mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	ignored! Remove it. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@107138 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1026 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1026 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "assembler"
 | |
| #include "llvm/MC/MCAssembler.h"
 | |
| #include "llvm/MC/MCAsmLayout.h"
 | |
| #include "llvm/MC/MCCodeEmitter.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCObjectWriter.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/MC/MCValue.h"
 | |
| #include "llvm/ADT/OwningPtr.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetRegistry.h"
 | |
| #include "llvm/Target/TargetAsmBackend.h"
 | |
| 
 | |
| #include <vector>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| namespace stats {
 | |
| STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
 | |
| STATISTIC(EvaluateFixup, "Number of evaluated fixups");
 | |
| STATISTIC(FragmentLayouts, "Number of fragment layouts");
 | |
| STATISTIC(ObjectBytes, "Number of emitted object file bytes");
 | |
| STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
 | |
| STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
 | |
| STATISTIC(SectionLayouts, "Number of section layouts");
 | |
| }
 | |
| }
 | |
| 
 | |
| // FIXME FIXME FIXME: There are number of places in this file where we convert
 | |
| // what is a 64-bit assembler value used for computation into a value in the
 | |
| // object file, which may truncate it. We should detect that truncation where
 | |
| // invalid and report errors back.
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
 | |
|   : Assembler(Asm), LastValidFragment(0)
 | |
|  {
 | |
|   // Compute the section layout order. Virtual sections must go last.
 | |
|   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
 | |
|     if (!Asm.getBackend().isVirtualSection(it->getSection()))
 | |
|       SectionOrder.push_back(&*it);
 | |
|   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
 | |
|     if (Asm.getBackend().isVirtualSection(it->getSection()))
 | |
|       SectionOrder.push_back(&*it);
 | |
| }
 | |
| 
 | |
| bool MCAsmLayout::isSectionUpToDate(const MCSectionData *SD) const {
 | |
|   // The first section is always up-to-date.
 | |
|   unsigned Index = SD->getLayoutOrder();
 | |
|   if (!Index)
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise, sections are always implicitly computed when the preceeding
 | |
|   // fragment is layed out.
 | |
|   const MCSectionData *Prev = getSectionOrder()[Index - 1];
 | |
|   return isFragmentUpToDate(&(Prev->getFragmentList().back()));
 | |
| }
 | |
| 
 | |
| bool MCAsmLayout::isFragmentUpToDate(const MCFragment *F) const {
 | |
|   return (LastValidFragment &&
 | |
|           F->getLayoutOrder() <= LastValidFragment->getLayoutOrder());
 | |
| }
 | |
| 
 | |
| void MCAsmLayout::UpdateForSlide(MCFragment *F, int SlideAmount) {
 | |
|   // If this fragment wasn't already up-to-date, we don't need to do anything.
 | |
|   if (!isFragmentUpToDate(F))
 | |
|     return;
 | |
| 
 | |
|   // Otherwise, reset the last valid fragment to the predecessor of the
 | |
|   // invalidated fragment.
 | |
|   LastValidFragment = F->getPrevNode();
 | |
|   if (!LastValidFragment) {
 | |
|     unsigned Index = F->getParent()->getLayoutOrder();
 | |
|     if (Index != 0) {
 | |
|       MCSectionData *Prev = getSectionOrder()[Index - 1];
 | |
|       LastValidFragment = &(Prev->getFragmentList().back());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MCAsmLayout::EnsureValid(const MCFragment *F) const {
 | |
|   // Advance the layout position until the fragment is up-to-date.
 | |
|   while (!isFragmentUpToDate(F)) {
 | |
|     // Advance to the next fragment.
 | |
|     MCFragment *Cur = LastValidFragment;
 | |
|     if (Cur)
 | |
|       Cur = Cur->getNextNode();
 | |
|     if (!Cur) {
 | |
|       unsigned NextIndex = 0;
 | |
|       if (LastValidFragment)
 | |
|         NextIndex = LastValidFragment->getParent()->getLayoutOrder() + 1;
 | |
|       Cur = SectionOrder[NextIndex]->begin();
 | |
|     }
 | |
| 
 | |
|     const_cast<MCAsmLayout*>(this)->LayoutFragment(Cur);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MCAsmLayout::FragmentReplaced(MCFragment *Src, MCFragment *Dst) {
 | |
|   if (LastValidFragment == Src)
 | |
|     LastValidFragment = Dst;
 | |
| 
 | |
|   Dst->Offset = Src->Offset;
 | |
|   Dst->EffectiveSize = Src->EffectiveSize;
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::getFragmentAddress(const MCFragment *F) const {
 | |
|   assert(F->getParent() && "Missing section()!");
 | |
|   return getSectionAddress(F->getParent()) + getFragmentOffset(F);
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::getFragmentEffectiveSize(const MCFragment *F) const {
 | |
|   EnsureValid(F);
 | |
|   assert(F->EffectiveSize != ~UINT64_C(0) && "Address not set!");
 | |
|   return F->EffectiveSize;
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
 | |
|   EnsureValid(F);
 | |
|   assert(F->Offset != ~UINT64_C(0) && "Address not set!");
 | |
|   return F->Offset;
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::getSymbolAddress(const MCSymbolData *SD) const {
 | |
|   assert(SD->getFragment() && "Invalid getAddress() on undefined symbol!");
 | |
|   return getFragmentAddress(SD->getFragment()) + SD->getOffset();
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::getSectionAddress(const MCSectionData *SD) const {
 | |
|   EnsureValid(SD->begin());
 | |
|   assert(SD->Address != ~UINT64_C(0) && "Address not set!");
 | |
|   return SD->Address;
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
 | |
|   // The size is the last fragment's end offset.
