mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-03 13:31:05 +00:00
3da59db637
The long awaited CAST patch. This introduces 12 new instructions into LLVM to replace the cast instruction. Corresponding changes throughout LLVM are provided. This passes llvm-test, llvm/test, and SPEC CPUINT2000 with the exception of 175.vpr which fails only on a slight floating point output difference. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@31931 91177308-0d34-0410-b5e6-96231b3b80d8
1030 lines
39 KiB
C++
1030 lines
39 KiB
C++
//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the function verifier interface, that can be used for some
|
|
// sanity checking of input to the system.
|
|
//
|
|
// Note that this does not provide full `Java style' security and verifications,
|
|
// instead it just tries to ensure that code is well-formed.
|
|
//
|
|
// * Both of a binary operator's parameters are of the same type
|
|
// * Verify that the indices of mem access instructions match other operands
|
|
// * Verify that arithmetic and other things are only performed on first-class
|
|
// types. Verify that shifts & logicals only happen on integrals f.e.
|
|
// * All of the constants in a switch statement are of the correct type
|
|
// * The code is in valid SSA form
|
|
// * It should be illegal to put a label into any other type (like a structure)
|
|
// or to return one. [except constant arrays!]
|
|
// * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
|
|
// * PHI nodes must have an entry for each predecessor, with no extras.
|
|
// * PHI nodes must be the first thing in a basic block, all grouped together
|
|
// * PHI nodes must have at least one entry
|
|
// * All basic blocks should only end with terminator insts, not contain them
|
|
// * The entry node to a function must not have predecessors
|
|
// * All Instructions must be embedded into a basic block
|
|
// * Functions cannot take a void-typed parameter
|
|
// * Verify that a function's argument list agrees with it's declared type.
|
|
// * It is illegal to specify a name for a void value.
|
|
// * It is illegal to have a internal global value with no initializer
|
|
// * It is illegal to have a ret instruction that returns a value that does not
|
|
// agree with the function return value type.
|
|
// * Function call argument types match the function prototype
|
|
// * All other things that are tested by asserts spread about the code...
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Verifier.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/ModuleProvider.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/SymbolTable.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <cstdarg>
|
|
using namespace llvm;
|
|
|
|
namespace { // Anonymous namespace for class
|
|
|
|
struct VISIBILITY_HIDDEN
|
|
Verifier : public FunctionPass, InstVisitor<Verifier> {
|
|
bool Broken; // Is this module found to be broken?
|
|
bool RealPass; // Are we not being run by a PassManager?
|
|
VerifierFailureAction action;
|
|
// What to do if verification fails.
|
|
Module *Mod; // Module we are verifying right now
|
|
ETForest *EF; // ET-Forest, caution can be null!
|
|
std::stringstream msgs; // A stringstream to collect messages
|
|
|
|
/// InstInThisBlock - when verifying a basic block, keep track of all of the
|
|
/// instructions we have seen so far. This allows us to do efficient
|
|
/// dominance checks for the case when an instruction has an operand that is
|
|
/// an instruction in the same block.
|
|
std::set<Instruction*> InstsInThisBlock;
|
|
|
|
Verifier()
|
|
: Broken(false), RealPass(true), action(AbortProcessAction),
|
|
EF(0), msgs( std::ios::app | std::ios::out ) {}
|
|
Verifier( VerifierFailureAction ctn )
|
|
: Broken(false), RealPass(true), action(ctn), EF(0),
|
|
msgs( std::ios::app | std::ios::out ) {}
|
|
Verifier(bool AB )
|
|
: Broken(false), RealPass(true),
|
|
action( AB ? AbortProcessAction : PrintMessageAction), EF(0),
|
|
msgs( std::ios::app | std::ios::out ) {}
|
|
Verifier(ETForest &ef)
|
|
: Broken(false), RealPass(false), action(PrintMessageAction),
|
|
EF(&ef), msgs( std::ios::app | std::ios::out ) {}
|
|
|
|
|
|
bool doInitialization(Module &M) {
|
|
Mod = &M;
|
|
verifySymbolTable(M.getSymbolTable());
|
|
|
|
// If this is a real pass, in a pass manager, we must abort before
|
|
// returning back to the pass manager, or else the pass manager may try to
|
|
// run other passes on the broken module.
|
|
if (RealPass)
|
|
return abortIfBroken();
|
|
return false;
|
|
}
|
|
|
|
bool runOnFunction(Function &F) {
|
|
// Get dominator information if we are being run by PassManager
|
|
if (RealPass) EF = &getAnalysis<ETForest>();
|
|
visit(F);
|
|
InstsInThisBlock.clear();
|
|
|
|
// If this is a real pass, in a pass manager, we must abort before
|
|
// returning back to the pass manager, or else the pass manager may try to
|
|
// run other passes on the broken module.
|
|
if (RealPass)
|
|
return abortIfBroken();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool doFinalization(Module &M) {
|
|
// Scan through, checking all of the external function's linkage now...
