mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@132356 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1129 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1129 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the interface for lazy computation of value constraint
 | 
						|
// information.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "lazy-value-info"
 | 
						|
#include "llvm/Analysis/LazyValueInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/ConstantRange.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <map>
 | 
						|
#include <stack>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
char LazyValueInfo::ID = 0;
 | 
						|
INITIALIZE_PASS(LazyValueInfo, "lazy-value-info",
 | 
						|
                "Lazy Value Information Analysis", false, true)
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               LVILatticeVal
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// LVILatticeVal - This is the information tracked by LazyValueInfo for each
 | 
						|
/// value.
 | 
						|
///
 | 
						|
/// FIXME: This is basically just for bringup, this can be made a lot more rich
 | 
						|
/// in the future.
 | 
						|
///
 | 
						|
namespace {
 | 
						|
class LVILatticeVal {
 | 
						|
  enum LatticeValueTy {
 | 
						|
    /// undefined - This Value has no known value yet.
 | 
						|
    undefined,
 | 
						|
    
 | 
						|
    /// constant - This Value has a specific constant value.
 | 
						|
    constant,
 | 
						|
    /// notconstant - This Value is known to not have the specified value.
 | 
						|
    notconstant,
 | 
						|
    
 | 
						|
    /// constantrange - The Value falls within this range.
 | 
						|
    constantrange,
 | 
						|
    
 | 
						|
    /// overdefined - This value is not known to be constant, and we know that
 | 
						|
    /// it has a value.
 | 
						|
    overdefined
 | 
						|
  };
 | 
						|
  
 | 
						|
  /// Val: This stores the current lattice value along with the Constant* for
 | 
						|
  /// the constant if this is a 'constant' or 'notconstant' value.
 | 
						|
  LatticeValueTy Tag;
 | 
						|
  Constant *Val;
 | 
						|
  ConstantRange Range;
 | 
						|
  
 | 
						|
public:
 | 
						|
  LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {}
 | 
						|
 | 
						|
  static LVILatticeVal get(Constant *C) {
 | 
						|
    LVILatticeVal Res;
 | 
						|
    if (!isa<UndefValue>(C))
 | 
						|
      Res.markConstant(C);
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  static LVILatticeVal getNot(Constant *C) {
 | 
						|
    LVILatticeVal Res;
 | 
						|
    if (!isa<UndefValue>(C))
 | 
						|
      Res.markNotConstant(C);
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  static LVILatticeVal getRange(ConstantRange CR) {
 | 
						|
    LVILatticeVal Res;
 | 
						|
    Res.markConstantRange(CR);
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool isUndefined() const     { return Tag == undefined; }
 | 
						|
  bool isConstant() const      { return Tag == constant; }
 | 
						|
  bool isNotConstant() const   { return Tag == notconstant; }
 | 
						|
  bool isConstantRange() const { return Tag == constantrange; }
 | 
						|
  bool isOverdefined() const   { return Tag == overdefined; }
 | 
						|
  
 | 
						|
  Constant *getConstant() const {
 | 
						|
    assert(isConstant() && "Cannot get the constant of a non-constant!");
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
  
 | 
						|
  Constant *getNotConstant() const {
 | 
						|
    assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
 | 
						|
    return Val;
 | 
						|
  }
 | 
						|
  
 | 
						|
  ConstantRange getConstantRange() const {
 | 
						|
    assert(isConstantRange() &&
 | 
						|
           "Cannot get the constant-range of a non-constant-range!");
 | 
						|
    return Range;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// markOverdefined - Return true if this is a change in status.
 | 
						|
  bool markOverdefined() {
 | 
						|
    if (isOverdefined())
 | 
						|
      return false;
 | 
						|
    Tag = overdefined;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// markConstant - Return true if this is a change in status.
 | 
						|
  bool markConstant(Constant *V) {
 | 
						|
    assert(V && "Marking constant with NULL");
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | 
						|
      return markConstantRange(ConstantRange(CI->getValue()));
 | 
						|
    if (isa<UndefValue>(V))
 | 
						|
      return false;
 | 
						|
 | 
						|
    assert((!isConstant() || getConstant() == V) &&
 | 
						|
           "Marking constant with different value");
 | 
						|
    assert(isUndefined());
 | 
						|
    Tag = constant;
 | 
						|
    Val = V;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// markNotConstant - Return true if this is a change in status.
 | 
						|
  bool markNotConstant(Constant *V) {
 | 
						|
    assert(V && "Marking constant with NULL");
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | 
						|
      return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
 | 
						|
    if (isa<UndefValue>(V))
 | 
						|
      return false;
 | 
						|
 | 
						|
    assert((!isConstant() || getConstant() != V) &&
 | 
						|
           "Marking constant !constant with same value");
 | 
						|
    assert((!isNotConstant() || getNotConstant() == V) &&
 | 
						|
           "Marking !constant with different value");
 | 
						|
    assert(isUndefined() || isConstant());
 | 
						|
    Tag = notconstant;
 | 
						|
    Val = V;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// markConstantRange - Return true if this is a change in status.
 | 
						|
  bool markConstantRange(const ConstantRange NewR) {
 | 
						|
    if (isConstantRange()) {
 | 
						|
      if (NewR.isEmptySet())
 | 
						|
        return markOverdefined();
 | 
						|
      
 | 
						|
      bool changed = Range == NewR;
 | 
						|
      Range = NewR;
 | 
						|
      return changed;
 | 
						|
    }
 | 
						|
    
 | 
						|
    assert(isUndefined());
 | 
						|
    if (NewR.isEmptySet())
 | 
						|
      return markOverdefined();
 | 
						|
    