 | |
|   const MCFragment &F = SD->getFragmentList().back();
 | |
|   return getFragmentOffset(&F) + getFragmentEffectiveSize(&F);
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
 | |
|   // Virtual sections have no file size.
 | |
|   if (getAssembler().getBackend().isVirtualSection(SD->getSection()))
 | |
|     return 0;
 | |
| 
 | |
|   // Otherwise, the file size is the same as the address space size.
 | |
|   return getSectionAddressSize(SD);
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::getSectionSize(const MCSectionData *SD) const {
 | |
|   // The logical size is the address space size minus any tail padding.
 | |
|   uint64_t Size = getSectionAddressSize(SD);
 | |
|   const MCAlignFragment *AF =
 | |
|     dyn_cast<MCAlignFragment>(&(SD->getFragmentList().back()));
 | |
|   if (AF && AF->hasOnlyAlignAddress())
 | |
|     Size -= getFragmentEffectiveSize(AF);
 | |
| 
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCFragment::MCFragment() : Kind(FragmentType(~0)) {
 | |
| }
 | |
| 
 | |
| MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
 | |
|   : Kind(_Kind), Parent(_Parent), Atom(0), EffectiveSize(~UINT64_C(0))
 | |
| {
 | |
|   if (Parent)
 | |
|     Parent->getFragmentList().push_back(this);
 | |
| }
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCSectionData::MCSectionData() : Section(0) {}
 | |
| 
 | |
| MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
 | |
|   : Section(&_Section),
 | |
|     Alignment(1),
 | |
|     Address(~UINT64_C(0)),
 | |
|     HasInstructions(false)
 | |
| {
 | |
|   if (A)
 | |
|     A->getSectionList().push_back(this);
 | |
| }
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCSymbolData::MCSymbolData() : Symbol(0) {}
 | |
| 
 | |
| MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
 | |
|                            uint64_t _Offset, MCAssembler *A)
 | |
|   : Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
 | |
|     IsExternal(false), IsPrivateExtern(false),
 | |
|     CommonSize(0), CommonAlign(0), Flags(0), Index(0)
 | |
| {
 | |
|   if (A)
 | |
|     A->getSymbolList().push_back(this);
 | |
| }
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCAssembler::MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
 | |
|                          MCCodeEmitter &_Emitter, raw_ostream &_OS)
 | |
|   : Context(_Context), Backend(_Backend), Emitter(_Emitter),
 | |
|     OS(_OS), RelaxAll(false), SubsectionsViaSymbols(false)
 | |
| {
 | |
| }
 | |
| 
 | |
| MCAssembler::~MCAssembler() {
 | |
| }
 | |
| 
 | |
| static bool isScatteredFixupFullyResolvedSimple(const MCAssembler &Asm,
 | |
|                                                 const MCFixup &Fixup,
 | |
|                                                 const MCValue Target,
 | |
|                                                 const MCSection *BaseSection) {
 | |
|   // The effective fixup address is
 | |
|   //     addr(atom(A)) + offset(A)
 | |
|   //   - addr(atom(B)) - offset(B)
 | |
|   //   - addr(<base symbol>) + <fixup offset from base symbol>
 | |
|   // and the offsets are not relocatable, so the fixup is fully resolved when
 | |
|   //  addr(atom(A)) - addr(atom(B)) - addr(<base symbol>)) == 0.
 | |
|   //
 | |
|   // The simple (Darwin, except on x86_64) way of dealing with this was to
 | |
|   // assume that any reference to a temporary symbol *must* be a temporary
 | |
|   // symbol in the same atom, unless the sections differ. Therefore, any PCrel
 | |
|   // relocation to a temporary symbol (in the same section) is fully
 | |
|   // resolved. This also works in conjunction with absolutized .set, which
 | |
|   // requires the compiler to use .set to absolutize the differences between
 | |
|   // symbols which the compiler knows to be assembly time constants, so we don't
 | |
|   // need to worry about considering symbol differences fully resolved.
 | |
| 
 | |
|   // Non-relative fixups are only resolved if constant.
 | |
|   if (!BaseSection)
 | |
|     return Target.isAbsolute();
 | |
| 
 | |
|   // Otherwise, relative fixups are only resolved if not a difference and the
 | |
|   // target is a temporary in the same section.
 | |
|   if (Target.isAbsolute() || Target.getSymB())
 | |
|     return false;
 | |
| 
 | |
|   const MCSymbol *A = &Target.getSymA()->getSymbol();
 | |
|   if (!A->isTemporary() || !A->isInSection() ||
 | |
|       &A->getSection() != BaseSection)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isScatteredFixupFullyResolved(const MCAssembler &Asm,
 | |
|                                           const MCAsmLayout &Layout,
 | |
|                                           const MCFixup &Fixup,
 | |
|                                           const MCValue Target,
 | |
|                                           const MCSymbolData *BaseSymbol) {
 | |
|   // The effective fixup address is
 | |
|   //     addr(atom(A)) + offset(A)
 | |
|   //   - addr(atom(B)) - offset(B)
 | |
|   //   - addr(BaseSymbol) + <fixup offset from base symbol>
 | |
|   // and the offsets are not relocatable, so the fixup is fully resolved when
 | |
|   //  addr(atom(A)) - addr(atom(B)) - addr(BaseSymbol) == 0.
