mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19382 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			552 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			552 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
 | 
						|
// 
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
// 
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass promotes "by reference" arguments to be "by value" arguments.  In
 | 
						|
// practice, this means looking for internal functions that have pointer
 | 
						|
// arguments.  If we can prove, through the use of alias analysis, that an
 | 
						|
// argument is *only* loaded, then we can pass the value into the function
 | 
						|
// instead of the address of the value.  This can cause recursive simplification
 | 
						|
// of code and lead to the elimination of allocas (especially in C++ template
 | 
						|
// code like the STL).
 | 
						|
//
 | 
						|
// This pass also handles aggregate arguments that are passed into a function,
 | 
						|
// scalarizing them if the elements of the aggregate are only loaded.  Note that
 | 
						|
// we refuse to scalarize aggregates which would require passing in more than
 | 
						|
// three operands to the function, because we don't want to pass thousands of
 | 
						|
// operands for a large array or structure!
 | 
						|
//
 | 
						|
// Note that this transformation could also be done for arguments that are only
 | 
						|
// stored to (returning the value instead), but we do not currently handle that
 | 
						|
// case.  This case would be best handled when and if we start supporting
 | 
						|
// multiple return values from functions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "argpromotion"
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/CallGraphSCCPass.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<> NumArgumentsPromoted("argpromotion",
 | 
						|
                                   "Number of pointer arguments promoted");
 | 
						|
  Statistic<> NumAggregatesPromoted("argpromotion",
 | 
						|
                                    "Number of aggregate arguments promoted");
 | 
						|
  Statistic<> NumArgumentsDead("argpromotion",
 | 
						|
                               "Number of dead pointer args eliminated");
 | 
						|
 | 
						|
  /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
 | 
						|
  ///
 | 
						|
  struct ArgPromotion : public CallGraphSCCPass {
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addRequired<TargetData>();
 | 
						|
      CallGraphSCCPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    virtual bool runOnSCC(const std::vector<CallGraphNode *> &SCC);
 | 
						|
  private:
 | 
						|
    bool PromoteArguments(CallGraphNode *CGN);
 | 
						|
    bool isSafeToPromoteArgument(Argument *Arg) const;  
 | 
						|
    Function *DoPromotion(Function *F, std::vector<Argument*> &ArgsToPromote);
 | 
						|
  };
 | 
						|
 | 
						|
  RegisterOpt<ArgPromotion> X("argpromotion",
 | 
						|
                              "Promote 'by reference' arguments to scalars");
 | 
						|
}
 | 
						|
 | 
						|
ModulePass *llvm::createArgumentPromotionPass() {
 | 
						|
  return new ArgPromotion();
 | 
						|
}
 | 
						|
 | 
						|
bool ArgPromotion::runOnSCC(const std::vector<CallGraphNode *> &SCC) {
 | 
						|
  bool Changed = false, LocalChange;
 | 
						|
 | 
						|
  do {  // Iterate until we stop promoting from this SCC.
 | 
						|
    LocalChange = false;
 | 
						|
    // Attempt to promote arguments from all functions in this SCC.
 | 
						|
    for (unsigned i = 0, e = SCC.size(); i != e; ++i)
 | 
						|
      LocalChange |= PromoteArguments(SCC[i]);
 | 
						|
    Changed |= LocalChange;               // Remember that we changed something.
 | 
						|
  } while (LocalChange);
 | 
						|
  
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// PromoteArguments - This method checks the specified function to see if there
 | 
						|
/// are any promotable arguments and if it is safe to promote the function (for
 | 
						|
/// example, all callers are direct).  If safe to promote some arguments, it
 | 
						|
/// calls the DoPromotion method.
 | 
						|
///
 | 
						|
bool ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
 | 
						|
  Function *F = CGN->getFunction();
 | 
						|
 | 
						|
  // Make sure that it is local to this module.
 | 
						|
  if (!F || !F->hasInternalLinkage()) return false;
 | 
						|
 | 
						|
  // First check: see if there are any pointer arguments!  If not, quick exit.
 | 
						|
  std::vector<Argument*> PointerArgs;
 | 
						|
  for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
 | 
						|
    if (isa<PointerType>(I->getType()))
 | 
						|
      PointerArgs.push_back(I);
 | 
						|
  if (PointerArgs.empty()) return false;
 | 
						|
 | 
						|
  // Second check: make sure that all callers are direct callers.  We can't
 | 
						|
  // transform functions that have indirect callers.
 | 
						|
  for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    CallSite CS = CallSite::get(*UI);
 | 
						|
    if (!CS.getInstruction())       // "Taking the address" of the function
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Ensure that this call site is CALLING the function, not passing it as
 | 
						|
    // an argument.
 | 
						|
    for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
 | 
						|
         AI != E; ++AI)
 | 
						|
      if (*AI == F) return false;   // Passing the function address in!