 | 
						|
    Tag = constantrange;
 | 
						|
    Range = NewR;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// mergeIn - Merge the specified lattice value into this one, updating this
 | 
						|
  /// one and returning true if anything changed.
 | 
						|
  bool mergeIn(const LVILatticeVal &RHS) {
 | 
						|
    if (RHS.isUndefined() || isOverdefined()) return false;
 | 
						|
    if (RHS.isOverdefined()) return markOverdefined();
 | 
						|
 | 
						|
    if (isUndefined()) {
 | 
						|
      Tag = RHS.Tag;
 | 
						|
      Val = RHS.Val;
 | 
						|
      Range = RHS.Range;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (isConstant()) {
 | 
						|
      if (RHS.isConstant()) {
 | 
						|
        if (Val == RHS.Val)
 | 
						|
          return false;
 | 
						|
        return markOverdefined();
 | 
						|
      }
 | 
						|
 | 
						|
      if (RHS.isNotConstant()) {
 | 
						|
        if (Val == RHS.Val)
 | 
						|
          return markOverdefined();
 | 
						|
 | 
						|
        // Unless we can prove that the two Constants are different, we must
 | 
						|
        // move to overdefined.
 | 
						|
        // FIXME: use TargetData for smarter constant folding.
 | 
						|
        if (ConstantInt *Res = dyn_cast<ConstantInt>(
 | 
						|
                ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
 | 
						|
                                                getConstant(),
 | 
						|
                                                RHS.getNotConstant())))
 | 
						|
          if (Res->isOne())
 | 
						|
            return markNotConstant(RHS.getNotConstant());
 | 
						|
 | 
						|
        return markOverdefined();
 | 
						|
      }
 | 
						|
 | 
						|
      // RHS is a ConstantRange, LHS is a non-integer Constant.
 | 
						|
 | 
						|
      // FIXME: consider the case where RHS is a range [1, 0) and LHS is
 | 
						|
      // a function. The correct result is to pick up RHS.
 | 
						|
 | 
						|
      return markOverdefined();
 | 
						|
    }
 | 
						|
 | 
						|
    if (isNotConstant()) {
 | 
						|
      if (RHS.isConstant()) {
 | 
						|
        if (Val == RHS.Val)
 | 
						|
          return markOverdefined();
 | 
						|
 | 
						|
        // Unless we can prove that the two Constants are different, we must
 | 
						|
        // move to overdefined.
 | 
						|
        // FIXME: use TargetData for smarter constant folding.
 | 
						|
        if (ConstantInt *Res = dyn_cast<ConstantInt>(
 | 
						|
                ConstantFoldCompareInstOperands(CmpInst::ICMP_NE,
 | 
						|
                                                getNotConstant(),
 | 
						|
                                                RHS.getConstant())))
 | 
						|
          if (Res->isOne())
 | 
						|
            return false;
 | 
						|
 | 
						|
        return markOverdefined();
 | 
						|
      }
 | 
						|
 | 
						|
      if (RHS.isNotConstant()) {
 | 
						|
        if (Val == RHS.Val)
 | 
						|
          return false;
 | 
						|
        return markOverdefined();
 | 
						|
      }
 | 
						|
 | 
						|
      return markOverdefined();
 | 
						|
    }
 | 
						|
 | 
						|
    assert(isConstantRange() && "New LVILattice type?");
 | 
						|
    if (!RHS.isConstantRange())
 | 
						|
      return markOverdefined();
 | 
						|
 | 
						|
    ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
 | 
						|
    if (NewR.isFullSet())
 | 
						|
      return markOverdefined();
 | 
						|
    return markConstantRange(NewR);
 | 
						|
  }
 | 
						|
};
 | 
						|
  
 | 
						|
} // end anonymous namespace.
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
 | 
						|
    LLVM_ATTRIBUTE_USED;
 | 
						|
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
 | 
						|
  if (Val.isUndefined())
 | 
						|
    return OS << "undefined";
 | 
						|
  if (Val.isOverdefined())
 | 
						|
    return OS << "overdefined";
 | 
						|
 | 
						|
  if (Val.isNotConstant())
 | 
						|
    return OS << "notconstant<" << *Val.getNotConstant() << '>';
 | 
						|
  else if (Val.isConstantRange())
 | 
						|
    return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
 | 
						|
              << Val.getConstantRange().getUpper() << '>';
 | 
						|
  return OS << "constant<" << *Val.getConstant() << '>';
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                          LazyValueInfoCache Decl
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// LVIValueHandle - A callback value handle update the cache when
 | 
						|
  /// values are erased.
 | 
						|
  class LazyValueInfoCache;
 | 
						|
  struct LVIValueHandle : public CallbackVH {
 | 
						|
    LazyValueInfoCache *Parent;
 | 
						|
      
 | 
						|
    LVIValueHandle(Value *V, LazyValueInfoCache *P)
 | 
						|
      : CallbackVH(V), Parent(P) { }
 | 
						|
      
 | 
						|
    void deleted();
 | 
						|
    void allUsesReplacedWith(Value *V) {
 | 
						|
      deleted();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  template<>
 | 
						|
  struct DenseMapInfo<LVIValueHandle> {
 | 
						|
    typedef DenseMapInfo<Value*> PointerInfo;
 | 
						|
    static inline LVIValueHandle getEmptyKey() {
 | 
						|
      return LVIValueHandle(PointerInfo::getEmptyKey(),
 | 
						|
                            static_cast<LazyValueInfoCache*>(0));
 | 
						|
    }
 | 
						|
    static inline LVIValueHandle getTombstoneKey() {
 | 
						|
      return LVIValueHandle(PointerInfo::getTombstoneKey(),
 | 
						|
                            static_cast<LazyValueInfoCache*>(0));
 | 
						|
    }
 | 
						|
    static unsigned getHashValue(const LVIValueHandle &Val) {
 | 
						|
      return PointerInfo::getHashValue(Val);
 | 
						|
    }
 | 
						|
    static bool isEqual(const LVIValueHandle &LHS, const LVIValueHandle &RHS) {
 | 
						|
      return LHS == RHS;
 | 
						|
    }
 | 
						|
  };
 | 
						|
  