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
|
|
visitGlobalValue(*I);
|
|
|
|
// Check to make sure function prototypes are okay.
|
|
if (I->isExternal()) visitFunction(*I);
|
|
}
|
|
|
|
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
|
|
I != E; ++I)
|
|
visitGlobalVariable(*I);
|
|
|
|
// If the module is broken, abort at this time.
|
|
return abortIfBroken();
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
if (RealPass)
|
|
AU.addRequired<ETForest>();
|
|
}
|
|
|
|
/// abortIfBroken - If the module is broken and we are supposed to abort on
|
|
/// this condition, do so.
|
|
///
|
|
bool abortIfBroken() {
|
|
if (Broken) {
|
|
msgs << "Broken module found, ";
|
|
switch (action) {
|
|
case AbortProcessAction:
|
|
msgs << "compilation aborted!\n";
|
|
std::cerr << msgs.str();
|
|
abort();
|
|
case PrintMessageAction:
|
|
msgs << "verification continues.\n";
|
|
std::cerr << msgs.str();
|
|
return false;
|
|
case ReturnStatusAction:
|
|
msgs << "compilation terminated.\n";
|
|
return Broken;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Verification methods...
|
|
void verifySymbolTable(SymbolTable &ST);
|
|
void visitGlobalValue(GlobalValue &GV);
|
|
void visitGlobalVariable(GlobalVariable &GV);
|
|
void visitFunction(Function &F);
|
|
void visitBasicBlock(BasicBlock &BB);
|
|
void visitTruncInst(TruncInst &I);
|
|
void visitZExtInst(ZExtInst &I);
|
|
void visitSExtInst(SExtInst &I);
|
|
void visitFPTruncInst(FPTruncInst &I);
|
|
void visitFPExtInst(FPExtInst &I);
|
|
void visitFPToUIInst(FPToUIInst &I);
|
|
void visitFPToSIInst(FPToSIInst &I);
|
|
void visitUIToFPInst(UIToFPInst &I);
|
|
void visitSIToFPInst(SIToFPInst &I);
|
|
void visitIntToPtrInst(IntToPtrInst &I);
|
|
void visitPtrToIntInst(PtrToIntInst &I);
|
|
void visitBitCastInst(BitCastInst &I);
|
|
void visitPHINode(PHINode &PN);
|
|
void visitBinaryOperator(BinaryOperator &B);
|
|
void visitICmpInst(ICmpInst &IC);
|
|
void visitFCmpInst(FCmpInst &FC);
|
|
void visitShiftInst(ShiftInst &SI);
|
|
void visitExtractElementInst(ExtractElementInst &EI);
|
|
void visitInsertElementInst(InsertElementInst &EI);
|
|
void visitShuffleVectorInst(ShuffleVectorInst &EI);
|
|
void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
|
|
void visitCallInst(CallInst &CI);
|
|
void visitGetElementPtrInst(GetElementPtrInst &GEP);
|
|
void visitLoadInst(LoadInst &LI);
|
|
void visitStoreInst(StoreInst &SI);
|
|
void visitInstruction(Instruction &I);
|
|
void visitTerminatorInst(TerminatorInst &I);
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitSwitchInst(SwitchInst &SI);
|
|
void visitSelectInst(SelectInst &SI);
|
|
void visitUserOp1(Instruction &I);
|
|
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
|
|
void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
|
|
|
|
void VerifyIntrinsicPrototype(Function *F, ...);
|
|
|
|
void WriteValue(const Value *V) {
|
|
if (!V) return;
|
|
if (isa<Instruction>(V)) {
|
|
msgs << *V;
|
|
} else {
|
|
WriteAsOperand (msgs, V, true, true, Mod);
|
|
msgs << "\n";
|
|
}
|
|
}
|
|
|
|
void WriteType(const Type* T ) {
|
|
if ( !T ) return;
|
|
WriteTypeSymbolic(msgs, T, Mod );
|
|
}
|
|
|
|
|
|
// CheckFailed - A check failed, so print out the condition and the message
|
|
// that failed. This provides a nice place to put a breakpoint if you want
|
|
// to see why something is not correct.