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see which arguments are promotable.  If an argument is not
 | 
						|
  // promotable, remove it from the PointerArgs vector.
 | 
						|
  for (unsigned i = 0; i != PointerArgs.size(); ++i)
 | 
						|
    if (!isSafeToPromoteArgument(PointerArgs[i])) {
 | 
						|
      std::swap(PointerArgs[i--], PointerArgs.back());
 | 
						|
      PointerArgs.pop_back();
 | 
						|
    }
 | 
						|
 | 
						|
  // No promotable pointer arguments.
 | 
						|
  if (PointerArgs.empty()) return false;
 | 
						|
 | 
						|
  // Okay, promote all of the arguments are rewrite the callees!
 | 
						|
  Function *NewF = DoPromotion(F, PointerArgs);
 | 
						|
 | 
						|
  // Update the call graph to know that the old function is gone.
 | 
						|
  getAnalysis<CallGraph>().changeFunction(F, NewF);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// IsAlwaysValidPointer - Return true if the specified pointer is always legal
 | 
						|
/// to load.
 | 
						|
static bool IsAlwaysValidPointer(Value *V) {
 | 
						|
  if (isa<AllocaInst>(V) || isa<GlobalVariable>(V)) return true;
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V))
 | 
						|
    return IsAlwaysValidPointer(GEP->getOperand(0));
 | 
						|
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | 
						|
    if (CE->getOpcode() == Instruction::GetElementPtr)
 | 
						|
      return IsAlwaysValidPointer(CE->getOperand(0));
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// AllCalleesPassInValidPointerForArgument - Return true if we can prove that
 | 
						|
/// all callees pass in a valid pointer for the specified function argument.
 | 
						|
static bool AllCalleesPassInValidPointerForArgument(Argument *Arg) {
 | 
						|
  Function *Callee = Arg->getParent();
 | 
						|
 | 
						|
  unsigned ArgNo = std::distance(Callee->abegin(), Function::aiterator(Arg));
 | 
						|
 | 
						|
  // Look at all call sites of the function.  At this pointer we know we only
 | 
						|
  // have direct callees.
 | 
						|
  for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
 | 
						|
       UI != E; ++UI) {
 | 
						|
    CallSite CS = CallSite::get(*UI);
 | 
						|
    assert(CS.getInstruction() && "Should only have direct calls!");
 | 
						|
 | 
						|
    if (!IsAlwaysValidPointer(CS.getArgument(ArgNo)))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// isSafeToPromoteArgument - As you might guess from the name of this method,
 | 
						|
/// it checks to see if it is both safe and useful to promote the argument.
 | 
						|
/// This method limits promotion of aggregates to only promote up to three
 | 
						|
/// elements of the aggregate in order to avoid exploding the number of
 | 
						|
/// arguments passed in.
 | 
						|
bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg) const {
 | 
						|
  // We can only promote this argument if all of the uses are loads, or are GEP
 | 
						|
  // instructions (with constant indices) that are subsequently loaded.
 | 
						|
  bool HasLoadInEntryBlock = false;
 | 
						|
  BasicBlock *EntryBlock = Arg->getParent()->begin();
 | 
						|
  std::vector<LoadInst*> Loads;
 | 
						|
  std::vector<std::vector<ConstantInt*> > GEPIndices;
 | 
						|
  for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
 | 
						|
       UI != E; ++UI)
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
 | 
						|
      if (LI->isVolatile()) return false;  // Don't hack volatile loads
 | 
						|
      Loads.push_back(LI);
 | 
						|
      HasLoadInEntryBlock |= LI->getParent() == EntryBlock;
 | 
						|
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
 | 
						|
      if (GEP->use_empty()) {
 | 
						|
        // Dead GEP's cause trouble later.  Just remove them if we run into
 | 
						|
        // them.
 | 
						|
        getAnalysis<AliasAnalysis>().deleteValue(GEP);
 | 
						|
        GEP->getParent()->getInstList().erase(GEP);
 | 
						|
        return isSafeToPromoteArgument(Arg);
 | 
						|
      }
 | 
						|
      // Ensure that all of the indices are constants.