 | 
						|
  template<>
 | 
						|
  struct DenseMapInfo<std::pair<AssertingVH<BasicBlock>, Value*> > {
 | 
						|
    typedef std::pair<AssertingVH<BasicBlock>, Value*> PairTy;
 | 
						|
    typedef DenseMapInfo<AssertingVH<BasicBlock> > APointerInfo;
 | 
						|
    typedef DenseMapInfo<Value*> BPointerInfo;
 | 
						|
    static inline PairTy getEmptyKey() {
 | 
						|
      return std::make_pair(APointerInfo::getEmptyKey(),
 | 
						|
                            BPointerInfo::getEmptyKey());
 | 
						|
    }
 | 
						|
    static inline PairTy getTombstoneKey() {
 | 
						|
      return std::make_pair(APointerInfo::getTombstoneKey(), 
 | 
						|
                            BPointerInfo::getTombstoneKey());
 | 
						|
    }
 | 
						|
    static unsigned getHashValue( const PairTy &Val) {
 | 
						|
      return APointerInfo::getHashValue(Val.first) ^ 
 | 
						|
             BPointerInfo::getHashValue(Val.second);
 | 
						|
    }
 | 
						|
    static bool isEqual(const PairTy &LHS, const PairTy &RHS) {
 | 
						|
      return APointerInfo::isEqual(LHS.first, RHS.first) &&
 | 
						|
             BPointerInfo::isEqual(LHS.second, RHS.second);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace { 
 | 
						|
  /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
 | 
						|
  /// maintains information about queries across the clients' queries.
 | 
						|
  class LazyValueInfoCache {
 | 
						|
    /// ValueCacheEntryTy - This is all of the cached block information for
 | 
						|
    /// exactly one Value*.  The entries are sorted by the BasicBlock* of the
 | 
						|
    /// entries, allowing us to do a lookup with a binary search.
 | 
						|
    typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
 | 
						|
 | 
						|
    /// ValueCache - This is all of the cached information for all values,
 | 
						|
    /// mapped from Value* to key information.
 | 
						|
    DenseMap<LVIValueHandle, ValueCacheEntryTy> ValueCache;
 | 
						|
    
 | 
						|
    /// OverDefinedCache - This tracks, on a per-block basis, the set of 
 | 
						|
    /// values that are over-defined at the end of that block.  This is required
 | 
						|
    /// for cache updating.
 | 
						|
    typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
 | 
						|
    DenseSet<OverDefinedPairTy> OverDefinedCache;
 | 
						|
    
 | 
						|
    /// BlockValueStack - This stack holds the state of the value solver
 | 
						|
    /// during a query.  It basically emulates the callstack of the naive
 | 
						|
    /// recursive value lookup process.
 | 
						|
    std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
 | 
						|
    
 | 
						|
    friend struct LVIValueHandle;
 | 
						|
    
 | 
						|
    /// OverDefinedCacheUpdater - A helper object that ensures that the
 | 
						|
    /// OverDefinedCache is updated whenever solveBlockValue returns.
 | 
						|
    struct OverDefinedCacheUpdater {
 | 
						|
      LazyValueInfoCache *Parent;
 | 
						|
      Value *Val;
 | 
						|
      BasicBlock *BB;
 | 
						|
      LVILatticeVal &BBLV;
 | 
						|
      
 | 
						|
      OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV,
 | 
						|
                       LazyValueInfoCache *P)
 | 
						|
        : Parent(P), Val(V), BB(B), BBLV(LV) { }
 | 
						|
      
 | 
						|
      bool markResult(bool changed) { 
 | 
						|
        if (changed && BBLV.isOverdefined())
 | 
						|
          Parent->OverDefinedCache.insert(std::make_pair(BB, Val));
 | 
						|
        return changed;
 | 
						|
      }
 | 
						|
    };
 | 
						|
    
 | 
						|
 | 
						|
 | 
						|
    LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
 | 
						|
    bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
 | 
						|
                      LVILatticeVal &Result);
 | 
						|
    bool hasBlockValue(Value *Val, BasicBlock *BB);
 | 
						|
 | 
						|
    // These methods process one work item and may add more. A false value
 | 
						|
    // returned means that the work item was not completely processed and must
 | 
						|
    // be revisited after going through the new items.
 | 
						|
    bool solveBlockValue(Value *Val, BasicBlock *BB);
 | 
						|
    bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
 | 
						|
                                 Value *Val, BasicBlock *BB);
 | 
						|
    bool solveBlockValuePHINode(LVILatticeVal &BBLV,
 | 
						|
                                PHINode *PN, BasicBlock *BB);
 | 
						|
    bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
 | 
						|
                                      Instruction *BBI, BasicBlock *BB);
 | 
						|
 | 
						|
    void solve();
 | 
						|
    
 | 
						|
    ValueCacheEntryTy &lookup(Value *V) {
 | 
						|
      return ValueCache[LVIValueHandle(V, this)];
 | 
						|
    }
 | 
						|
 | 
						|
  public:
 | 
						|
    /// getValueInBlock - This is the query interface to determine the lattice
 | 
						|
    /// value for the specified Value* at the end of the specified block.
 | 
						|
    LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
 | 
						|
 | 
						|
    /// getValueOnEdge - This is the query interface to determine the lattice
 | 
						|
    /// value for the specified Value* that is true on the specified edge.
 | 
						|
    LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
 | 
						|
    