 | |
|   //
 | |
|   // Note that "false" is almost always conservatively correct (it means we emit
 | |
|   // a relocation which is unnecessary), except when it would force us to emit a
 | |
|   // relocation which the target cannot encode.
 | |
| 
 | |
|   const MCSymbolData *A_Base = 0, *B_Base = 0;
 | |
|   if (const MCSymbolRefExpr *A = Target.getSymA()) {
 | |
|     // Modified symbol references cannot be resolved.
 | |
|     if (A->getKind() != MCSymbolRefExpr::VK_None)
 | |
|       return false;
 | |
| 
 | |
|     A_Base = Asm.getAtom(Layout, &Asm.getSymbolData(A->getSymbol()));
 | |
|     if (!A_Base)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (const MCSymbolRefExpr *B = Target.getSymB()) {
 | |
|     // Modified symbol references cannot be resolved.
 | |
|     if (B->getKind() != MCSymbolRefExpr::VK_None)
 | |
|       return false;
 | |
| 
 | |
|     B_Base = Asm.getAtom(Layout, &Asm.getSymbolData(B->getSymbol()));
 | |
|     if (!B_Base)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If there is no base, A and B have to be the same atom for this fixup to be
 | |
|   // fully resolved.
 | |
|   if (!BaseSymbol)
 | |
|     return A_Base == B_Base;
 | |
| 
 | |
|   // Otherwise, B must be missing and A must be the base.
 | |
|   return !B_Base && BaseSymbol == A_Base;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
 | |
|   // Non-temporary labels should always be visible to the linker.
 | |
|   if (!Symbol.isTemporary())
 | |
|     return true;
 | |
| 
 | |
|   // Absolute temporary labels are never visible.
 | |
|   if (!Symbol.isInSection())
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, check if the section requires symbols even for temporary labels.
 | |
|   return getBackend().doesSectionRequireSymbols(Symbol.getSection());
 | |
| }
 | |
| 
 | |
| const MCSymbolData *MCAssembler::getAtom(const MCAsmLayout &Layout,
 | |
|                                          const MCSymbolData *SD) const {
 | |
|   // Linker visible symbols define atoms.
 | |
|   if (isSymbolLinkerVisible(SD->getSymbol()))
 | |
|     return SD;
 | |
| 
 | |
|   // Absolute and undefined symbols have no defining atom.
 | |
|   if (!SD->getFragment())
 | |
|     return 0;
 | |
| 
 | |
|   // Non-linker visible symbols in sections which can't be atomized have no
 | |
|   // defining atom.
 | |
|   if (!getBackend().isSectionAtomizable(
 | |
|         SD->getFragment()->getParent()->getSection()))
 | |
|     return 0;
 | |
| 
 | |
|   // Otherwise, return the atom for the containing fragment.
 | |
|   return SD->getFragment()->getAtom();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout,
 | |
|                                 const MCFixup &Fixup, const MCFragment *DF,
 | |
|                                 MCValue &Target, uint64_t &Value) const {
 | |
|   ++stats::EvaluateFixup;
 | |
| 
 | |
|   if (!Fixup.getValue()->EvaluateAsRelocatable(Target, &Layout))
 | |
|     report_fatal_error("expected relocatable expression");
 | |
| 
 | |
|   // FIXME: How do non-scattered symbols work in ELF? I presume the linker
 | |
|   // doesn't support small relocations, but then under what criteria does the
 | |
|   // assembler allow symbol differences?
 | |
| 
 | |
|   Value = Target.getConstant();
 | |
| 
 | |
|   bool IsPCRel = Emitter.getFixupKindInfo(
 | |
|     Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
 | |
|   bool IsResolved = true;
 | |
|   if (const MCSymbolRefExpr *A = Target.getSymA()) {
 | |
|     if (A->getSymbol().isDefined())
 | |
|       Value += Layout.getSymbolAddress(&getSymbolData(A->getSymbol()));
 | |
|     else
 | |
|       IsResolved = false;
 | |
|   }
 | |
|   if (const MCSymbolRefExpr *B = Target.getSymB()) {
 | |
|     if (B->getSymbol().isDefined())
 | |
|       Value -= Layout.getSymbolAddress(&getSymbolData(B->getSymbol()));
 | |
|     else
 | |
|       IsResolved = false;
 | |
|   }
 | |
| 
 | |
|   // If we are using scattered symbols, determine whether this value is actually
 | |
|   // resolved; scattering may cause atoms to move.
 | |
|   if (IsResolved && getBackend().hasScatteredSymbols()) {
 | |
|     if (getBackend().hasReliableSymbolDifference()) {
 | |
|       // If this is a PCrel relocation, find the base atom (identified by its
 | |
|       // symbol) that the fixup value is relative to.
