mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-02 07:32:52 +00:00
2073b0a63c
trees into the Support library. These are all expressed in terms of the generic GraphTraits and CFG, with no reliance on any concrete IR types. Putting them in support clarifies that and makes the fact that the static analyzer in Clang uses them much more sane. When moving the Dominators.h file into the IR library I claimed that this was the right home for it but not something I planned to work on. Oops. So why am I doing this? It happens to be one step toward breaking the requirement that IR verification can only be performed from inside of a pass context, which completely blocks the implementation of verification for the new pass manager infrastructure. Fixing it will also allow removing the concept of the "preverify" step (WTF???) and allow the verifier to cleanly flag functions which fail verification in a way that precludes even computing dominance information. Currently, that results in a fatal error even when you ask the verifier to not fatally error. It's awesome like that. The yak shaving will continue... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@199095 91177308-0d34-0410-b5e6-96231b3b80d8
290 lines
10 KiB
C++
290 lines
10 KiB
C++
//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// Generic dominator tree construction - This file provides rouitens to
|
|
/// constructs immediate dominator information for a flow-graph based on the
|
|
/// algorithm described in this document:
|
|
///
|
|
/// A Fast Algorithm for Finding Dominators in a Flowgraph
|
|
/// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
|
|
///
|
|
/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
|
|
/// out that the theoretically slower O(n*log(n)) implementation is actually
|
|
/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
#ifndef LLVM_SUPPORT_GENERIC_DOM_TREE_CONSTRUCTION_H
|
|
#define LLVM_SUPPORT_GENERIC_DOM_TREE_CONSTRUCTION_H
|
|
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/GenericDomTree.h"
|
|
|
|
namespace llvm {
|
|
|
|
template<class GraphT>
|
|
unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
typename GraphT::NodeType* V, unsigned N) {
|
|
// This is more understandable as a recursive algorithm, but we can't use the
|
|
// recursive algorithm due to stack depth issues. Keep it here for
|
|
// documentation purposes.
|
|
#if 0
|
|
InfoRec &VInfo = DT.Info[DT.Roots[i]];
|
|
VInfo.DFSNum = VInfo.Semi = ++N;
|
|
VInfo.Label = V;
|
|
|
|
Vertex.push_back(V); // Vertex[n] = V;
|
|
|
|
for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
|
|
InfoRec &SuccVInfo = DT.Info[*SI];
|
|
if (SuccVInfo.Semi == 0) {
|
|
SuccVInfo.Parent = V;
|
|
N = DTDFSPass(DT, *SI, N);
|
|
}
|
|
}
|
|
#else
|
|
bool IsChildOfArtificialExit = (N != 0);
|
|
|
|
SmallVector<std::pair<typename GraphT::NodeType*,
|
|
typename GraphT::ChildIteratorType>, 32> Worklist;
|
|
Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
|
|
while (!Worklist.empty()) {
|
|
typename GraphT::NodeType* BB = Worklist.back().first;
|
|
typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
|
|
|
|
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
|
|
DT.Info[BB];
|
|
|
|
// First time we visited this BB?
|
|
if (NextSucc == GraphT::child_begin(BB)) {
|
|
BBInfo.DFSNum = BBInfo.Semi = ++N;
|
|
BBInfo.Label = BB;
|
|
|
|
DT.Vertex.push_back(BB); // Vertex[n] = V;
|
|
|
|
if (IsChildOfArtificialExit)
|
|
BBInfo.Parent = 1;
|
|
|
|
IsChildOfArtificialExit = false;
|
|
}
|
|
|
|
// store the DFS number of the current BB - the reference to BBInfo might
|
|
// get invalidated when processing the successors.
|
|
unsigned BBDFSNum = BBInfo.DFSNum;
|
|
|
|
// If we are done with this block, remove it from the worklist.
|
|
if (NextSucc == GraphT::child_end(BB)) {
|
|
Worklist.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// Increment the successor number for the next time we get to it.
|
|
++Worklist.back().second;
|
|
|
|
// Visit the successor next, if it isn't already visited.