 | 
						|
    /// threadEdge - This is the update interface to inform the cache that an
 | 
						|
    /// edge from PredBB to OldSucc has been threaded to be from PredBB to
 | 
						|
    /// NewSucc.
 | 
						|
    void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
 | 
						|
    
 | 
						|
    /// eraseBlock - This is part of the update interface to inform the cache
 | 
						|
    /// that a block has been deleted.
 | 
						|
    void eraseBlock(BasicBlock *BB);
 | 
						|
    
 | 
						|
    /// clear - Empty the cache.
 | 
						|
    void clear() {
 | 
						|
      ValueCache.clear();
 | 
						|
      OverDefinedCache.clear();
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void LVIValueHandle::deleted() {
 | 
						|
  typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
 | 
						|
  
 | 
						|
  SmallVector<OverDefinedPairTy, 4> ToErase;
 | 
						|
  for (DenseSet<OverDefinedPairTy>::iterator 
 | 
						|
       I = Parent->OverDefinedCache.begin(),
 | 
						|
       E = Parent->OverDefinedCache.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->second == getValPtr())
 | 
						|
      ToErase.push_back(*I);
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
 | 
						|
       E = ToErase.end(); I != E; ++I)
 | 
						|
    Parent->OverDefinedCache.erase(*I);
 | 
						|
  
 | 
						|
  // This erasure deallocates *this, so it MUST happen after we're done
 | 
						|
  // using any and all members of *this.
 | 
						|
  Parent->ValueCache.erase(*this);
 | 
						|
}
 | 
						|
 | 
						|
void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
 | 
						|
  SmallVector<OverDefinedPairTy, 4> ToErase;
 | 
						|
  for (DenseSet<OverDefinedPairTy>::iterator  I = OverDefinedCache.begin(),
 | 
						|
       E = OverDefinedCache.end(); I != E; ++I) {
 | 
						|
    if (I->first == BB)
 | 
						|
      ToErase.push_back(*I);
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (SmallVector<OverDefinedPairTy, 4>::iterator I = ToErase.begin(),
 | 
						|
       E = ToErase.end(); I != E; ++I)
 | 
						|
    OverDefinedCache.erase(*I);
 | 
						|
 | 
						|
  for (DenseMap<LVIValueHandle, ValueCacheEntryTy>::iterator
 | 
						|
       I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
 | 
						|
    I->second.erase(BB);
 | 
						|
}
 | 
						|
 | 
						|
void LazyValueInfoCache::solve() {
 | 
						|
  while (!BlockValueStack.empty()) {
 | 
						|
    std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
 | 
						|
    if (solveBlockValue(e.second, e.first))
 | 
						|
      BlockValueStack.pop();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
 | 
						|
  // If already a constant, there is nothing to compute.
 | 
						|
  if (isa<Constant>(Val))
 | 
						|
    return true;
 | 
						|
 | 
						|
  LVIValueHandle ValHandle(Val, this);
 | 
						|
  if (!ValueCache.count(ValHandle)) return false;
 | 
						|
  return ValueCache[ValHandle].count(BB);
 | 
						|
}
 | 
						|
 | 
						|
LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
 | 
						|
  // If already a constant, there is nothing to compute.
 | 
						|
  if (Constant *VC = dyn_cast<Constant>(Val))
 | 
						|
    return LVILatticeVal::get(VC);
 | 
						|
 | 
						|
  return lookup(Val)[BB];
 | 
						|
}
 | 
						|
 | 
						|
bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
 | 
						|
  if (isa<Constant>(Val))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ValueCacheEntryTy &Cache = lookup(Val);
 | 
						|
  LVILatticeVal &BBLV = Cache[BB];
 | 
						|
  
 | 
						|
  // OverDefinedCacheUpdater is a helper object that will update
 | 
						|
  // the OverDefinedCache for us when this method exits.  Make sure to
 | 
						|
  // call markResult on it as we exist, passing a bool to indicate if the
 | 
						|
  // cache needs updating, i.e. if we have solve a new value or not.
 | 
						|
  OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this);
 | 
						|
 | 
						|
  // If we've already computed this block's value, return it.
 | 
						|
  if (!BBLV.isUndefined()) {
 | 
						|
    DEBUG(dbgs() << "  reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
 | 
						|
    
 | 
						|
    // Since we're reusing a cached value here, we don't need to update the 
 | 
						|
    // OverDefinedCahce.  The cache will have been properly updated 
 | 
						|
    // whenever the cached value was inserted.
 | 
						|
    ODCacheUpdater.markResult(false);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this is the first time we're seeing this block.  Reset the
 | 
						|
  // lattice value to overdefined, so that cycles will terminate and be
 | 
						|
  // conservatively correct.
 | 
						|
  BBLV.markOverdefined();
 | 
						|
  
