mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4036 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			984 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			984 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- DataStructure.cpp - Implement the core data structure analysis -----===//
 | |
| //
 | |
| // This file implements the core data structure functionality.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/DSGraph.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "Support/STLExtras.h"
 | |
| #include "Support/Statistic.h"
 | |
| #include <algorithm>
 | |
| #include <set>
 | |
| 
 | |
| using std::vector;
 | |
| 
 | |
| // TODO: FIXME
 | |
| namespace DataStructureAnalysis {
 | |
|   // isPointerType - Return true if this first class type is big enough to hold
 | |
|   // a pointer.
 | |
|   //
 | |
|   bool isPointerType(const Type *Ty);
 | |
|   extern TargetData TD;
 | |
| }
 | |
| using namespace DataStructureAnalysis;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSNode Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| DSNode::DSNode(enum NodeTy NT, const Type *T) : NodeType(NT) {
 | |
|   // If this node is big enough to have pointer fields, add space for them now.
 | |
|   if (T != Type::VoidTy && !isa<FunctionType>(T)) { // Avoid TargetData assert's
 | |
|     MergeMap.resize(TD.getTypeSize(T));
 | |
| 
 | |
|     // Assign unique values to all of the elements of MergeMap
 | |
|     if (MergeMap.size() < 128) {
 | |
|       // Handle the common case of reasonable size structures...
 | |
|       for (unsigned i = 0, e = MergeMap.size(); i != e; ++i)
 | |
|         MergeMap[i] = -1-i;   // Assign -1, -2, -3, ...
 | |
|     } else {
 | |
|       // It's possible that we have something really big here.  In this case,
 | |
|       // divide the object into chunks until it will fit into 128 elements.
 | |
|       unsigned Multiple = MergeMap.size()/128;
 | |
| 
 | |
|       // It's probably an array, and probably some power of two in size.
 | |
|       // Because of this, find the biggest power of two that is bigger than
 | |
|       // multiple to use as our real Multiple.
 | |
|       unsigned RealMultiple = 2;
 | |
|       while (RealMultiple <= Multiple) RealMultiple <<= 1;
 | |
| 
 | |
|       unsigned RealBound = MergeMap.size()/RealMultiple;
 | |
|       assert(RealBound <= 128 && "Math didn't work out right");
 | |
| 
 | |
|       // Now go through and assign indexes that are between -1 and -128
 | |
|       // inclusive
 | |
|       //
 | |
|       for (unsigned i = 0, e = MergeMap.size(); i != e; ++i)
 | |
|         MergeMap[i] = -1-(i % RealBound);   // Assign -1, -2, -3...
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   TypeEntries.push_back(std::make_pair(T, 0));
 | |
| }
 | |
| 
 | |
| // DSNode copy constructor... do not copy over the referrers list!
 | |
| DSNode::DSNode(const DSNode &N)
 | |
|   : Links(N.Links), MergeMap(N.MergeMap),
 | |
|     TypeEntries(N.TypeEntries), Globals(N.Globals), NodeType(N.NodeType) {
 | |
| }
 | |
| 
 | |
| void DSNode::removeReferrer(DSNodeHandle *H) {
 | |
|   // Search backwards, because we depopulate the list from the back for
 | |
|   // efficiency (because it's a vector).
 | |
|   vector<DSNodeHandle*>::reverse_iterator I =
 | |
|     std::find(Referrers.rbegin(), Referrers.rend(), H);
 | |
|   assert(I != Referrers.rend() && "Referrer not pointing to node!");
 | |
|   Referrers.erase(I.base()-1);
 | |
| }
 | |
| 
 | |
| // addGlobal - Add an entry for a global value to the Globals list.  This also
 | |
| // marks the node with the 'G' flag if it does not already have it.
 | |
| //
 | |
| void DSNode::addGlobal(GlobalValue *GV) {
 | |
|   // Keep the list sorted.
 | |
|   vector<GlobalValue*>::iterator I =
 | |
|     std::lower_bound(Globals.begin(), Globals.end(), GV);
 | |
| 
 | |
|   if (I == Globals.end() || *I != GV) {
 | |
|     //assert(GV->getType()->getElementType() == Ty);
 | |
|     Globals.insert(I, GV);
 | |
|     NodeType |= GlobalNode;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// setLink - Set the link at the specified offset to the specified
 | |
| /// NodeHandle, replacing what was there.  It is uncommon to use this method,
 | |
| /// instead one of the higher level methods should be used, below.
 | |
| ///
 | |
| void DSNode::setLink(unsigned i, const DSNodeHandle &NH) {
 | |
|   // Create a new entry in the Links vector to hold a new element for offset.
 | |
|   if (!hasLink(i)) {
 | |
|     signed char NewIdx = Links.size();
 | |
|     // Check to see if we allocate more than 128 distinct links for this node.
 | |
|     // If so, just merge with the last one.  This really shouldn't ever happen,
 | |
|     // but it should work regardless of whether it does or not.
 | |
|     //
 | |
|     if (NewIdx >= 0) {
 | |
|       Links.push_back(NH);             // Allocate space: common case
 | |
|     } else {                           // Wrap around?  Too many links?
 | |
|       NewIdx--;                        // Merge with whatever happened last
 | |
|       assert(NewIdx > 0 && "Should wrap back around");
 | |
|       std::cerr << "\n*** DSNode found that requires more than 128 "
 | |
|                 << "active links at once!\n\n";
 | |
|     } 
 | |
| 
 | |
|     signed char OldIdx = MergeMap[i];
 | |
|     assert (OldIdx < 0 && "Shouldn't contain link!");
 | |
| 
 | |
|     // Make sure that anything aliasing this field gets updated to point to the
 | |
|     // new link field.
 | |
|     rewriteMergeMap(OldIdx, NewIdx);
 | |
|     assert(MergeMap[i] == NewIdx && "Field not replaced!");
 | |
|   } else {
 | |
|     Links[MergeMap[i]] = NH;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // addEdgeTo - Add an edge from the current node to the specified node.  This
 | |
| // can cause merging of nodes in the graph.
 | |
| //
 | |
| void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
 | |
|   assert(Offset < getSize() && "Offset out of range!");
 | |
|   if (NH.getNode() == 0) return;       // Nothing to do
 | |
| 
 | |
|   if (DSNodeHandle *ExistingNH = getLink(Offset)) {
 | |
|     // Merge the two nodes...
 | |
|     ExistingNH->mergeWith(NH);
 | |
|   } else {                             // No merging to perform...
 | |
|     setLink(Offset, NH);               // Just force a link in there...
