llvm-6502/utils/TableGen/AsmWriterEmitter.cpp
Chris Lattner bdff5f95b9 Completely change the structure of the generated asmprinter to be more table
based and less switch-statements-with-hundreds-of-cases based.  This shrinks
the x86 asmprinters to about 1/3 their previous size.

Other improvements coming.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29177 91177308-0d34-0410-b5e6-96231b3b80d8
2006-07-18 17:18:03 +00:00

605 lines
22 KiB
C++

//===- AsmWriterEmitter.cpp - Generate an assembly writer -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is emits an assembly printer for the current target.
// Note that this is currently fairly skeletal, but will grow over time.
//
//===----------------------------------------------------------------------===//
#include "AsmWriterEmitter.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <ostream>
using namespace llvm;
static bool isIdentChar(char C) {
return (C >= 'a' && C <= 'z') ||
(C >= 'A' && C <= 'Z') ||
(C >= '0' && C <= '9') ||
C == '_';
}
namespace {
struct AsmWriterOperand {
enum { isLiteralTextOperand, isMachineInstrOperand } OperandType;
/// Str - For isLiteralTextOperand, this IS the literal text. For
/// isMachineInstrOperand, this is the PrinterMethodName for the operand.
std::string Str;
/// MiOpNo - For isMachineInstrOperand, this is the operand number of the
/// machine instruction.
unsigned MIOpNo;
/// MiModifier - For isMachineInstrOperand, this is the modifier string for
/// an operand, specified with syntax like ${opname:modifier}.
std::string MiModifier;
AsmWriterOperand(const std::string &LitStr)
: OperandType(isLiteralTextOperand), Str(LitStr) {}
AsmWriterOperand(const std::string &Printer, unsigned OpNo,
const std::string &Modifier)
: OperandType(isMachineInstrOperand), Str(Printer), MIOpNo(OpNo),
MiModifier(Modifier) {}
bool operator!=(const AsmWriterOperand &Other) const {
if (OperandType != Other.OperandType || Str != Other.Str) return true;
if (OperandType == isMachineInstrOperand)
return MIOpNo != Other.MIOpNo || MiModifier != Other.MiModifier;
return false;
}
bool operator==(const AsmWriterOperand &Other) const {
return !operator!=(Other);
}
/// getCode - Return the code that prints this operand.
std::string getCode() const;
};
}
namespace llvm {
struct AsmWriterInst {
std::vector<AsmWriterOperand> Operands;
const CodeGenInstruction *CGI;
AsmWriterInst(const CodeGenInstruction &CGI, unsigned Variant);
/// MatchesAllButOneOp - If this instruction is exactly identical to the
/// specified instruction except for one differing operand, return the
/// differing operand number. Otherwise return ~0.
unsigned MatchesAllButOneOp(const AsmWriterInst &Other) const;
private:
void AddLiteralString(const std::string &Str) {
// If the last operand was already a literal text string, append this to
// it, otherwise add a new operand.
if (!Operands.empty() &&
Operands.back().OperandType == AsmWriterOperand::isLiteralTextOperand)
Operands.back().Str.append(Str);
else
Operands.push_back(AsmWriterOperand(Str));
}
};
}
std::string AsmWriterOperand::getCode() const {
if (OperandType == isLiteralTextOperand)
return "O << \"" + Str + "\"; ";
std::string Result = Str + "(MI, " + utostr(MIOpNo);
if (!MiModifier.empty())
Result += ", \"" + MiModifier + '"';
return Result + "); ";
}
/// ParseAsmString - Parse the specified Instruction's AsmString into this
/// AsmWriterInst.
///
AsmWriterInst::AsmWriterInst(const CodeGenInstruction &CGI, unsigned Variant) {
this->CGI = &CGI;
unsigned CurVariant = ~0U; // ~0 if we are outside a {.|.|.} region, other #.
// NOTE: Any extensions to this code need to be mirrored in the
// AsmPrinter::printInlineAsm code that executes as compile time (assuming
// that inline asm strings should also get the new feature)!
const std::string &AsmString = CGI.AsmString;
std::string::size_type LastEmitted = 0;
while (LastEmitted != AsmString.size()) {
std::string::size_type DollarPos =
AsmString.find_first_of("${|}", LastEmitted);
if (DollarPos == std::string::npos) DollarPos = AsmString.size();
// Emit a constant string fragment.
if (DollarPos != LastEmitted) {
// TODO: this should eventually handle escaping.
if (CurVariant == Variant || CurVariant == ~0U)
AddLiteralString(std::string(AsmString.begin()+LastEmitted,
AsmString.begin()+DollarPos));
LastEmitted = DollarPos;
} else if (AsmString[DollarPos] == '{') {
if (CurVariant != ~0U)
throw "Nested variants found for instruction '" +
CGI.TheDef->getName() + "'!";
LastEmitted = DollarPos+1;
CurVariant = 0; // We are now inside of the variant!
