mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217705 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			861 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			861 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "MCTargetDesc/X86BaseInfo.h"
 | 
						|
#include "MCTargetDesc/X86FixupKinds.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/MC/MCAsmBackend.h"
 | 
						|
#include "llvm/MC/MCELFObjectWriter.h"
 | 
						|
#include "llvm/MC/MCExpr.h"
 | 
						|
#include "llvm/MC/MCFixupKindInfo.h"
 | 
						|
#include "llvm/MC/MCMachObjectWriter.h"
 | 
						|
#include "llvm/MC/MCObjectWriter.h"
 | 
						|
#include "llvm/MC/MCSectionCOFF.h"
 | 
						|
#include "llvm/MC/MCSectionELF.h"
 | 
						|
#include "llvm/MC/MCSectionMachO.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/ELF.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MachO.h"
 | 
						|
#include "llvm/Support/TargetRegistry.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Option to allow disabling arithmetic relaxation to workaround PR9807, which
 | 
						|
// is useful when running bitwise comparison experiments on Darwin. We should be
 | 
						|
// able to remove this once PR9807 is resolved.
 | 
						|
static cl::opt<bool>
 | 
						|
MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
 | 
						|
         cl::desc("Disable relaxation of arithmetic instruction for X86"));
 | 
						|
 | 
						|
static unsigned getFixupKindLog2Size(unsigned Kind) {
 | 
						|
  switch (Kind) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("invalid fixup kind!");
 | 
						|
  case FK_PCRel_1:
 | 
						|
  case FK_SecRel_1:
 | 
						|
  case FK_Data_1:
 | 
						|
    return 0;
 | 
						|
  case FK_PCRel_2:
 | 
						|
  case FK_SecRel_2:
 | 
						|
  case FK_Data_2:
 | 
						|
    return 1;
 | 
						|
  case FK_PCRel_4:
 | 
						|
  case X86::reloc_riprel_4byte:
 | 
						|
  case X86::reloc_riprel_4byte_movq_load:
 | 
						|
  case X86::reloc_signed_4byte:
 | 
						|
  case X86::reloc_global_offset_table:
 | 
						|
  case FK_SecRel_4:
 | 
						|
  case FK_Data_4:
 | 
						|
    return 2;
 | 
						|
  case FK_PCRel_8:
 | 
						|
  case FK_SecRel_8:
 | 
						|
  case FK_Data_8:
 | 
						|
  case X86::reloc_global_offset_table8:
 | 
						|
    return 3;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class X86ELFObjectWriter : public MCELFObjectTargetWriter {
 | 
						|
public:
 | 
						|
  X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
 | 
						|
                     bool HasRelocationAddend, bool foobar)
 | 
						|
    : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
 | 
						|
};
 | 
						|
 | 
						|
class X86AsmBackend : public MCAsmBackend {
 | 
						|
  const StringRef CPU;
 | 
						|
  bool HasNopl;
 | 
						|
  const uint64_t MaxNopLength;
 | 
						|
public:
 | 
						|
  X86AsmBackend(const Target &T, StringRef _CPU)
 | 
						|
    : MCAsmBackend(), CPU(_CPU), MaxNopLength(_CPU == "slm" ? 7 : 15) {
 | 
						|
    HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
 | 
						|
              CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
 | 
						|
              CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
 | 
						|
              CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
 | 
						|
              CPU != "c3" && CPU != "c3-2";
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getNumFixupKinds() const override {
 | 
						|
    return X86::NumTargetFixupKinds;
 | 
						|
  }
 | 
						|
 | 
						|
  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
 | 
						|
    const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
 | 
						|
      { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
 | 
						|
      { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
 | 
						|
      { "reloc_signed_4byte", 0, 4 * 8, 0},
 | 
						|
      { "reloc_global_offset_table", 0, 4 * 8, 0}
 | 
						|
    };
 | 
						|
 | 
						|
    if (Kind < FirstTargetFixupKind)
 | 
						|
      return MCAsmBackend::getFixupKindInfo(Kind);
 | 
						|
 | 
						|
    assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
 | 
						|
           "Invalid kind!");
 | 
						|
    return Infos[Kind - FirstTargetFixupKind];
 | 
						|
  }
 | 
						|
 | 
						|
  void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
 | 
						|
                  uint64_t Value, bool IsPCRel) const override {
 | 
						|
    unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
 | 
						|
 | 
						|
    assert(Fixup.getOffset() + Size <= DataSize &&
 | 
						|
           "Invalid fixup offset!");
 | 
						|
 | 
						|
    // Check that uppper bits are either all zeros or all ones.
 | 
						|
    // Specifically ignore overflow/underflow as long as the leakage is
 | 
						|
    // limited to the lower bits. This is to remain compatible with
 | 
						|
    // other assemblers.
