llvm-6502/lib/VMCore/PassManager.cpp
Devang Patel be1ffc6b8d Update assignPassManager() signature to allow selection of preferred
pass manager type. This allows new FPPassManager to select Call Graph
Pass Manager (if available) as its parent.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33306 91177308-0d34-0410-b5e6-96231b3b80d8
2007-01-17 20:30:17 +00:00

1308 lines
40 KiB
C++

//===- PassManager.cpp - LLVM Pass Infrastructure Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Devang Patel and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LLVM Pass Manager infrastructure.
//
//===----------------------------------------------------------------------===//
#include "llvm/PassManagers.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Timer.h"
#include "llvm/Module.h"
#include "llvm/ModuleProvider.h"
#include "llvm/Support/Streams.h"
#include "llvm/Support/ManagedStatic.h"
#include <vector>
#include <map>
// See PassManagers.h for Pass Manager infrastructure overview.
namespace llvm {
//===----------------------------------------------------------------------===//
// Pass debugging information. Often it is useful to find out what pass is
// running when a crash occurs in a utility. When this library is compiled with
// debugging on, a command line option (--debug-pass) is enabled that causes the
// pass name to be printed before it executes.
//
// Different debug levels that can be enabled...
enum PassDebugLevel {
None, Arguments, Structure, Executions, Details
};
static cl::opt<enum PassDebugLevel>
PassDebugging_New("debug-pass", cl::Hidden,
cl::desc("Print PassManager debugging information"),
cl::values(
clEnumVal(None , "disable debug output"),
clEnumVal(Arguments , "print pass arguments to pass to 'opt'"),
clEnumVal(Structure , "print pass structure before run()"),
clEnumVal(Executions, "print pass name before it is executed"),
clEnumVal(Details , "print pass details when it is executed"),
clEnumValEnd));
} // End of llvm namespace
namespace {
//===----------------------------------------------------------------------===//
// BBPassManager
//
/// BBPassManager manages BasicBlockPass. It batches all the
/// pass together and sequence them to process one basic block before
/// processing next basic block.
class VISIBILITY_HIDDEN BBPassManager : public PMDataManager,
public FunctionPass {
public:
BBPassManager(int Depth) : PMDataManager(Depth) { }
/// Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the function, and if so, return true.
bool runOnFunction(Function &F);
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
}
bool doInitialization(Module &M);
bool doInitialization(Function &F);
bool doFinalization(Module &M);
bool doFinalization(Function &F);
// Print passes managed by this manager
void dumpPassStructure(unsigned Offset) {
llvm::cerr << std::string(Offset*2, ' ') << "BasicBlockPass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
BP->dumpPassStructure(Offset + 1);
dumpLastUses(BP, Offset+1);
}
}
BasicBlockPass *getContainedPass(unsigned N) {
assert ( N < PassVector.size() && "Pass number out of range!");
BasicBlockPass *BP = static_cast<BasicBlockPass *>(PassVector[N]);
return BP;
}
virtual PassManagerType getPassManagerType() {
return PMT_BasicBlockPassManager;
}
};
}
namespace llvm {
//===----------------------------------------------------------------------===//
// FunctionPassManagerImpl
//
/// FunctionPassManagerImpl manages FPPassManagers
class FunctionPassManagerImpl : public Pass,
public PMDataManager,
public PMTopLevelManager {
public:
FunctionPassManagerImpl(int Depth) : PMDataManager(Depth),
PMTopLevelManager(TLM_Function) { }
/// add - Add a pass to the queue of passes to run. This passes ownership of
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
/// will be destroyed as well, so there is no need to delete the pass. This
/// implies that all passes MUST be allocated with 'new'.
void add(Pass *P) {
schedulePass(P);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool run(Function &F);
/// doInitialization - Run all of the initializers for the function passes.
///
bool doInitialization(Module &M);
/// doFinalization - Run all of the initializers for the function passes.
///
bool doFinalization(Module &M);
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
}
inline void addTopLevelPass(Pass *P) {
if (ImmutablePass *IP = dynamic_cast<ImmutablePass *> (P)) {
// P is a immutable pass and it will be managed by this
// top level manager. Set up analysis resolver to connect them.
AnalysisResolver *AR = new AnalysisResolver(*this);
P->setResolver(AR);
initializeAnalysisImpl(P);
addImmutablePass(IP);
recordAvailableAnalysis(IP);
} else {
P->assignPassManager(activeStack);
}
}
FPPassManager *getContainedManager(unsigned N) {
assert ( N < PassManagers.size() && "Pass number out of range!");
FPPassManager *FP = static_cast<FPPassManager *>(PassManagers[N]);
return FP;
}
};
//===----------------------------------------------------------------------===//
// MPPassManager
//
/// MPPassManager manages ModulePasses and function pass managers.