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// mergeMappedValues - This is the higher level form of rewriteMergeMap.  It is
 | |
| /// fully capable of merging links together if neccesary as well as simply
 | |
| /// rewriting the map entries.
 | |
| ///
 | |
| void DSNode::mergeMappedValues(signed char V1, signed char V2) {
 | |
|   assert(V1 != V2 && "Cannot merge two identical mapped values!");
 | |
|   
 | |
|   if (V1 < 0) {  // If there is no outgoing link from V1, merge it with V2
 | |
|     if (V2 < 0 && V1 > V2)
 | |
|        // If both are not linked, merge to the field closer to 0
 | |
|       rewriteMergeMap(V2, V1);
 | |
|     else
 | |
|       rewriteMergeMap(V1, V2);
 | |
|   } else if (V2 < 0) {           // Is V2 < 0 && V1 >= 0?
 | |
|     rewriteMergeMap(V2, V1);     // Merge into the one with the link...
 | |
|   } else {                       // Otherwise, links exist at both locations
 | |
|     // Merge Links[V1] with Links[V2] so they point to the same place now...
 | |
|     Links[V1].mergeWith(Links[V2]);
 | |
| 
 | |
|     // Merge the V2 link into V1 so that we reduce the overall value of the
 | |
|     // links are reduced...
 | |
|     //
 | |
|     if (V2 < V1) std::swap(V1, V2);     // Ensure V1 < V2
 | |
|     rewriteMergeMap(V2, V1);            // After this, V2 is "dead"
 | |
| 
 | |
|     // Change the user of the last link to use V2 instead
 | |
|     if ((unsigned)V2 != Links.size()-1) {
 | |
|       rewriteMergeMap(Links.size()-1, V2);  // Point to V2 instead of last el...
 | |
|       // Make sure V2 points the right DSNode
 | |
|       Links[V2] = Links.back();
 | |
|     }
 | |
| 
 | |
|     // Reduce the number of distinct outgoing links...
 | |
|     Links.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // MergeSortedVectors - Efficiently merge a vector into another vector where
 | |
| // duplicates are not allowed and both are sorted.  This assumes that 'T's are
 | |
| // efficiently copyable and have sane comparison semantics.
 | |
| //
 | |
| template<typename T>
 | |
| void MergeSortedVectors(vector<T> &Dest, const vector<T> &Src) {
 | |
|   // By far, the most common cases will be the simple ones.  In these cases,
 | |
|   // avoid having to allocate a temporary vector...
 | |
|   //
 | |
|   if (Src.empty()) {             // Nothing to merge in...
 | |
|     return;
 | |
|   } else if (Dest.empty()) {     // Just copy the result in...
 | |
|     Dest = Src;
 | |
|   } else if (Src.size() == 1) {  // Insert a single element...
 | |
|     const T &V = Src[0];
 | |
|     typename vector<T>::iterator I =
 | |
|       std::lower_bound(Dest.begin(), Dest.end(), V);
 | |
|     if (I == Dest.end() || *I != Src[0])  // If not already contained...
 | |
|       Dest.insert(I, Src[0]);
 | |
|   } else if (Dest.size() == 1) {
 | |
|     T Tmp = Dest[0];                      // Save value in temporary...
 | |
|     Dest = Src;                           // Copy over list...
 | |
|     typename vector<T>::iterator I =
 | |
|       std::lower_bound(Dest.begin(), Dest.end(),Tmp);
 | |
|     if (I == Dest.end() || *I != Src[0])  // If not already contained...
 | |
|       Dest.insert(I, Src[0]);
 | |
| 
 | |
|   } else {
 | |
|     // Make a copy to the side of Dest...
 | |
|     vector<T> Old(Dest);
 | |
|     
 | |
|     // Make space for all of the type entries now...
 | |
|     Dest.resize(Dest.size()+Src.size());
 | |
|     
 | |
|     // Merge the two sorted ranges together... into Dest.
 | |
|     std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
 | |
|     
 | |
|     // Now erase any duplicate entries that may have accumulated into the 
 | |
|     // vectors (because they were in both of the input sets)
 | |
|     Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // mergeWith - Merge this node and the specified node, moving all links to and
 | |
| // from the argument node into the current node, deleting the node argument.
 | |
| // Offset indicates what offset the specified node is to be merged into the
 | |
| // current node.
 | |
| //
 | |
| // The specified node may be a null pointer (in which case, nothing happens).
 | |
| //
 | |
| void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
 | |
|   DSNode *N = NH.getNode();
 | |
|   if (N == 0 || (N == this && NH.getOffset() == Offset))
 | |
|       return;  // Noop
 | |
| 
 | |
|   assert(NH.getNode() != this &&
 | |
|          "Cannot merge two portions of the same node yet!");
 | |
| 
 | |
|   // If both nodes are not at offset 0, make sure that we are merging the node
 | |
|   // at an later offset into the node with the zero offset.
 | |
|   //
 | |
|   if (Offset > NH.getOffset()) {
 | |
|     N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| #if 0
 | |
|   std::cerr << "\n\nMerging:\n";
 | |
|   N->print(std::cerr, 0);
 | |
|   std::cerr << " and:\n";
 | |
|   print(std::cerr, 0);
 | |
| #endif
 | |
| 
 | |
|   // Now we know that Offset <= NH.Offset, so convert it so our "Offset" (with
 | |
|   // respect to NH.Offset) is now zero.
