llvm-6502/include/llvm/IR/DataLayout.h
Rafael Espindola a9ad60c412 Use 'w' instead of 'c' to represent the win32 mangling.
This change was requested to avoid confusion if we ever support non windows coff
systems.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@198938 91177308-0d34-0410-b5e6-96231b3b80d8
2014-01-10 13:42:12 +00:00

552 lines
20 KiB
C++

//===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines layout properties related to datatype size/offset/alignment
// information. It uses lazy annotations to cache information about how
// structure types are laid out and used.
//
// This structure should be created once, filled in if the defaults are not
// correct and then passed around by const&. None of the members functions
// require modification to the object.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_DATALAYOUT_H
#define LLVM_IR_DATALAYOUT_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
#include "llvm/Support/DataTypes.h"
namespace llvm {
class Value;
class Type;
class IntegerType;
class StructType;
class StructLayout;
class Triple;
class GlobalVariable;
class LLVMContext;
template<typename T>
class ArrayRef;
/// Enum used to categorize the alignment types stored by LayoutAlignElem
enum AlignTypeEnum {
INVALID_ALIGN = 0, ///< An invalid alignment
INTEGER_ALIGN = 'i', ///< Integer type alignment
VECTOR_ALIGN = 'v', ///< Vector type alignment
FLOAT_ALIGN = 'f', ///< Floating point type alignment
AGGREGATE_ALIGN = 'a' ///< Aggregate alignment
};
/// Layout alignment element.
///
/// Stores the alignment data associated with a given alignment type (integer,
/// vector, float) and type bit width.
///
/// @note The unusual order of elements in the structure attempts to reduce
/// padding and make the structure slightly more cache friendly.
struct LayoutAlignElem {
unsigned AlignType : 8; ///< Alignment type (AlignTypeEnum)
unsigned TypeBitWidth : 24; ///< Type bit width
unsigned ABIAlign : 16; ///< ABI alignment for this type/bitw
unsigned PrefAlign : 16; ///< Pref. alignment for this type/bitw
/// Initializer
static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
unsigned pref_align, uint32_t bit_width);
/// Equality predicate
bool operator==(const LayoutAlignElem &rhs) const;
};
/// Layout pointer alignment element.
///
/// Stores the alignment data associated with a given pointer and address space.
///
/// @note The unusual order of elements in the structure attempts to reduce
/// padding and make the structure slightly more cache friendly.
struct PointerAlignElem {
unsigned ABIAlign; ///< ABI alignment for this type/bitw
unsigned PrefAlign; ///< Pref. alignment for this type/bitw
uint32_t TypeByteWidth; ///< Type byte width
uint32_t AddressSpace; ///< Address space for the pointer type
/// Initializer
static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
unsigned PrefAlign, uint32_t TypeByteWidth);
/// Equality predicate
bool operator==(const PointerAlignElem &rhs) const;
};
/// DataLayout - This class holds a parsed version of the target data layout
/// string in a module and provides methods for querying it. The target data
/// layout string is specified *by the target* - a frontend generating LLVM IR
/// is required to generate the right target data for the target being codegen'd
/// to. If some measure of portability is desired, an empty string may be
/// specified in the module.
class DataLayout : public ImmutablePass {
private:
bool LittleEndian; ///< Defaults to false
unsigned StackNaturalAlign; ///< Stack natural alignment
enum ManglingModeT {
MM_None,
MM_ELF,
MM_MachO,
MM_WINCOFF,
MM_Mips
};
ManglingModeT ManglingMode;
SmallVector<unsigned char, 8> LegalIntWidths; ///< Legal Integers.
/// Alignments - Where the primitive type alignment data is stored.
///
/// @sa init().
/// @note Could support multiple size pointer alignments, e.g., 32-bit
/// pointers vs. 64-bit pointers by extending LayoutAlignment, but for now,
/// we don't.
SmallVector<LayoutAlignElem, 16> Alignments;
DenseMap<unsigned, PointerAlignElem> Pointers;
/// InvalidAlignmentElem - This member is a signal that a requested alignment
/// type and bit width were not found in the SmallVector.
static const LayoutAlignElem InvalidAlignmentElem;
/// InvalidPointerElem - This member is a signal that a requested pointer
/// type and bit width were not found in the DenseSet.
static const PointerAlignElem InvalidPointerElem;
// The StructType -> StructLayout map.
mutable void *LayoutMap;
//! Set/initialize target alignments
void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
unsigned pref_align, uint32_t bit_width);
unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
bool ABIAlign, Type *Ty) const;
//! Set/initialize pointer alignments
void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
unsigned PrefAlign, uint32_t TypeByteWidth);
//! Internal helper method that returns requested alignment for type.
unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
/// Valid alignment predicate.