 | 
						|
  Instruction *BBI = dyn_cast<Instruction>(Val);
 | 
						|
  if (BBI == 0 || BBI->getParent() != BB) {
 | 
						|
    return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
 | 
						|
  }
 | 
						|
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
 | 
						|
    return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB));
 | 
						|
  }
 | 
						|
 | 
						|
  if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
 | 
						|
    BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
 | 
						|
    return ODCacheUpdater.markResult(true);
 | 
						|
  }
 | 
						|
 | 
						|
  // We can only analyze the definitions of certain classes of instructions
 | 
						|
  // (integral binops and casts at the moment), so bail if this isn't one.
 | 
						|
  LVILatticeVal Result;
 | 
						|
  if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
 | 
						|
     !BBI->getType()->isIntegerTy()) {
 | 
						|
    DEBUG(dbgs() << " compute BB '" << BB->getName()
 | 
						|
                 << "' - overdefined because inst def found.\n");
 | 
						|
    BBLV.markOverdefined();
 | 
						|
    return ODCacheUpdater.markResult(true);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: We're currently limited to binops with a constant RHS.  This should
 | 
						|
  // be improved.
 | 
						|
  BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
 | 
						|
  if (BO && !isa<ConstantInt>(BO->getOperand(1))) { 
 | 
						|
    DEBUG(dbgs() << " compute BB '" << BB->getName()
 | 
						|
                 << "' - overdefined because inst def found.\n");
 | 
						|
 | 
						|
    BBLV.markOverdefined();
 | 
						|
    return ODCacheUpdater.markResult(true);
 | 
						|
  }
 | 
						|
 | 
						|
  return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB));
 | 
						|
}
 | 
						|
 | 
						|
static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
 | 
						|
  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
 | 
						|
    return L->getPointerAddressSpace() == 0 &&
 | 
						|
        GetUnderlyingObject(L->getPointerOperand()) ==
 | 
						|
        GetUnderlyingObject(Ptr);
 | 
						|
  }
 | 
						|
  if (StoreInst *S = dyn_cast<StoreInst>(I)) {
 | 
						|
    return S->getPointerAddressSpace() == 0 &&
 | 
						|
        GetUnderlyingObject(S->getPointerOperand()) ==
 | 
						|
        GetUnderlyingObject(Ptr);
 | 
						|
  }
 | 
						|
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
 | 
						|
    if (MI->isVolatile()) return false;
 | 
						|
 | 
						|
    // FIXME: check whether it has a valuerange that excludes zero?
 | 
						|
    ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
 | 
						|
    if (!Len || Len->isZero()) return false;
 | 
						|
 | 
						|
    if (MI->getDestAddressSpace() == 0)
 | 
						|
      if (MI->getRawDest() == Ptr || MI->getDest() == Ptr)
 | 
						|
        return true;
 | 
						|
    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
 | 
						|
      if (MTI->getSourceAddressSpace() == 0)
 | 
						|
        if (MTI->getRawSource() == Ptr || MTI->getSource() == Ptr)
 | 
						|
          return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
 | 
						|
                                                 Value *Val, BasicBlock *BB) {
 | 
						|
  LVILatticeVal Result;  // Start Undefined.
 | 
						|
 | 
						|
  // If this is a pointer, and there's a load from that pointer in this BB,
 | 
						|
  // then we know that the pointer can't be NULL.
 | 
						|
  bool NotNull = false;
 | 
						|
  if (Val->getType()->isPointerTy()) {
 | 
						|
    if (isa<AllocaInst>(Val)) {
 | 
						|
      NotNull = true;
 | 
						|
    } else {
 | 
						|
      for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();BI != BE;++BI){
 | 
						|
        if (InstructionDereferencesPointer(BI, Val)) {
 | 
						|
          NotNull = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is the entry block, we must be asking about an argument.  The
 | 
						|
  // value is overdefined.
 | 
						|
  if (BB == &BB->getParent()->getEntryBlock()) {
 | 
						|
    assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
 | 
						|
    if (NotNull) {
 | 
						|
      const PointerType *PTy = cast<PointerType>(Val->getType());
 | 
						|
      Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
 | 
						|
    } else {
 | 
						|
      Result.markOverdefined();
 | 
						|
    }
 | 
						|
    BBLV = Result;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all of our predecessors, merging what we know from them into
 | 
						|
  // result.
 | 
						|
  bool EdgesMissing = false;
 | 
						|
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
    LVILatticeVal EdgeResult;
 | 
						|
    EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
 | 
						|
    if (EdgesMissing)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Result.mergeIn(EdgeResult);
 | 
						|
 | 
						|
    // If we hit overdefined, exit early.  The BlockVals entry is already set
 | 
						|
    // to overdefined.
 | 
						|
    if (Result.isOverdefined()) {
 | 
						|
      DEBUG(dbgs() << " compute BB '" << BB->getName()
 | 
						|
            << "' - overdefined because of pred.\n");
 | 
						|
      // If we previously determined that this is a pointer that can't be null
 | 
						|
      // then return that rather than giving up entirely.
 | 
						|
      if (NotNull) {
 | 
						|
        const PointerType *PTy = cast<PointerType>(Val->getType());
 | 
						|
        Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
 | 
						|
      }
 | 
						|
      
 | 
						|
      BBLV = Result;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (EdgesMissing)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Return the merged value, which is more precise than 'overdefined'.
 | 
						|
  assert(!Result.isOverdefined());
 | 
						|
  BBLV = Result;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
  
 | 
						|
bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
 | 
						|
                                                PHINode *PN, BasicBlock *BB) {
 | 
						|
  LVILatticeVal Result;  // Start Undefined.
 | 
						|
 | 
						|
  // Loop over all of our predecessors, merging what we know from them into
 | 
						|
  // result.
 | 
						|
  bool EdgesMissing = false;
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    BasicBlock *PhiBB = PN->getIncomingBlock(i);
 | 
						|
    Value *PhiVal = PN->getIncomingValue(i);
 | 
						|
    LVILatticeVal EdgeResult;
 | 
						|
    EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult);
 | 
						|
    if (EdgesMissing)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Result.mergeIn(EdgeResult);
 | 
						|
 | 
						|
    // If we hit overdefined, exit early.  The BlockVals entry is already set
 | 
						|
    // to overdefined.
 | 
						|
    if (Result.isOverdefined()) {
 | 
						|
      DEBUG(dbgs() << " compute BB '" << BB->getName()
 | 
						|
            << "' - overdefined because of pred.\n");
 | 
						|
      