 | |
|   //
 | |
|   unsigned NOffset = NH.getOffset()-Offset;
 | |
| 
 | |
|   unsigned NSize = N->getSize();
 | |
|   assert(NSize+NOffset <= getSize() &&
 | |
|          "Don't know how to merge extend a merged nodes size yet!");
 | |
| 
 | |
|   // Remove all edges pointing at N, causing them to point to 'this' instead.
 | |
|   // Make sure to adjust their offset, not just the node pointer.
 | |
|   //
 | |
|   while (!N->Referrers.empty()) {
 | |
|     DSNodeHandle &Ref = *N->Referrers.back();
 | |
|     Ref = DSNodeHandle(this, NOffset+Ref.getOffset());
 | |
|   }
 | |
| 
 | |
|   // We must merge fields in this node due to nodes merged in the source node.
 | |
|   // In order to handle this we build a map that converts from the source node's
 | |
|   // MergeMap values to our MergeMap values.  This map is indexed by the
 | |
|   // expression: MergeMap[SMM+SourceNodeSize] so we need to allocate at least
 | |
|   // 2*SourceNodeSize elements of space for the mapping.  We can do this because
 | |
|   // we know that there are at most SourceNodeSize outgoing links in the node
 | |
|   // (thus that many positive values) and at most SourceNodeSize distinct fields
 | |
|   // (thus that many negative values).
 | |
|   //
 | |
|   std::vector<signed char> MergeMapMap(NSize*2, 127);
 | |
| 
 | |
|   // Loop through the structures, merging them together...
 | |
|   for (unsigned i = 0, e = NSize; i != e; ++i) {
 | |
|     // Get what this byte of N maps to...
 | |
|     signed char NElement = N->MergeMap[i];
 | |
| 
 | |
|     // Get what we map this byte to...
 | |
|     signed char Element = MergeMap[i+NOffset];
 | |
|     // We use 127 as a sentinal and don't check for it's existence yet...
 | |
|     assert(Element != 127 && "MergeMapMap doesn't permit 127 values yet!");
 | |
| 
 | |
|     signed char CurMappedVal = MergeMapMap[NElement+NSize];
 | |
|     if (CurMappedVal == 127) {               // Haven't seen this NElement yet?
 | |
|       MergeMapMap[NElement+NSize] = Element; // Map the two together...
 | |
|     } else if (CurMappedVal != Element) {
 | |
|       // If we are mapping two different fields together this means that we need
 | |
|       // to merge fields in the current node due to merging in the source node.
 | |
|       //
 | |
|       mergeMappedValues(CurMappedVal, Element);
 | |
|       MergeMapMap[NElement+NSize] = MergeMap[i+NOffset];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make all of the outgoing links of N now be outgoing links of this.  This
 | |
|   // can cause recursive merging!
 | |
|   //
 | |
|   for (unsigned i = 0, e = NSize; i != e; ++i)
 | |
|     if (DSNodeHandle *Link = N->getLink(i)) {
 | |
|       addEdgeTo(i+NOffset, *Link);
 | |
|       N->MergeMap[i] = -1;  // Kill outgoing edge
 | |
|     }
 | |
| 
 | |
|   // Now that there are no outgoing edges, all of the Links are dead.
 | |
|   N->Links.clear();
 | |
| 
 | |
|   // Merge the node types
 | |
|   NodeType |= N->NodeType;
 | |
|   N->NodeType = 0;   // N is now a dead node.
 | |
| 
 | |
|   // If this merging into node has more than just void nodes in it, merge!
 | |
|   assert(!N->TypeEntries.empty() && "TypeEntries is empty for a node?");
 | |
|   if (N->TypeEntries.size() != 1 || N->TypeEntries[0].first != Type::VoidTy) {
 | |
|     // If the current node just has a Void entry in it, remove it.
 | |
|     if (TypeEntries.size() == 1 && TypeEntries[0].first == Type::VoidTy)
 | |
|       TypeEntries.clear();
 | |
| 
 | |
|     // Adjust all of the type entries we are merging in by the offset... and add
 | |
|     // them to the TypeEntries list.
 | |
|     //
 | |
|     if (NOffset != 0) {  // This case is common enough to optimize for
 | |
|       // Offset all of the TypeEntries in N with their new offset
 | |
|       for (unsigned i = 0, e = N->TypeEntries.size(); i != e; ++i)
 | |
|         N->TypeEntries[i].second += NOffset;
 | |
|     }
 | |
| 
 | |
|     MergeSortedVectors(TypeEntries, N->TypeEntries);
 | |
| 
 | |
|     N->TypeEntries.clear();
 | |
|   }
 | |
| 
 | |
|   // Merge the globals list...
 | |
|   if (!N->Globals.empty()) {
 | |
|     MergeSortedVectors(Globals, N->Globals);
 | |
| 
 | |
|     // Delete the globals from the old node...
 | |
|     N->Globals.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSGraph Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) {
 | |
|   std::map<const DSNode*, DSNode*> NodeMap;
 | |
|   RetNode = cloneInto(G, ValueMap, NodeMap);
 | |
| }
 | |
| 
 | |
| DSGraph::~DSGraph() {
 | |
|   FunctionCalls.clear();
 | |
|   ValueMap.clear();
 | |
|   RetNode = 0;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Drop all intra-node references, so that assertions don't fail...
 | |
|   std::for_each(Nodes.begin(), Nodes.end(),
 | |
|                 std::mem_fun(&DSNode::dropAllReferences));
 | |
| #endif
 | |
| 
 | |
|   // Delete all of the nodes themselves...
 | |
|   std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
 | |
| }
 | |
| 
 | |
| // dump - Allow inspection of graph in a debugger.
 | |
| void DSGraph::dump() const { print(std::cerr); }
 | |
| 
 | |
| // Helper function used to clone a function list.