|
|
void CheckFailed(const std::string &Message,
|
|
const Value *V1 = 0, const Value *V2 = 0,
|
|
const Value *V3 = 0, const Value *V4 = 0) {
|
|
msgs << Message << "\n";
|
|
WriteValue(V1);
|
|
WriteValue(V2);
|
|
WriteValue(V3);
|
|
WriteValue(V4);
|
|
Broken = true;
|
|
}
|
|
|
|
void CheckFailed( const std::string& Message, const Value* V1,
|
|
const Type* T2, const Value* V3 = 0 ) {
|
|
msgs << Message << "\n";
|
|
WriteValue(V1);
|
|
WriteType(T2);
|
|
WriteValue(V3);
|
|
Broken = true;
|
|
}
|
|
};
|
|
|
|
RegisterPass<Verifier> X("verify", "Module Verifier");
|
|
} // End anonymous namespace
|
|
|
|
|
|
// Assert - We know that cond should be true, if not print an error message.
|
|
#define Assert(C, M) \
|
|
do { if (!(C)) { CheckFailed(M); return; } } while (0)
|
|
#define Assert1(C, M, V1) \
|
|
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
|
|
#define Assert2(C, M, V1, V2) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
|
|
#define Assert3(C, M, V1, V2, V3) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
|
|
#define Assert4(C, M, V1, V2, V3, V4) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
|
|
|
|
|
|
void Verifier::visitGlobalValue(GlobalValue &GV) {
|
|
Assert1(!GV.isExternal() ||
|
|
GV.hasExternalLinkage() ||
|
|
GV.hasDLLImportLinkage() ||
|
|
GV.hasExternalWeakLinkage(),
|
|
"Global is external, but doesn't have external or dllimport or weak linkage!",
|
|
&GV);
|
|
|
|
Assert1(!GV.hasDLLImportLinkage() || GV.isExternal(),
|
|
"Global is marked as dllimport, but not external", &GV);
|
|
|
|
Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
|
|
"Only global variables can have appending linkage!", &GV);
|
|
|
|
if (GV.hasAppendingLinkage()) {
|
|
GlobalVariable &GVar = cast<GlobalVariable>(GV);
|
|
Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
|
|
"Only global arrays can have appending linkage!", &GV);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitGlobalVariable(GlobalVariable &GV) {
|
|
if (GV.hasInitializer())
|
|
Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
|
|
"Global variable initializer type does not match global "
|
|
"variable type!", &GV);
|
|
|
|
visitGlobalValue(GV);
|
|
}
|
|
|
|
|
|
// verifySymbolTable - Verify that a function or module symbol table is ok
|
|
//
|
|
void Verifier::verifySymbolTable(SymbolTable &ST) {
|
|
|
|
// Loop over all of the values in all type planes in the symbol table.
|
|
for (SymbolTable::plane_const_iterator PI = ST.plane_begin(),
|
|
PE = ST.plane_end(); PI != PE; ++PI)
|
|
for (SymbolTable::value_const_iterator VI = PI->second.begin(),
|
|
VE = PI->second.end(); VI != VE; ++VI) {
|
|
Value *V = VI->second;
|
|
// Check that there are no void typed values in the symbol table. Values
|
|
// with a void type cannot be put into symbol tables because they cannot
|
|
// have names!
|
|
Assert1(V->getType() != Type::VoidTy,
|
|
"Values with void type are not allowed to have names!", V);
|
|
}
|
|
}
|
|
|
|
// visitFunction - Verify that a function is ok.
|
|
//
|
|
void Verifier::visitFunction(Function &F) {
|
|
// Check function arguments.
|
|
const FunctionType *FT = F.getFunctionType();
|
|
unsigned NumArgs = F.getArgumentList().size();
|
|
|
|
Assert2(FT->getNumParams() == NumArgs,
|
|
"# formal arguments must match # of arguments for function type!",
|
|
&F, FT);
|
|
Assert1(F.getReturnType()->isFirstClassType() ||
|
|
F.getReturnType() == Type::VoidTy,
|
|
"Functions cannot return aggregate values!", &F);
|
|
|
|
// Check that this function meets the restrictions on this calling convention.
|
|
switch (F.getCallingConv()) {
|
|
default:
|
|
break;
|
|
case CallingConv::C:
|
|
break;
|
|
case CallingConv::CSRet:
|
|
Assert1(FT->getReturnType() == Type::VoidTy &&
|
|
FT->getNumParams() > 0 && isa<PointerType>(FT->getParamType(0)),
|
|
"Invalid struct-return function!", &F);
|
|
break;
|
|
case CallingConv::Fast:
|
|
case CallingConv::Cold:
|
|
case CallingConv::X86_FastCall:
|
|
Assert1(!F.isVarArg(),
|
|
"Varargs functions must have C calling conventions!", &F);
|
|
break;
|
|
}
|
|
|
|
// Check that the argument values match the function type for this function...