/// It batches all Module passes passes and function pass managers together and
/// sequence them to process one module.
class MPPassManager : public Pass, public PMDataManager {
public:
MPPassManager(int Depth) : PMDataManager(Depth) { }
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool runOnModule(Module &M);
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
}
// Print passes managed by this manager
void dumpPassStructure(unsigned Offset) {
llvm::cerr << std::string(Offset*2, ' ') << "ModulePass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
ModulePass *MP = getContainedPass(Index);
MP->dumpPassStructure(Offset + 1);
dumpLastUses(MP, Offset+1);
}
}
ModulePass *getContainedPass(unsigned N) {
assert ( N < PassVector.size() && "Pass number out of range!");
ModulePass *MP = static_cast<ModulePass *>(PassVector[N]);
return MP;
}
virtual PassManagerType getPassManagerType() { return PMT_ModulePassManager; }
};
//===----------------------------------------------------------------------===//
// PassManagerImpl
//
/// PassManagerImpl manages MPPassManagers
class PassManagerImpl : public Pass,
public PMDataManager,
public PMTopLevelManager {
public:
PassManagerImpl(int Depth) : PMDataManager(Depth),
PMTopLevelManager(TLM_Pass) { }
/// add - Add a pass to the queue of passes to run. This passes ownership of
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
/// will be destroyed as well, so there is no need to delete the pass. This
/// implies that all passes MUST be allocated with 'new'.
void add(Pass *P) {
schedulePass(P);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool run(Module &M);
/// Pass Manager itself does not invalidate any analysis info.
void getAnalysisUsage(AnalysisUsage &Info) const {
Info.setPreservesAll();
}
inline void addTopLevelPass(Pass *P) {
if (ImmutablePass *IP = dynamic_cast<ImmutablePass *> (P)) {
// P is a immutable pass and it will be managed by this
// top level manager. Set up analysis resolver to connect them.
AnalysisResolver *AR = new AnalysisResolver(*this);
P->setResolver(AR);
initializeAnalysisImpl(P);
addImmutablePass(IP);
recordAvailableAnalysis(IP);
} else {
P->assignPassManager(activeStack);
}
}
MPPassManager *getContainedManager(unsigned N) {
assert ( N < PassManagers.size() && "Pass number out of range!");
MPPassManager *MP = static_cast<MPPassManager *>(PassManagers[N]);
return MP;
}
};
} // End of llvm namespace
namespace {
//===----------------------------------------------------------------------===//
// TimingInfo Class - This class is used to calculate information about the
// amount of time each pass takes to execute. This only happens when
// -time-passes is enabled on the command line.
//
class VISIBILITY_HIDDEN TimingInfo {
std::map<Pass*, Timer> TimingData;
TimerGroup TG;
public:
// Use 'create' member to get this.
TimingInfo() : TG("... Pass execution timing report ...") {}
// TimingDtor - Print out information about timing information
~TimingInfo() {
// Delete all of the timers...
TimingData.clear();
// TimerGroup is deleted next, printing the report.
}
// createTheTimeInfo - This method either initializes the TheTimeInfo pointer
// to a non null value (if the -time-passes option is enabled) or it leaves it
// null. It may be called multiple times.
static void createTheTimeInfo();
void passStarted(Pass *P) {
if (dynamic_cast<PMDataManager *>(P))
return;
std::map<Pass*, Timer>::iterator I = TimingData.find(P);
if (I == TimingData.end())
I=TimingData.insert(std::make_pair(P, Timer(P->getPassName(), TG))).first;
I->second.startTimer();
}
void passEnded(Pass *P) {
if (dynamic_cast<PMDataManager *>(P))
return;
std::map<Pass*, Timer>::iterator I = TimingData.find(P);
assert (I != TimingData.end() && "passStarted/passEnded not nested right!");
I->second.stopTimer();
}
};
static TimingInfo *TheTimeInfo;
} // End of anon namespace
//===----------------------------------------------------------------------===//
// PMTopLevelManager implementation
/// Initialize top level manager. Create first pass manager.