 | 
						|
      std::vector<ConstantInt*> Operands;
 | 
						|
      for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
 | 
						|
        if (ConstantInt *C = dyn_cast<ConstantInt>(GEP->getOperand(i)))
 | 
						|
          Operands.push_back(C);
 | 
						|
        else
 | 
						|
          return false;  // Not a constant operand GEP!
 | 
						|
 | 
						|
      // Ensure that the only users of the GEP are load instructions.
 | 
						|
      for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
 | 
						|
           UI != E; ++UI)
 | 
						|
        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
 | 
						|
          if (LI->isVolatile()) return false;  // Don't hack volatile loads
 | 
						|
          Loads.push_back(LI);
 | 
						|
          HasLoadInEntryBlock |= LI->getParent() == EntryBlock;
 | 
						|
        } else {
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
 | 
						|
      // See if there is already a GEP with these indices.  If not, check to
 | 
						|
      // make sure that we aren't promoting too many elements.  If so, nothing
 | 
						|
      // to do.
 | 
						|
      if (std::find(GEPIndices.begin(), GEPIndices.end(), Operands) ==
 | 
						|
          GEPIndices.end()) {
 | 
						|
        if (GEPIndices.size() == 3) {
 | 
						|
          DEBUG(std::cerr << "argpromotion disable promoting argument '"
 | 
						|
                << Arg->getName() << "' because it would require adding more "
 | 
						|
                << "than 3 arguments to the function.\n");
 | 
						|
          // We limit aggregate promotion to only promoting up to three elements
 | 
						|
          // of the aggregate.
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
        GEPIndices.push_back(Operands);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      return false;  // Not a load or a GEP.
 | 
						|
    }
 | 
						|
 | 
						|
  if (Loads.empty()) return true;  // No users, this is a dead argument.
 | 
						|
 | 
						|
  // If we decide that we want to promote this argument, the value is going to
 | 
						|
  // be unconditionally loaded in all callees.  This is only safe to do if the
 | 
						|
  // pointer was going to be unconditionally loaded anyway (i.e. there is a load
 | 
						|
  // of the pointer in the entry block of the function) or if we can prove that
 | 
						|
  // all pointers passed in are always to legal locations (for example, no null
 | 
						|
  // pointers are passed in, no pointers to free'd memory, etc).
 | 
						|
  if (!HasLoadInEntryBlock && !AllCalleesPassInValidPointerForArgument(Arg))
 | 
						|
    return false;   // Cannot prove that this is safe!!
 | 
						|
 | 
						|
  // Okay, now we know that the argument is only used by load instructions and
 | 
						|
  // it is safe to unconditionally load the pointer.  Use alias analysis to
 | 
						|
  // check to see if the pointer is guaranteed to not be modified from entry of
 | 
						|
  // the function to each of the load instructions.
 | 
						|
  Function &F = *Arg->getParent();
 | 
						|
 | 
						|
  // Because there could be several/many load instructions, remember which
 | 
						|
  // blocks we know to be transparent to the load.
 | 
						|
  std::set<BasicBlock*> TranspBlocks;
 | 
						|
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
  TargetData &TD = getAnalysis<TargetData>();
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
 | 
						|
    // Check to see if the load is invalidated from the start of the block to
 | 
						|
    // the load itself.
 | 
						|
    LoadInst *Load = Loads[i];
 | 
						|
    BasicBlock *BB = Load->getParent();
 | 
						|
 | 
						|
    const PointerType *LoadTy =
 | 
						|
      cast<PointerType>(Load->getOperand(0)->getType());
 | 
						|
    unsigned LoadSize = (unsigned)TD.getTypeSize(LoadTy->getElementType());
 | 
						|
 | 
						|
    if (AA.canInstructionRangeModify(BB->front(), *Load, Arg, LoadSize))
 | 
						|
      return false;  // Pointer is invalidated!
 | 
						|
 | 
						|
    // Now check every path from the entry block to the load for transparency.
 | 
						|
    // To do this, we perform a depth first search on the inverse CFG from the
 | 
						|
    // loading block.
 | 
						|
    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | 
						|
      for (idf_ext_iterator<BasicBlock*> I = idf_ext_begin(*PI, TranspBlocks),
 | 
						|
             E = idf_ext_end(*PI, TranspBlocks); I != E; ++I)
 | 
						|
        if (AA.canBasicBlockModify(**I, Arg, LoadSize))
 | 
						|
          return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the path from the entry of the function to each load is free of
 | 
						|
  // instructions that potentially invalidate the load, we can make the
 | 
						|
  // transformation!