 | 
						|
      BBLV = Result;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (EdgesMissing)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Return the merged value, which is more precise than 'overdefined'.
 | 
						|
  assert(!Result.isOverdefined() && "Possible PHI in entry block?");
 | 
						|
  BBLV = Result;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
 | 
						|
                                                      Instruction *BBI,
 | 
						|
                                                      BasicBlock *BB) {
 | 
						|
  // Figure out the range of the LHS.  If that fails, bail.
 | 
						|
  if (!hasBlockValue(BBI->getOperand(0), BB)) {
 | 
						|
    BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0)));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
 | 
						|
  if (!LHSVal.isConstantRange()) {
 | 
						|
    BBLV.markOverdefined();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  ConstantRange LHSRange = LHSVal.getConstantRange();
 | 
						|
  ConstantRange RHSRange(1);
 | 
						|
  const IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
 | 
						|
  if (isa<BinaryOperator>(BBI)) {
 | 
						|
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
 | 
						|
      RHSRange = ConstantRange(RHS->getValue());
 | 
						|
    } else {
 | 
						|
      BBLV.markOverdefined();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // NOTE: We're currently limited by the set of operations that ConstantRange
 | 
						|
  // can evaluate symbolically.  Enhancing that set will allows us to analyze
 | 
						|
  // more definitions.
 | 
						|
  LVILatticeVal Result;
 | 
						|
  switch (BBI->getOpcode()) {
 | 
						|
  case Instruction::Add:
 | 
						|
    Result.markConstantRange(LHSRange.add(RHSRange));
 | 
						|
    break;
 | 
						|
  case Instruction::Sub:
 | 
						|
    Result.markConstantRange(LHSRange.sub(RHSRange));
 | 
						|
    break;
 | 
						|
  case Instruction::Mul:
 | 
						|
    Result.markConstantRange(LHSRange.multiply(RHSRange));
 | 
						|
    break;
 | 
						|
  case Instruction::UDiv:
 | 
						|
    Result.markConstantRange(LHSRange.udiv(RHSRange));
 | 
						|
    break;
 | 
						|
  case Instruction::Shl:
 | 
						|
    Result.markConstantRange(LHSRange.shl(RHSRange));
 | 
						|
    break;
 | 
						|
  case Instruction::LShr:
 | 
						|
    Result.markConstantRange(LHSRange.lshr(RHSRange));
 | 
						|
    break;
 | 
						|
  case Instruction::Trunc:
 | 
						|
    Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
 | 
						|
    break;
 | 
						|
  case Instruction::SExt:
 | 
						|
    Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
 | 
						|
    break;
 | 
						|
  case Instruction::ZExt:
 | 
						|
    Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
 | 
						|
    break;
 | 
						|
  case Instruction::BitCast:
 | 
						|
    Result.markConstantRange(LHSRange);
 | 
						|
    break;
 | 
						|
  case Instruction::And:
 | 
						|
    Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
 | 
						|
    break;
 | 
						|
  case Instruction::Or:
 | 
						|
    Result.markConstantRange(LHSRange.binaryOr(RHSRange));
 | 
						|
    break;
 | 
						|
  
 | 
						|
  // Unhandled instructions are overdefined.
 | 
						|
  default:
 | 
						|
    DEBUG(dbgs() << " compute BB '" << BB->getName()
 | 
						|
                 << "' - overdefined because inst def found.\n");
 | 
						|
    Result.markOverdefined();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  BBLV = Result;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// getEdgeValue - This method attempts to infer more complex 
 | 
						|
bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
 | 
						|
                                      BasicBlock *BBTo, LVILatticeVal &Result) {
 | 
						|
  // If already a constant, there is nothing to compute.
 | 
						|
  if (Constant *VC = dyn_cast<Constant>(Val)) {
 | 
						|
    Result = LVILatticeVal::get(VC);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
 | 
						|
  // know that v != 0.
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
 | 
						|
    // If this is a conditional branch and only one successor goes to BBTo, then
 | 
						|
    // we maybe able to infer something from the condition. 
 | 
						|
    if (BI->isConditional() &&
 | 
						|
        BI->getSuccessor(0) != BI->getSuccessor(1)) {
 | 
						|
      bool isTrueDest = BI->getSuccessor(0) == BBTo;
 | 
						|
      assert(BI->getSuccessor(!isTrueDest) == BBTo &&
 | 
						|
             "BBTo isn't a successor of BBFrom");
 | 
						|
      
 | 
						|
      // If V is the condition of the branch itself, then we know exactly what
 | 
						|
      // it is.
 | 
						|
      if (BI->getCondition() == Val) {
 | 
						|
        Result = LVILatticeVal::get(ConstantInt::get(
 | 
						|
                              Type::getInt1Ty(Val->getContext()), isTrueDest));
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If the condition of the branch is an equality comparison, we may be
 | 
						|
      // able to infer the value.
 | 
						|
      ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
 | 
						|
      if (ICI && ICI->getOperand(0) == Val &&
 | 
						|
          isa<Constant>(ICI->getOperand(1))) {
 | 
						|
        if (ICI->isEquality()) {
 | 
						|
          // We know that V has the RHS constant if this is a true SETEQ or
 | 
						|
          // false SETNE. 
 | 
						|
          if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
 | 
						|
            Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
 | 
						|
          else
 | 
						|
            Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
 | 
						|
          // Calculate the range of values that would satisfy the comparison.
 | 
						|
          ConstantRange CmpRange(CI->getValue(), CI->getValue()+1);
 | 
						|
          ConstantRange TrueValues =
 | 
						|
            ConstantRange::makeICmpRegion(ICI->getPredicate(), CmpRange);
 | 
						|
 | 
						|
          // If we're interested in the false dest, invert the condition.
 | 
						|
          if (!isTrueDest) TrueValues = TrueValues.inverse();
 | 
						|
          