PMTopLevelManager::PMTopLevelManager (enum TopLevelManagerType t) {
if (t == TLM_Pass) {
MPPassManager *MPP = new MPPassManager(1);
MPP->setTopLevelManager(this);
addPassManager(MPP);
activeStack.push(MPP);
}
else if (t == TLM_Function) {
FPPassManager *FPP = new FPPassManager(1);
FPP->setTopLevelManager(this);
addPassManager(FPP);
activeStack.push(FPP);
}
}
/// Set pass P as the last user of the given analysis passes.
void PMTopLevelManager::setLastUser(std::vector<Pass *> &AnalysisPasses,
Pass *P) {
for (std::vector<Pass *>::iterator I = AnalysisPasses.begin(),
E = AnalysisPasses.end(); I != E; ++I) {
Pass *AP = *I;
LastUser[AP] = P;
// If AP is the last user of other passes then make P last user of
// such passes.
for (std::map<Pass *, Pass *>::iterator LUI = LastUser.begin(),
LUE = LastUser.end(); LUI != LUE; ++LUI) {
if (LUI->second == AP)
LastUser[LUI->first] = P;
}
}
}
/// Collect passes whose last user is P
void PMTopLevelManager::collectLastUses(std::vector<Pass *> &LastUses,
Pass *P) {
for (std::map<Pass *, Pass *>::iterator LUI = LastUser.begin(),
LUE = LastUser.end(); LUI != LUE; ++LUI)
if (LUI->second == P)
LastUses.push_back(LUI->first);
}
/// Schedule pass P for execution. Make sure that passes required by
/// P are run before P is run. Update analysis info maintained by
/// the manager. Remove dead passes. This is a recursive function.
void PMTopLevelManager::schedulePass(Pass *P) {
// TODO : Allocate function manager for this pass, other wise required set
// may be inserted into previous function manager
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();
for (std::vector<AnalysisID>::const_iterator I = RequiredSet.begin(),
E = RequiredSet.end(); I != E; ++I) {
Pass *AnalysisPass = findAnalysisPass(*I);
if (!AnalysisPass) {
// Schedule this analysis run first.
AnalysisPass = (*I)->createPass();
schedulePass(AnalysisPass);
}
}
// Now all required passes are available.
addTopLevelPass(P);
}
/// Find the pass that implements Analysis AID. Search immutable
/// passes and all pass managers. If desired pass is not found
/// then return NULL.
Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) {
Pass *P = NULL;
// Check pass managers
for (std::vector<Pass *>::iterator I = PassManagers.begin(),
E = PassManagers.end(); P == NULL && I != E; ++I) {
PMDataManager *PMD = dynamic_cast<PMDataManager *>(*I);
assert(PMD && "This is not a PassManager");
P = PMD->findAnalysisPass(AID, false);
}
// Check other pass managers
for (std::vector<PMDataManager *>::iterator I = IndirectPassManagers.begin(),
E = IndirectPassManagers.end(); P == NULL && I != E; ++I)
P = (*I)->findAnalysisPass(AID, false);
for (std::vector<ImmutablePass *>::iterator I = ImmutablePasses.begin(),
E = ImmutablePasses.end(); P == NULL && I != E; ++I) {
const PassInfo *PI = (*I)->getPassInfo();
if (PI == AID)
P = *I;
// If Pass not found then check the interfaces implemented by Immutable Pass
if (!P) {
const std::vector<const PassInfo*> &ImmPI = PI->getInterfacesImplemented();
if (std::find(ImmPI.begin(), ImmPI.end(), AID) != ImmPI.end())
P = *I;
}
}
return P;
}
// Print passes managed by this top level manager.
void PMTopLevelManager::dumpPasses() const {
if (PassDebugging_New < Structure)
return;
// Print out the immutable passes
for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
ImmutablePasses[i]->dumpPassStructure(0);
}
for (std::vector<Pass *>::const_iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I)
(*I)->dumpPassStructure(1);
}
void PMTopLevelManager::dumpArguments() const {
if (PassDebugging_New < Arguments)
return;
cerr << "Pass Arguments: ";
for (std::vector<Pass *>::const_iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I) {
PMDataManager *PMD = dynamic_cast<PMDataManager *>(*I);
assert(PMD && "This is not a PassManager");
PMD->dumpPassArguments();
}
cerr << "\n";
}
void PMTopLevelManager::initializeAllAnalysisInfo() {
for (std::vector<Pass *>::iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I) {
PMDataManager *PMD = dynamic_cast<PMDataManager *>(*I);
assert(PMD && "This is not a PassManager");
PMD->initializeAnalysisInfo();
}
// Initailize other pass managers
for (std::vector<PMDataManager *>::iterator I = IndirectPassManagers.begin(),
E = IndirectPassManagers.end(); I != E; ++I)
(*I)->initializeAnalysisInfo();
}
/// Destructor
PMTopLevelManager::~PMTopLevelManager() {
for (std::vector<Pass *>::iterator I = PassManagers.begin(),
E = PassManagers.end(); I != E; ++I)
delete *I;
for (std::vector<ImmutablePass *>::iterator
I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I)
delete *I;
PassManagers.clear();
}
//===----------------------------------------------------------------------===//
// PMDataManager implementation
/// Return true IFF pass P's required analysis set does not required new
/// manager.