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// GEPIdxComparator - Provide a strong ordering for GEP indices.  All Value*
 | 
						|
  /// elements are instances of ConstantInt.
 | 
						|
  ///
 | 
						|
  struct GEPIdxComparator {
 | 
						|
    bool operator()(const std::vector<Value*> &LHS,
 | 
						|
                    const std::vector<Value*> &RHS) const {
 | 
						|
      unsigned idx = 0;
 | 
						|
      for (; idx < LHS.size() && idx < RHS.size(); ++idx) {
 | 
						|
        if (LHS[idx] != RHS[idx]) {
 | 
						|
          return cast<ConstantInt>(LHS[idx])->getRawValue() < 
 | 
						|
                 cast<ConstantInt>(RHS[idx])->getRawValue();
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Return less than if we ran out of stuff in LHS and we didn't run out of
 | 
						|
      // stuff in RHS.
 | 
						|
      return idx == LHS.size() && idx != RHS.size();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// DoPromotion - This method actually performs the promotion of the specified
 | 
						|
/// arguments, and returns the new function.  At this point, we know that it's
 | 
						|
/// safe to do so.
 | 
						|
Function *ArgPromotion::DoPromotion(Function *F,
 | 
						|
                                    std::vector<Argument*> &Args2Prom) {
 | 
						|
  std::set<Argument*> ArgsToPromote(Args2Prom.begin(), Args2Prom.end());
 | 
						|
  
 | 
						|
  // Start by computing a new prototype for the function, which is the same as
 | 
						|
  // the old function, but has modified arguments.
 | 
						|
  const FunctionType *FTy = F->getFunctionType();
 | 
						|
  std::vector<const Type*> Params;
 | 
						|
 | 
						|
  typedef std::set<std::vector<Value*>, GEPIdxComparator> ScalarizeTable;
 | 
						|
 | 
						|
  // ScalarizedElements - If we are promoting a pointer that has elements
 | 
						|
  // accessed out of it, keep track of which elements are accessed so that we
 | 
						|
  // can add one argument for each.
 | 
						|
  //
 | 
						|
  // Arguments that are directly loaded will have a zero element value here, to
 | 
						|
  // handle cases where there are both a direct load and GEP accesses.
 | 
						|
  //
 | 
						|
  std::map<Argument*, ScalarizeTable> ScalarizedElements;
 | 
						|
 | 
						|
  // OriginalLoads - Keep track of a representative load instruction from the
 | 
						|
  // original function so that we can tell the alias analysis implementation
 | 
						|
  // what the new GEP/Load instructions we are inserting look like.
 | 
						|
  std::map<std::vector<Value*>, LoadInst*> OriginalLoads;
 | 
						|
 | 
						|
  for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
 | 
						|
    if (!ArgsToPromote.count(I)) {
 | 
						|
      Params.push_back(I->getType());
 | 
						|
    } else if (I->use_empty()) {
 | 
						|
      ++NumArgumentsDead;
 | 
						|
    } else {
 | 
						|
      // Okay, this is being promoted.  Check to see if there are any GEP uses
 | 
						|
      // of the argument.
 | 
						|
      ScalarizeTable &ArgIndices = ScalarizedElements[I];
 | 
						|
      for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | 
						|
           ++UI) {
 | 
						|
        Instruction *User = cast<Instruction>(*UI);
 | 
						|
        assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
 | 
						|
        std::vector<Value*> Indices(User->op_begin()+1, User->op_end());
 | 
						|
        ArgIndices.insert(Indices);
 | 
						|
        LoadInst *OrigLoad;
 | 
						|
        if (LoadInst *L = dyn_cast<LoadInst>(User))
 | 
						|
          OrigLoad = L;
 | 
						|
        else
 | 
						|
          OrigLoad = cast<LoadInst>(User->use_back());
 | 
						|
        OriginalLoads[Indices] = OrigLoad;
 | 
						|
      }
 | 
						|
 | 
						|
      // Add a parameter to the function for each element passed in.
