mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221878 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			220 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			220 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the X86 specific subclass of TargetMachine.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86TargetMachine.h"
 | |
| #include "X86.h"
 | |
| #include "X86TargetObjectFile.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/FormattedStream.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| extern "C" void LLVMInitializeX86Target() {
 | |
|   // Register the target.
 | |
|   RegisterTargetMachine<X86TargetMachine> X(TheX86_32Target);
 | |
|   RegisterTargetMachine<X86TargetMachine> Y(TheX86_64Target);
 | |
| }
 | |
| 
 | |
| void X86TargetMachine::anchor() { }
 | |
| 
 | |
| static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
 | |
|   if (TT.isOSBinFormatMachO()) {
 | |
|     if (TT.getArch() == Triple::x86_64)
 | |
|       return make_unique<X86_64MachoTargetObjectFile>();
 | |
|     return make_unique<TargetLoweringObjectFileMachO>();
 | |
|   }
 | |
| 
 | |
|   if (TT.isOSLinux())
 | |
|     return make_unique<X86LinuxTargetObjectFile>();
 | |
|   if (TT.isOSBinFormatELF())
 | |
|     return make_unique<TargetLoweringObjectFileELF>();
 | |
|   if (TT.isKnownWindowsMSVCEnvironment())
 | |
|     return make_unique<X86WindowsTargetObjectFile>();
 | |
|   if (TT.isOSBinFormatCOFF())
 | |
|     return make_unique<TargetLoweringObjectFileCOFF>();
 | |
|   llvm_unreachable("unknown subtarget type");
 | |
| }
 | |
| 
 | |
| /// X86TargetMachine ctor - Create an X86 target.
 | |
| ///
 | |
| X86TargetMachine::X86TargetMachine(const Target &T, StringRef TT, StringRef CPU,
 | |
|                                    StringRef FS, const TargetOptions &Options,
 | |
|                                    Reloc::Model RM, CodeModel::Model CM,
 | |
|                                    CodeGenOpt::Level OL)
 | |
|     : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
 | |
|       TLOF(createTLOF(Triple(getTargetTriple()))),
 | |
|       Subtarget(TT, CPU, FS, *this, Options.StackAlignmentOverride) {
 | |
|   // default to hard float ABI
 | |
|   if (Options.FloatABIType == FloatABI::Default)
 | |
|     this->Options.FloatABIType = FloatABI::Hard;
 | |
| 
 | |
|   // Windows stack unwinder gets confused when execution flow "falls through"
 | |
|   // after a call to 'noreturn' function.
 | |
|   // To prevent that, we emit a trap for 'unreachable' IR instructions.
 | |
|   // (which on X86, happens to be the 'ud2' instruction)
 | |
|   if (Subtarget.isTargetWin64())
 | |
|     this->Options.TrapUnreachable = true;
 | |
| 
 | |
|   initAsmInfo();
 | |
| }
 | |
| 
 | |
| const X86Subtarget *
 | |
| X86TargetMachine::getSubtargetImpl(const Function &F) const {
 | |
|   AttributeSet FnAttrs = F.getAttributes();
 | |
|   Attribute CPUAttr =
 | |
|       FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu");
 | |
|   Attribute FSAttr =
 | |
|       FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features");
 | |
| 
 | |
|   std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
 | |
|                         ? CPUAttr.getValueAsString().str()
 | |
|                         : TargetCPU;
 | |
|   std::string FS = !FSAttr.hasAttribute(Attribute::None)
 | |
|                        ? FSAttr.getValueAsString().str()
 | |
|                        : TargetFS;
 | |
| 
 | |
|   // FIXME: This is related to the code below to reset the target options,
 | |
|   // we need to know whether or not the soft float flag is set on the
 | |
|   // function before we can generate a subtarget. We also need to use
 | |
|   // it as a key for the subtarget since that can be the only difference
 | |
|   // between two functions.