bool PMDataManager::manageablePass(Pass *P) {
// TODO
// If this pass is not preserving information that is required by a
// pass maintained by higher level pass manager then do not insert
// this pass into current manager. Use new manager. For example,
// For example, If FunctionPass F is not preserving ModulePass Info M1
// that is used by another ModulePass M2 then do not insert F in
// current function pass manager.
return true;
}
/// Augement AvailableAnalysis by adding analysis made available by pass P.
void PMDataManager::recordAvailableAnalysis(Pass *P) {
if (const PassInfo *PI = P->getPassInfo()) {
AvailableAnalysis[PI] = P;
//This pass is the current implementation of all of the interfaces it
//implements as well.
const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i)
AvailableAnalysis[II[i]] = P;
}
}
/// Remove Analyss not preserved by Pass P
void PMDataManager::removeNotPreservedAnalysis(Pass *P) {
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
if (AnUsage.getPreservesAll())
return;
const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
for (std::map<AnalysisID, Pass*>::iterator I = AvailableAnalysis.begin(),
E = AvailableAnalysis.end(); I != E; ) {
std::map<AnalysisID, Pass*>::iterator Info = I++;
if (std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) ==
PreservedSet.end()) {
// Remove this analysis
if (!dynamic_cast<ImmutablePass*>(Info->second))
AvailableAnalysis.erase(Info);
}
}
}
/// Remove analysis passes that are not used any longer
void PMDataManager::removeDeadPasses(Pass *P, std::string &Msg) {
std::vector<Pass *> DeadPasses;
TPM->collectLastUses(DeadPasses, P);
for (std::vector<Pass *>::iterator I = DeadPasses.begin(),
E = DeadPasses.end(); I != E; ++I) {
std::string Msg1 = " Freeing Pass '";
dumpPassInfo(*I, Msg1, Msg);
if (TheTimeInfo) TheTimeInfo->passStarted(P);
(*I)->releaseMemory();
if (TheTimeInfo) TheTimeInfo->passEnded(P);
std::map<AnalysisID, Pass*>::iterator Pos =
AvailableAnalysis.find((*I)->getPassInfo());
// It is possible that pass is already removed from the AvailableAnalysis
if (Pos != AvailableAnalysis.end())
AvailableAnalysis.erase(Pos);
}
}
/// Add pass P into the PassVector. Update
/// AvailableAnalysis appropriately if ProcessAnalysis is true.
void PMDataManager::add(Pass *P,
bool ProcessAnalysis) {
// This manager is going to manage pass P. Set up analysis resolver
// to connect them.
AnalysisResolver *AR = new AnalysisResolver(*this);
P->setResolver(AR);
if (ProcessAnalysis) {
// At the moment, this pass is the last user of all required passes.
std::vector<Pass *> LastUses;
std::vector<Pass *> RequiredPasses;
unsigned PDepth = this->getDepth();
collectRequiredAnalysisPasses(RequiredPasses, P);
for (std::vector<Pass *>::iterator I = RequiredPasses.begin(),
E = RequiredPasses.end(); I != E; ++I) {
Pass *PRequired = *I;
unsigned RDepth = 0;
PMDataManager &DM = PRequired->getResolver()->getPMDataManager();
RDepth = DM.getDepth();
if (PDepth == RDepth)
LastUses.push_back(PRequired);
else if (PDepth > RDepth) {
// Let the parent claim responsibility of last use
TransferLastUses.push_back(PRequired);
} else {
// Note : This feature is not yet implemented
assert (0 &&
"Unable to handle Pass that requires lower level Analysis pass");
}
}
// Set P as P's last user until someone starts using P.
// However, if P is a Pass Manager then it does not need
// to record its last user.
if (!dynamic_cast<PMDataManager *>(P))
LastUses.push_back(P);
TPM->setLastUser(LastUses, P);
// Take a note of analysis required and made available by this pass.
// Remove the analysis not preserved by this pass
removeNotPreservedAnalysis(P);
recordAvailableAnalysis(P);
}
// Add pass
PassVector.push_back(P);
}
/// Populate RequiredPasses with the analysis pass that are required by
/// pass P.
void PMDataManager::collectRequiredAnalysisPasses(std::vector<Pass *> &RP,
Pass *P) {
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();
for (std::vector<AnalysisID>::const_iterator
I = RequiredSet.begin(), E = RequiredSet.end();
I != E; ++I) {
Pass *AnalysisPass = findAnalysisPass(*I, true);
assert (AnalysisPass && "Analysis pass is not available");
RP.push_back(AnalysisPass);
}
const std::vector<AnalysisID> &IDs = AnUsage.getRequiredTransitiveSet();
for (std::vector<AnalysisID>::const_iterator I = IDs.begin(),
E = IDs.end(); I != E; ++I) {
Pass *AnalysisPass = findAnalysisPass(*I, true);
assert (AnalysisPass && "Analysis pass is not available");
RP.push_back(AnalysisPass);
}
}
// All Required analyses should be available to the pass as it runs! Here
// we fill in the AnalysisImpls member of the pass so that it can
// successfully use the getAnalysis() method to retrieve the
// implementations it needs.