 | 
						|
          // Figure out the possible values of the query BEFORE this branch.  
 | 
						|
          if (!hasBlockValue(Val, BBFrom)) {
 | 
						|
            BlockValueStack.push(std::make_pair(BBFrom, Val));
 | 
						|
            return false;
 | 
						|
          }
 | 
						|
          
 | 
						|
          LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
 | 
						|
          if (!InBlock.isConstantRange()) {
 | 
						|
            Result = LVILatticeVal::getRange(TrueValues);
 | 
						|
            return true;
 | 
						|
          }
 | 
						|
 | 
						|
          // Find all potential values that satisfy both the input and output
 | 
						|
          // conditions.
 | 
						|
          ConstantRange PossibleValues =
 | 
						|
            TrueValues.intersectWith(InBlock.getConstantRange());
 | 
						|
 | 
						|
          Result = LVILatticeVal::getRange(PossibleValues);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the edge was formed by a switch on the value, then we may know exactly
 | 
						|
  // what it is.
 | 
						|
  if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
 | 
						|
    if (SI->getCondition() == Val) {
 | 
						|
      // We don't know anything in the default case.
 | 
						|
      if (SI->getDefaultDest() == BBTo) {
 | 
						|
        Result.markOverdefined();
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // We only know something if there is exactly one value that goes from
 | 
						|
      // BBFrom to BBTo.
 | 
						|
      unsigned NumEdges = 0;
 | 
						|
      ConstantInt *EdgeVal = 0;
 | 
						|
      for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
 | 
						|
        if (SI->getSuccessor(i) != BBTo) continue;
 | 
						|
        if (NumEdges++) break;
 | 
						|
        EdgeVal = SI->getCaseValue(i);
 | 
						|
      }
 | 
						|
      assert(EdgeVal && "Missing successor?");
 | 
						|
      if (NumEdges == 1) {
 | 
						|
        Result = LVILatticeVal::get(EdgeVal);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise see if the value is known in the block.
 | 
						|
  if (hasBlockValue(Val, BBFrom)) {
 | 
						|
    Result = getBlockValue(Val, BBFrom);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  BlockValueStack.push(std::make_pair(BBFrom, Val));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
 | 
						|
  DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
 | 
						|
        << BB->getName() << "'\n");
 | 
						|
  
 | 
						|
  BlockValueStack.push(std::make_pair(BB, V));
 | 
						|
  solve();
 | 
						|
  LVILatticeVal Result = getBlockValue(V, BB);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "  Result = " << Result << "\n");
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
LVILatticeVal LazyValueInfoCache::
 | 
						|
getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
 | 
						|
  DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
 | 
						|
        << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
 | 
						|
  
 | 
						|
  LVILatticeVal Result;
 | 
						|
  if (!getEdgeValue(V, FromBB, ToBB, Result)) {
 | 
						|
    solve();
 | 
						|
    bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result);
 | 
						|
    (void)WasFastQuery;
 | 
						|
    assert(WasFastQuery && "More work to do after problem solved?");
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "  Result = " << Result << "\n");
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
 | 
						|
                                    BasicBlock *NewSucc) {
 | 
						|
  // When an edge in the graph has been threaded, values that we could not 
 | 
						|
  // determine a value for before (i.e. were marked overdefined) may be possible
 | 
						|
  // to solve now.  We do NOT try to proactively update these values.  Instead,
 | 
						|
  // we clear their entries from the cache, and allow lazy updating to recompute
 | 
						|
  // them when needed.
 | 
						|
  
 | 
						|
  // The updating process is fairly simple: we need to dropped cached info
 | 
						|
  // for all values that were marked overdefined in OldSucc, and for those same
 | 
						|
  // values in any successor of OldSucc (except NewSucc) in which they were
 | 
						|
  // also marked overdefined.
 | 
						|
  std::vector<BasicBlock*> worklist;
 | 
						|
  worklist.push_back(OldSucc);
 | 
						|
  
 | 
						|
  DenseSet<Value*> ClearSet;
 | 
						|
  for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
 | 
						|
       E = OverDefinedCache.end(); I != E; ++I) {
 | 
						|
    if (I->first == OldSucc)
 | 
						|
      ClearSet.insert(I->second);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Use a worklist to perform a depth-first search of OldSucc's successors.
 | 
						|
  // NOTE: We do not need a visited list since any blocks we have already
 | 
						|
  // visited will have had their overdefined markers cleared already, and we
 | 
						|
  // thus won't loop to their successors.
 | 
						|
  while (!worklist.empty()) {
 | 
						|
    BasicBlock *ToUpdate = worklist.back();
 | 
						|
    worklist.pop_back();
 | 
						|
    
 | 
						|
    // Skip blocks only accessible through NewSucc.
 | 
						|
    if (ToUpdate == NewSucc) continue;
 | 
						|
    
 | 
						|
    bool changed = false;
 | 
						|
    for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      // If a value was marked overdefined in OldSucc, and is here too...
 | 
						|
      DenseSet<OverDefinedPairTy>::iterator OI =
 | 
						|
        OverDefinedCache.find(std::make_pair(ToUpdate, *I));
 | 
						|
      if (OI == OverDefinedCache.end()) continue;
 | 
						|
 | 
						|
      // Remove it from the caches.
 | 
						|
      ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
 | 
						|
      ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
 | 
						|
 | 
						|
      assert(CI != Entry.end() && "Couldn't find entry to update?");
 | 
						|
      Entry.erase(CI);
 | 
						|
      OverDefinedCache.erase(OI);
 | 
						|
 | 
						|
      // If we removed anything, then we potentially need to update 
 | 
						|
      // blocks successors too.
 | 
						|
      changed = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!changed) continue;
 | 
						|
    