 | 
						|
    assert(isIntN(Size * 8 + 1, Value) &&
 | 
						|
           "Value does not fit in the Fixup field");
 | 
						|
 | 
						|
    for (unsigned i = 0; i != Size; ++i)
 | 
						|
      Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
 | 
						|
  }
 | 
						|
 | 
						|
  bool mayNeedRelaxation(const MCInst &Inst) const override;
 | 
						|
 | 
						|
  bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
 | 
						|
                            const MCRelaxableFragment *DF,
 | 
						|
                            const MCAsmLayout &Layout) const override;
 | 
						|
 | 
						|
  void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
 | 
						|
 | 
						|
  bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static unsigned getRelaxedOpcodeBranch(unsigned Op) {
 | 
						|
  switch (Op) {
 | 
						|
  default:
 | 
						|
    return Op;
 | 
						|
 | 
						|
  case X86::JAE_1: return X86::JAE_4;
 | 
						|
  case X86::JA_1:  return X86::JA_4;
 | 
						|
  case X86::JBE_1: return X86::JBE_4;
 | 
						|
  case X86::JB_1:  return X86::JB_4;
 | 
						|
  case X86::JE_1:  return X86::JE_4;
 | 
						|
  case X86::JGE_1: return X86::JGE_4;
 | 
						|
  case X86::JG_1:  return X86::JG_4;
 | 
						|
  case X86::JLE_1: return X86::JLE_4;
 | 
						|
  case X86::JL_1:  return X86::JL_4;
 | 
						|
  case X86::JMP_1: return X86::JMP_4;
 | 
						|
  case X86::JNE_1: return X86::JNE_4;
 | 
						|
  case X86::JNO_1: return X86::JNO_4;
 | 
						|
  case X86::JNP_1: return X86::JNP_4;
 | 
						|
  case X86::JNS_1: return X86::JNS_4;
 | 
						|
  case X86::JO_1:  return X86::JO_4;
 | 
						|
  case X86::JP_1:  return X86::JP_4;
 | 
						|
  case X86::JS_1:  return X86::JS_4;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getRelaxedOpcodeArith(unsigned Op) {
 | 
						|
  switch (Op) {
 | 
						|
  default:
 | 
						|
    return Op;
 | 
						|
 | 
						|
    // IMUL
 | 
						|
  case X86::IMUL16rri8: return X86::IMUL16rri;
 | 
						|
  case X86::IMUL16rmi8: return X86::IMUL16rmi;
 | 
						|
  case X86::IMUL32rri8: return X86::IMUL32rri;
 | 
						|
  case X86::IMUL32rmi8: return X86::IMUL32rmi;
 | 
						|
  case X86::IMUL64rri8: return X86::IMUL64rri32;
 | 
						|
  case X86::IMUL64rmi8: return X86::IMUL64rmi32;
 | 
						|
 | 
						|
    // AND
 | 
						|
  case X86::AND16ri8: return X86::AND16ri;
 | 
						|
  case X86::AND16mi8: return X86::AND16mi;
 | 
						|
  case X86::AND32ri8: return X86::AND32ri;
 | 
						|
  case X86::AND32mi8: return X86::AND32mi;
 | 
						|
  case X86::AND64ri8: return X86::AND64ri32;
 | 
						|
  case X86::AND64mi8: return X86::AND64mi32;
 | 
						|
 | 
						|
    // OR
 | 
						|
  case X86::OR16ri8: return X86::OR16ri;
 | 
						|
  case X86::OR16mi8: return X86::OR16mi;
 | 
						|
  case X86::OR32ri8: return X86::OR32ri;
 | 
						|
  case X86::OR32mi8: return X86::OR32mi;
 | 
						|
  case X86::OR64ri8: return X86::OR64ri32;
 | 
						|
  case X86::OR64mi8: return X86::OR64mi32;
 | 
						|
 | 
						|
    // XOR
 | 
						|
  case X86::XOR16ri8: return X86::XOR16ri;
 | 
						|
  case X86::XOR16mi8: return X86::XOR16mi;
 | 
						|
  case X86::XOR32ri8: return X86::XOR32ri;
 | 
						|
  case X86::XOR32mi8: return X86::XOR32mi;
 | 
						|
  case X86::XOR64ri8: return X86::XOR64ri32;
 | 
						|
  case X86::XOR64mi8: return X86::XOR64mi32;
 | 
						|
 | 
						|
    // ADD
 | 
						|
  case X86::ADD16ri8: return X86::ADD16ri;
 | 
						|
  case X86::ADD16mi8: return X86::ADD16mi;
 | 
						|
  case X86::ADD32ri8: return X86::ADD32ri;
 | 
						|
  case X86::ADD32mi8: return X86::ADD32mi;
 | 
						|
  case X86::ADD64ri8: return X86::ADD64ri32;
 | 
						|
  case X86::ADD64mi8: return X86::ADD64mi32;
 | 
						|
 | 
						|
    // SUB
 | 
						|
  case X86::SUB16ri8: return X86::SUB16ri;
 | 
						|
  case X86::SUB16mi8: return X86::SUB16mi;
 | 
						|
  case X86::SUB32ri8: return X86::SUB32ri;
 | 
						|
  case X86::SUB32mi8: return X86::SUB32mi;
 | 
						|
  case X86::SUB64ri8: return X86::SUB64ri32;
 | 
						|
  case X86::SUB64mi8: return X86::SUB64mi32;
 | 
						|
 | 
						|
    // CMP
 | 
						|
  case X86::CMP16ri8: return X86::CMP16ri;
 | 
						|
  case X86::CMP16mi8: return X86::CMP16mi;