//
void PMDataManager::initializeAnalysisImpl(Pass *P) {
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
for (std::vector<const PassInfo *>::const_iterator
I = AnUsage.getRequiredSet().begin(),
E = AnUsage.getRequiredSet().end(); I != E; ++I) {
Pass *Impl = findAnalysisPass(*I, true);
if (Impl == 0)
assert(0 && "Analysis used but not available!");
AnalysisResolver *AR = P->getResolver();
AR->addAnalysisImplsPair(*I, Impl);
}
}
/// Find the pass that implements Analysis AID. If desired pass is not found
/// then return NULL.
Pass *PMDataManager::findAnalysisPass(AnalysisID AID, bool SearchParent) {
// Check if AvailableAnalysis map has one entry.
std::map<AnalysisID, Pass*>::const_iterator I = AvailableAnalysis.find(AID);
if (I != AvailableAnalysis.end())
return I->second;
// Search Parents through TopLevelManager
if (SearchParent)
return TPM->findAnalysisPass(AID);
return NULL;
}
// Print list of passes that are last used by P.
void PMDataManager::dumpLastUses(Pass *P, unsigned Offset) const{
std::vector<Pass *> LUses;
assert (TPM && "Top Level Manager is missing");
TPM->collectLastUses(LUses, P);
for (std::vector<Pass *>::iterator I = LUses.begin(),
E = LUses.end(); I != E; ++I) {
llvm::cerr << "--" << std::string(Offset*2, ' ');
(*I)->dumpPassStructure(0);
}
}
void PMDataManager::dumpPassArguments() const {
for(std::vector<Pass *>::const_iterator I = PassVector.begin(),
E = PassVector.end(); I != E; ++I) {
if (PMDataManager *PMD = dynamic_cast<PMDataManager *>(*I))
PMD->dumpPassArguments();
else
if (const PassInfo *PI = (*I)->getPassInfo())
if (!PI->isAnalysisGroup())
cerr << " -" << PI->getPassArgument();
}
}
void PMDataManager:: dumpPassInfo(Pass *P, std::string &Msg1,
std::string &Msg2) const {
if (PassDebugging_New < Executions)
return;
cerr << (void*)this << std::string(getDepth()*2+1, ' ');
cerr << Msg1;
cerr << P->getPassName();
cerr << Msg2;
}
void PMDataManager::dumpAnalysisSetInfo(const char *Msg, Pass *P,
const std::vector<AnalysisID> &Set)
const {
if (PassDebugging_New >= Details && !Set.empty()) {
cerr << (void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:";
for (unsigned i = 0; i != Set.size(); ++i) {
if (i) cerr << ",";
cerr << " " << Set[i]->getPassName();
}
cerr << "\n";
}
}
// Destructor
PMDataManager::~PMDataManager() {
for (std::vector<Pass *>::iterator I = PassVector.begin(),
E = PassVector.end(); I != E; ++I)
delete *I;
PassVector.clear();
}
//===----------------------------------------------------------------------===//
// NOTE: Is this the right place to define this method ?
// getAnalysisToUpdate - Return an analysis result or null if it doesn't exist
Pass *AnalysisResolver::getAnalysisToUpdate(AnalysisID ID, bool dir) const {
return PM.findAnalysisPass(ID, dir);
}
//===----------------------------------------------------------------------===//
// BBPassManager implementation
/// Execute all of the passes scheduled for execution by invoking
/// runOnBasicBlock method. Keep track of whether any of the passes modifies
/// the function, and if so, return true.