|
|
unsigned i = 0;
|
|
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I, ++i) {
|
|
Assert2(I->getType() == FT->getParamType(i),
|
|
"Argument value does not match function argument type!",
|
|
I, FT->getParamType(i));
|
|
// Make sure no aggregates are passed by value.
|
|
Assert1(I->getType()->isFirstClassType(),
|
|
"Functions cannot take aggregates as arguments by value!", I);
|
|
}
|
|
|
|
if (!F.isExternal()) {
|
|
verifySymbolTable(F.getSymbolTable());
|
|
|
|
// Check the entry node
|
|
BasicBlock *Entry = &F.getEntryBlock();
|
|
Assert1(pred_begin(Entry) == pred_end(Entry),
|
|
"Entry block to function must not have predecessors!", Entry);
|
|
}
|
|
}
|
|
|
|
|
|
// verifyBasicBlock - Verify that a basic block is well formed...
|
|
//
|
|
void Verifier::visitBasicBlock(BasicBlock &BB) {
|
|
InstsInThisBlock.clear();
|
|
|
|
// Ensure that basic blocks have terminators!
|
|
Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
|
|
|
|
// Check constraints that this basic block imposes on all of the PHI nodes in
|
|
// it.
|
|
if (isa<PHINode>(BB.front())) {
|
|
std::vector<BasicBlock*> Preds(pred_begin(&BB), pred_end(&BB));
|
|
std::sort(Preds.begin(), Preds.end());
|
|
PHINode *PN;
|
|
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
|
|
|
|
// Ensure that PHI nodes have at least one entry!
|
|
Assert1(PN->getNumIncomingValues() != 0,
|
|
"PHI nodes must have at least one entry. If the block is dead, "
|
|
"the PHI should be removed!", PN);
|
|
Assert1(PN->getNumIncomingValues() == Preds.size(),
|
|
"PHINode should have one entry for each predecessor of its "
|
|
"parent basic block!", PN);
|
|
|
|
// Get and sort all incoming values in the PHI node...
|
|
std::vector<std::pair<BasicBlock*, Value*> > Values;
|
|
Values.reserve(PN->getNumIncomingValues());
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
Values.push_back(std::make_pair(PN->getIncomingBlock(i),
|
|
PN->getIncomingValue(i)));
|
|
std::sort(Values.begin(), Values.end());
|
|
|
|
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
|
|
// Check to make sure that if there is more than one entry for a
|
|
// particular basic block in this PHI node, that the incoming values are
|
|
// all identical.
|
|
//
|
|
Assert4(i == 0 || Values[i].first != Values[i-1].first ||
|
|
Values[i].second == Values[i-1].second,
|
|
"PHI node has multiple entries for the same basic block with "
|
|
"different incoming values!", PN, Values[i].first,
|
|
Values[i].second, Values[i-1].second);
|
|
|
|
// Check to make sure that the predecessors and PHI node entries are
|
|
// matched up.
|
|
Assert3(Values[i].first == Preds[i],
|
|
"PHI node entries do not match predecessors!", PN,
|
|
Values[i].first, Preds[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Verifier::visitTerminatorInst(TerminatorInst &I) {
|
|
// Ensure that terminators only exist at the end of the basic block.
|
|
Assert1(&I == I.getParent()->getTerminator(),
|
|
"Terminator found in the middle of a basic block!", I.getParent());
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitReturnInst(ReturnInst &RI) {
|
|
Function *F = RI.getParent()->getParent();
|
|
if (RI.getNumOperands() == 0)
|
|
Assert2(F->getReturnType() == Type::VoidTy,
|
|
"Found return instr that returns void in Function of non-void "
|
|
"return type!", &RI, F->getReturnType());
|
|
else
|
|
Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
|
|
"Function return type does not match operand "
|
|
"type of return inst!", &RI, F->getReturnType());
|
|
|
|
// Check to make sure that the return value has necessary properties for
|
|
// terminators...
|
|
visitTerminatorInst(RI);
|
|
}
|
|
|
|
void Verifier::visitSwitchInst(SwitchInst &SI) {
|
|
// Check to make sure that all of the constants in the switch instruction
|
|
// have the same type as the switched-on value.
|
|
const Type *SwitchTy = SI.getCondition()->getType();
|
|
for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
|
|
Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
|
|
"Switch constants must all be same type as switch value!", &SI);
|
|
|
|
visitTerminatorInst(SI);
|
|
}
|
|
|
|
void Verifier::visitSelectInst(SelectInst &SI) {
|
|
Assert1(SI.getCondition()->getType() == Type::BoolTy,
|
|
"Select condition type must be bool!", &SI);
|
|
Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(),
|
|
"Select values must have identical types!", &SI);
|
|
Assert1(SI.getTrueValue()->getType() == SI.getType(),
|
|
"Select values must have same type as select instruction!", &SI);
|
|
visitInstruction(SI);
|
|
}
|
|
|
|
|
|
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
|
|
/// a pass, if any exist, it's an error.