 | |
|   Attribute SFAttr =
 | |
|       FnAttrs.getAttribute(AttributeSet::FunctionIndex, "use-soft-float");
 | |
|   bool SoftFloat = !SFAttr.hasAttribute(Attribute::None)
 | |
|                        ? SFAttr.getValueAsString() == "true"
 | |
|                        : Options.UseSoftFloat;
 | |
| 
 | |
|   auto &I = SubtargetMap[CPU + FS + (SoftFloat ? "use-soft-float=true"
 | |
|                                                : "use-soft-float=false")];
 | |
|   if (!I) {
 | |
|     // This needs to be done before we create a new subtarget since any
 | |
|     // creation will depend on the TM and the code generation flags on the
 | |
|     // function that reside in TargetOptions.
 | |
|     resetTargetOptions(F);
 | |
|     I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
 | |
|                                         Options.StackAlignmentOverride);
 | |
|   }
 | |
|   return I.get();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Command line options for x86
 | |
| //===----------------------------------------------------------------------===//
 | |
| static cl::opt<bool>
 | |
| UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
 | |
|   cl::desc("Minimize AVX to SSE transition penalty"),
 | |
|   cl::init(true));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // X86 Analysis Pass Setup
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void X86TargetMachine::addAnalysisPasses(PassManagerBase &PM) {
 | |
|   // Add first the target-independent BasicTTI pass, then our X86 pass. This
 | |
|   // allows the X86 pass to delegate to the target independent layer when
 | |
|   // appropriate.
 | |
|   PM.add(createBasicTargetTransformInfoPass(this));
 | |
|   PM.add(createX86TargetTransformInfoPass(this));
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pass Pipeline Configuration
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// X86 Code Generator Pass Configuration Options.
 | |
| class X86PassConfig : public TargetPassConfig {
 | |
| public:
 | |
|   X86PassConfig(X86TargetMachine *TM, PassManagerBase &PM)
 | |
|     : TargetPassConfig(TM, PM) {}
 | |
| 
 | |
|   X86TargetMachine &getX86TargetMachine() const {
 | |
|     return getTM<X86TargetMachine>();
 | |
|   }
 | |
| 
 | |
|   const X86Subtarget &getX86Subtarget() const {
 | |
|     return *getX86TargetMachine().getSubtargetImpl();
 | |
|   }
 | |
| 
 | |
|   void addIRPasses() override;
 | |
|   bool addInstSelector() override;
 | |
|   bool addILPOpts() override;
 | |
|   bool addPreRegAlloc() override;
 | |
|   bool addPostRegAlloc() override;
 | |
|   bool addPreEmitPass() override;
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
 | |
|   return new X86PassConfig(this, PM);
 | |
| }
 | |
| 
 | |
| void X86PassConfig::addIRPasses() {
 | |
|   addPass(createAtomicExpandPass(&getX86TargetMachine()));
 | |
| 
 | |
|   TargetPassConfig::addIRPasses();
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addInstSelector() {
 | |
|   // Install an instruction selector.
 | |
|   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
 | |
| 
 | |
|   // For ELF, cleanup any local-dynamic TLS accesses.
 | |
|   if (getX86Subtarget().isTargetELF() && getOptLevel() != CodeGenOpt::None)
 | |
|     addPass(createCleanupLocalDynamicTLSPass());
 | |
| 
 | |
|   addPass(createX86GlobalBaseRegPass());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addILPOpts() {
 | |
|   addPass(&EarlyIfConverterID);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addPreRegAlloc() {
 | |
|   return false;  // -print-machineinstr shouldn't print after this.
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addPostRegAlloc() {
 | |
|   addPass(createX86FloatingPointStackifierPass());
 | |
|   return true;  // -print-machineinstr should print after this.
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addPreEmitPass() {
 | |
|   bool ShouldPrint = false;
 | |
|   if (getOptLevel() != CodeGenOpt::None && getX86Subtarget().hasSSE2()) {
 | |
|     addPass(createExecutionDependencyFixPass(&X86::VR128RegClass));
 | |
|     ShouldPrint = true;
 | |
|   }
 | |
| 
 | |
|   if (UseVZeroUpper) {
 | |
|     addPass(createX86IssueVZeroUpperPass());
 | |
|     ShouldPrint = true;
 | |
|   }
 | |
| 
 | |
|   if (getOptLevel() != CodeGenOpt::None) {
 | |
|     addPass(createX86PadShortFunctions());
 | |
|     addPass(createX86FixupLEAs());
 | |
|     ShouldPrint = true;
 | |
|   }
 | |
| 
 | |
|   return ShouldPrint;
 | |
| }
 |