bool
BBPassManager::runOnFunction(Function &F) {
if (F.isExternal())
return false;
bool Changed = doInitialization(F);
std::string Msg1 = "Executing Pass '";
std::string Msg3 = "' Made Modification '";
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
AnalysisUsage AnUsage;
BP->getAnalysisUsage(AnUsage);
std::string Msg2 = "' on BasicBlock '" + (*I).getName() + "'...\n";
dumpPassInfo(BP, Msg1, Msg2);
dumpAnalysisSetInfo("Required", BP, AnUsage.getRequiredSet());
initializeAnalysisImpl(BP);
if (TheTimeInfo) TheTimeInfo->passStarted(BP);
Changed |= BP->runOnBasicBlock(*I);
if (TheTimeInfo) TheTimeInfo->passEnded(BP);
if (Changed)
dumpPassInfo(BP, Msg3, Msg2);
dumpAnalysisSetInfo("Preserved", BP, AnUsage.getPreservedSet());
removeNotPreservedAnalysis(BP);
recordAvailableAnalysis(BP);
removeDeadPasses(BP, Msg2);
}
return Changed |= doFinalization(F);
}
// Implement doInitialization and doFinalization
inline bool BBPassManager::doInitialization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
Changed |= BP->doInitialization(M);
}
return Changed;
}
inline bool BBPassManager::doFinalization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
Changed |= BP->doFinalization(M);
}
return Changed;
}
inline bool BBPassManager::doInitialization(Function &F) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
Changed |= BP->doInitialization(F);
}
return Changed;
}
inline bool BBPassManager::doFinalization(Function &F) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
BasicBlockPass *BP = getContainedPass(Index);
Changed |= BP->doFinalization(F);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// FunctionPassManager implementation
/// Create new Function pass manager
FunctionPassManager::FunctionPassManager(ModuleProvider *P) {
FPM = new FunctionPassManagerImpl(0);
// FPM is the top level manager.
FPM->setTopLevelManager(FPM);
PMDataManager *PMD = dynamic_cast<PMDataManager *>(FPM);
AnalysisResolver *AR = new AnalysisResolver(*PMD);
FPM->setResolver(AR);
MP = P;
}
FunctionPassManager::~FunctionPassManager() {
delete FPM;
}
/// add - Add a pass to the queue of passes to run. This passes
/// ownership of the Pass to the PassManager. When the
/// PassManager_X is destroyed, the pass will be destroyed as well, so
/// there is no need to delete the pass. (TODO delete passes.)
/// This implies that all passes MUST be allocated with 'new'.
void FunctionPassManager::add(Pass *P) {
FPM->add(P);
}
/// run - Execute all of the passes scheduled for execution. Keep
/// track of whether any of the passes modifies the function, and if
/// so, return true.
///
bool FunctionPassManager::run(Function &F) {
std::string errstr;
if (MP->materializeFunction(&F, &errstr)) {
cerr << "Error reading bytecode file: " << errstr << "\n";
abort();
}
return FPM->run(F);
}
/// doInitialization - Run all of the initializers for the function passes.
///
bool FunctionPassManager::doInitialization() {
return FPM->doInitialization(*MP->getModule());
}
/// doFinalization - Run all of the initializers for the function passes.
///
bool FunctionPassManager::doFinalization() {
return FPM->doFinalization(*MP->getModule());
}
//===----------------------------------------------------------------------===//
// FunctionPassManagerImpl implementation
//
inline bool FunctionPassManagerImpl::doInitialization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
FPPassManager *FP = getContainedManager(Index);
Changed |= FP->doInitialization(M);
}
return Changed;
}
inline bool FunctionPassManagerImpl::doFinalization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
FPPassManager *FP = getContainedManager(Index);
Changed |= FP->doFinalization(M);
}
return Changed;
}
// Execute all the passes managed by this top level manager.
// Return true if any function is modified by a pass.
bool FunctionPassManagerImpl::run(Function &F) {
bool Changed = false;
TimingInfo::createTheTimeInfo();
dumpArguments();
dumpPasses();
initializeAllAnalysisInfo();
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
FPPassManager *FP = getContainedManager(Index);
Changed |= FP->runOnFunction(F);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// FPPassManager implementation
/// Print passes managed by this manager
void FPPassManager::dumpPassStructure(unsigned Offset) {
llvm::cerr << std::string(Offset*2, ' ') << "FunctionPass Manager\n";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
FP->dumpPassStructure(Offset + 1);
dumpLastUses(FP, Offset+1);
}
}
/// Execute all of the passes scheduled for execution by invoking
/// runOnFunction method. Keep track of whether any of the passes modifies
/// the function, and if so, return true.