 | |
|       const MCSymbolData *BaseSymbol = 0;
 | |
|       if (IsPCRel) {
 | |
|         BaseSymbol = DF->getAtom();
 | |
|         if (!BaseSymbol)
 | |
|           IsResolved = false;
 | |
|       }
 | |
| 
 | |
|       if (IsResolved)
 | |
|         IsResolved = isScatteredFixupFullyResolved(*this, Layout, Fixup, Target,
 | |
|                                                    BaseSymbol);
 | |
|     } else {
 | |
|       const MCSection *BaseSection = 0;
 | |
|       if (IsPCRel)
 | |
|         BaseSection = &DF->getParent()->getSection();
 | |
| 
 | |
|       IsResolved = isScatteredFixupFullyResolvedSimple(*this, Fixup, Target,
 | |
|                                                        BaseSection);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IsPCRel)
 | |
|     Value -= Layout.getFragmentAddress(DF) + Fixup.getOffset();
 | |
| 
 | |
|   return IsResolved;
 | |
| }
 | |
| 
 | |
| uint64_t MCAssembler::ComputeFragmentSize(MCAsmLayout &Layout,
 | |
|                                           const MCFragment &F,
 | |
|                                           uint64_t SectionAddress,
 | |
|                                           uint64_t FragmentOffset) const {
 | |
|   switch (F.getKind()) {
 | |
|   case MCFragment::FT_Data:
 | |
|     return cast<MCDataFragment>(F).getContents().size();
 | |
|   case MCFragment::FT_Fill:
 | |
|     return cast<MCFillFragment>(F).getSize();
 | |
|   case MCFragment::FT_Inst:
 | |
|     return cast<MCInstFragment>(F).getInstSize();
 | |
| 
 | |
|   case MCFragment::FT_Align: {
 | |
|     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
 | |
| 
 | |
|     assert((!AF.hasOnlyAlignAddress() || !AF.getNextNode()) &&
 | |
|            "Invalid OnlyAlignAddress bit, not the last fragment!");
 | |
| 
 | |
|     uint64_t Size = OffsetToAlignment(SectionAddress + FragmentOffset,
 | |
|                                       AF.getAlignment());
 | |
| 
 | |
|     // Honor MaxBytesToEmit.
 | |
|     if (Size > AF.getMaxBytesToEmit())
 | |
|       return 0;
 | |
| 
 | |
|     return Size;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Org: {
 | |
|     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
 | |
| 
 | |
|     // FIXME: We should compute this sooner, we don't want to recurse here, and
 | |
|     // we would like to be more functional.
 | |
|     int64_t TargetLocation;
 | |
|     if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, &Layout))
 | |
|       report_fatal_error("expected assembly-time absolute expression");
 | |
| 
 | |
|     // FIXME: We need a way to communicate this error.
 | |
|     int64_t Offset = TargetLocation - FragmentOffset;
 | |
|     if (Offset < 0)
 | |
|       report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
 | |
|                          "' (at offset '" + Twine(FragmentOffset) + "'");
 | |
| 
 | |
|     return Offset;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   assert(0 && "invalid fragment kind");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void MCAsmLayout::LayoutFile() {
 | |
|   // Initialize the first section and set the valid fragment layout point. All
 | |
|   // actual layout computations are done lazily.
 | |
|   LastValidFragment = 0;
 | |
|   if (!getSectionOrder().empty())
 | |
|     getSectionOrder().front()->Address = 0;
 | |
| }
 | |
| 
 | |
| void MCAsmLayout::LayoutFragment(MCFragment *F) {
 | |
|   MCFragment *Prev = F->getPrevNode();
 | |
| 
 | |
|   // We should never try to recompute something which is up-to-date.
 | |
|   assert(!isFragmentUpToDate(F) && "Attempt to recompute up-to-date fragment!");
 | |
|   // We should never try to compute the fragment layout if the section isn't
 | |
|   // up-to-date.
 | |
|   assert(isSectionUpToDate(F->getParent()) &&
 | |
|          "Attempt to compute fragment before it's section!");
 | |
|   // We should never try to compute the fragment layout if it's predecessor
 | |
|   // isn't up-to-date.
 | |
|   assert((!Prev || isFragmentUpToDate(Prev)) &&
 | |
|          "Attempt to compute fragment before it's predecessor!");
 | |
| 
 | |
|   ++stats::FragmentLayouts;
 | |
| 
 | |
|   // Compute the fragment start address.
 | |
|   uint64_t StartAddress = F->getParent()->Address;
 | |
|   uint64_t Address = StartAddress;
 | |
|   if (Prev)
 | |
|     Address += Prev->Offset + Prev->EffectiveSize;
 | |
| 
 | |
|   // Compute fragment offset and size.
 | |
|   F->Offset = Address - StartAddress;
 | |
|   F->EffectiveSize = getAssembler().ComputeFragmentSize(*this, *F, StartAddress,
 | |
|                                                         F->Offset);
 | |
|   LastValidFragment = F;
 | |
| 
 | |
|   // If this is the last fragment in a section, update the next section address.
 | |
|   if (!F->getNextNode()) {
 | |
|     unsigned NextIndex = F->getParent()->getLayoutOrder() + 1;
 | |
|     if (NextIndex != getSectionOrder().size())
 | |
|       LayoutSection(getSectionOrder()[NextIndex]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void MCAsmLayout::LayoutSection(MCSectionData *SD) {
 | |
|   unsigned SectionOrderIndex = SD->getLayoutOrder();
 | |
| 
 | |
|   ++stats::SectionLayouts;
 | |
| 
 | |
|   // Compute the section start address.
 | |
|   uint64_t StartAddress = 0;
 | |
|   if (SectionOrderIndex) {
 | |
|     MCSectionData *Prev = getSectionOrder()[SectionOrderIndex - 1];
 | |
|     StartAddress = getSectionAddress(Prev) + getSectionAddressSize(Prev);
 | |
|   }
 | |
| 
 | |
|   // Honor the section alignment requirements.