|
|
typename GraphT::NodeType* Succ = *NextSucc;
|
|
|
|
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
|
|
DT.Info[Succ];
|
|
if (SuccVInfo.Semi == 0) {
|
|
SuccVInfo.Parent = BBDFSNum;
|
|
Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
|
|
}
|
|
}
|
|
#endif
|
|
return N;
|
|
}
|
|
|
|
template<class GraphT>
|
|
typename GraphT::NodeType*
|
|
Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
|
|
typename GraphT::NodeType *VIn, unsigned LastLinked) {
|
|
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInInfo =
|
|
DT.Info[VIn];
|
|
if (VInInfo.DFSNum < LastLinked)
|
|
return VIn;
|
|
|
|
SmallVector<typename GraphT::NodeType*, 32> Work;
|
|
SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
|
|
|
|
if (VInInfo.Parent >= LastLinked)
|
|
Work.push_back(VIn);
|
|
|
|
while (!Work.empty()) {
|
|
typename GraphT::NodeType* V = Work.back();
|
|
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
|
|
DT.Info[V];
|
|
typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Parent];
|
|
|
|
// Process Ancestor first
|
|
if (Visited.insert(VAncestor) && VInfo.Parent >= LastLinked) {
|
|
Work.push_back(VAncestor);
|
|
continue;
|
|
}
|
|
Work.pop_back();
|
|
|
|
// Update VInfo based on Ancestor info
|
|
if (VInfo.Parent < LastLinked)
|
|
continue;
|
|
|
|
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
|
|
DT.Info[VAncestor];
|
|
typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
|
|
typename GraphT::NodeType* VLabel = VInfo.Label;
|
|
if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
|
|
VInfo.Label = VAncestorLabel;
|
|
VInfo.Parent = VAInfo.Parent;
|
|
}
|
|
|
|
return VInInfo.Label;
|
|
}
|
|
|
|
template<class FuncT, class NodeT>
|
|
void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
|
|
FuncT& F) {
|
|
typedef GraphTraits<NodeT> GraphT;
|
|
|
|
unsigned N = 0;
|
|
bool MultipleRoots = (DT.Roots.size() > 1);
|
|
if (MultipleRoots) {
|
|
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
|
|
DT.Info[NULL];
|
|
BBInfo.DFSNum = BBInfo.Semi = ++N;
|
|
BBInfo.Label = NULL;
|
|
|
|
DT.Vertex.push_back(NULL); // Vertex[n] = V;
|
|
}
|
|
|
|
// Step #1: Number blocks in depth-first order and initialize variables used
|
|
// in later stages of the algorithm.
|
|
for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
|
|
i != e; ++i)
|
|
N = DFSPass<GraphT>(DT, DT.Roots[i], N);
|
|
|
|
// it might be that some blocks did not get a DFS number (e.g., blocks of
|
|
// infinite loops). In these cases an artificial exit node is required.
|
|
MultipleRoots |= (DT.isPostDominator() && N != GraphTraits<FuncT*>::size(&F));
|
|
|
|
// When naively implemented, the Lengauer-Tarjan algorithm requires a separate
|
|
// bucket for each vertex. However, this is unnecessary, because each vertex
|
|
// is only placed into a single bucket (that of its semidominator), and each
|
|
// vertex's bucket is processed before it is added to any bucket itself.
|
|
//
|
|
// Instead of using a bucket per vertex, we use a single array Buckets that
|
|
// has two purposes. Before the vertex V with preorder number i is processed,
|
|
// Buckets[i] stores the index of the first element in V's bucket. After V's
|
|
// bucket is processed, Buckets[i] stores the index of the next element in the
|
|
// bucket containing V, if any.