} else if (AsmString[DollarPos] == '|') {
if (CurVariant == ~0U)
throw "'|' character found outside of a variant in instruction '"
+ CGI.TheDef->getName() + "'!";
++CurVariant;
++LastEmitted;
} else if (AsmString[DollarPos] == '}') {
if (CurVariant == ~0U)
throw "'}' character found outside of a variant in instruction '"
+ CGI.TheDef->getName() + "'!";
++LastEmitted;
CurVariant = ~0U;
} else if (DollarPos+1 != AsmString.size() &&
AsmString[DollarPos+1] == '$') {
if (CurVariant == Variant || CurVariant == ~0U)
AddLiteralString("$"); // "$$" -> $
LastEmitted = DollarPos+2;
} else {
// Get the name of the variable.
std::string::size_type VarEnd = DollarPos+1;
// handle ${foo}bar as $foo by detecting whether the character following
// the dollar sign is a curly brace. If so, advance VarEnd and DollarPos
// so the variable name does not contain the leading curly brace.
bool hasCurlyBraces = false;
if (VarEnd < AsmString.size() && '{' == AsmString[VarEnd]) {
hasCurlyBraces = true;
++DollarPos;
++VarEnd;
}
while (VarEnd < AsmString.size() && isIdentChar(AsmString[VarEnd]))
++VarEnd;
std::string VarName(AsmString.begin()+DollarPos+1,
AsmString.begin()+VarEnd);
// Modifier - Support ${foo:modifier} syntax, where "modifier" is passed
// into printOperand.
std::string Modifier;
// In order to avoid starting the next string at the terminating curly
// brace, advance the end position past it if we found an opening curly
// brace.
if (hasCurlyBraces) {
if (VarEnd >= AsmString.size())
throw "Reached end of string before terminating curly brace in '"
+ CGI.TheDef->getName() + "'";
// Look for a modifier string.
if (AsmString[VarEnd] == ':') {
++VarEnd;
if (VarEnd >= AsmString.size())
throw "Reached end of string before terminating curly brace in '"
+ CGI.TheDef->getName() + "'";
unsigned ModifierStart = VarEnd;
while (VarEnd < AsmString.size() && isIdentChar(AsmString[VarEnd]))
++VarEnd;
Modifier = std::string(AsmString.begin()+ModifierStart,
AsmString.begin()+VarEnd);
if (Modifier.empty())
throw "Bad operand modifier name in '"+ CGI.TheDef->getName() + "'";
}
if (AsmString[VarEnd] != '}')
throw "Variable name beginning with '{' did not end with '}' in '"
+ CGI.TheDef->getName() + "'";
++VarEnd;
}
if (VarName.empty())
throw "Stray '$' in '" + CGI.TheDef->getName() +
"' asm string, maybe you want $$?";
unsigned OpNo = CGI.getOperandNamed(VarName);
CodeGenInstruction::OperandInfo OpInfo = CGI.OperandList[OpNo];
// If this is a two-address instruction and we are not accessing the
// 0th operand, remove an operand.
unsigned MIOp = OpInfo.MIOperandNo;
if (CGI.isTwoAddress && MIOp != 0) {
if (MIOp == 1)
throw "Should refer to operand #0 instead of #1 for two-address"
" instruction '" + CGI.TheDef->getName() + "'!";
--MIOp;
}
if (CurVariant == Variant || CurVariant == ~0U)
Operands.push_back(AsmWriterOperand(OpInfo.PrinterMethodName, MIOp,
Modifier));
LastEmitted = VarEnd;
}
}
AddLiteralString("\\n");
}
/// MatchesAllButOneOp - If this instruction is exactly identical to the
/// specified instruction except for one differing operand, return the differing
/// operand number. If more than one operand mismatches, return ~1, otherwise
/// if the instructions are identical return ~0.