 | |
|   StartAddress = RoundUpToAlignment(StartAddress, SD->getAlignment());
 | |
| 
 | |
|   // Set the section address.
 | |
|   SD->Address = StartAddress;
 | |
| }
 | |
| 
 | |
| /// WriteFragmentData - Write the \arg F data to the output file.
 | |
| static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout,
 | |
|                               const MCFragment &F, MCObjectWriter *OW) {
 | |
|   uint64_t Start = OW->getStream().tell();
 | |
|   (void) Start;
 | |
| 
 | |
|   ++stats::EmittedFragments;
 | |
| 
 | |
|   // FIXME: Embed in fragments instead?
 | |
|   uint64_t FragmentSize = Layout.getFragmentEffectiveSize(&F);
 | |
|   switch (F.getKind()) {
 | |
|   case MCFragment::FT_Align: {
 | |
|     MCAlignFragment &AF = cast<MCAlignFragment>(F);
 | |
|     uint64_t Count = FragmentSize / AF.getValueSize();
 | |
| 
 | |
|     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
 | |
| 
 | |
|     // FIXME: This error shouldn't actually occur (the front end should emit
 | |
|     // multiple .align directives to enforce the semantics it wants), but is
 | |
|     // severe enough that we want to report it. How to handle this?
 | |
|     if (Count * AF.getValueSize() != FragmentSize)
 | |
|       report_fatal_error("undefined .align directive, value size '" +
 | |
|                         Twine(AF.getValueSize()) +
 | |
|                         "' is not a divisor of padding size '" +
 | |
|                         Twine(FragmentSize) + "'");
 | |
| 
 | |
|     // See if we are aligning with nops, and if so do that first to try to fill
 | |
|     // the Count bytes.  Then if that did not fill any bytes or there are any
 | |
|     // bytes left to fill use the the Value and ValueSize to fill the rest.
 | |
|     // If we are aligning with nops, ask that target to emit the right data.
 | |
|     if (AF.hasEmitNops()) {
 | |
|       if (!Asm.getBackend().WriteNopData(Count, OW))
 | |
|         report_fatal_error("unable to write nop sequence of " +
 | |
|                           Twine(Count) + " bytes");
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, write out in multiples of the value size.
 | |
|     for (uint64_t i = 0; i != Count; ++i) {
 | |
|       switch (AF.getValueSize()) {
 | |
|       default:
 | |
|         assert(0 && "Invalid size!");
 | |
|       case 1: OW->Write8 (uint8_t (AF.getValue())); break;
 | |
|       case 2: OW->Write16(uint16_t(AF.getValue())); break;
 | |
|       case 4: OW->Write32(uint32_t(AF.getValue())); break;
 | |
|       case 8: OW->Write64(uint64_t(AF.getValue())); break;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Data: {
 | |
|     MCDataFragment &DF = cast<MCDataFragment>(F);
 | |
|     assert(FragmentSize == DF.getContents().size() && "Invalid size!");
 | |
|     OW->WriteBytes(DF.getContents().str());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Fill: {
 | |
|     MCFillFragment &FF = cast<MCFillFragment>(F);
 | |
| 
 | |
|     assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
 | |
| 
 | |
|     for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
 | |
|       switch (FF.getValueSize()) {
 | |
|       default:
 | |
|         assert(0 && "Invalid size!");
 | |
|       case 1: OW->Write8 (uint8_t (FF.getValue())); break;
 | |
|       case 2: OW->Write16(uint16_t(FF.getValue())); break;
 | |
|       case 4: OW->Write32(uint32_t(FF.getValue())); break;
 | |
|       case 8: OW->Write64(uint64_t(FF.getValue())); break;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Inst:
 | |
|     llvm_unreachable("unexpected inst fragment after lowering");
 | |
|     break;
 | |
| 
 | |
|   case MCFragment::FT_Org: {
 | |
|     MCOrgFragment &OF = cast<MCOrgFragment>(F);
 | |
| 
 | |
|     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
 | |
|       OW->Write8(uint8_t(OF.getValue()));
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   assert(OW->getStream().tell() - Start == FragmentSize);
 | |
| }
 | |
| 
 | |
| void MCAssembler::WriteSectionData(const MCSectionData *SD,
 | |
|                                    const MCAsmLayout &Layout,
 | |
|                                    MCObjectWriter *OW) const {
 | |
|   // Ignore virtual sections.
 | |
|   if (getBackend().isVirtualSection(SD->getSection())) {
 | |
|     assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
 | |
| 
 | |
|     // Check that contents are only things legal inside a virtual section.