 | 
						|
  case X86::CMP32ri8: return X86::CMP32ri;
 | 
						|
  case X86::CMP32mi8: return X86::CMP32mi;
 | 
						|
  case X86::CMP64ri8: return X86::CMP64ri32;
 | 
						|
  case X86::CMP64mi8: return X86::CMP64mi32;
 | 
						|
 | 
						|
    // PUSH
 | 
						|
  case X86::PUSH32i8:  return X86::PUSHi32;
 | 
						|
  case X86::PUSH16i8:  return X86::PUSHi16;
 | 
						|
  case X86::PUSH64i8:  return X86::PUSH64i32;
 | 
						|
  case X86::PUSH64i16: return X86::PUSH64i32;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getRelaxedOpcode(unsigned Op) {
 | 
						|
  unsigned R = getRelaxedOpcodeArith(Op);
 | 
						|
  if (R != Op)
 | 
						|
    return R;
 | 
						|
  return getRelaxedOpcodeBranch(Op);
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
 | 
						|
  // Branches can always be relaxed.
 | 
						|
  if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (MCDisableArithRelaxation)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if this instruction is ever relaxable.
 | 
						|
  if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
 | 
						|
    return false;
 | 
						|
 | 
						|
 | 
						|
  // Check if it has an expression and is not RIP relative.
 | 
						|
  bool hasExp = false;
 | 
						|
  bool hasRIP = false;
 | 
						|
  for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
 | 
						|
    const MCOperand &Op = Inst.getOperand(i);
 | 
						|
    if (Op.isExpr())
 | 
						|
      hasExp = true;
 | 
						|
 | 
						|
    if (Op.isReg() && Op.getReg() == X86::RIP)
 | 
						|
      hasRIP = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
 | 
						|
  // how we do relaxations?
 | 
						|
  return hasExp && !hasRIP;
 | 
						|
}
 | 
						|
 | 
						|
bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
 | 
						|
                                         uint64_t Value,
 | 
						|
                                         const MCRelaxableFragment *DF,
 | 
						|
                                         const MCAsmLayout &Layout) const {
 | 
						|
  // Relax if the value is too big for a (signed) i8.
 | 
						|
  return int64_t(Value) != int64_t(int8_t(Value));
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: Can tblgen help at all here to verify there aren't other instructions
 | 
						|
// we can relax?
 | 
						|
void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
 | 
						|
  // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
 | 
						|
  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
 | 
						|
 | 
						|
  if (RelaxedOp == Inst.getOpcode()) {
 | 
						|
    SmallString<256> Tmp;
 | 
						|
    raw_svector_ostream OS(Tmp);
 | 
						|
    Inst.dump_pretty(OS);
 | 
						|
    OS << "\n";
 | 
						|
    report_fatal_error("unexpected instruction to relax: " + OS.str());
 | 
						|
  }
 | 
						|
 | 
						|
  Res = Inst;
 | 
						|
  Res.setOpcode(RelaxedOp);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Write a sequence of optimal nops to the output, covering \p Count
 | 
						|
/// bytes.
 | 
						|
/// \return - true on success, false on failure
 | 
						|
bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
 | 
						|
  static const uint8_t Nops[10][10] = {
 | 
						|
    // nop
 | 
						|
    {0x90},
 | 
						|
    // xchg %ax,%ax
 | 
						|
    {0x66, 0x90},
 | 
						|
    // nopl (%[re]ax)
 | 
						|
    {0x0f, 0x1f, 0x00},
 | 
						|
    // nopl 0(%[re]ax)
 | 
						|
    {0x0f, 0x1f, 0x40, 0x00},
 | 
						|
    // nopl 0(%[re]ax,%[re]ax,1)
 | 
						|
    {0x0f, 0x1f, 0x44, 0x00, 0x00},
 | 
						|
    // nopw 0(%[re]ax,%[re]ax,1)
 | 
						|
    {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
 | 
						|
    // nopl 0L(%[re]ax)
 | 
						|
    {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
 | 
						|
    // nopl 0L(%[re]ax,%[re]ax,1)
 | 
						|
    {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
 | 
						|
    // nopw 0L(%[re]ax,%[re]ax,1)
 | 
						|
    {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
 | 
						|
    // nopw %cs:0L(%[re]ax,%[re]ax,1)
 | 
						|
    {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
 | 
						|
  };
 | 
						|
 | 
						|
  // This CPU doesn't support long nops. If needed add more.