|
|
///
|
|
void Verifier::visitUserOp1(Instruction &I) {
|
|
Assert1(0, "User-defined operators should not live outside of a pass!", &I);
|
|
}
|
|
|
|
void Verifier::visitTruncInst(TruncInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
|
|
|
|
Assert1(SrcTy->isIntegral(), "Trunc only operates on integer", &I);
|
|
Assert1(DestTy->isIntegral(),"Trunc only produces integral", &I);
|
|
Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitZExtInst(ZExtInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
|
|
|
|
Assert1(SrcTy->isIntegral(),"ZExt only operates on integral", &I);
|
|
Assert1(DestTy->isInteger(),"ZExt only produces an integer", &I);
|
|
Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitSExtInst(SExtInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
|
|
|
|
Assert1(SrcTy->isIntegral(),"SExt only operates on integral", &I);
|
|
Assert1(DestTy->isInteger(),"SExt only produces an integer", &I);
|
|
Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPTruncInst(FPTruncInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
|
|
|
|
Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I);
|
|
Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I);
|
|
Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPExtInst(FPExtInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
|
|
|
|
Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I);
|
|
Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I);
|
|
Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitUIToFPInst(UIToFPInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
Assert1(SrcTy->isIntegral(),"UInt2FP source must be integral", &I);
|
|
Assert1(DestTy->isFloatingPoint(),"UInt2FP result must be FP", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitSIToFPInst(SIToFPInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
Assert1(SrcTy->isIntegral(),"SInt2FP source must be integral", &I);
|
|
Assert1(DestTy->isFloatingPoint(),"SInt2FP result must be FP", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPToUIInst(FPToUIInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
Assert1(SrcTy->isFloatingPoint(),"FP2UInt source must be FP", &I);
|
|
Assert1(DestTy->isIntegral(),"FP2UInt result must be integral", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPToSIInst(FPToSIInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
Assert1(SrcTy->isFloatingPoint(),"FPToSI source must be FP", &I);
|
|
Assert1(DestTy->isIntegral(),"FP2ToI result must be integral", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
|
|
Assert1(DestTy->isIntegral(), "PtrToInt result must be integral", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
Assert1(SrcTy->isIntegral(), "IntToPtr source must be an integral", &I);
|
|
Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitBitCastInst(BitCastInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
|
|
|
|
// BitCast implies a no-op cast of type only. No bits change.
|
|
// However, you can't cast pointers to anything but pointers.
|
|
Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
|
|
"Bitcast requires both operands to be pointer or neither", &I);
|
|
Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
/// visitPHINode - Ensure that a PHI node is well formed.
|
|
///
|
|
void Verifier::visitPHINode(PHINode &PN) {
|
|
// Ensure that the PHI nodes are all grouped together at the top of the block.
|
|
// This can be tested by checking whether the instruction before this is
|
|
// either nonexistent (because this is begin()) or is a PHI node. If not,
|
|
// then there is some other instruction before a PHI.
|
|
Assert2(&PN.getParent()->front() == &PN || isa<PHINode>(PN.getPrev()),
|
|
"PHI nodes not grouped at top of basic block!",
|
|
&PN, PN.getParent());
|
|
|
|
// Check that all of the operands of the PHI node have the same type as the
|
|
// result.
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
|
|
Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
|
|
"PHI node operands are not the same type as the result!", &PN);
|
|
|
|
// All other PHI node constraints are checked in the visitBasicBlock method.
|
|
|
|
visitInstruction(PN);
|
|
}
|
|
|
|
void Verifier::visitCallInst(CallInst &CI) {
|
|
Assert1(isa<PointerType>(CI.getOperand(0)->getType()),
|
|
"Called function must be a pointer!", &CI);
|
|
const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType());
|
|
Assert1(isa<FunctionType>(FPTy->getElementType()),
|
|
"Called function is not pointer to function type!", &CI);
|
|
|
|
const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
|
|
|
|
// Verify that the correct number of arguments are being passed
|
|
if (FTy->isVarArg())
|
|
Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(),
|
|
"Called function requires more parameters than were provided!",&CI);
|
|
else
|
|
Assert1(CI.getNumOperands()-1 == FTy->getNumParams(),
|
|
"Incorrect number of arguments passed to called function!", &CI);
|
|
|
|
// Verify that all arguments to the call match the function type...