 | 
						|
    worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            LazyValueInfo Impl
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// getCache - This lazily constructs the LazyValueInfoCache.
 | 
						|
static LazyValueInfoCache &getCache(void *&PImpl) {
 | 
						|
  if (!PImpl)
 | 
						|
    PImpl = new LazyValueInfoCache();
 | 
						|
  return *static_cast<LazyValueInfoCache*>(PImpl);
 | 
						|
}
 | 
						|
 | 
						|
bool LazyValueInfo::runOnFunction(Function &F) {
 | 
						|
  if (PImpl)
 | 
						|
    getCache(PImpl).clear();
 | 
						|
  
 | 
						|
  TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
  // Fully lazy.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LazyValueInfo::releaseMemory() {
 | 
						|
  // If the cache was allocated, free it.
 | 
						|
  if (PImpl) {
 | 
						|
    delete &getCache(PImpl);
 | 
						|
    PImpl = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB) {
 | 
						|
  LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
 | 
						|
  
 | 
						|
  if (Result.isConstant())
 | 
						|
    return Result.getConstant();
 | 
						|
  if (Result.isConstantRange()) {
 | 
						|
    ConstantRange CR = Result.getConstantRange();
 | 
						|
    if (const APInt *SingleVal = CR.getSingleElement())
 | 
						|
      return ConstantInt::get(V->getContext(), *SingleVal);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getConstantOnEdge - Determine whether the specified value is known to be a
 | 
						|
/// constant on the specified edge.  Return null if not.
 | 
						|
Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
 | 
						|
                                           BasicBlock *ToBB) {
 | 
						|
  LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
 | 
						|
  
 | 
						|
  if (Result.isConstant())
 | 
						|
    return Result.getConstant();
 | 
						|
  if (Result.isConstantRange()) {
 | 
						|
    ConstantRange CR = Result.getConstantRange();
 | 
						|
    if (const APInt *SingleVal = CR.getSingleElement())
 | 
						|
      return ConstantInt::get(V->getContext(), *SingleVal);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getPredicateOnEdge - Determine whether the specified value comparison
 | 
						|
/// with a constant is known to be true or false on the specified CFG edge.
 | 
						|
/// Pred is a CmpInst predicate.
 | 
						|
LazyValueInfo::Tristate
 | 
						|
LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
 | 
						|
                                  BasicBlock *FromBB, BasicBlock *ToBB) {
 | 
						|
  LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
 | 
						|
  
 | 
						|
  // If we know the value is a constant, evaluate the conditional.
 | 
						|
  Constant *Res = 0;
 | 
						|
  if (Result.isConstant()) {
 | 
						|
    Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD);
 | 
						|
    if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
 | 
						|
      return ResCI->isZero() ? False : True;
 | 
						|
    return Unknown;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Result.isConstantRange()) {
 | 
						|
    ConstantInt *CI = dyn_cast<ConstantInt>(C);
 | 
						|
    if (!CI) return Unknown;
 | 
						|
    
 | 
						|
    ConstantRange CR = Result.getConstantRange();
 | 
						|
    if (Pred == ICmpInst::ICMP_EQ) {
 | 
						|
      if (!CR.contains(CI->getValue()))
 | 
						|
        return False;
 | 
						|
      
 | 
						|
      if (CR.isSingleElement() && CR.contains(CI->getValue()))
 | 
						|
        return True;
 | 
						|
    } else if (Pred == ICmpInst::ICMP_NE) {
 | 
						|
      if (!CR.contains(CI->getValue()))
 | 
						|
        return True;
 | 
						|
      
 | 
						|
      if (CR.isSingleElement() && CR.contains(CI->getValue()))
 | 
						|
        return False;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Handle more complex predicates.
 | 
						|
    ConstantRange TrueValues =
 | 
						|
        ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
 | 
						|
    if (TrueValues.contains(CR))
 | 
						|
      return True;
 | 
						|
    if (TrueValues.inverse().contains(CR))
 | 
						|
      return False;
 | 
						|
    return Unknown;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Result.isNotConstant()) {
 | 
						|
    // If this is an equality comparison, we can try to fold it knowing that
 | 
						|
    // "V != C1".
 | 
						|
    if (Pred == ICmpInst::ICMP_EQ) {
 | 
						|
      // !C1 == C -> false iff C1 == C.
 | 
						|
      Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
 | 
						|
                                            Result.getNotConstant(), C, TD);
 | 
						|
      if (Res->isNullValue())
 | 
						|
        return False;
 | 
						|
    } else if (Pred == ICmpInst::ICMP_NE) {
 | 
						|
      // !C1 != C -> true iff C1 == C.
 | 
						|
      Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
 | 
						|
                                            Result.getNotConstant(), C, TD);
 | 
						|
      if (Res->isNullValue())
 | 
						|
        return True;
 | 
						|
    }
 | 
						|
    return Unknown;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Unknown;
 | 
						|
}
 | 
						|
 | 
						|
void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
 | 
						|
                               BasicBlock *NewSucc) {
 | 
						|
  if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
 | 
						|
}
 | 
						|
 | 
						|
void LazyValueInfo::eraseBlock(BasicBlock *BB) {
 | 
						|
  if (PImpl) getCache(PImpl).eraseBlock(BB);
 | 
						|
}
 |