 | 
						|
  // FIXME: Can we get this from the subtarget somehow?
 | 
						|
  // FIXME: We could generated something better than plain 0x90.
 | 
						|
  if (!HasNopl) {
 | 
						|
    for (uint64_t i = 0; i < Count; ++i)
 | 
						|
      OW->Write8(0x90);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // 15 is the longest single nop instruction.  Emit as many 15-byte nops as
 | 
						|
  // needed, then emit a nop of the remaining length.
 | 
						|
  do {
 | 
						|
    const uint8_t ThisNopLength = (uint8_t) std::min(Count, MaxNopLength);
 | 
						|
    const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
 | 
						|
    for (uint8_t i = 0; i < Prefixes; i++)
 | 
						|
      OW->Write8(0x66);
 | 
						|
    const uint8_t Rest = ThisNopLength - Prefixes;
 | 
						|
    for (uint8_t i = 0; i < Rest; i++)
 | 
						|
      OW->Write8(Nops[Rest - 1][i]);
 | 
						|
    Count -= ThisNopLength;
 | 
						|
  } while (Count != 0);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/* *** */
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class ELFX86AsmBackend : public X86AsmBackend {
 | 
						|
public:
 | 
						|
  uint8_t OSABI;
 | 
						|
  ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
 | 
						|
      : X86AsmBackend(T, CPU), OSABI(_OSABI) {}
 | 
						|
};
 | 
						|
 | 
						|
class ELFX86_32AsmBackend : public ELFX86AsmBackend {
 | 
						|
public:
 | 
						|
  ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
 | 
						|
    : ELFX86AsmBackend(T, OSABI, CPU) {}
 | 
						|
 | 
						|
  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
 | 
						|
    return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ELFX86_X32AsmBackend : public ELFX86AsmBackend {
 | 
						|
public:
 | 
						|
  ELFX86_X32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
 | 
						|
      : ELFX86AsmBackend(T, OSABI, CPU) {}
 | 
						|
 | 
						|
  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
 | 
						|
    return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI,
 | 
						|
                                    ELF::EM_X86_64);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ELFX86_64AsmBackend : public ELFX86AsmBackend {
 | 
						|
public:
 | 
						|
  ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
 | 
						|
    : ELFX86AsmBackend(T, OSABI, CPU) {}
 | 
						|
 | 
						|
  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
 | 
						|
    return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class WindowsX86AsmBackend : public X86AsmBackend {
 | 
						|
  bool Is64Bit;
 | 
						|
 | 
						|
public:
 | 
						|
  WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
 | 
						|
    : X86AsmBackend(T, CPU)
 | 
						|
    , Is64Bit(is64Bit) {
 | 
						|
  }
 | 
						|
 | 
						|
  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
 | 
						|
    return createX86WinCOFFObjectWriter(OS, Is64Bit);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
namespace CU {
 | 
						|
 | 
						|
  /// Compact unwind encoding values.
 | 
						|
  enum CompactUnwindEncodings {
 | 
						|
    /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
 | 
						|
    /// the return address, then [RE]SP is moved to [RE]BP.
 | 
						|
    UNWIND_MODE_BP_FRAME                   = 0x01000000,
 | 
						|
 | 
						|
    /// A frameless function with a small constant stack size.
 | 
						|
    UNWIND_MODE_STACK_IMMD                 = 0x02000000,
 | 
						|
 | 
						|
    /// A frameless function with a large constant stack size.
 | 
						|
    UNWIND_MODE_STACK_IND                  = 0x03000000,
 | 
						|
 | 
						|
    /// No compact unwind encoding is available.
 | 
						|
    UNWIND_MODE_DWARF                      = 0x04000000,
 | 
						|
 | 
						|
    /// Mask for encoding the frame registers.
 | 
						|
    UNWIND_BP_FRAME_REGISTERS              = 0x00007FFF,
 | 
						|
 | 
						|
    /// Mask for encoding the frameless registers.