 | |
| //
 | |
| static void CopyFunctionCallsList(const vector<vector<DSNodeHandle> >&fromCalls,
 | |
|                                   vector<vector<DSNodeHandle> > &toCalls,
 | |
|                                   std::map<const DSNode*, DSNode*> &NodeMap) {
 | |
| 
 | |
|   unsigned FC = toCalls.size();  // FirstCall
 | |
|   toCalls.reserve(FC+fromCalls.size());
 | |
|   for (unsigned i = 0, ei = fromCalls.size(); i != ei; ++i) {
 | |
|     toCalls.push_back(vector<DSNodeHandle>());
 | |
|     
 | |
|     const vector<DSNodeHandle> &CurCall = fromCalls[i];
 | |
|     toCalls.back().reserve(CurCall.size());
 | |
|     for (unsigned j = 0, ej = fromCalls[i].size(); j != ej; ++j)
 | |
|       toCalls[FC+i].push_back(DSNodeHandle(NodeMap[CurCall[j].getNode()],
 | |
|                                            CurCall[j].getOffset()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// remapLinks - Change all of the Links in the current node according to the
 | |
| /// specified mapping.
 | |
| void DSNode::remapLinks(std::map<const DSNode*, DSNode*> &OldNodeMap) {
 | |
|   for (unsigned i = 0, e = Links.size(); i != e; ++i) 
 | |
|     Links[i].setNode(OldNodeMap[Links[i].getNode()]);
 | |
| }
 | |
| 
 | |
| // cloneInto - Clone the specified DSGraph into the current graph, returning the
 | |
| // Return node of the graph.  The translated ValueMap for the old function is
 | |
| // filled into the OldValMap member.  If StripLocals is set to true, Scalar and
 | |
| // Alloca markers are removed from the graph, as the graph is being cloned into
 | |
| // a calling function's graph.
 | |
| //
 | |
| DSNodeHandle DSGraph::cloneInto(const DSGraph &G, 
 | |
|                                 std::map<Value*, DSNodeHandle> &OldValMap,
 | |
|                                 std::map<const DSNode*, DSNode*> &OldNodeMap,
 | |
|                                 bool StripScalars, bool StripAllocas,
 | |
|                                 bool CopyCallers, bool CopyOrigCalls) {
 | |
|   assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
 | |
| 
 | |
|   unsigned FN = Nodes.size();           // First new node...
 | |
| 
 | |
|   // Duplicate all of the nodes, populating the node map...
 | |
|   Nodes.reserve(FN+G.Nodes.size());
 | |
|   for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
 | |
|     DSNode *Old = G.Nodes[i];
 | |
|     DSNode *New = new DSNode(*Old);
 | |
|     Nodes.push_back(New);
 | |
|     OldNodeMap[Old] = New;
 | |
|   }
 | |
| 
 | |
|   // Rewrite the links in the new nodes to point into the current graph now.
 | |
|   for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
 | |
|     Nodes[i]->remapLinks(OldNodeMap);
 | |
| 
 | |
|   // Remove local markers as specified
 | |
|   unsigned char StripBits = (StripScalars ? DSNode::ScalarNode : 0) |
 | |
|                             (StripAllocas ? DSNode::AllocaNode : 0);
 | |
|   if (StripBits)
 | |
|     for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
 | |
|       Nodes[i]->NodeType &= ~StripBits;
 | |
| 
 | |
|   // Copy the value map...
 | |
|   for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ValueMap.begin(),
 | |
|          E = G.ValueMap.end(); I != E; ++I)
 | |
|     OldValMap[I->first] = DSNodeHandle(OldNodeMap[I->second.getNode()],
 | |
|                                        I->second.getOffset());
 | |
|   // Copy the function calls list...
 | |
|   CopyFunctionCallsList(G.FunctionCalls, FunctionCalls, OldNodeMap);
 | |
| 
 | |
| #if 0
 | |
|   if (CopyOrigCalls) 
 | |
|     CopyFunctionCallsList(G.OrigFunctionCalls, OrigFunctionCalls, OldNodeMap);
 | |
| 
 | |
|   // Copy the list of unresolved callers
 | |
|   if (CopyCallers)
 | |
|     PendingCallers.insert(G.PendingCallers.begin(), G.PendingCallers.end());
 | |
| #endif
 | |
| 
 | |
|   // Return the returned node pointer...
 | |
|   return DSNodeHandle(OldNodeMap[G.RetNode.getNode()], G.RetNode.getOffset());
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| // cloneGlobalInto - Clone the given global node and all its target links
 | |
| // (and all their llinks, recursively).
 | |
| // 
 | |
| DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) {
 | |
|   if (GNode == 0 || GNode->getGlobals().size() == 0) return 0;
 | |
| 
 | |
|   // If a clone has already been created for GNode, return it.
 | |
|   DSNodeHandle& ValMapEntry = ValueMap[GNode->getGlobals()[0]];
 | |
|   if (ValMapEntry != 0)
 | |
|     return ValMapEntry;
 | |
| 
 | |
|   // Clone the node and update the ValMap.
 | |
|   DSNode* NewNode = new DSNode(*GNode);
 | |
|   ValMapEntry = NewNode;                // j=0 case of loop below!
 | |
|   Nodes.push_back(NewNode);
 | |
|   for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j)
 | |
|     ValueMap[NewNode->getGlobals()[j]] = NewNode;
 | |
| 
 | |
|   // Rewrite the links in the new node to point into the current graph.
 | |
|   for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j)
 | |
|     NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j)));
 | |
| 
 | |
|   return NewNode;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| // markIncompleteNodes - Mark the specified node as having contents that are not
 | |
| // known with the current analysis we have performed.  Because a node makes all
 | |
| // of the nodes it can reach imcomplete if the node itself is incomplete, we
 | |
| // must recursively traverse the data structure graph, marking all reachable
 | |
| // nodes as incomplete.