 | |
|     for (MCSectionData::const_iterator it = SD->begin(),
 | |
|            ie = SD->end(); it != ie; ++it) {
 | |
|       switch (it->getKind()) {
 | |
|       default:
 | |
|         assert(0 && "Invalid fragment in virtual section!");
 | |
|       case MCFragment::FT_Align:
 | |
|         assert(!cast<MCAlignFragment>(it)->getValueSize() &&
 | |
|                "Invalid align in virtual section!");
 | |
|         break;
 | |
|       case MCFragment::FT_Fill:
 | |
|         assert(!cast<MCFillFragment>(it)->getValueSize() &&
 | |
|                "Invalid fill in virtual section!");
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   uint64_t Start = OW->getStream().tell();
 | |
|   (void) Start;
 | |
| 
 | |
|   for (MCSectionData::const_iterator it = SD->begin(),
 | |
|          ie = SD->end(); it != ie; ++it)
 | |
|     WriteFragmentData(*this, Layout, *it, OW);
 | |
| 
 | |
|   assert(OW->getStream().tell() - Start == Layout.getSectionFileSize(SD));
 | |
| }
 | |
| 
 | |
| void MCAssembler::Finish() {
 | |
|   DEBUG_WITH_TYPE("mc-dump", {
 | |
|       llvm::errs() << "assembler backend - pre-layout\n--\n";
 | |
|       dump(); });
 | |
| 
 | |
|   // Create the layout object.
 | |
|   MCAsmLayout Layout(*this);
 | |
| 
 | |
|   // Insert additional align fragments for concrete sections to explicitly pad
 | |
|   // the previous section to match their alignment requirements. This is for
 | |
|   // 'gas' compatibility, it shouldn't strictly be necessary.
 | |
|   //
 | |
|   // FIXME: This may be Mach-O specific.
 | |
|   for (unsigned i = 1, e = Layout.getSectionOrder().size(); i < e; ++i) {
 | |
|     MCSectionData *SD = Layout.getSectionOrder()[i];
 | |
| 
 | |
|     // Ignore sections without alignment requirements.
 | |
|     unsigned Align = SD->getAlignment();
 | |
|     if (Align <= 1)
 | |
|       continue;
 | |
| 
 | |
|     // Ignore virtual sections, they don't cause file size modifications.
 | |
|     if (getBackend().isVirtualSection(SD->getSection()))
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, create a new align fragment at the end of the previous
 | |
|     // section.
 | |
|     MCAlignFragment *AF = new MCAlignFragment(Align, 0, 1, Align,
 | |
|                                               Layout.getSectionOrder()[i - 1]);
 | |
|     AF->setOnlyAlignAddress(true);
 | |
|   }
 | |
| 
 | |
|   // Create dummy fragments and assign section ordinals.
 | |
|   unsigned SectionIndex = 0;
 | |
|   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     // Create dummy fragments to eliminate any empty sections, this simplifies
 | |
|     // layout.
 | |
|     if (it->getFragmentList().empty())
 | |
|       new MCFillFragment(0, 1, 0, it);
 | |
| 
 | |
|     it->setOrdinal(SectionIndex++);
 | |
|   }
 | |
| 
 | |
|   // Assign layout order indices to sections and fragments.
 | |
|   unsigned FragmentIndex = 0;
 | |
|   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
 | |
|     MCSectionData *SD = Layout.getSectionOrder()[i];
 | |
|     SD->setLayoutOrder(i);
 | |
| 
 | |
|     for (MCSectionData::iterator it2 = SD->begin(),
 | |
|            ie2 = SD->end(); it2 != ie2; ++it2)
 | |
|       it2->setLayoutOrder(FragmentIndex++);
 | |
|   }
 | |
| 
 | |
|   // Layout until everything fits.
 | |
|   while (LayoutOnce(Layout))
 | |
|     continue;
 | |
| 
 | |
|   DEBUG_WITH_TYPE("mc-dump", {
 | |
|       llvm::errs() << "assembler backend - post-relaxation\n--\n";
 | |
|       dump(); });
 | |
| 
 | |
|   // Finalize the layout, including fragment lowering.
 | |
|   FinishLayout(Layout);
 | |
| 
 | |
|   DEBUG_WITH_TYPE("mc-dump", {
 | |
|       llvm::errs() << "assembler backend - final-layout\n--\n";
 | |
|       dump(); });
 | |
| 
 | |
|   uint64_t StartOffset = OS.tell();
 | |
|   llvm::OwningPtr<MCObjectWriter> Writer(getBackend().createObjectWriter(OS));
 | |
|   if (!Writer)
 | |
|     report_fatal_error("unable to create object writer!");
 | |
| 
 | |
|   // Allow the object writer a chance to perform post-layout binding (for
 | |
|   // example, to set the index fields in the symbol data).
 | |
|   Writer->ExecutePostLayoutBinding(*this);
 | |
| 
 | |
|   // Evaluate and apply the fixups, generating relocation entries as necessary.
 | |
|   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     for (MCSectionData::iterator it2 = it->begin(),
 | |
|            ie2 = it->end(); it2 != ie2; ++it2) {
 | |
|       MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
 | |
|       if (!DF)
 | |
|         continue;
 | |
| 
 | |
|       for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
 | |
|              ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
 | |
|         MCFixup &Fixup = *it3;
 | |
| 
 | |
|         // Evaluate the fixup.
 | |
|         MCValue Target;
 | |
|         uint64_t FixedValue;
 | |
|         if (!EvaluateFixup(Layout, Fixup, DF, Target, FixedValue)) {
 | |
|           // The fixup was unresolved, we need a relocation. Inform the object
 | |
|           // writer of the relocation, and give it an opportunity to adjust the
 | |
|           // fixup value if need be.
 | |
|           Writer->RecordRelocation(*this, Layout, DF, Fixup, Target,FixedValue);
 | |
|         }
 | |
| 
 | |
|         getBackend().ApplyFixup(Fixup, *DF, FixedValue);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Write the object file.