unsigned AsmWriterInst::MatchesAllButOneOp(const AsmWriterInst &Other)const{
if (Operands.size() != Other.Operands.size()) return ~1;
unsigned MismatchOperand = ~0U;
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
if (Operands[i] != Other.Operands[i])
if (MismatchOperand != ~0U) // Already have one mismatch?
return ~1U;
else
MismatchOperand = i;
}
return MismatchOperand;
}
static void PrintCases(std::vector<std::pair<std::string,
AsmWriterOperand> > &OpsToPrint, std::ostream &O) {
O << " case " << OpsToPrint.back().first << ": ";
AsmWriterOperand TheOp = OpsToPrint.back().second;
OpsToPrint.pop_back();
// Check to see if any other operands are identical in this list, and if so,
// emit a case label for them.
for (unsigned i = OpsToPrint.size(); i != 0; --i)
if (OpsToPrint[i-1].second == TheOp) {
O << "\n case " << OpsToPrint[i-1].first << ": ";
OpsToPrint.erase(OpsToPrint.begin()+i-1);
}
// Finally, emit the code.
O << TheOp.getCode();
O << "break;\n";
}
/// EmitInstructions - Emit the last instruction in the vector and any other
/// instructions that are suitably similar to it.
static void EmitInstructions(std::vector<AsmWriterInst> &Insts,
std::ostream &O) {
AsmWriterInst FirstInst = Insts.back();
Insts.pop_back();
std::vector<AsmWriterInst> SimilarInsts;
unsigned DifferingOperand = ~0;
for (unsigned i = Insts.size(); i != 0; --i) {
unsigned DiffOp = Insts[i-1].MatchesAllButOneOp(FirstInst);
if (DiffOp != ~1U) {
if (DifferingOperand == ~0U) // First match!
DifferingOperand = DiffOp;
// If this differs in the same operand as the rest of the instructions in
// this class, move it to the SimilarInsts list.
if (DifferingOperand == DiffOp || DiffOp == ~0U) {
SimilarInsts.push_back(Insts[i-1]);
Insts.erase(Insts.begin()+i-1);
}
}
}
O << " case " << FirstInst.CGI->Namespace << "::"
<< FirstInst.CGI->TheDef->getName() << ":\n";
for (unsigned i = 0, e = SimilarInsts.size(); i != e; ++i)
O << " case " << SimilarInsts[i].CGI->Namespace << "::"
<< SimilarInsts[i].CGI->TheDef->getName() << ":\n";
for (unsigned i = 0, e = FirstInst.Operands.size(); i != e; ++i) {
if (i != DifferingOperand) {
// If the operand is the same for all instructions, just print it.
O << " " << FirstInst.Operands[i].getCode();
} else {
// If this is the operand that varies between all of the instructions,
// emit a switch for just this operand now.
O << " switch (MI->getOpcode()) {\n";
std::vector<std::pair<std::string, AsmWriterOperand> > OpsToPrint;
OpsToPrint.push_back(std::make_pair(FirstInst.CGI->Namespace + "::" +
FirstInst.CGI->TheDef->getName(),
FirstInst.Operands[i]));
for (unsigned si = 0, e = SimilarInsts.size(); si != e; ++si) {
AsmWriterInst &AWI = SimilarInsts[si];
OpsToPrint.push_back(std::make_pair(AWI.CGI->Namespace+"::"+
AWI.CGI->TheDef->getName(),
AWI.Operands[i]));
}
std::reverse(OpsToPrint.begin(), OpsToPrint.end());
while (!OpsToPrint.empty())
PrintCases(OpsToPrint, O);
O << " }";
}
O << "\n";
}
O << " break;\n";
}
void AsmWriterEmitter::
FindUniqueOperandCommands(std::vector<std::string> &UniqueOperandCommands,
std::vector<unsigned> &InstIdxs, unsigned Op) const {
InstIdxs.clear();
InstIdxs.resize(NumberedInstructions.size());
// This vector parallels UniqueOperandCommands, keeping track of which
// instructions each case are used for. It is a comma separated string of
// enums.
std::vector<std::string> InstrsForCase;
InstrsForCase.resize(UniqueOperandCommands.size());
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
const AsmWriterInst *Inst = getAsmWriterInstByID(i);
if (Inst == 0) continue; // PHI, INLINEASM, etc.
std::string Command;
if (Op > Inst->Operands.size())
continue; // Instruction already done.
else if (Op == Inst->Operands.size())
Command = " return true;\n";
else
Command = " " + Inst->Operands[Op].getCode() + "\n";
// Check to see if we already have 'Command' in UniqueOperandCommands.