///
/// Predicate that tests a LayoutAlignElem reference returned by get() against
/// InvalidAlignmentElem.
bool validAlignment(const LayoutAlignElem &align) const {
return &align != &InvalidAlignmentElem;
}
/// Valid pointer predicate.
///
/// Predicate that tests a PointerAlignElem reference returned by get() against
/// InvalidPointerElem.
bool validPointer(const PointerAlignElem &align) const {
return &align != &InvalidPointerElem;
}
/// Parses a target data specification string. Assert if the string is
/// malformed.
void parseSpecifier(StringRef LayoutDescription);
public:
/// Default ctor.
///
/// @note This has to exist, because this is a pass, but it should never be
/// used.
DataLayout();
/// Constructs a DataLayout from a specification string. See init().
explicit DataLayout(StringRef LayoutDescription)
: ImmutablePass(ID) {
init(LayoutDescription);
}
/// Initialize target data from properties stored in the module.
explicit DataLayout(const Module *M);
DataLayout(const DataLayout &DL) :
ImmutablePass(ID),
LittleEndian(DL.isLittleEndian()),
StackNaturalAlign(DL.StackNaturalAlign),
ManglingMode(DL.ManglingMode),
LegalIntWidths(DL.LegalIntWidths),
Alignments(DL.Alignments),
Pointers(DL.Pointers),
LayoutMap(0)
{ }
~DataLayout(); // Not virtual, do not subclass this class
/// DataLayout is an immutable pass, but holds state. This allows the pass
/// manager to clear its mutable state.
bool doFinalization(Module &M);
/// Parse a data layout string (with fallback to default values). Ensure that
/// the data layout pass is registered.
void init(StringRef LayoutDescription);
/// Layout endianness...
bool isLittleEndian() const { return LittleEndian; }
bool isBigEndian() const { return !LittleEndian; }
/// getStringRepresentation - Return the string representation of the
/// DataLayout. This representation is in the same format accepted by the
/// string constructor above.
std::string getStringRepresentation() const;
/// isLegalInteger - This function returns true if the specified type is
/// known to be a native integer type supported by the CPU. For example,
/// i64 is not native on most 32-bit CPUs and i37 is not native on any known
/// one. This returns false if the integer width is not legal.
///
/// The width is specified in bits.
///
bool isLegalInteger(unsigned Width) const {
for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
if (LegalIntWidths[i] == Width)
return true;
return false;
}
bool isIllegalInteger(unsigned Width) const {
return !isLegalInteger(Width);
}
/// Returns true if the given alignment exceeds the natural stack alignment.
bool exceedsNaturalStackAlignment(unsigned Align) const {
return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
}
bool hasMicrosoftFastStdCallMangling() const {
return ManglingMode == MM_WINCOFF;
}
bool hasLinkerPrivateGlobalPrefix() const {
return ManglingMode == MM_MachO;
}
const char *getLinkerPrivateGlobalPrefix() const {
if (ManglingMode == MM_MachO)
return "l";
return getPrivateGlobalPrefix();
}
char getGlobalPrefix() const {
switch (ManglingMode) {
case MM_None:
case MM_ELF:
case MM_Mips:
return '\0';
case MM_MachO:
case MM_WINCOFF:
return '_';
}
llvm_unreachable("invalid mangling mode");
}
const char *getPrivateGlobalPrefix() const {
switch (ManglingMode) {
case MM_None:
return "";
case MM_ELF:
return ".L";
case MM_Mips:
return "$";
case MM_MachO:
case MM_WINCOFF:
return "L";
}
llvm_unreachable("invalid mangling mode");
}
static const char *getManglingComponent(const Triple &T);
/// fitsInLegalInteger - This function returns true if the specified type fits
/// in a native integer type supported by the CPU. For example, if the CPU
/// only supports i32 as a native integer type, then i27 fits in a legal
// integer type but i45 does not.