 | |
| //
 | |
| static void markIncompleteNode(DSNode *N) {
 | |
|   // Stop recursion if no node, or if node already marked...
 | |
|   if (N == 0 || (N->NodeType & DSNode::Incomplete)) return;
 | |
| 
 | |
|   // Actually mark the node
 | |
|   N->NodeType |= DSNode::Incomplete;
 | |
| 
 | |
|   // Recusively process children...
 | |
|   for (unsigned i = 0, e = N->getSize(); i != e; ++i)
 | |
|     if (DSNodeHandle *DSNH = N->getLink(i))
 | |
|       markIncompleteNode(DSNH->getNode());
 | |
| }
 | |
| 
 | |
| 
 | |
| // markIncompleteNodes - Traverse the graph, identifying nodes that may be
 | |
| // modified by other functions that have not been resolved yet.  This marks
 | |
| // nodes that are reachable through three sources of "unknownness":
 | |
| //
 | |
| //  Global Variables, Function Calls, and Incoming Arguments
 | |
| //
 | |
| // For any node that may have unknown components (because something outside the
 | |
| // scope of current analysis may have modified it), the 'Incomplete' flag is
 | |
| // added to the NodeType.
 | |
| //
 | |
| void DSGraph::markIncompleteNodes(bool markFormalArgs) {
 | |
|   // Mark any incoming arguments as incomplete...
 | |
|   if (markFormalArgs && Func)
 | |
|     for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I)
 | |
|       if (isPointerType(I->getType()) && ValueMap.find(I) != ValueMap.end()) {
 | |
|         DSNodeHandle &INH = ValueMap[I];
 | |
|         if (INH.getNode() && INH.hasLink(0))
 | |
|           markIncompleteNode(ValueMap[I].getLink(0)->getNode());
 | |
|       }
 | |
| 
 | |
|   // Mark stuff passed into functions calls as being incomplete...
 | |
|   for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) {
 | |
|     vector<DSNodeHandle> &Args = FunctionCalls[i];
 | |
|     // Then the return value is certainly incomplete!
 | |
|     markIncompleteNode(Args[0].getNode());
 | |
| 
 | |
|     // The call does not make the function argument incomplete...
 | |
|  
 | |
|     // All arguments to the function call are incomplete though!
 | |
|     for (unsigned i = 2, e = Args.size(); i != e; ++i)
 | |
|       markIncompleteNode(Args[i].getNode());
 | |
|   }
 | |
| 
 | |
|   // Mark all of the nodes pointed to by global or cast nodes as incomplete...
 | |
|   for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|     if (Nodes[i]->NodeType & DSNode::GlobalNode) {
 | |
|       DSNode *N = Nodes[i];
 | |
|       for (unsigned i = 0, e = N->getSize(); i != e; ++i)
 | |
|         if (DSNodeHandle *DSNH = N->getLink(i))
 | |
|           markIncompleteNode(DSNH->getNode());
 | |
|     }
 | |
| }
 | |
| 
 | |
| // removeRefsToGlobal - Helper function that removes globals from the
 | |
| // ValueMap so that the referrer count will go down to zero.
 | |
| static void removeRefsToGlobal(DSNode* N,
 | |
|                                std::map<Value*, DSNodeHandle> &ValueMap) {
 | |
|   while (!N->getGlobals().empty()) {
 | |
|     GlobalValue *GV = N->getGlobals().back();
 | |
|     N->getGlobals().pop_back();      
 | |
|     ValueMap.erase(GV);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // isNodeDead - This method checks to see if a node is dead, and if it isn't, it
 | |
| // checks to see if there are simple transformations that it can do to make it
 | |
| // dead.
 | |
| //
 | |
| bool DSGraph::isNodeDead(DSNode *N) {
 | |
|   // Is it a trivially dead shadow node...
 | |
|   if (N->getReferrers().empty() && N->NodeType == 0)
 | |
|     return true;
 | |
| 
 | |
|   // Is it a function node or some other trivially unused global?
 | |
|   if (N->NodeType != 0 &&
 | |
|       (N->NodeType & ~DSNode::GlobalNode) == 0 && 
 | |
|       N->getSize() == 0 &&
 | |
|       N->getReferrers().size() == N->getGlobals().size()) {
 | |
| 
 | |
|     // Remove the globals from the ValueMap, so that the referrer count will go
 | |
|     // down to zero.
 | |
|     removeRefsToGlobal(N, ValueMap);
 | |
|     assert(N->getReferrers().empty() && "Referrers should all be gone now!");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void removeIdenticalCalls(vector<vector<DSNodeHandle> > &Calls,
 | |
|                                  const std::string &where) {
 | |
|   // Remove trivially identical function calls
 | |
|   unsigned NumFns = Calls.size();
 | |
|   std::sort(Calls.begin(), Calls.end());
 | |
|   Calls.erase(std::unique(Calls.begin(), Calls.end()),
 | |
|               Calls.end());
 | |
| 
 | |
|   DEBUG(if (NumFns != Calls.size())
 | |
|           std::cerr << "Merged " << (NumFns-Calls.size())
 | |
|                     << " call nodes in " << where << "\n";);
 | |
| }
 | |
| 
 | |
| // removeTriviallyDeadNodes - After the graph has been constructed, this method
 | |
| // removes all unreachable nodes that are created because they got merged with
 | |
| // other nodes in the graph.  These nodes will all be trivially unreachable, so
 | |
| // we don't have to perform any non-trivial analysis here.
 | |
| //
 | |
| void DSGraph::removeTriviallyDeadNodes(bool KeepAllGlobals) {
 | |
|   for (unsigned i = 0; i != Nodes.size(); ++i)
 | |
|     if (!KeepAllGlobals || !(Nodes[i]->NodeType & DSNode::GlobalNode))
 | |
|       if (isNodeDead(Nodes[i])) {               // This node is dead!
 | |
|         delete Nodes[i];                        // Free memory...
 | |
|         Nodes.erase(Nodes.begin()+i--);         // Remove from node list...