bool FPPassManager::runOnFunction(Function &F) {
bool Changed = false;
if (F.isExternal())
return false;
std::string Msg1 = "Executing Pass '";
std::string Msg3 = "' Made Modification '";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
AnalysisUsage AnUsage;
FP->getAnalysisUsage(AnUsage);
std::string Msg2 = "' on Function '" + F.getName() + "'...\n";
dumpPassInfo(FP, Msg1, Msg2);
dumpAnalysisSetInfo("Required", FP, AnUsage.getRequiredSet());
initializeAnalysisImpl(FP);
if (TheTimeInfo) TheTimeInfo->passStarted(FP);
Changed |= FP->runOnFunction(F);
if (TheTimeInfo) TheTimeInfo->passEnded(FP);
if (Changed)
dumpPassInfo(FP, Msg3, Msg2);
dumpAnalysisSetInfo("Preserved", FP, AnUsage.getPreservedSet());
removeNotPreservedAnalysis(FP);
recordAvailableAnalysis(FP);
removeDeadPasses(FP, Msg2);
}
return Changed;
}
bool FPPassManager::runOnModule(Module &M) {
bool Changed = doInitialization(M);
for(Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
this->runOnFunction(*I);
return Changed |= doFinalization(M);
}
inline bool FPPassManager::doInitialization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
Changed |= FP->doInitialization(M);
}
return Changed;
}
inline bool FPPassManager::doFinalization(Module &M) {
bool Changed = false;
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
FunctionPass *FP = getContainedPass(Index);
Changed |= FP->doFinalization(M);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// MPPassManager implementation
/// Execute all of the passes scheduled for execution by invoking
/// runOnModule method. Keep track of whether any of the passes modifies
/// the module, and if so, return true.
bool
MPPassManager::runOnModule(Module &M) {
bool Changed = false;
std::string Msg1 = "Executing Pass '";
std::string Msg3 = "' Made Modification '";
for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) {
ModulePass *MP = getContainedPass(Index);
AnalysisUsage AnUsage;
MP->getAnalysisUsage(AnUsage);
std::string Msg2 = "' on Module '" + M.getModuleIdentifier() + "'...\n";
dumpPassInfo(MP, Msg1, Msg2);
dumpAnalysisSetInfo("Required", MP, AnUsage.getRequiredSet());
initializeAnalysisImpl(MP);
if (TheTimeInfo) TheTimeInfo->passStarted(MP);
Changed |= MP->runOnModule(M);
if (TheTimeInfo) TheTimeInfo->passEnded(MP);
if (Changed)
dumpPassInfo(MP, Msg3, Msg2);
dumpAnalysisSetInfo("Preserved", MP, AnUsage.getPreservedSet());
removeNotPreservedAnalysis(MP);
recordAvailableAnalysis(MP);
removeDeadPasses(MP, Msg2);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// PassManagerImpl implementation
//
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool PassManagerImpl::run(Module &M) {
bool Changed = false;
TimingInfo::createTheTimeInfo();
dumpArguments();
dumpPasses();
initializeAllAnalysisInfo();
for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) {
MPPassManager *MP = getContainedManager(Index);
Changed |= MP->runOnModule(M);
}
return Changed;
}
//===----------------------------------------------------------------------===//
// PassManager implementation
/// Create new pass manager
PassManager::PassManager() {
PM = new PassManagerImpl(0);
// PM is the top level manager
PM->setTopLevelManager(PM);
}
PassManager::~PassManager() {
delete PM;
}
/// add - Add a pass to the queue of passes to run. This passes ownership of
/// the Pass to the PassManager. When the PassManager is destroyed, the pass
/// will be destroyed as well, so there is no need to delete the pass. This
/// implies that all passes MUST be allocated with 'new'.
void
PassManager::add(Pass *P) {
PM->add(P);
}
/// run - Execute all of the passes scheduled for execution. Keep track of
/// whether any of the passes modifies the module, and if so, return true.
bool
PassManager::run(Module &M) {
return PM->run(M);
}
//===----------------------------------------------------------------------===//
// TimingInfo Class - This class is used to calculate information about the
// amount of time each pass takes to execute. This only happens with
// -time-passes is enabled on the command line.
//
bool llvm::TimePassesIsEnabled = false;
static cl::opt<bool,true>
EnableTiming("time-passes", cl::location(TimePassesIsEnabled),
cl::desc("Time each pass, printing elapsed time for each on exit"));
// createTheTimeInfo - This method either initializes the TheTimeInfo pointer to
// a non null value (if the -time-passes option is enabled) or it leaves it
// null. It may be called multiple times.
void TimingInfo::createTheTimeInfo() {
if (!TimePassesIsEnabled || TheTimeInfo) return;
// Constructed the first time this is called, iff -time-passes is enabled.
// This guarantees that the object will be constructed before static globals,
// thus it will be destroyed before them.
static ManagedStatic<TimingInfo> TTI;
TheTimeInfo = &*TTI;
}
//===----------------------------------------------------------------------===//
// PMStack implementation
//
// Pop Pass Manager from the stack and clear its analysis info.
void PMStack::pop() {
PMDataManager *Top = this->top();
Top->initializeAnalysisInfo();
S.pop_back();
}
// Push PM on the stack and set its top level manager.