 | 
						|
      for (ScalarizeTable::iterator SI = ArgIndices.begin(),
 | 
						|
             E = ArgIndices.end(); SI != E; ++SI)
 | 
						|
        Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
 | 
						|
 | 
						|
      if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
 | 
						|
        ++NumArgumentsPromoted;
 | 
						|
      else
 | 
						|
        ++NumAggregatesPromoted;
 | 
						|
    }
 | 
						|
 | 
						|
  const Type *RetTy = FTy->getReturnType();
 | 
						|
 | 
						|
  // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
 | 
						|
  // have zero fixed arguments.
 | 
						|
  bool ExtraArgHack = false;
 | 
						|
  if (Params.empty() && FTy->isVarArg()) {
 | 
						|
    ExtraArgHack = true;
 | 
						|
    Params.push_back(Type::IntTy);
 | 
						|
  }
 | 
						|
  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
 | 
						|
  
 | 
						|
   // Create the new function body and insert it into the module...
 | 
						|
  Function *NF = new Function(NFTy, F->getLinkage(), F->getName());
 | 
						|
  F->getParent()->getFunctionList().insert(F, NF);
 | 
						|
 | 
						|
  // Get the alias analysis information that we need to update to reflect our
 | 
						|
  // changes.
 | 
						|
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  // Loop over all of the callers of the function, transforming the call sites
 | 
						|
  // to pass in the loaded pointers.
 | 
						|
  //
 | 
						|
  std::vector<Value*> Args;
 | 
						|
  while (!F->use_empty()) {
 | 
						|
    CallSite CS = CallSite::get(F->use_back());
 | 
						|
    Instruction *Call = CS.getInstruction();
 | 
						|
 | 
						|
    // Loop over the operands, inserting GEP and loads in the caller as
 | 
						|
    // appropriate.
 | 
						|
    CallSite::arg_iterator AI = CS.arg_begin();
 | 
						|
    for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I, ++AI)
 | 
						|
      if (!ArgsToPromote.count(I))
 | 
						|
        Args.push_back(*AI);          // Unmodified argument
 | 
						|
      else if (!I->use_empty()) {
 | 
						|
        // Non-dead argument: insert GEPs and loads as appropriate.
 | 
						|
        ScalarizeTable &ArgIndices = ScalarizedElements[I];
 | 
						|
        for (ScalarizeTable::iterator SI = ArgIndices.begin(),
 | 
						|
               E = ArgIndices.end(); SI != E; ++SI) {
 | 
						|
          Value *V = *AI;
 | 
						|
          LoadInst *OrigLoad = OriginalLoads[*SI];
 | 
						|
          if (!SI->empty()) {
 | 
						|
            V = new GetElementPtrInst(V, *SI, V->getName()+".idx", Call);
 | 
						|
            AA.copyValue(OrigLoad->getOperand(0), V);
 | 
						|
          }
 | 
						|
          Args.push_back(new LoadInst(V, V->getName()+".val", Call));
 | 
						|
          AA.copyValue(OrigLoad, Args.back());
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
    if (ExtraArgHack)
 | 
						|
      Args.push_back(Constant::getNullValue(Type::IntTy));
 | 
						|
 | 
						|
    // Push any varargs arguments on the list
 | 
						|
    for (; AI != CS.arg_end(); ++AI)
 | 
						|
      Args.push_back(*AI);
 | 
						|
 | 
						|
    Instruction *New;
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | 
						|
      New = new InvokeInst(NF, II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                           Args, "", Call);
 | 
						|
    } else {
 | 
						|
      New = new CallInst(NF, Args, "", Call);
 | 
						|
    }
 | 
						|
    Args.clear();
 | 
						|
 | 
						|
    // Update the alias analysis implementation to know that we are replacing
 | 
						|
    // the old call with a new one.
 | 
						|
    AA.replaceWithNewValue(Call, New);
 | 
						|
 | 
						|
    if (!Call->use_empty()) {
 | 
						|
      Call->replaceAllUsesWith(New);
 | 
						|
      std::string Name = Call->getName();
 | 
						|
      Call->setName("");
 | 
						|
      New->setName(Name);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Finally, remove the old call from the program, reducing the use-count of
 | 
						|
    // F.
 | 
						|
    Call->getParent()->getInstList().erase(Call);
 | 
						|
  }
 | 
						|
 | 
						|
  // Since we have now created the new function, splice the body of the old
 | 
						|
  // function right into the new function, leaving the old rotting hulk of the
 | 
						|
  // function empty.