// If not, add it.
bool FoundIt = false;
for (unsigned idx = 0, e = UniqueOperandCommands.size(); idx != e; ++idx)
if (UniqueOperandCommands[idx] == Command) {
InstIdxs[i] = idx;
InstrsForCase[idx] += ", ";
InstrsForCase[idx] += Inst->CGI->TheDef->getName();
FoundIt = true;
break;
}
if (!FoundIt) {
InstIdxs[i] = UniqueOperandCommands.size();
UniqueOperandCommands.push_back(Command);
InstrsForCase.push_back(Inst->CGI->TheDef->getName());
}
}
// Prepend some of the instructions each case is used for onto the case val.
for (unsigned i = 0, e = InstrsForCase.size(); i != e; ++i) {
std::string Instrs = InstrsForCase[i];
if (Instrs.size() > 70) {
Instrs.erase(Instrs.begin()+70, Instrs.end());
Instrs += "...";
}
if (!Instrs.empty())
UniqueOperandCommands[i] = " // " + Instrs + "\n" +
UniqueOperandCommands[i];
}
}
void AsmWriterEmitter::run(std::ostream &O) {
EmitSourceFileHeader("Assembly Writer Source Fragment", O);
CodeGenTarget Target;
Record *AsmWriter = Target.getAsmWriter();
std::string ClassName = AsmWriter->getValueAsString("AsmWriterClassName");
unsigned Variant = AsmWriter->getValueAsInt("Variant");
O <<
"/// printInstruction - This method is automatically generated by tablegen\n"
"/// from the instruction set description. This method returns true if the\n"
"/// machine instruction was sufficiently described to print it, otherwise\n"
"/// it returns false.\n"
"bool " << Target.getName() << ClassName
<< "::printInstruction(const MachineInstr *MI) {\n";
std::vector<AsmWriterInst> Instructions;
for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
E = Target.inst_end(); I != E; ++I)
if (!I->second.AsmString.empty())
Instructions.push_back(AsmWriterInst(I->second, Variant));
// Get the instruction numbering.
Target.getInstructionsByEnumValue(NumberedInstructions);
// Compute the CodeGenInstruction -> AsmWriterInst mapping. Note that not
// all machine instructions are necessarily being printed, so there may be
// target instructions not in this map.
for (unsigned i = 0, e = Instructions.size(); i != e; ++i)
CGIAWIMap.insert(std::make_pair(Instructions[i].CGI, &Instructions[i]));
// Build an aggregate string, and build a table of offsets into it.
std::map<std::string, unsigned> StringOffset;
std::string AggregateString;
AggregateString += '\0';
/// OpcodeInfo - The first value in the pair is the index into the string, the
/// second is an index used for operand printing information.
std::vector<std::pair<unsigned short, unsigned short> > OpcodeInfo;
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
AsmWriterInst *AWI = CGIAWIMap[NumberedInstructions[i]];
unsigned Idx;
if (AWI == 0 || AWI->Operands[0].Str.empty()) {
// Something not handled by the asmwriter printer.
Idx = 0;
} else {
unsigned &Entry = StringOffset[AWI->Operands[0].Str];
if (Entry == 0) {
// Add the string to the aggregate if this is the first time found.
Entry = AggregateString.size();
std::string Str = AWI->Operands[0].Str;
UnescapeString(Str);
AggregateString += Str;
AggregateString += '\0';
}
Idx = Entry;
assert(Entry < 65536 && "Must not use unsigned short for table idx!");
// Nuke the string from the operand list. It is now handled!
AWI->Operands.erase(AWI->Operands.begin());
}
OpcodeInfo.push_back(std::pair<unsigned short, unsigned short>(Idx,0));
}
// To reduce code size, we compactify common instructions into a few bits
// in the opcode-indexed table.
// 16 bits to play with.
unsigned BitsLeft = 16;
std::vector<std::vector<std::string> > TableDrivenOperandPrinters;
for (unsigned i = 0; ; ++i) {
std::vector<std::string> UniqueOperandCommands;
// For the first operand check, add a default value that unhandled
// instructions will use.
if (i == 0)
UniqueOperandCommands.push_back(" return false;\n");
std::vector<unsigned> InstIdxs;
FindUniqueOperandCommands(UniqueOperandCommands, InstIdxs, i);
// If we ran out of operands to print, we're done.
if (UniqueOperandCommands.empty()) break;
// FIXME: GROW THEM MAXIMALLY.