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i),
|
|
"Call parameter type does not match function signature!",
|
|
CI.getOperand(i+1), FTy->getParamType(i), &CI);
|
|
|
|
if (Function *F = CI.getCalledFunction())
|
|
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
|
|
visitIntrinsicFunctionCall(ID, CI);
|
|
|
|
visitInstruction(CI);
|
|
}
|
|
|
|
/// visitBinaryOperator - Check that both arguments to the binary operator are
|
|
/// of the same type!
|
|
///
|
|
void Verifier::visitBinaryOperator(BinaryOperator &B) {
|
|
Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
|
|
"Both operands to a binary operator are not of the same type!", &B);
|
|
|
|
// Check that logical operators are only used with integral operands.
|
|
if (B.getOpcode() == Instruction::And || B.getOpcode() == Instruction::Or ||
|
|
B.getOpcode() == Instruction::Xor) {
|
|
Assert1(B.getType()->isIntegral() ||
|
|
(isa<PackedType>(B.getType()) &&
|
|
cast<PackedType>(B.getType())->getElementType()->isIntegral()),
|
|
"Logical operators only work with integral types!", &B);
|
|
Assert1(B.getType() == B.getOperand(0)->getType(),
|
|
"Logical operators must have same type for operands and result!",
|
|
&B);
|
|
} else if (isa<SetCondInst>(B)) {
|
|
// Check that setcc instructions return bool
|
|
Assert1(B.getType() == Type::BoolTy,
|
|
"setcc instructions must return boolean values!", &B);
|
|
} else {
|
|
// Arithmetic operators only work on integer or fp values
|
|
Assert1(B.getType() == B.getOperand(0)->getType(),
|
|
"Arithmetic operators must have same type for operands and result!",
|
|
&B);
|
|
Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
|
|
isa<PackedType>(B.getType()),
|
|
"Arithmetic operators must have integer, fp, or packed type!", &B);
|
|
}
|
|
|
|
visitInstruction(B);
|
|
}
|
|
|
|
void Verifier::visitICmpInst(ICmpInst& IC) {
|
|
// Check that the operands are the same type
|
|
const Type* Op0Ty = IC.getOperand(0)->getType();
|
|
const Type* Op1Ty = IC.getOperand(1)->getType();
|
|
Assert1(Op0Ty == Op1Ty,
|
|
"Both operands to ICmp instruction are not of the same type!", &IC);
|
|
// Check that the operands are the right type
|
|
Assert1(Op0Ty->isIntegral() || Op0Ty->getTypeID() == Type::PointerTyID ||
|
|
(isa<PackedType>(Op0Ty) &&
|
|
cast<PackedType>(Op0Ty)->getElementType()->isIntegral()),
|
|
"Invalid operand types for ICmp instruction", &IC);
|
|
visitInstruction(IC);
|
|
}
|
|
|
|
void Verifier::visitFCmpInst(FCmpInst& FC) {
|
|
// Check that the operands are the same type
|
|
const Type* Op0Ty = FC.getOperand(0)->getType();
|
|
const Type* Op1Ty = FC.getOperand(1)->getType();
|
|
Assert1(Op0Ty == Op1Ty,
|
|
"Both operands to FCmp instruction are not of the same type!", &FC);
|
|
// Check that the operands are the right type
|
|
Assert1(Op0Ty->isFloatingPoint() || (isa<PackedType>(Op0Ty) &&
|
|
cast<PackedType>(Op0Ty)->getElementType()->isFloatingPoint()),
|
|
"Invalid operand types for FCmp instruction", &FC);
|
|
visitInstruction(FC);
|
|
}
|
|
|
|
void Verifier::visitShiftInst(ShiftInst &SI) {
|
|
Assert1(SI.getType()->isInteger(),
|
|
"Shift must return an integer result!", &SI);
|
|
Assert1(SI.getType() == SI.getOperand(0)->getType(),
|
|
"Shift return type must be same as first operand!", &SI);
|
|
Assert1(SI.getOperand(1)->getType() == Type::UByteTy,
|
|
"Second operand to shift must be ubyte type!", &SI);
|
|
visitInstruction(SI);
|
|
}
|
|
|
|
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
|
|
Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
|
|
EI.getOperand(1)),
|
|
"Invalid extractelement operands!", &EI);
|
|
visitInstruction(EI);
|
|
}
|
|
|
|
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
|
|
Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
|
|
IE.getOperand(1),
|
|
IE.getOperand(2)),
|
|
"Invalid insertelement operands!", &IE);
|
|
visitInstruction(IE);
|
|
}
|
|
|
|
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
|
|
Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
|
|
SV.getOperand(2)),
|
|
"Invalid shufflevector operands!", &SV);
|
|
Assert1(SV.getType() == SV.getOperand(0)->getType(),
|
|
"Result of shufflevector must match first operand type!", &SV);
|
|
|
|
// Check to see if Mask is valid.