 | 
						|
  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
 | 
						|
 | 
						|
  // Loop over the argument list, transfering uses of the old arguments over to
 | 
						|
  // the new arguments, also transfering over the names as well.
 | 
						|
  //
 | 
						|
  for (Function::aiterator I = F->abegin(), E = F->aend(), I2 = NF->abegin();
 | 
						|
       I != E; ++I)
 | 
						|
    if (!ArgsToPromote.count(I)) {
 | 
						|
      // If this is an unmodified argument, move the name and users over to the
 | 
						|
      // new version.
 | 
						|
      I->replaceAllUsesWith(I2);
 | 
						|
      I2->setName(I->getName());
 | 
						|
      AA.replaceWithNewValue(I, I2);
 | 
						|
      ++I2;
 | 
						|
    } else if (I->use_empty()) {
 | 
						|
      AA.deleteValue(I);
 | 
						|
    } else {
 | 
						|
      // Otherwise, if we promoted this argument, then all users are load
 | 
						|
      // instructions, and all loads should be using the new argument that we
 | 
						|
      // added.
 | 
						|
      ScalarizeTable &ArgIndices = ScalarizedElements[I];
 | 
						|
 | 
						|
      while (!I->use_empty()) {
 | 
						|
        if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
 | 
						|
          assert(ArgIndices.begin()->empty() &&
 | 
						|
                 "Load element should sort to front!");
 | 
						|
          I2->setName(I->getName()+".val");
 | 
						|
          LI->replaceAllUsesWith(I2);
 | 
						|
          AA.replaceWithNewValue(LI, I2);
 | 
						|
          LI->getParent()->getInstList().erase(LI);
 | 
						|
          DEBUG(std::cerr << "*** Promoted load of argument '" << I->getName()
 | 
						|
                          << "' in function '" << F->getName() << "'\n");
 | 
						|
        } else {
 | 
						|
          GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
 | 
						|
          std::vector<Value*> Operands(GEP->op_begin()+1, GEP->op_end());
 | 
						|
 | 
						|
          unsigned ArgNo = 0;
 | 
						|
          Function::aiterator TheArg = I2;
 | 
						|
          for (ScalarizeTable::iterator It = ArgIndices.begin();
 | 
						|
               *It != Operands; ++It, ++TheArg) {
 | 
						|
            assert(It != ArgIndices.end() && "GEP not handled??");
 | 
						|
          }
 | 
						|
 | 
						|
          std::string NewName = I->getName();
 | 
						|
          for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | 
						|
            if (ConstantInt *CI = dyn_cast<ConstantInt>(Operands[i]))
 | 
						|
              NewName += "."+itostr((int64_t)CI->getRawValue());
 | 
						|
            else
 | 
						|
              NewName += ".x";
 | 
						|
          TheArg->setName(NewName+".val");
 | 
						|
 | 
						|
          DEBUG(std::cerr << "*** Promoted agg argument '" << TheArg->getName()
 | 
						|
                          << "' of function '" << F->getName() << "'\n");
 | 
						|
 | 
						|
          // All of the uses must be load instructions.  Replace them all with
 | 
						|
          // the argument specified by ArgNo.
 | 
						|
          while (!GEP->use_empty()) {
 | 
						|
            LoadInst *L = cast<LoadInst>(GEP->use_back());
 | 
						|
            L->replaceAllUsesWith(TheArg);
 | 
						|
            AA.replaceWithNewValue(L, TheArg);
 | 
						|
            L->getParent()->getInstList().erase(L);
 | 
						|
          }
 | 
						|
          AA.deleteValue(GEP);
 | 
						|
          GEP->getParent()->getInstList().erase(GEP);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Increment I2 past all of the arguments added for this promoted pointer.
 | 
						|
      for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
 | 
						|
        ++I2;
 | 
						|
    }
 | 
						|
 | 
						|
  // Notify the alias analysis implementation that we inserted a new argument.
 | 
						|
  if (ExtraArgHack)
 | 
						|
    AA.copyValue(Constant::getNullValue(Type::IntTy), NF->abegin());
 | 
						|
 | 
						|
 | 
						|
  // Tell the alias analysis that the old function is about to disappear.
 | 
						|
  AA.replaceWithNewValue(F, NF);
 | 
						|
 | 
						|
  // Now that the old function is dead, delete it.
 | 
						|
  F->getParent()->getFunctionList().erase(F);
 | 
						|
  return NF;
 | 
						|
}
 |