessors (we'd have to split the critical edge
 | |
|         // otherwise), we can keep going.
 | |
|         if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
 | |
|             next(pred_begin(UserParent)) == pred_end(UserParent))
 | |
|           // Okay, the CFG is simple enough, try to sink this instruction.
 | |
|           MadeIRChange |= TryToSinkInstruction(I, UserParent);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that we have an instruction, try combining it to simplify it.
 | |
|     Builder->SetInsertPoint(I->getParent(), I);
 | |
|     
 | |
| #ifndef NDEBUG
 | |
|     std::string OrigI;
 | |
| #endif
 | |
|     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
 | |
|     
 | |
|     if (Instruction *Result = visit(*I)) {
 | |
|       ++NumCombined;
 | |
|       // Should we replace the old instruction with a new one?
 | |
|       if (Result != I) {
 | |
|         DEBUG(errs() << "IC: Old = " << *I << '\n'
 | |
|                      << "    New = " << *Result << '\n');
 | |
| 
 | |
|         // Everything uses the new instruction now.
 | |
|         I->replaceAllUsesWith(Result);
 | |
| 
 | |
|         // Push the new instruction and any users onto the worklist.
 | |
|         Worklist.Add(Result);
 | |
|         Worklist.AddUsersToWorkList(*Result);
 | |
| 
 | |
|         // Move the name to the new instruction first.
 | |
|         Result->takeName(I);
 | |
| 
 | |
|         // Insert the new instruction into the basic block...
 | |
|         BasicBlock *InstParent = I->getParent();
 | |
|         BasicBlock::iterator InsertPos = I;
 | |
| 
 | |
|         if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
 | |
|           while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
 | |
|             ++InsertPos;
 | |
| 
 | |
|         InstParent->getInstList().insert(InsertPos, Result);
 | |
| 
 | |
|         EraseInstFromFunction(*I);
 | |
|       } else {
 | |
| #ifndef NDEBUG
 | |
|         DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
 | |
|                      << "    New = " << *I << '\n');
 | |
| #endif
 | |
| 
 | |
|         // If the instruction was modified, it's possible that it is now dead.
 | |
|         // if so, remove it.
 | |
|         if (isInstructionTriviallyDead(I)) {
 | |
|           EraseInstFromFunction(*I);
 | |
|         } else {
 | |
|           Worklist.Add(I);
 | |
|           Worklist.AddUsersToWorkList(*I);
 | |
|         }
 | |
|       }
 | |
|       MadeIRChange = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Worklist.Zap();
 | |
|   return MadeIRChange;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool InstCombiner::runOnFunction(Function &F) {
 | |
|   MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
 | |
|   Context = &F.getContext();
 | |
|   
 | |
|   
 | |
|   /// Builder - This is an IRBuilder that automatically inserts new
 | |
|   /// instructions into the worklist when they are created.
 | |
|   IRBuilder<true, ConstantFolder, InstCombineIRInserter> 
 | |
|     TheBuilder(F.getContext(), ConstantFolder(F.getContext()),
 | |
|                InstCombineIRInserter(Worklist));
 | |
|   Builder = &TheBuilder;
 | |
|   
 | |
|   bool EverMadeChange = false;
 | |
| 
 | |
|   // Iterate while there is work to do.
 | |
|   unsigned Iteration = 0;
 | |
|   while (DoOneIteration(F, Iteration++))
 | |
|     EverMadeChange = true;
 | |
|   
 | |
|   Builder = 0;
 | |
|   return EverMadeChange;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createInstructionCombiningPass() {
 | |
|   return new InstCombiner();
 | |
| }
 |