|
|
if (const ConstantPacked *MV = dyn_cast<ConstantPacked>(SV.getOperand(2))) {
|
|
for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
|
|
Assert1(isa<ConstantInt>(MV->getOperand(i)) ||
|
|
isa<UndefValue>(MV->getOperand(i)),
|
|
"Invalid shufflevector shuffle mask!", &SV);
|
|
}
|
|
} else {
|
|
Assert1(isa<UndefValue>(SV.getOperand(2)) ||
|
|
isa<ConstantAggregateZero>(SV.getOperand(2)),
|
|
"Invalid shufflevector shuffle mask!", &SV);
|
|
}
|
|
|
|
visitInstruction(SV);
|
|
}
|
|
|
|
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
|
|
const Type *ElTy =
|
|
GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
|
|
std::vector<Value*>(GEP.idx_begin(), GEP.idx_end()), true);
|
|
Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
|
|
Assert2(PointerType::get(ElTy) == GEP.getType(),
|
|
"GEP is not of right type for indices!", &GEP, ElTy);
|
|
visitInstruction(GEP);
|
|
}
|
|
|
|
void Verifier::visitLoadInst(LoadInst &LI) {
|
|
const Type *ElTy =
|
|
cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
|
|
Assert2(ElTy == LI.getType(),
|
|
"Load result type does not match pointer operand type!", &LI, ElTy);
|
|
visitInstruction(LI);
|
|
}
|
|
|
|
void Verifier::visitStoreInst(StoreInst &SI) {
|
|
const Type *ElTy =
|
|
cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
|
|
Assert2(ElTy == SI.getOperand(0)->getType(),
|
|
"Stored value type does not match pointer operand type!", &SI, ElTy);
|
|
visitInstruction(SI);
|
|
}
|
|
|
|
|
|
/// verifyInstruction - Verify that an instruction is well formed.
|
|
///
|
|
void Verifier::visitInstruction(Instruction &I) {
|
|
BasicBlock *BB = I.getParent();
|
|
Assert1(BB, "Instruction not embedded in basic block!", &I);
|
|
|
|
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
|
|
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
|
|
UI != UE; ++UI)
|
|
Assert1(*UI != (User*)&I ||
|
|
!EF->dominates(&BB->getParent()->getEntryBlock(), BB),
|
|
"Only PHI nodes may reference their own value!", &I);
|
|
}
|
|
|
|
// Check that void typed values don't have names
|
|
Assert1(I.getType() != Type::VoidTy || !I.hasName(),
|
|
"Instruction has a name, but provides a void value!", &I);
|
|
|
|
// Check that the return value of the instruction is either void or a legal
|
|
// value type.
|
|
Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(),
|
|
"Instruction returns a non-scalar type!", &I);
|
|
|
|
// Check that all uses of the instruction, if they are instructions
|
|
// themselves, actually have parent basic blocks. If the use is not an
|
|
// instruction, it is an error!
|
|
for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
|
|
UI != UE; ++UI) {
|
|
Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
|
|
*UI);
|
|
Instruction *Used = cast<Instruction>(*UI);
|
|
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
|
|
" embeded in a basic block!", &I, Used);
|
|
}
|
|
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
|
|
Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
|
|
|
|
// Check to make sure that only first-class-values are operands to
|
|
// instructions.
|
|
Assert1(I.getOperand(i)->getType()->isFirstClassType(),
|
|
"Instruction operands must be first-class values!", &I);
|
|
|
|
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
|
|
// Check to make sure that the "address of" an intrinsic function is never
|
|
// taken.
|
|
Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
|
|
"Cannot take the address of an intrinsic!", &I);
|
|
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
|
|
Assert1(OpBB->getParent() == BB->getParent(),
|
|
"Referring to a basic block in another function!", &I);
|
|
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
|
|
Assert1(OpArg->getParent() == BB->getParent(),
|
|
"Referring to an argument in another function!", &I);
|
|
} else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
|
|
BasicBlock *OpBlock = Op->getParent();
|
|
|
|
// Check that a definition dominates all of its uses.
|
|
if (!isa<PHINode>(I)) {
|
|
// Invoke results are only usable in the normal destination, not in the
|
|
// exceptional destination.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Op))
|
|
OpBlock = II->getNormalDest();
|
|
else if (OpBlock == BB) {
|
|
// If they are in the same basic block, make sure that the definition
|
|
// comes before the use.
|
|
Assert2(InstsInThisBlock.count(Op) ||
|
|
!EF->dominates(&BB->getParent()->getEntryBlock(), BB),
|
|
"Instruction does not dominate all uses!", Op, &I);
|
|
}
|
|
|
|
// Definition must dominate use unless use is unreachable!
