Chris Lattner dae4a36849 Include an operator<<, to print modules
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2358 91177308-0d34-0410-b5e6-96231b3b80d8
2002-04-28 04:56:28 +00:00

165 lines
7.0 KiB
C++

//===-- llvm/Module.h - C++ class to represent a VM module -------*- C++ -*--=//
//
// This file contains the declarations for the Module class that is used to
// maintain all the information related to a VM module.
//
// A module also maintains a GlobalValRefMap object that is used to hold all
// constant references to global variables in the module. When a global
// variable is destroyed, it should have no entries in the GlobalValueRefMap.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_MODULE_H
#define LLVM_MODULE_H
#include "llvm/Value.h"
#include "llvm/ValueHolder.h"
class GlobalVariable;
class GlobalValueRefMap; // Used by ConstantVals.cpp
class ConstantPointerRef;
class FunctionType;
class SymbolTable;
class Module : public Annotable {
public:
typedef ValueHolder<GlobalVariable, Module, Module> GlobalListType;
typedef ValueHolder<Function, Module, Module> FunctionListType;
// Global Variable iterators...
typedef GlobalListType::iterator giterator;
typedef GlobalListType::const_iterator const_giterator;
typedef std::reverse_iterator<giterator> reverse_giterator;
typedef std::reverse_iterator<const_giterator> const_reverse_giterator;
// Function iterators...
typedef FunctionListType::iterator iterator;
typedef FunctionListType::const_iterator const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
private:
GlobalListType GlobalList; // The Global Variables
FunctionListType FunctionList; // The Functions
GlobalValueRefMap *GVRefMap;
SymbolTable *SymTab;
// Accessor for the underlying GlobalValRefMap... only through the
// ConstantPointerRef class...
friend class ConstantPointerRef;
void mutateConstantPointerRef(GlobalValue *OldGV, GlobalValue *NewGV);
ConstantPointerRef *getConstantPointerRef(GlobalValue *GV);
public:
Module();
~Module();
// getOrInsertFunction - Look up the specified function in the module symbol
// table. If it does not exist, add a prototype for the function and return
// it.
Function *getOrInsertFunction(const std::string &Name, const FunctionType *T);
// getFunction - Look up the specified function in the module symbol table.
// If it does not exist, return null.
//
Function *getFunction(const std::string &Name, const FunctionType *Ty);
// addTypeName - Insert an entry in the symbol table mapping Str to Type. If
// there is already an entry for this name, true is returned and the symbol
// table is not modified.
//
bool addTypeName(const std::string &Name, const Type *Ty);
// getTypeName - If there is at least one entry in the symbol table for the
// specified type, return it.
//
std::string getTypeName(const Type *Ty);
// Get the underlying elements of the Module...
inline const GlobalListType &getGlobalList() const { return GlobalList; }
inline GlobalListType &getGlobalList() { return GlobalList; }
inline const FunctionListType &getFunctionList() const { return FunctionList;}
inline FunctionListType &getFunctionList() { return FunctionList;}
//===--------------------------------------------------------------------===//
// Symbol table support functions...
// hasSymbolTable() - Returns true if there is a symbol table allocated to
// this object AND if there is at least one name in it!
//
bool hasSymbolTable() const;
// CAUTION: The current symbol table may be null if there are no names (ie,
// the symbol table is empty)
//
inline SymbolTable *getSymbolTable() { return SymTab; }
inline const SymbolTable *getSymbolTable() const { return SymTab; }
// getSymbolTableSure is guaranteed to not return a null pointer, because if
// the method does not already have a symtab, one is created. Use this if
// you intend to put something into the symbol table for the method.
//
SymbolTable *getSymbolTableSure();
//===--------------------------------------------------------------------===//
// Module iterator forwarding functions
//
inline giterator gbegin() { return GlobalList.begin(); }
inline const_giterator gbegin() const { return GlobalList.begin(); }
inline giterator gend () { return GlobalList.end(); }
inline const_giterator gend () const { return GlobalList.end(); }
inline reverse_giterator grbegin() { return GlobalList.rbegin(); }
inline const_reverse_giterator grbegin() const { return GlobalList.rbegin(); }
inline reverse_giterator grend () { return GlobalList.rend(); }
inline const_reverse_giterator grend () const { return GlobalList.rend(); }
inline unsigned gsize() const { return GlobalList.size(); }
inline bool gempty() const { return GlobalList.empty(); }
inline const GlobalVariable *gfront() const { return GlobalList.front(); }
inline GlobalVariable *gfront() { return GlobalList.front(); }
inline const GlobalVariable *gback() const { return GlobalList.back(); }
inline GlobalVariable *gback() { return GlobalList.back(); }
inline iterator begin() { return FunctionList.begin(); }
inline const_iterator begin() const { return FunctionList.begin(); }
inline iterator end () { return FunctionList.end(); }
inline const_iterator end () const { return FunctionList.end(); }
inline reverse_iterator rbegin() { return FunctionList.rbegin(); }
inline const_reverse_iterator rbegin() const { return FunctionList.rbegin(); }
inline reverse_iterator rend () { return FunctionList.rend(); }
inline const_reverse_iterator rend () const { return FunctionList.rend(); }
inline unsigned size() const { return FunctionList.size(); }
inline bool empty() const { return FunctionList.empty(); }
inline const Function *front() const { return FunctionList.front(); }
inline Function *front() { return FunctionList.front(); }
inline const Function *back() const { return FunctionList.back(); }
inline Function *back() { return FunctionList.back(); }
void print(std::ostream &OS) const;
// dropAllReferences() - This function causes all the subinstructions to "let
// go" of all references that they are maintaining. This allows one to
// 'delete' a whole class at a time, even though there may be circular
// references... first all references are dropped, and all use counts go to
// zero. Then everything is delete'd for real. Note that no operations are
// valid on an object that has "dropped all references", except operator
// delete.
//
void dropAllReferences();
};
inline std::ostream &operator<<(std::ostream &O, const Module *M) {
M->print(O);
return O;
}
#endif