 | |
|   Writer->WriteObject(*this, Layout);
 | |
| 
 | |
|   stats::ObjectBytes += OS.tell() - StartOffset;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::FixupNeedsRelaxation(const MCFixup &Fixup,
 | |
|                                        const MCFragment *DF,
 | |
|                                        const MCAsmLayout &Layout) const {
 | |
|   if (getRelaxAll())
 | |
|     return true;
 | |
| 
 | |
|   // If we cannot resolve the fixup value, it requires relaxation.
 | |
|   MCValue Target;
 | |
|   uint64_t Value;
 | |
|   if (!EvaluateFixup(Layout, Fixup, DF, Target, Value))
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise, relax if the value is too big for a (signed) i8.
 | |
|   //
 | |
|   // FIXME: This is target dependent!
 | |
|   return int64_t(Value) != int64_t(int8_t(Value));
 | |
| }
 | |
| 
 | |
| bool MCAssembler::FragmentNeedsRelaxation(const MCInstFragment *IF,
 | |
|                                           const MCAsmLayout &Layout) const {
 | |
|   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
 | |
|   // are intentionally pushing out inst fragments, or because we relaxed a
 | |
|   // previous instruction to one that doesn't need relaxation.
 | |
|   if (!getBackend().MayNeedRelaxation(IF->getInst()))
 | |
|     return false;
 | |
| 
 | |
|   for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(),
 | |
|          ie = IF->fixup_end(); it != ie; ++it)
 | |
|     if (FixupNeedsRelaxation(*it, IF, Layout))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::LayoutOnce(MCAsmLayout &Layout) {
 | |
|   ++stats::RelaxationSteps;
 | |
| 
 | |
|   // Layout the sections in order.
 | |
|   Layout.LayoutFile();
 | |
| 
 | |
|   // Scan for fragments that need relaxation.
 | |
|   bool WasRelaxed = false;
 | |
|   for (iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     MCSectionData &SD = *it;
 | |
| 
 | |
|     for (MCSectionData::iterator it2 = SD.begin(),
 | |
|            ie2 = SD.end(); it2 != ie2; ++it2) {
 | |
|       // Check if this is an instruction fragment that needs relaxation.
 | |
|       MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
 | |
|       if (!IF || !FragmentNeedsRelaxation(IF, Layout))
 | |
|         continue;
 | |
| 
 | |
|       ++stats::RelaxedInstructions;
 | |
| 
 | |
|       // FIXME-PERF: We could immediately lower out instructions if we can tell
 | |
|       // they are fully resolved, to avoid retesting on later passes.
 | |
| 
 | |
|       // Relax the fragment.
 | |
| 
 | |
|       MCInst Relaxed;
 | |
|       getBackend().RelaxInstruction(IF->getInst(), Relaxed);
 | |
| 
 | |
|       // Encode the new instruction.
 | |
|       //
 | |
|       // FIXME-PERF: If it matters, we could let the target do this. It can
 | |
|       // probably do so more efficiently in many cases.
 | |
|       SmallVector<MCFixup, 4> Fixups;
 | |
|       SmallString<256> Code;
 | |
|       raw_svector_ostream VecOS(Code);
 | |
|       getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
 | |
|       VecOS.flush();
 | |
| 
 | |
|       // Update the instruction fragment.
 | |
|       int SlideAmount = Code.size() - IF->getInstSize();
 | |
|       IF->setInst(Relaxed);
 | |
|       IF->getCode() = Code;
 | |
|       IF->getFixups().clear();
 | |
|       // FIXME: Eliminate copy.
 | |
|       for (unsigned i = 0, e = Fixups.size(); i != e; ++i)
 | |
|         IF->getFixups().push_back(Fixups[i]);
 | |
| 
 | |
|       // Update the layout, and remember that we relaxed.
 | |
|       Layout.UpdateForSlide(IF, SlideAmount);
 | |
|       WasRelaxed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return WasRelaxed;
 | |
| }
 | |
| 
 | |
| void MCAssembler::FinishLayout(MCAsmLayout &Layout) {
 | |
|   // Lower out any instruction fragments, to simplify the fixup application and
 | |
|   // output.
 | |
|   //
 | |
|   // FIXME-PERF: We don't have to do this, but the assumption is that it is
 | |
|   // cheap (we will mostly end up eliminating fragments and appending on to data
 | |
|   // fragments), so the extra complexity downstream isn't worth it. Evaluate
 | |
|   // this assumption.
 | |
|   for (iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     MCSectionData &SD = *it;
 | |
| 
 | |
|     for (MCSectionData::iterator it2 = SD.begin(),
 | |
|            ie2 = SD.end(); it2 != ie2; ++it2) {
 | |
|       MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
 | |
|       if (!IF)
 | |
|         continue;
 | |
| 
 | |
|       // Create a new data fragment for the instruction.
 | |
|       //
 | |
|       // FIXME-PERF: Reuse previous data fragment if possible.
 | |
|       MCDataFragment *DF = new MCDataFragment();
 | |
|       SD.getFragmentList().insert(it2, DF);
 | |
| 
 | |
|       // Update the data fragments layout data.
 | |
|       DF->setParent(IF->getParent());
 | |
|       DF->setAtom(IF->getAtom());
 | |
|       DF->setLayoutOrder(IF->getLayoutOrder());
 | |
|       Layout.FragmentReplaced(IF, DF);
 | |
| 
 | |
|       // Copy in the data and the fixups.