|
|
Assert2(EF->dominates(OpBlock, BB) ||
|
|
!EF->dominates(&BB->getParent()->getEntryBlock(), BB),
|
|
"Instruction does not dominate all uses!", Op, &I);
|
|
} else {
|
|
// PHI nodes are more difficult than other nodes because they actually
|
|
// "use" the value in the predecessor basic blocks they correspond to.
|
|
BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
|
|
Assert2(EF->dominates(OpBlock, PredBB) ||
|
|
!EF->dominates(&BB->getParent()->getEntryBlock(), PredBB),
|
|
"Instruction does not dominate all uses!", Op, &I);
|
|
}
|
|
} else if (isa<InlineAsm>(I.getOperand(i))) {
|
|
Assert1(i == 0 && isa<CallInst>(I),
|
|
"Cannot take the address of an inline asm!", &I);
|
|
}
|
|
}
|
|
InstsInThisBlock.insert(&I);
|
|
}
|
|
|
|
/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
|
|
///
|
|
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
|
|
Function *IF = CI.getCalledFunction();
|
|
Assert1(IF->isExternal(), "Intrinsic functions should never be defined!", IF);
|
|
|
|
#define GET_INTRINSIC_VERIFIER
|
|
#include "llvm/Intrinsics.gen"
|
|
#undef GET_INTRINSIC_VERIFIER
|
|
}
|
|
|
|
/// VerifyIntrinsicPrototype - TableGen emits calls to this function into
|
|
/// Intrinsics.gen. This implements a little state machine that verifies the
|
|
/// prototype of intrinsics.
|
|
void Verifier::VerifyIntrinsicPrototype(Function *F, ...) {
|
|
va_list VA;
|
|
va_start(VA, F);
|
|
|
|
const FunctionType *FTy = F->getFunctionType();
|
|
|
|
// Note that "arg#0" is the return type.
|
|
for (unsigned ArgNo = 0; 1; ++ArgNo) {
|
|
int TypeID = va_arg(VA, int);
|
|
|
|
if (TypeID == -1) {
|
|
if (ArgNo != FTy->getNumParams()+1)
|
|
CheckFailed("Intrinsic prototype has too many arguments!", F);
|
|
break;
|
|
}
|
|
|
|
if (ArgNo == FTy->getNumParams()+1) {
|
|
CheckFailed("Intrinsic prototype has too few arguments!", F);
|
|
break;
|
|
}
|
|
|
|
const Type *Ty;
|
|
if (ArgNo == 0)
|
|
Ty = FTy->getReturnType();
|
|
else
|
|
Ty = FTy->getParamType(ArgNo-1);
|
|
|
|
if (Ty->getTypeID() != TypeID) {
|
|
if (ArgNo == 0)
|
|
CheckFailed("Intrinsic prototype has incorrect result type!", F);
|
|
else
|
|
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F);
|
|
break;
|
|
}
|
|
|
|
// If this is a packed argument, verify the number and type of elements.
|
|
if (TypeID == Type::PackedTyID) {
|
|
const PackedType *PTy = cast<PackedType>(Ty);
|
|
if (va_arg(VA, int) != PTy->getElementType()->getTypeID()) {
|
|
CheckFailed("Intrinsic prototype has incorrect vector element type!",F);
|
|
break;
|
|
}
|
|
|
|
if ((unsigned)va_arg(VA, int) != PTy->getNumElements()) {
|
|
CheckFailed("Intrinsic prototype has incorrect number of "
|
|
"vector elements!",F);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
va_end(VA);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implement the public interfaces to this file...
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
|
|
return new Verifier(action);
|
|
}
|
|
|
|
|
|
// verifyFunction - Create
|
|
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
|
|
Function &F = const_cast<Function&>(f);
|
|
assert(!F.isExternal() && "Cannot verify external functions");
|
|
|
|
FunctionPassManager FPM(new ExistingModuleProvider(F.getParent()));
|
|
Verifier *V = new Verifier(action);
|
|
FPM.add(V);
|
|
FPM.run(F);
|
|
return V->Broken;
|
|
}
|
|
|
|
/// verifyModule - Check a module for errors, printing messages on stderr.
|
|
/// Return true if the module is corrupt.
|
|
///
|
|
bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
|
|
std::string *ErrorInfo) {
|
|
PassManager PM;
|
|
Verifier *V = new Verifier(action);
|
|
PM.add(V);
|
|
PM.run((Module&)M);
|
|
|
|
if (ErrorInfo && V->Broken)
|
|
*ErrorInfo = V->msgs.str();
|
|
return V->Broken;
|
|
}
|
|
|
|
// vim: sw=2
|