 | 
						|
    UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
 | 
						|
  };
 | 
						|
 | 
						|
} // end CU namespace
 | 
						|
 | 
						|
class DarwinX86AsmBackend : public X86AsmBackend {
 | 
						|
  const MCRegisterInfo &MRI;
 | 
						|
 | 
						|
  /// \brief Number of registers that can be saved in a compact unwind encoding.
 | 
						|
  enum { CU_NUM_SAVED_REGS = 6 };
 | 
						|
 | 
						|
  mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
 | 
						|
  bool Is64Bit;
 | 
						|
 | 
						|
  unsigned OffsetSize;                   ///< Offset of a "push" instruction.
 | 
						|
  unsigned MoveInstrSize;                ///< Size of a "move" instruction.
 | 
						|
  unsigned StackDivide;                  ///< Amount to adjust stack size by.
 | 
						|
protected:
 | 
						|
  /// \brief Size of a "push" instruction for the given register.
 | 
						|
  unsigned PushInstrSize(unsigned Reg) const {
 | 
						|
    switch (Reg) {
 | 
						|
      case X86::EBX:
 | 
						|
      case X86::ECX:
 | 
						|
      case X86::EDX:
 | 
						|
      case X86::EDI:
 | 
						|
      case X86::ESI:
 | 
						|
      case X86::EBP:
 | 
						|
      case X86::RBX:
 | 
						|
      case X86::RBP:
 | 
						|
        return 1;
 | 
						|
      case X86::R12:
 | 
						|
      case X86::R13:
 | 
						|
      case X86::R14:
 | 
						|
      case X86::R15:
 | 
						|
        return 2;
 | 
						|
    }
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Implementation of algorithm to generate the compact unwind encoding
 | 
						|
  /// for the CFI instructions.
 | 
						|
  uint32_t
 | 
						|
  generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
 | 
						|
    if (Instrs.empty()) return 0;
 | 
						|
 | 
						|
    // Reset the saved registers.
 | 
						|
    unsigned SavedRegIdx = 0;
 | 
						|
    memset(SavedRegs, 0, sizeof(SavedRegs));
 | 
						|
 | 
						|
    bool HasFP = false;
 | 
						|
 | 
						|
    // Encode that we are using EBP/RBP as the frame pointer.
 | 
						|
    uint32_t CompactUnwindEncoding = 0;
 | 
						|
 | 
						|
    unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
 | 
						|
    unsigned InstrOffset = 0;
 | 
						|
    unsigned StackAdjust = 0;
 | 
						|
    unsigned StackSize = 0;
 | 
						|
    unsigned PrevStackSize = 0;
 | 
						|
    unsigned NumDefCFAOffsets = 0;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
 | 
						|
      const MCCFIInstruction &Inst = Instrs[i];
 | 
						|
 | 
						|
      switch (Inst.getOperation()) {
 | 
						|
      default:
 | 
						|
        // Any other CFI directives indicate a frame that we aren't prepared
 | 
						|
        // to represent via compact unwind, so just bail out.
 | 
						|
        return 0;
 | 
						|
      case MCCFIInstruction::OpDefCfaRegister: {
 | 
						|
        // Defines a frame pointer. E.g.
 | 
						|
        //
 | 
						|
        //     movq %rsp, %rbp
 | 
						|
        //  L0:
 | 
						|
        //     .cfi_def_cfa_register %rbp
 | 
						|
        //
 | 
						|
        HasFP = true;
 | 
						|
        assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
 | 
						|
               (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
 | 
						|
 | 
						|
        // Reset the counts.
 | 
						|
        memset(SavedRegs, 0, sizeof(SavedRegs));
 | 
						|
        StackAdjust = 0;
 | 
						|
        SavedRegIdx = 0;
 | 
						|
        InstrOffset += MoveInstrSize;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case MCCFIInstruction::OpDefCfaOffset: {
 | 
						|
        // Defines a new offset for the CFA. E.g.
 | 
						|
        //
 | 
						|
        //  With frame:
 | 
						|
        //  
 | 
						|
        //     pushq %rbp
 | 
						|
        //  L0:
 | 
						|
        //     .cfi_def_cfa_offset 16
 | 
						|
        //
 | 
						|
        //  Without frame:
 | 
						|
        //
 | 
						|
        //     subq $72, %rsp
 | 
						|
        //  L0:
 | 
						|
        //     .cfi_def_cfa_offset 80
 | 
						|
        //
 | 
						|
        PrevStackSize = StackSize;
 | 
						|
        StackSize = std::abs(Inst.getOffset()) / StackDivide;
 | 
						|
        ++NumDefCFAOffsets;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case MCCFIInstruction::OpOffset: {
 | 
						|
        // Defines a "push" of a callee-saved register. E.g.