// Compute the number of bits we need to represent these cases, this is
// ceil(log2(numentries)).
unsigned NumBits = Log2_32_Ceil(UniqueOperandCommands.size());
// If we don't have enough bits for this operand, don't include it.
if (NumBits > BitsLeft) {
DEBUG(std::cerr << "Not enough bits to densely encode " << NumBits
<< " more bits\n");
break;
}
// Otherwise, we can include this in the initial lookup table. Add it in.
BitsLeft -= NumBits;
for (unsigned i = 0, e = InstIdxs.size(); i != e; ++i)
OpcodeInfo[i].second |= InstIdxs[i] << BitsLeft;
TableDrivenOperandPrinters.push_back(UniqueOperandCommands);
}
O<<" static const struct { unsigned short StrIdx, Bits; } OpInfo[] = {\n";
for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) {
O << " { " << OpcodeInfo[i].first << ", " << OpcodeInfo[i].second
<< " },\t// " << NumberedInstructions[i]->TheDef->getName() << "\n";
}
// Add a dummy entry so the array init doesn't end with a comma.
O << " { 65535, 65535 }\n";
O << " };\n\n";
// Emit the string itself.
O << " const char *AsmStrs = \n \"";
unsigned CharsPrinted = 0;
EscapeString(AggregateString);
for (unsigned i = 0, e = AggregateString.size(); i != e; ++i) {
if (CharsPrinted > 70) {
O << "\"\n \"";
CharsPrinted = 0;
}
O << AggregateString[i];
++CharsPrinted;
// Print escape sequences all together.
if (AggregateString[i] == '\\') {
assert(i+1 < AggregateString.size() && "Incomplete escape sequence!");
if (isdigit(AggregateString[i+1])) {
assert(isdigit(AggregateString[i+2]) && isdigit(AggregateString[i+3]) &&
"Expected 3 digit octal escape!");
O << AggregateString[++i];
O << AggregateString[++i];
O << AggregateString[++i];
CharsPrinted += 3;
} else {
O << AggregateString[++i];
++CharsPrinted;
}
}
}
O << "\";\n\n";
O << " if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {\n"
<< " printInlineAsm(MI);\n"
<< " return true;\n"
<< " }\n\n";
O << " // Emit the opcode for the instruction.\n"
<< " O << AsmStrs+OpInfo[MI->getOpcode()].StrIdx;\n\n";
// Output the table driven operand information.
O << " unsigned short Bits = OpInfo[MI->getOpcode()].Bits;\n";
BitsLeft = 16;
for (unsigned i = 0, e = TableDrivenOperandPrinters.size(); i != e; ++i) {
std::vector<std::string> &Commands = TableDrivenOperandPrinters[i];
// Compute the number of bits we need to represent these cases, this is
// ceil(log2(numentries)).
unsigned NumBits = Log2_32_Ceil(Commands.size());
assert(NumBits <= BitsLeft && "consistency error");
// Emit code to extract this field from Bits.
BitsLeft -= NumBits;
O << "\n // Fragment " << i << " encoded into " << NumBits
<< " bits for " << Commands.size() << " unique commands.\n"
<< " switch ((Bits >> " << BitsLeft << ") & " << ((1 << NumBits)-1)
<< ") {\n"
<< " default: // unreachable.\n";
// Print out all the cases.
for (unsigned i = 0, e = Commands.size(); i != e; ++i) {
O << " case " << i << ":\n";
O << Commands[i];
O << " break;\n";
}
O << " }\n\n";
}
// Okay, go through and strip out the operand information that we just
// emitted.
unsigned NumOpsToRemove = TableDrivenOperandPrinters.size();
for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
// Entire instruction has been emitted?
AsmWriterInst &Inst = Instructions[i];
if (Inst.Operands.size() <= NumOpsToRemove) {
Instructions.erase(Instructions.begin()+i);
--i; --e;
} else {
Inst.Operands.erase(Inst.Operands.begin(),
Inst.Operands.begin()+NumOpsToRemove);
}
}
// Because this is a vector, we want to emit from the end. Reverse all of the
// elements in the vector.
std::reverse(Instructions.begin(), Instructions.end());
// Find the opcode # of inline asm
O << " switch (MI->getOpcode()) {\n";
while (!Instructions.empty())
EmitInstructions(Instructions, O);
O << " }\n"
" return true;\n"
"}\n";
}