|
|
SmallVector<unsigned, 32> Buckets;
|
|
Buckets.resize(N + 1);
|
|
for (unsigned i = 1; i <= N; ++i)
|
|
Buckets[i] = i;
|
|
|
|
for (unsigned i = N; i >= 2; --i) {
|
|
typename GraphT::NodeType* W = DT.Vertex[i];
|
|
typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
|
|
DT.Info[W];
|
|
|
|
// Step #2: Implicitly define the immediate dominator of vertices
|
|
for (unsigned j = i; Buckets[j] != i; j = Buckets[j]) {
|
|
typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
|
|
typename GraphT::NodeType* U = Eval<GraphT>(DT, V, i + 1);
|
|
DT.IDoms[V] = DT.Info[U].Semi < i ? U : W;
|
|
}
|
|
|
|
// Step #3: Calculate the semidominators of all vertices
|
|
|
|
// initialize the semi dominator to point to the parent node
|
|
WInfo.Semi = WInfo.Parent;
|
|
typedef GraphTraits<Inverse<NodeT> > InvTraits;
|
|
for (typename InvTraits::ChildIteratorType CI =
|
|
InvTraits::child_begin(W),
|
|
E = InvTraits::child_end(W); CI != E; ++CI) {
|
|
typename InvTraits::NodeType *N = *CI;
|
|
if (DT.Info.count(N)) { // Only if this predecessor is reachable!
|
|
unsigned SemiU = DT.Info[Eval<GraphT>(DT, N, i + 1)].Semi;
|
|
if (SemiU < WInfo.Semi)
|
|
WInfo.Semi = SemiU;
|
|
}
|
|
}
|
|
|
|
// If V is a non-root vertex and sdom(V) = parent(V), then idom(V) is
|
|
// necessarily parent(V). In this case, set idom(V) here and avoid placing
|
|
// V into a bucket.
|
|
if (WInfo.Semi == WInfo.Parent) {
|
|
DT.IDoms[W] = DT.Vertex[WInfo.Parent];
|
|
} else {
|
|
Buckets[i] = Buckets[WInfo.Semi];
|
|
Buckets[WInfo.Semi] = i;
|
|
}
|
|
}
|
|
|
|
if (N >= 1) {
|
|
typename GraphT::NodeType* Root = DT.Vertex[1];
|
|
for (unsigned j = 1; Buckets[j] != 1; j = Buckets[j]) {
|
|
typename GraphT::NodeType* V = DT.Vertex[Buckets[j]];
|
|
DT.IDoms[V] = Root;
|
|
}
|
|
}
|
|
|
|
// Step #4: Explicitly define the immediate dominator of each vertex
|
|
for (unsigned i = 2; i <= N; ++i) {
|
|
typename GraphT::NodeType* W = DT.Vertex[i];
|
|
typename GraphT::NodeType*& WIDom = DT.IDoms[W];
|
|
if (WIDom != DT.Vertex[DT.Info[W].Semi])
|
|
WIDom = DT.IDoms[WIDom];
|
|
}
|
|
|
|
if (DT.Roots.empty()) return;
|
|
|
|
// Add a node for the root. This node might be the actual root, if there is
|
|
// one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
|
|
// which postdominates all real exits if there are multiple exit blocks, or
|
|
// an infinite loop.
|
|
typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0;
|
|
|
|
DT.DomTreeNodes[Root] = DT.RootNode =
|
|
new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0);
|
|
|
|
// Loop over all of the reachable blocks in the function...
|
|
for (unsigned i = 2; i <= N; ++i) {
|
|
typename GraphT::NodeType* W = DT.Vertex[i];
|
|
|
|
DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W];
|
|
if (BBNode) continue; // Haven't calculated this node yet?
|
|
|
|
typename GraphT::NodeType* ImmDom = DT.getIDom(W);
|
|
|
|
assert(ImmDom || DT.DomTreeNodes[NULL]);
|
|
|
|
// Get or calculate the node for the immediate dominator
|
|
DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
|
|
DT.getNodeForBlock(ImmDom);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
DomTreeNodeBase<typename GraphT::NodeType> *C =
|
|
new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode);
|
|
DT.DomTreeNodes[W] = IDomNode->addChild(C);
|
|
}
|
|
|
|
// Free temporary memory used to construct idom's
|
|
DT.IDoms.clear();
|
|
DT.Info.clear();
|
|
std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
|
|
|
|
DT.updateDFSNumbers();
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|