 | 
						|
        //
 | 
						|
        //     pushq %r15
 | 
						|
        //     pushq %r14
 | 
						|
        //     pushq %rbx
 | 
						|
        //  L0:
 | 
						|
        //     subq $120, %rsp
 | 
						|
        //  L1:
 | 
						|
        //     .cfi_offset %rbx, -40
 | 
						|
        //     .cfi_offset %r14, -32
 | 
						|
        //     .cfi_offset %r15, -24
 | 
						|
        //
 | 
						|
        if (SavedRegIdx == CU_NUM_SAVED_REGS)
 | 
						|
          // If there are too many saved registers, we cannot use a compact
 | 
						|
          // unwind encoding.
 | 
						|
          return CU::UNWIND_MODE_DWARF;
 | 
						|
 | 
						|
        unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
 | 
						|
        SavedRegs[SavedRegIdx++] = Reg;
 | 
						|
        StackAdjust += OffsetSize;
 | 
						|
        InstrOffset += PushInstrSize(Reg);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    StackAdjust /= StackDivide;
 | 
						|
 | 
						|
    if (HasFP) {
 | 
						|
      if ((StackAdjust & 0xFF) != StackAdjust)
 | 
						|
        // Offset was too big for a compact unwind encoding.
 | 
						|
        return CU::UNWIND_MODE_DWARF;
 | 
						|
 | 
						|
      // Get the encoding of the saved registers when we have a frame pointer.
 | 
						|
      uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
 | 
						|
      if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
 | 
						|
 | 
						|
      CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
 | 
						|
      CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
 | 
						|
      CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
 | 
						|
    } else {
 | 
						|
      // If the amount of the stack allocation is the size of a register, then
 | 
						|
      // we "push" the RAX/EAX register onto the stack instead of adjusting the
 | 
						|
      // stack pointer with a SUB instruction. We don't support the push of the
 | 
						|
      // RAX/EAX register with compact unwind. So we check for that situation
 | 
						|
      // here.
 | 
						|
      if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
 | 
						|
           StackSize - PrevStackSize == 1) ||
 | 
						|
          (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
 | 
						|
        return CU::UNWIND_MODE_DWARF;
 | 
						|
 | 
						|
      SubtractInstrIdx += InstrOffset;
 | 
						|
      ++StackAdjust;
 | 
						|
 | 
						|
      if ((StackSize & 0xFF) == StackSize) {
 | 
						|
        // Frameless stack with a small stack size.
 | 
						|
        CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
 | 
						|
 | 
						|
        // Encode the stack size.
 | 
						|
        CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
 | 
						|
      } else {
 | 
						|
        if ((StackAdjust & 0x7) != StackAdjust)
 | 
						|
          // The extra stack adjustments are too big for us to handle.
 | 
						|
          return CU::UNWIND_MODE_DWARF;
 | 
						|
 | 
						|
        // Frameless stack with an offset too large for us to encode compactly.
 | 
						|
        CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
 | 
						|
 | 
						|
        // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
 | 
						|
        // instruction.
 | 
						|
        CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
 | 
						|
 | 
						|
        // Encode any extra stack stack adjustments (done via push
 | 
						|
        // instructions).
 | 
						|
        CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
 | 
						|
      }
 | 
						|
 | 
						|
      // Encode the number of registers saved. (Reverse the list first.)
 | 
						|
      std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
 | 
						|
      CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
 | 
						|
 | 
						|
      // Get the encoding of the saved registers when we don't have a frame
 | 
						|
      // pointer.
 | 
						|
      uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
 | 
						|
      if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
 | 
						|
 | 
						|
      // Encode the register encoding.
 | 
						|
      CompactUnwindEncoding |=
 | 
						|
        RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
 | 
						|
    }
 | 
						|
 | 
						|
    return CompactUnwindEncoding;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// \brief Get the compact unwind number for a given register. The number
 | 
						|
  /// corresponds to the enum lists in compact_unwind_encoding.h.
 | 
						|
  int getCompactUnwindRegNum(unsigned Reg) const {
 | 
						|
    static const uint16_t CU32BitRegs[7] = {
 | 
						|
      X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
 | 
						|
    };
 | 
						|
    static const uint16_t CU64BitRegs[] = {
 | 
						|
      X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
 | 
						|
    };
 | 
						|
    const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
 | 
						|
    for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
 | 
						|
      if (*CURegs == Reg)
 | 
						|
        return Idx;
 | 
						|
 | 
						|
    return -1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Return the registers encoded for a compact encoding with a frame
 | 
						|
  /// pointer.