 | |
|       }
 | |
| 
 | |
|   removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : "");
 | |
| }
 | |
| 
 | |
| 
 | |
| // markAlive - Simple graph walker that recursively traverses the graph, marking
 | |
| // stuff to be alive.
 | |
| //
 | |
| static void markAlive(DSNode *N, std::set<DSNode*> &Alive) {
 | |
|   if (N == 0) return;
 | |
| 
 | |
|   Alive.insert(N);
 | |
|   for (unsigned i = 0, e = N->getSize(); i != e; ++i)
 | |
|     if (DSNodeHandle *DSNH = N->getLink(i))
 | |
|       if (!Alive.count(DSNH->getNode()))
 | |
|         markAlive(DSNH->getNode(), Alive);
 | |
| }
 | |
| 
 | |
| static bool checkGlobalAlive(DSNode *N, std::set<DSNode*> &Alive,
 | |
|                              std::set<DSNode*> &Visiting) {
 | |
|   if (N == 0) return false;
 | |
| 
 | |
|   if (Visiting.count(N)) return false; // terminate recursion on a cycle
 | |
|   Visiting.insert(N);
 | |
| 
 | |
|   // If any immediate successor is alive, N is alive
 | |
|   for (unsigned i = 0, e = N->getSize(); i != e; ++i)
 | |
|     if (DSNodeHandle *DSNH = N->getLink(i))
 | |
|       if (Alive.count(DSNH->getNode())) {
 | |
|         Visiting.erase(N);
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|   // Else if any successor reaches a live node, N is alive
 | |
|   for (unsigned i = 0, e = N->getSize(); i != e; ++i)
 | |
|     if (DSNodeHandle *DSNH = N->getLink(i))
 | |
|       if (checkGlobalAlive(DSNH->getNode(), Alive, Visiting)) {
 | |
|         Visiting.erase(N); return true;
 | |
|       }
 | |
| 
 | |
|   Visiting.erase(N);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // markGlobalsIteration - Recursive helper function for markGlobalsAlive().
 | |
| // This would be unnecessary if function calls were real nodes!  In that case,
 | |
| // the simple iterative loop in the first few lines below suffice.
 | |
| // 
 | |
| static void markGlobalsIteration(std::set<DSNode*>& GlobalNodes,
 | |
|                                  vector<vector<DSNodeHandle> > &Calls,
 | |
|                                  std::set<DSNode*> &Alive,
 | |
|                                  bool FilterCalls) {
 | |
| 
 | |
|   // Iterate, marking globals or cast nodes alive until no new live nodes
 | |
|   // are added to Alive
 | |
|   std::set<DSNode*> Visiting;           // Used to identify cycles 
 | |
|   std::set<DSNode*>::iterator I=GlobalNodes.begin(), E=GlobalNodes.end();
 | |
|   for (size_t liveCount = 0; liveCount < Alive.size(); ) {
 | |
|     liveCount = Alive.size();
 | |
|     for ( ; I != E; ++I)
 | |
|       if (Alive.count(*I) == 0) {
 | |
|         Visiting.clear();
 | |
|         if (checkGlobalAlive(*I, Alive, Visiting))
 | |
|           markAlive(*I, Alive);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Find function calls with some dead and some live nodes.
 | |
|   // Since all call nodes must be live if any one is live, we have to mark
 | |
|   // all nodes of the call as live and continue the iteration (via recursion).
 | |
|   if (FilterCalls) {
 | |
|     bool recurse = false;
 | |
|     for (int i = 0, ei = Calls.size(); i < ei; ++i) {
 | |
|       bool CallIsDead = true, CallHasDeadArg = false;
 | |
|       for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j) {
 | |
|         bool argIsDead = Calls[i][j].getNode() == 0 ||
 | |
|                          Alive.count(Calls[i][j].getNode()) == 0;
 | |
|         CallHasDeadArg |= (Calls[i][j].getNode() != 0 && argIsDead);
 | |
|         CallIsDead &= argIsDead;
 | |
|       }
 | |
|       if (!CallIsDead && CallHasDeadArg) {
 | |
|         // Some node in this call is live and another is dead.
 | |
|         // Mark all nodes of call as live and iterate once more.
 | |
|         recurse = true;
 | |
|         for (unsigned j = 0, ej = Calls[i].size(); j != ej; ++j)
 | |
|           markAlive(Calls[i][j].getNode(), Alive);
 | |
|       }
 | |
|     }
 | |
|     if (recurse)
 | |
|       markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // markGlobalsAlive - Mark global nodes and cast nodes alive if they
 | |
| // can reach any other live node.  Since this can produce new live nodes,
 | |
| // we use a simple iterative algorithm.
 | |
| // 
 | |
| static void markGlobalsAlive(DSGraph &G, std::set<DSNode*> &Alive,
 | |
|                              bool FilterCalls) {
 | |
|   // Add global and cast nodes to a set so we don't walk all nodes every time
 | |
|   std::set<DSNode*> GlobalNodes;
 | |
|   for (unsigned i = 0, e = G.getNodes().size(); i != e; ++i)
 | |
|     if (G.getNodes()[i]->NodeType & DSNode::GlobalNode)
 | |
|       GlobalNodes.insert(G.getNodes()[i]);
 | |
| 
 | |
|   // Add all call nodes to the same set
 | |
|   vector<vector<DSNodeHandle> > &Calls = G.getFunctionCalls();
 | |
|   if (FilterCalls) {
 | |
|     for (unsigned i = 0, e = Calls.size(); i != e; ++i)
 | |
|       for (unsigned j = 0, e = Calls[i].size(); j != e; ++j)
 | |
|         if (Calls[i][j].getNode())
 | |
|           GlobalNodes.insert(Calls[i][j].getNode());
 | |
|   }
 | |
| 
 | |
|   // Iterate and recurse until no new live node are discovered.
 | |
|   // This would be a simple iterative loop if function calls were real nodes!