 | |
|       DF->getContents().append(IF->getCode().begin(), IF->getCode().end());
 | |
|       for (unsigned i = 0, e = IF->getFixups().size(); i != e; ++i)
 | |
|         DF->getFixups().push_back(IF->getFixups()[i]);
 | |
| 
 | |
|       // Delete the instruction fragment and update the iterator.
 | |
|       SD.getFragmentList().erase(IF);
 | |
|       it2 = DF;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Debugging methods
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
 | |
|   OS << "<MCFixup" << " Offset:" << AF.getOffset()
 | |
|      << " Value:" << *AF.getValue()
 | |
|      << " Kind:" << AF.getKind() << ">";
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| void MCFragment::dump() {
 | |
|   raw_ostream &OS = llvm::errs();
 | |
| 
 | |
|   OS << "<";
 | |
|   switch (getKind()) {
 | |
|   case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
 | |
|   case MCFragment::FT_Data:  OS << "MCDataFragment"; break;
 | |
|   case MCFragment::FT_Fill:  OS << "MCFillFragment"; break;
 | |
|   case MCFragment::FT_Inst:  OS << "MCInstFragment"; break;
 | |
|   case MCFragment::FT_Org:   OS << "MCOrgFragment"; break;
 | |
|   }
 | |
| 
 | |
|   OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
 | |
|      << " Offset:" << Offset << " EffectiveSize:" << EffectiveSize << ">";
 | |
| 
 | |
|   switch (getKind()) {
 | |
|   case MCFragment::FT_Align: {
 | |
|     const MCAlignFragment *AF = cast<MCAlignFragment>(this);
 | |
|     if (AF->hasEmitNops())
 | |
|       OS << " (emit nops)";
 | |
|     if (AF->hasOnlyAlignAddress())
 | |
|       OS << " (only align section)";
 | |
|     OS << "\n       ";
 | |
|     OS << " Alignment:" << AF->getAlignment()
 | |
|        << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
 | |
|        << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_Data:  {
 | |
|     const MCDataFragment *DF = cast<MCDataFragment>(this);
 | |
|     OS << "\n       ";
 | |
|     OS << " Contents:[";
 | |
|     const SmallVectorImpl<char> &Contents = DF->getContents();
 | |
|     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
 | |
|       if (i) OS << ",";
 | |
|       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
 | |
|     }
 | |
|     OS << "] (" << Contents.size() << " bytes)";
 | |
| 
 | |
|     if (!DF->getFixups().empty()) {
 | |
|       OS << ",\n       ";
 | |
|       OS << " Fixups:[";
 | |
|       for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
 | |
|              ie = DF->fixup_end(); it != ie; ++it) {
 | |
|         if (it != DF->fixup_begin()) OS << ",\n                ";
 | |
|         OS << *it;
 | |
|       }
 | |
|       OS << "]";
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_Fill:  {
 | |
|     const MCFillFragment *FF = cast<MCFillFragment>(this);
 | |
|     OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
 | |
|        << " Size:" << FF->getSize();
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_Inst:  {
 | |
|     const MCInstFragment *IF = cast<MCInstFragment>(this);
 | |
|     OS << "\n       ";
 | |
|     OS << " Inst:";
 | |
|     IF->getInst().dump_pretty(OS);
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_Org:  {
 | |
|     const MCOrgFragment *OF = cast<MCOrgFragment>(this);
 | |
|     OS << "\n       ";
 | |
|     OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   OS << ">";
 | |
| }
 | |
| 
 | |
| void MCSectionData::dump() {
 | |
|   raw_ostream &OS = llvm::errs();
 | |
| 
 | |
|   OS << "<MCSectionData";
 | |
|   OS << " Alignment:" << getAlignment() << " Address:" << Address
 | |
|      << " Fragments:[\n      ";
 | |
|   for (iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     if (it != begin()) OS << ",\n      ";
 | |
|     it->dump();
 | |
|   }
 | |
|   OS << "]>";
 | |
| }
 | |
| 
 | |
| void MCSymbolData::dump() {
 | |
|   raw_ostream &OS = llvm::errs();
 | |
| 
 | |
|   OS << "<MCSymbolData Symbol:" << getSymbol()
 | |
|      << " Fragment:" << getFragment() << " Offset:" << getOffset()
 | |
|      << " Flags:" << getFlags() << " Index:" << getIndex();
 | |
|   if (isCommon())
 | |
|     OS << " (common, size:" << getCommonSize()
 | |
|        << " align: " << getCommonAlignment() << ")";
 | |
|   if (isExternal())
 | |
|     OS << " (external)";
 | |
|   if (isPrivateExtern())
 | |
|     OS << " (private extern)";
 | |
|   OS << ">";
 | |
| }
 | |
| 
 | |
| void MCAssembler::dump() {
 | |
|   raw_ostream &OS = llvm::errs();
 | |
| 
 | |
|   OS << "<MCAssembler\n";
 | |
|   OS << "  Sections:[\n    ";
 | |
|   for (iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     if (it != begin()) OS << ",\n    ";
 | |
|     it->dump();
 | |
|   }
 | |
|   OS << "],\n";
 | |
|   OS << "  Symbols:[";
 | |
| 
 | |
|   for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
 | |
|     if (it != symbol_begin()) OS << ",\n           ";
 | |
|     it->dump();
 | |
|   }
 | |
|   OS << "]>\n";
 | |
| }
 |