void PMStack::push(Pass *P) {
PMDataManager *Top = NULL;
PMDataManager *PM = dynamic_cast<PMDataManager *>(P);
assert (PM && "Unable to push. Pass Manager expected");
if (this->empty()) {
Top = PM;
}
else {
Top = this->top();
PMTopLevelManager *TPM = Top->getTopLevelManager();
assert (TPM && "Unable to find top level manager");
TPM->addIndirectPassManager(PM);
PM->setTopLevelManager(TPM);
}
AnalysisResolver *AR = new AnalysisResolver(*Top);
P->setResolver(AR);
S.push_back(PM);
}
// Dump content of the pass manager stack.
void PMStack::dump() {
for(std::deque<PMDataManager *>::iterator I = S.begin(),
E = S.end(); I != E; ++I) {
Pass *P = dynamic_cast<Pass *>(*I);
printf ("%s ", P->getPassName());
}
if (!S.empty())
printf ("\n");
}
// Walk Pass Manager stack and set LastUse markers if any
// manager is transfering this priviledge to its parent manager
void PMStack::handleLastUserOverflow() {
for(PMStack::iterator I = this->begin(), E = this->end(); I != E;) {
PMDataManager *Child = *I++;
if (I != E) {
PMDataManager *Parent = *I++;
PMTopLevelManager *TPM = Parent->getTopLevelManager();
std::vector<Pass *> &TLU = Child->getTransferredLastUses();
if (!TLU.empty()) {
Pass *P = dynamic_cast<Pass *>(Parent);
TPM->setLastUser(TLU, P);
}
}
}
}
/// Find appropriate Module Pass Manager in the PM Stack and
/// add self into that manager.
void ModulePass::assignPassManager(PMStack &PMS,
PassManagerType PreferredType) {
// Find Module Pass Manager
while(!PMS.empty()) {
if (PMS.top()->getPassManagerType() > PMT_ModulePassManager)
PMS.pop(); // Pop children pass managers
else
break;
}
MPPassManager *MPP = dynamic_cast<MPPassManager *>(PMS.top());
assert(MPP && "Unable to find Module Pass Manager");
MPP->add(this);
}
/// Find appropriate Function Pass Manager or Call Graph Pass Manager
/// in the PM Stack and add self into that manager.
void FunctionPass::assignPassManager(PMStack &PMS,
PassManagerType PreferredType) {
// Find Module Pass Manager (TODO : Or Call Graph Pass Manager)
while(!PMS.empty()) {
if (PMS.top()->getPassManagerType() > PMT_FunctionPassManager)
PMS.pop();
else
break;
}
FPPassManager *FPP = dynamic_cast<FPPassManager *>(PMS.top());
// Create new Function Pass Manager
if (!FPP) {
assert(!PMS.empty() && "Unable to create Function Pass Manager");
PMDataManager *PMD = PMS.top();
// [1] Create new Function Pass Manager
FPP = new FPPassManager(PMD->getDepth() + 1);
// [2] Set up new manager's top level manager
PMTopLevelManager *TPM = PMD->getTopLevelManager();
TPM->addIndirectPassManager(FPP);
// [3] Assign manager to manage this new manager. This may create
// and push new managers into PMS
Pass *P = dynamic_cast<Pass *>(FPP);
// If Call Graph Pass Manager is active then use it to manage
// this new Function Pass manager.
if (PMD->getPassManagerType() == PMT_CallGraphPassManager)
P->assignPassManager(PMS, PMT_CallGraphPassManager);
else
P->assignPassManager(PMS);
// [4] Push new manager into PMS
PMS.push(FPP);
}
// Assign FPP as the manager of this pass.
FPP->add(this);
}
/// Find appropriate Basic Pass Manager or Call Graph Pass Manager
/// in the PM Stack and add self into that manager.
void BasicBlockPass::assignPassManager(PMStack &PMS,
PassManagerType PreferredType) {
BBPassManager *BBP = NULL;
// Basic Pass Manager is a leaf pass manager. It does not handle
// any other pass manager.
if (!PMS.empty()) {
BBP = dynamic_cast<BBPassManager *>(PMS.top());
}
// If leaf manager is not Basic Block Pass manager then create new
// basic Block Pass manager.
if (!BBP) {
assert(!PMS.empty() && "Unable to create BasicBlock Pass Manager");
PMDataManager *PMD = PMS.top();
// [1] Create new Basic Block Manager
BBP = new BBPassManager(PMD->getDepth() + 1);
// [2] Set up new manager's top level manager
// Basic Block Pass Manager does not live by itself
PMTopLevelManager *TPM = PMD->getTopLevelManager();
TPM->addIndirectPassManager(BBP);
// [3] Assign manager to manage this new manager. This may create
// and push new managers into PMS
Pass *P = dynamic_cast<Pass *>(BBP);
P->assignPassManager(PMS);
// [4] Push new manager into PMS
PMS.push(BBP);
}
// Assign BBP as the manager of this pass.
BBP->add(this);
}