 | |
|   markGlobalsIteration(GlobalNodes, Calls, Alive, FilterCalls);
 | |
| 
 | |
|   // Free up references to dead globals from the ValueMap
 | |
|   std::set<DSNode*>::iterator I=GlobalNodes.begin(), E=GlobalNodes.end();
 | |
|   for( ; I != E; ++I)
 | |
|     if (Alive.count(*I) == 0)
 | |
|       removeRefsToGlobal(*I, G.getValueMap());
 | |
| 
 | |
|   // Delete dead function calls
 | |
|   if (FilterCalls)
 | |
|     for (int ei = Calls.size(), i = ei-1; i >= 0; --i) {
 | |
|       bool CallIsDead = true;
 | |
|       for (unsigned j = 0, ej = Calls[i].size(); CallIsDead && j != ej; ++j)
 | |
|         CallIsDead = Alive.count(Calls[i][j].getNode()) == 0;
 | |
|       if (CallIsDead)
 | |
|         Calls.erase(Calls.begin() + i); // remove the call entirely
 | |
|     }
 | |
| }
 | |
| 
 | |
| // removeDeadNodes - Use a more powerful reachability analysis to eliminate
 | |
| // subgraphs that are unreachable.  This often occurs because the data
 | |
| // structure doesn't "escape" into it's caller, and thus should be eliminated
 | |
| // from the caller's graph entirely.  This is only appropriate to use when
 | |
| // inlining graphs.
 | |
| //
 | |
| void DSGraph::removeDeadNodes(bool KeepAllGlobals, bool KeepCalls) {
 | |
|   assert((!KeepAllGlobals || KeepCalls) &&
 | |
|          "KeepAllGlobals without KeepCalls is meaningless");
 | |
| 
 | |
|   // Reduce the amount of work we have to do...
 | |
|   removeTriviallyDeadNodes(KeepAllGlobals);
 | |
| 
 | |
|   // FIXME: Merge nontrivially identical call nodes...
 | |
| 
 | |
|   // Alive - a set that holds all nodes found to be reachable/alive.
 | |
|   std::set<DSNode*> Alive;
 | |
| 
 | |
|   // If KeepCalls, mark all nodes reachable by call nodes as alive...
 | |
|   if (KeepCalls)
 | |
|     for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
 | |
|       for (unsigned j = 0, e = FunctionCalls[i].size(); j != e; ++j)
 | |
|         markAlive(FunctionCalls[i][j].getNode(), Alive);
 | |
| 
 | |
| #if 0
 | |
|   for (unsigned i = 0, e = OrigFunctionCalls.size(); i != e; ++i)
 | |
|     for (unsigned j = 0, e = OrigFunctionCalls[i].size(); j != e; ++j)
 | |
|       markAlive(OrigFunctionCalls[i][j].getNode(), Alive);
 | |
| #endif
 | |
| 
 | |
|   // Mark all nodes reachable by scalar nodes (and global nodes, if
 | |
|   // keeping them was specified) as alive...
 | |
|   unsigned char keepBits = DSNode::ScalarNode |
 | |
|                            (KeepAllGlobals ? DSNode::GlobalNode : 0);
 | |
|   for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|     if (Nodes[i]->NodeType & keepBits)
 | |
|       markAlive(Nodes[i], Alive);
 | |
| 
 | |
|   // The return value is alive as well...
 | |
|   markAlive(RetNode.getNode(), Alive);
 | |
| 
 | |
|   // Mark all globals or cast nodes that can reach a live node as alive.
 | |
|   // This also marks all nodes reachable from such nodes as alive.
 | |
|   // Of course, if KeepAllGlobals is specified, they would be live already.
 | |
|   if (! KeepAllGlobals)
 | |
|     markGlobalsAlive(*this, Alive, ! KeepCalls);
 | |
| 
 | |
|   // Loop over all unreachable nodes, dropping their references...
 | |
|   vector<DSNode*> DeadNodes;
 | |
|   DeadNodes.reserve(Nodes.size());     // Only one allocation is allowed.
 | |
|   for (unsigned i = 0; i != Nodes.size(); ++i)
 | |
|     if (!Alive.count(Nodes[i])) {
 | |
|       DSNode *N = Nodes[i];
 | |
|       Nodes.erase(Nodes.begin()+i--);  // Erase node from alive list.
 | |
|       DeadNodes.push_back(N);          // Add node to our list of dead nodes
 | |
|       N->dropAllReferences();          // Drop all outgoing edges
 | |
|     }
 | |
|   
 | |
|   // Delete all dead nodes...
 | |
|   std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter<DSNode>);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // maskNodeTypes - Apply a mask to all of the node types in the graph.  This
 | |
| // is useful for clearing out markers like Scalar or Incomplete.
 | |
| //
 | |
| void DSGraph::maskNodeTypes(unsigned char Mask) {
 | |
|   for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|     Nodes[i]->NodeType &= Mask;
 | |
| }
 | |
| 
 | |
| 
 | |
| #if 0
 | |
| //===----------------------------------------------------------------------===//
 | |
| // GlobalDSGraph Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| GlobalDSGraph::GlobalDSGraph() : DSGraph(*(Function*)0, this) {
 | |
| }
 | |
| 
 | |
| GlobalDSGraph::~GlobalDSGraph() {
 | |
|   assert(Referrers.size() == 0 &&
 | |
|          "Deleting global graph while references from other graphs exist");
 | |
| }
 | |
| 
 | |
| void GlobalDSGraph::addReference(const DSGraph* referrer) {
 | |
|   if (referrer != this)
 | |
|     Referrers.insert(referrer);
 | |
| }
 | |
| 
 | |
| void GlobalDSGraph::removeReference(const DSGraph* referrer) {
 | |
|   if (referrer != this) {
 | |
|     assert(Referrers.find(referrer) != Referrers.end() && "This is very bad!");
 | |
|     Referrers.erase(referrer);
 | |
|     if (Referrers.size() == 0)
 | |
|       delete this;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Bits used in the next function
 | |
| static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::NewNode;
 | |
| 
 | |
| #if 0
 | |
| // GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally
 | |
| // visible target links (and recursively their such links) into this graph.