 | 
						|
  uint32_t encodeCompactUnwindRegistersWithFrame() const {
 | 
						|
    // Encode the registers in the order they were saved --- 3-bits per
 | 
						|
    // register. The list of saved registers is assumed to be in reverse
 | 
						|
    // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
 | 
						|
    uint32_t RegEnc = 0;
 | 
						|
    for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
 | 
						|
      unsigned Reg = SavedRegs[i];
 | 
						|
      if (Reg == 0) break;
 | 
						|
 | 
						|
      int CURegNum = getCompactUnwindRegNum(Reg);
 | 
						|
      if (CURegNum == -1) return ~0U;
 | 
						|
 | 
						|
      // Encode the 3-bit register number in order, skipping over 3-bits for
 | 
						|
      // each register.
 | 
						|
      RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
 | 
						|
    }
 | 
						|
 | 
						|
    assert((RegEnc & 0x3FFFF) == RegEnc &&
 | 
						|
           "Invalid compact register encoding!");
 | 
						|
    return RegEnc;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Create the permutation encoding used with frameless stacks. It is
 | 
						|
  /// passed the number of registers to be saved and an array of the registers
 | 
						|
  /// saved.
 | 
						|
  uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
 | 
						|
    // The saved registers are numbered from 1 to 6. In order to encode the
 | 
						|
    // order in which they were saved, we re-number them according to their
 | 
						|
    // place in the register order. The re-numbering is relative to the last
 | 
						|
    // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
 | 
						|
    // that order:
 | 
						|
    //
 | 
						|
    //    Orig  Re-Num
 | 
						|
    //    ----  ------
 | 
						|
    //     6       6
 | 
						|
    //     2       2
 | 
						|
    //     4       3
 | 
						|
    //     5       3
 | 
						|
    //
 | 
						|
    for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
 | 
						|
      int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
 | 
						|
      if (CUReg == -1) return ~0U;
 | 
						|
      SavedRegs[i] = CUReg;
 | 
						|
    }
 | 
						|
 | 
						|
    // Reverse the list.
 | 
						|
    std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
 | 
						|
 | 
						|
    uint32_t RenumRegs[CU_NUM_SAVED_REGS];
 | 
						|
    for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
 | 
						|
      unsigned Countless = 0;
 | 
						|
      for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
 | 
						|
        if (SavedRegs[j] < SavedRegs[i])
 | 
						|
          ++Countless;
 | 
						|
 | 
						|
      RenumRegs[i] = SavedRegs[i] - Countless - 1;
 | 
						|
    }
 | 
						|
 | 
						|
    // Take the renumbered values and encode them into a 10-bit number.
 | 
						|
    uint32_t permutationEncoding = 0;
 | 
						|
    switch (RegCount) {
 | 
						|
    case 6:
 | 
						|
      permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
 | 
						|
                             + 6 * RenumRegs[2] +  2 * RenumRegs[3]
 | 
						|
                             +     RenumRegs[4];
 | 
						|
      break;
 | 
						|
    case 5:
 | 
						|
      permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
 | 
						|
                             + 6 * RenumRegs[3] +  2 * RenumRegs[4]
 | 
						|
                             +     RenumRegs[5];
 | 
						|
      break;
 | 
						|
    case 4:
 | 
						|
      permutationEncoding |=  60 * RenumRegs[2] + 12 * RenumRegs[3]
 | 
						|
                             + 3 * RenumRegs[4] +      RenumRegs[5];
 | 
						|
      break;
 | 
						|
    case 3:
 | 
						|
      permutationEncoding |=  20 * RenumRegs[3] +  4 * RenumRegs[4]
 | 
						|
                             +     RenumRegs[5];
 | 
						|
      break;
 | 
						|
    case 2:
 | 
						|
      permutationEncoding |=   5 * RenumRegs[4] +      RenumRegs[5];
 | 
						|
      break;
 | 
						|
    case 1:
 | 
						|
      permutationEncoding |=       RenumRegs[5];
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    assert((permutationEncoding & 0x3FF) == permutationEncoding &&
 | 
						|
           "Invalid compact register encoding!");
 | 
						|
    return permutationEncoding;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
 | 
						|
                      bool Is64Bit)
 | 
						|
    : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
 | 
						|
    memset(SavedRegs, 0, sizeof(SavedRegs));
 | 
						|
    OffsetSize = Is64Bit ? 8 : 4;
 | 
						|
    MoveInstrSize = Is64Bit ? 3 : 2;
 | 
						|
    StackDivide = Is64Bit ? 8 : 4;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
 | 
						|
public:
 | 
						|
  DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
 | 
						|
                         StringRef CPU)
 | 
						|
      : DarwinX86AsmBackend(T, MRI, CPU, false) {}
 | 
						|
 | 
						|
  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
 | 
						|
    return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
 | 
						|
                                     MachO::CPU_TYPE_I386,
 | 
						|
                                     MachO::CPU_SUBTYPE_I386_ALL);
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Generate the compact unwind encoding for the CFI instructions.