bool fitsInLegalInteger(unsigned Width) const {
for (unsigned i = 0, e = (unsigned)LegalIntWidths.size(); i != e; ++i)
if (Width <= LegalIntWidths[i])
return true;
return false;
}
/// Layout pointer alignment
/// FIXME: The defaults need to be removed once all of
/// the backends/clients are updated.
unsigned getPointerABIAlignment(unsigned AS = 0) const {
DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
if (val == Pointers.end()) {
val = Pointers.find(0);
}
return val->second.ABIAlign;
}
/// Return target's alignment for stack-based pointers
/// FIXME: The defaults need to be removed once all of
/// the backends/clients are updated.
unsigned getPointerPrefAlignment(unsigned AS = 0) const {
DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
if (val == Pointers.end()) {
val = Pointers.find(0);
}
return val->second.PrefAlign;
}
/// Layout pointer size
/// FIXME: The defaults need to be removed once all of
/// the backends/clients are updated.
unsigned getPointerSize(unsigned AS = 0) const {
DenseMap<unsigned, PointerAlignElem>::const_iterator val = Pointers.find(AS);
if (val == Pointers.end()) {
val = Pointers.find(0);
}
return val->second.TypeByteWidth;
}
/// Layout pointer size, in bits
/// FIXME: The defaults need to be removed once all of
/// the backends/clients are updated.
unsigned getPointerSizeInBits(unsigned AS = 0) const {
return getPointerSize(AS) * 8;
}
/// Layout pointer size, in bits, based on the type. If this function is
/// called with a pointer type, then the type size of the pointer is returned.
/// If this function is called with a vector of pointers, then the type size
/// of the pointer is returned. This should only be called with a pointer or
/// vector of pointers.
unsigned getPointerTypeSizeInBits(Type *) const;
unsigned getPointerTypeSize(Type *Ty) const {
return getPointerTypeSizeInBits(Ty) / 8;
}
/// Size examples:
///
/// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
/// ---- ---------- --------------- ---------------
/// i1 1 8 8
/// i8 8 8 8
/// i19 19 24 32
/// i32 32 32 32
/// i100 100 104 128
/// i128 128 128 128
/// Float 32 32 32
/// Double 64 64 64
/// X86_FP80 80 80 96
///
/// [*] The alloc size depends on the alignment, and thus on the target.
/// These values are for x86-32 linux.
/// getTypeSizeInBits - Return the number of bits necessary to hold the
/// specified type. For example, returns 36 for i36 and 80 for x86_fp80.
/// The type passed must have a size (Type::isSized() must return true).
uint64_t getTypeSizeInBits(Type *Ty) const;
/// getTypeStoreSize - Return the maximum number of bytes that may be
/// overwritten by storing the specified type. For example, returns 5
/// for i36 and 10 for x86_fp80.
uint64_t getTypeStoreSize(Type *Ty) const {
return (getTypeSizeInBits(Ty)+7)/8;
}
/// getTypeStoreSizeInBits - Return the maximum number of bits that may be
/// overwritten by storing the specified type; always a multiple of 8. For
/// example, returns 40 for i36 and 80 for x86_fp80.
uint64_t getTypeStoreSizeInBits(Type *Ty) const {
return 8*getTypeStoreSize(Ty);
}
/// getTypeAllocSize - Return the offset in bytes between successive objects
/// of the specified type, including alignment padding. This is the amount
/// that alloca reserves for this type. For example, returns 12 or 16 for
/// x86_fp80, depending on alignment.
uint64_t getTypeAllocSize(Type *Ty) const {
// Round up to the next alignment boundary.
return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
}
/// getTypeAllocSizeInBits - Return the offset in bits between successive
/// objects of the specified type, including alignment padding; always a
/// multiple of 8. This is the amount that alloca reserves for this type.
/// For example, returns 96 or 128 for x86_fp80, depending on alignment.
uint64_t getTypeAllocSizeInBits(Type *Ty) const {
return 8*getTypeAllocSize(Ty);
}
/// getABITypeAlignment - Return the minimum ABI-required alignment for the
/// specified type.
unsigned getABITypeAlignment(Type *Ty) const;
/// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
/// an integer type of the specified bitwidth.
unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
/// getPrefTypeAlignment - Return the preferred stack/global alignment for
/// the specified type. This is always at least as good as the ABI alignment.
unsigned getPrefTypeAlignment(Type *Ty) const;
/// getPreferredTypeAlignmentShift - Return the preferred alignment for the
/// specified type, returned as log2 of the value (a shift amount).
unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
/// getIntPtrType - Return an integer type with size at least as big as that
/// of a pointer in the given address space.
IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
/// getIntPtrType - Return an integer (vector of integer) type with size at
/// least as big as that of a pointer of the given pointer (vector of pointer)
/// type.
Type *getIntPtrType(Type *) const;
/// getSmallestLegalIntType - Return the smallest integer type with size at
/// least as big as Width bits.
Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
/// getLargestLegalIntType - Return the largest legal integer type, or null if
/// none are set.
Type *getLargestLegalIntType(LLVMContext &C) const {
unsigned LargestSize = getLargestLegalIntTypeSize();
return (LargestSize == 0) ? 0 : Type::getIntNTy(C, LargestSize);
}
/// getLargestLegalIntType - Return the size of largest legal integer type
/// size, or 0 if none are set.
unsigned getLargestLegalIntTypeSize() const;
/// getIndexedOffset - return the offset from the beginning of the type for
/// the specified indices. This is used to implement getelementptr.
uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
/// getStructLayout - Return a StructLayout object, indicating the alignment
/// of the struct, its size, and the offsets of its fields. Note that this
/// information is lazily cached.
const StructLayout *getStructLayout(StructType *Ty) const;
/// getPreferredAlignment - Return the preferred alignment of the specified
/// global. This includes an explicitly requested alignment (if the global
/// has one).
unsigned getPreferredAlignment(const GlobalVariable *GV) const;
/// getPreferredAlignmentLog - Return the preferred alignment of the
/// specified global, returned in log form. This includes an explicitly
/// requested alignment (if the global has one).
unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
/// RoundUpAlignment - Round the specified value up to the next alignment
/// boundary specified by Alignment. For example, 7 rounded up to an
/// alignment boundary of 4 is 8. 8 rounded up to the alignment boundary of 4
/// is 8 because it is already aligned.
template <typename UIntTy>
static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
}
static char ID; // Pass identification, replacement for typeid
};
/// StructLayout - used to lazily calculate structure layout information for a
/// target machine, based on the DataLayout structure.
///
class StructLayout {
uint64_t StructSize;
unsigned StructAlignment;
unsigned NumElements;
uint64_t MemberOffsets[1]; // variable sized array!
public:
uint64_t getSizeInBytes() const {
return StructSize;
}
uint64_t getSizeInBits() const {
return 8*StructSize;
}
unsigned getAlignment() const {
return StructAlignment;
}
/// getElementContainingOffset - Given a valid byte offset into the structure,
/// return the structure index that contains it.
///
unsigned getElementContainingOffset(uint64_t Offset) const;
uint64_t getElementOffset(unsigned Idx) const {
assert(Idx < NumElements && "Invalid element idx!");
return MemberOffsets[Idx];
}
uint64_t getElementOffsetInBits(unsigned Idx) const {
return getElementOffset(Idx)*8;
}
private:
friend class DataLayout; // Only DataLayout can create this class
StructLayout(StructType *ST, const DataLayout &DL);
};
// The implementation of this method is provided inline as it is particularly
// well suited to constant folding when called on a specific Type subclass.
inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
switch (Ty->getTypeID()) {
case Type::LabelTyID:
return getPointerSizeInBits(0);
case Type::PointerTyID:
return getPointerSizeInBits(Ty->getPointerAddressSpace());
case Type::ArrayTyID: {
ArrayType *ATy = cast<ArrayType>(Ty);
return ATy->getNumElements() *
getTypeAllocSizeInBits(ATy->getElementType());
}
case Type::StructTyID:
// Get the layout annotation... which is lazily created on demand.
return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
case Type::IntegerTyID:
return Ty->getIntegerBitWidth();
case Type::HalfTyID:
return 16;
case Type::FloatTyID:
return 32;
case Type::DoubleTyID:
case Type::X86_MMXTyID:
return 64;
case Type::PPC_FP128TyID:
case Type::FP128TyID:
return 128;
// In memory objects this is always aligned to a higher boundary, but
// only 80 bits contain information.
case Type::X86_FP80TyID:
return 80;
case Type::VectorTyID: {
VectorType *VTy = cast<VectorType>(Ty);
return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
}
default:
llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
}
}
} // End llvm namespace
#endif