 | |
| // NodeCache maps the node being cloned to its clone in the Globals graph,
 | |
| // in order to track cycles.
 | |
| // GlobalsAreFinal is a flag that says whether it is safe to assume that
 | |
| // an existing global node is complete.  This is important to avoid
 | |
| // reinserting all globals when inserting Calls to functions.
 | |
| // This is a helper function for cloneGlobals and cloneCalls.
 | |
| // 
 | |
| DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode,
 | |
|                                     std::map<const DSNode*, DSNode*> &NodeCache,
 | |
|                                     bool GlobalsAreFinal) {
 | |
|   if (OldNode == 0) return 0;
 | |
| 
 | |
|   // The caller should check this is an external node.  Just more  efficient...
 | |
|   assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node");
 | |
| 
 | |
|   // If a clone has already been created for OldNode, return it.
 | |
|   DSNode*& CacheEntry = NodeCache[OldNode];
 | |
|   if (CacheEntry != 0)
 | |
|     return CacheEntry;
 | |
| 
 | |
|   // The result value...
 | |
|   DSNode* NewNode = 0;
 | |
| 
 | |
|   // If nodes already exist for any of the globals of OldNode,
 | |
|   // merge all such nodes together since they are merged in OldNode.
 | |
|   // If ValueCacheIsFinal==true, look for an existing node that has
 | |
|   // an identical list of globals and return it if it exists.
 | |
|   //
 | |
|   for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j)
 | |
|     if (DSNode *PrevNode = ValueMap[OldNode->getGlobals()[j]].getNode()) {
 | |
|       if (NewNode == 0) {
 | |
|         NewNode = PrevNode;             // first existing node found
 | |
|         if (GlobalsAreFinal && j == 0)
 | |
|           if (OldNode->getGlobals() == PrevNode->getGlobals()) {
 | |
|             CacheEntry = NewNode;
 | |
|             return NewNode;
 | |
|           }
 | |
|       }
 | |
|       else if (NewNode != PrevNode) {   // found another, different from prev
 | |
|         // update ValMap *before* merging PrevNode into NewNode
 | |
|         for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k)
 | |
|           ValueMap[PrevNode->getGlobals()[k]] = NewNode;
 | |
|         NewNode->mergeWith(PrevNode);
 | |
|       }
 | |
|     } else if (NewNode != 0) {
 | |
|       ValueMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node
 | |
|     }
 | |
| 
 | |
|   // If no existing node was found, clone the node and update the ValMap.
 | |
|   if (NewNode == 0) {
 | |
|     NewNode = new DSNode(*OldNode);
 | |
|     Nodes.push_back(NewNode);
 | |
|     for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j)
 | |
|       NewNode->setLink(j, 0);
 | |
|     for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j)
 | |
|       ValueMap[NewNode->getGlobals()[j]] = NewNode;
 | |
|   }
 | |
|   else
 | |
|     NewNode->NodeType |= OldNode->NodeType; // Markers may be different!
 | |
| 
 | |
|   // Add the entry to NodeCache
 | |
|   CacheEntry = NewNode;
 | |
| 
 | |
|   // Rewrite the links in the new node to point into the current graph,
 | |
|   // but only for links to external nodes.  Set other links to NULL.
 | |
|   for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) {
 | |
|     DSNode* OldTarget = OldNode->getLink(j);
 | |
|     if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) {
 | |
|       DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache);
 | |
|       if (NewNode->getLink(j))
 | |
|         NewNode->getLink(j)->mergeWith(NewLink);
 | |
|       else
 | |
|         NewNode->setLink(j, NewLink);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove all local markers
 | |
|   NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode);
 | |
| 
 | |
|   return NewNode;
 | |
| }
 | |
| 
 | |
| 
 | |
| // GlobalDSGraph::cloneGlobals - Clone global nodes and all their externally
 | |
| // visible target links (and recursively their such links) into this graph.
 | |
| // 
 | |
| void GlobalDSGraph::cloneGlobals(DSGraph& Graph, bool CloneCalls) {
 | |
|   std::map<const DSNode*, DSNode*> NodeCache;
 | |
| #if 0
 | |
|   for (unsigned i = 0, N = Graph.Nodes.size(); i < N; ++i)
 | |
|     if (Graph.Nodes[i]->NodeType & DSNode::GlobalNode)
 | |
|       GlobalsGraph->cloneNodeInto(Graph.Nodes[i], NodeCache, false);
 | |
|   if (CloneCalls)
 | |
|     GlobalsGraph->cloneCalls(Graph);
 | |
| 
 | |
|   GlobalsGraph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| // GlobalDSGraph::cloneCalls - Clone function calls and their visible target
 | |
| // links (and recursively their such links) into this graph.
 | |
| // 
 | |
| void GlobalDSGraph::cloneCalls(DSGraph& Graph) {
 | |
|   std::map<const DSNode*, DSNode*> NodeCache;
 | |
|   vector<vector<DSNodeHandle> >& FromCalls =Graph.FunctionCalls;
 | |
| 
 | |
|   FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size());
 | |
| 
 | |
|   for (int i = 0, ei = FromCalls.size(); i < ei; ++i) {
 | |
|     FunctionCalls.push_back(vector<DSNodeHandle>());
 | |
|     FunctionCalls.back().reserve(FromCalls[i].size());
 | |
|     for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j)
 | |
|       FunctionCalls.back().push_back
 | |
|         ((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits))
 | |
|          ? cloneNodeInto(FromCalls[i][j], NodeCache, true)
 | |
|          : 0);
 | |
|   }
 | |
| 
 | |
|   // remove trivially identical function calls
 | |
|   removeIdenticalCalls(FunctionCalls, "Globals Graph");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif
 |