 | 
						|
  uint32_t generateCompactUnwindEncoding(
 | 
						|
                             ArrayRef<MCCFIInstruction> Instrs) const override {
 | 
						|
    return generateCompactUnwindEncodingImpl(Instrs);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
 | 
						|
  const MachO::CPUSubTypeX86 Subtype;
 | 
						|
public:
 | 
						|
  DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
 | 
						|
                         StringRef CPU, MachO::CPUSubTypeX86 st)
 | 
						|
      : DarwinX86AsmBackend(T, MRI, CPU, true), Subtype(st) {}
 | 
						|
 | 
						|
  MCObjectWriter *createObjectWriter(raw_ostream &OS) const override {
 | 
						|
    return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
 | 
						|
                                     MachO::CPU_TYPE_X86_64, Subtype);
 | 
						|
  }
 | 
						|
 | 
						|
  bool doesSectionRequireSymbols(const MCSection &Section) const override {
 | 
						|
    // Temporary labels in the string literals sections require symbols. The
 | 
						|
    // issue is that the x86_64 relocation format does not allow symbol +
 | 
						|
    // offset, and so the linker does not have enough information to resolve the
 | 
						|
    // access to the appropriate atom unless an external relocation is used. For
 | 
						|
    // non-cstring sections, we expect the compiler to use a non-temporary label
 | 
						|
    // for anything that could have an addend pointing outside the symbol.
 | 
						|
    //
 | 
						|
    // See <rdar://problem/4765733>.
 | 
						|
    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
 | 
						|
    return SMO.getType() == MachO::S_CSTRING_LITERALS;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isSectionAtomizable(const MCSection &Section) const override {
 | 
						|
    const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
 | 
						|
    // Fixed sized data sections are uniqued, they cannot be diced into atoms.
 | 
						|
    switch (SMO.getType()) {
 | 
						|
    default:
 | 
						|
      return true;
 | 
						|
 | 
						|
    case MachO::S_4BYTE_LITERALS:
 | 
						|
    case MachO::S_8BYTE_LITERALS:
 | 
						|
    case MachO::S_16BYTE_LITERALS:
 | 
						|
    case MachO::S_LITERAL_POINTERS:
 | 
						|
    case MachO::S_NON_LAZY_SYMBOL_POINTERS:
 | 
						|
    case MachO::S_LAZY_SYMBOL_POINTERS:
 | 
						|
    case MachO::S_MOD_INIT_FUNC_POINTERS:
 | 
						|
    case MachO::S_MOD_TERM_FUNC_POINTERS:
 | 
						|
    case MachO::S_INTERPOSING:
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Generate the compact unwind encoding for the CFI instructions.
 | 
						|
  uint32_t generateCompactUnwindEncoding(
 | 
						|
                             ArrayRef<MCCFIInstruction> Instrs) const override {
 | 
						|
    return generateCompactUnwindEncodingImpl(Instrs);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
 | 
						|
                                           const MCRegisterInfo &MRI,
 | 
						|
                                           StringRef TT,
 | 
						|
                                           StringRef CPU) {
 | 
						|
  Triple TheTriple(TT);
 | 
						|
 | 
						|
  if (TheTriple.isOSBinFormatMachO())
 | 
						|
    return new DarwinX86_32AsmBackend(T, MRI, CPU);
 | 
						|
 | 
						|
  if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
 | 
						|
    return new WindowsX86AsmBackend(T, false, CPU);
 | 
						|
 | 
						|
  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
 | 
						|
  return new ELFX86_32AsmBackend(T, OSABI, CPU);
 | 
						|
}
 | 
						|
 | 
						|
MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
 | 
						|
                                           const MCRegisterInfo &MRI,
 | 
						|
                                           StringRef TT,
 | 
						|
                                           StringRef CPU) {
 | 
						|
  Triple TheTriple(TT);
 | 
						|
 | 
						|
  if (TheTriple.isOSBinFormatMachO()) {
 | 
						|
    MachO::CPUSubTypeX86 CS =
 | 
						|
        StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
 | 
						|
            .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
 | 
						|
            .Default(MachO::CPU_SUBTYPE_X86_64_ALL);
 | 
						|
    return new DarwinX86_64AsmBackend(T, MRI, CPU, CS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
 | 
						|
    return new WindowsX86AsmBackend(T, true, CPU);
 | 
						|
 | 
						|
  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
 | 
						|
 | 
						|
  if (TheTriple.getEnvironment() == Triple::GNUX32)
 | 
						|
    return new ELFX86_X32AsmBackend(T, OSABI, CPU);
 | 
						|
  return new ELFX86_64AsmBackend(T, OSABI, CPU);
 | 
						|
}
 |