mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-04 22:07:27 +00:00
e613555fd9
last night's regression in SingleSource/UnitTests/2005-05-11-Popcount-ffs-fls git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@35556 91177308-0d34-0410-b5e6-96231b3b80d8
482 lines
17 KiB
C++
482 lines
17 KiB
C++
//===-- ConstantFolding.cpp - Analyze constant folding possibilities ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This family of functions determines the possibility of performing constant
|
|
// folding.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <cerrno>
|
|
#include <cmath>
|
|
using namespace llvm;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constant Folding internal helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
|
|
/// from a global, return the global and the constant. Because of
|
|
/// constantexprs, this function is recursive.
|
|
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
|
|
int64_t &Offset, const TargetData &TD) {
|
|
// Trivial case, constant is the global.
|
|
if ((GV = dyn_cast<GlobalValue>(C))) {
|
|
Offset = 0;
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, if this isn't a constant expr, bail out.
|
|
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
|
|
if (!CE) return false;
|
|
|
|
// Look through ptr->int and ptr->ptr casts.
|
|
if (CE->getOpcode() == Instruction::PtrToInt ||
|
|
CE->getOpcode() == Instruction::BitCast)
|
|
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
|
|
|
|
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
|
|
if (CE->getOpcode() == Instruction::GetElementPtr) {
|
|
// Cannot compute this if the element type of the pointer is missing size
|
|
// info.
|
|
if (!cast<PointerType>(CE->getOperand(0)->getType())->getElementType()->isSized())
|
|
return false;
|
|
|
|
// If the base isn't a global+constant, we aren't either.
|
|
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
|
|
return false;
|
|
|
|
// Otherwise, add any offset that our operands provide.
|
|
gep_type_iterator GTI = gep_type_begin(CE);
|
|
for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i, ++GTI) {
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(i));
|
|
if (!CI) return false; // Index isn't a simple constant?
|
|
if (CI->getZExtValue() == 0) continue; // Not adding anything.
|
|
|
|
if (const StructType *ST = dyn_cast<StructType>(*GTI)) {
|
|
// N = N + Offset
|
|
Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
|
|
} else {
|
|
const SequentialType *SQT = cast<SequentialType>(*GTI);
|
|
Offset += TD.getTypeSize(SQT->getElementType())*CI->getSExtValue();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
|
|
/// Attempt to symbolically evaluate the result of a binary operator merging
|
|
/// these together. If target data info is available, it is provided as TD,
|
|
/// otherwise TD is null.
|
|
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
|
|
Constant *Op1, const TargetData *TD){
|
|
// SROA
|
|
|
|
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
|
|
// Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
|
|
// bits.
|
|
|
|
|
|
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
|
|
// constant. This happens frequently when iterating over a global array.
|
|
if (Opc == Instruction::Sub && TD) {
|
|
GlobalValue *GV1, *GV2;
|
|
int64_t Offs1, Offs2;
|
|
|
|
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
|
|
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
|
|
GV1 == GV2) {
|
|
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
|
|
return ConstantInt::get(Op0->getType(), Offs1-Offs2);
|
|
}
|
|
}
|
|
|
|
// TODO: Fold icmp setne/seteq as well.
|
|
return 0;
|
|
}
|
|
|
|
/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
|
|
/// constant expression, do so.
|
|
static Constant *SymbolicallyEvaluateGEP(Constant** Ops, unsigned NumOps,
|
|
const Type *ResultTy,
|
|
const TargetData *TD) {
|
|
Constant *Ptr = Ops[0];
|
|
if (!cast<PointerType>(Ptr->getType())->getElementType()->isSized())
|
|
return 0;
|
|
|
|
if (TD && Ptr->isNullValue()) {
|
|
// If this is a constant expr gep that is effectively computing an
|
|
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
|
|
bool isFoldableGEP = true;
|
|
for (unsigned i = 1; i != NumOps; ++i)
|
|
if (!isa<ConstantInt>(Ops[i])) {
|
|
isFoldableGEP = false;
|
|
break;
|
|
}
|
|
if (isFoldableGEP) {
|
|
uint64_t Offset = TD->getIndexedOffset(Ptr->getType(),
|
|
(Value**)Ops+1, NumOps-1);
|
|
Constant *C = ConstantInt::get(TD->getIntPtrType(), Offset);
|
|
return ConstantExpr::getIntToPtr(C, ResultTy);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constant Folding public APIs
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// ConstantFoldInstruction - Attempt to constant fold the specified
|
|
/// instruction. If successful, the constant result is returned, if not, null
|
|
/// is returned. Note that this function can only fail when attempting to fold
|
|
/// instructions like loads and stores, which have no constant expression form.
|
|
///
|
|
Constant *llvm::ConstantFoldInstruction(Instruction *I, const TargetData *TD) {
|
|
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
if (PN->getNumIncomingValues() == 0)
|
|
return Constant::getNullValue(PN->getType());
|
|
|
|
Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0));
|
|
if (Result == 0) return 0;
|
|
|
|
// Handle PHI nodes specially here...
|
|
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN)
|
|
return 0; // Not all the same incoming constants...
|
|
|
|
// If we reach here, all incoming values are the same constant.
|
|
return Result;
|
|
}
|
|
|
|
// Scan the operand list, checking to see if they are all constants, if so,
|
|
// hand off to ConstantFoldInstOperands.
|
|
SmallVector<Constant*, 8> Ops;
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
|
if (Constant *Op = dyn_cast<Constant>(I->getOperand(i)))
|
|
Ops.push_back(Op);
|
|
else
|
|
return 0; // All operands not constant!
|
|
|
|
return ConstantFoldInstOperands(I, &Ops[0], Ops.size(), TD);
|
|
}
|
|
|
|
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
|
|
/// specified opcode and operands. If successful, the constant result is
|
|
/// returned, if not, null is returned. Note that this function can fail when
|
|
/// attempting to fold instructions like loads and stores, which have no
|
|
/// constant expression form.
|
|
///
|
|
Constant *llvm::ConstantFoldInstOperands(const Instruction* I,
|
|
Constant** Ops, unsigned NumOps,
|
|
const TargetData *TD) {
|
|
unsigned Opc = I->getOpcode();
|
|
const Type *DestTy = I->getType();
|
|
|
|
// Handle easy binops first.
|
|
if (isa<BinaryOperator>(I)) {
|
|
if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
|
|
if (Constant *C = SymbolicallyEvaluateBinop(I->getOpcode(), Ops[0],
|
|
Ops[1], TD))
|
|
return C;
|
|
|
|
return ConstantExpr::get(Opc, Ops[0], Ops[1]);
|
|
}
|
|
|
|
switch (Opc) {
|
|
default: return 0;
|
|
case Instruction::Call:
|
|
if (Function *F = dyn_cast<Function>(Ops[0]))
|
|
if (canConstantFoldCallTo(F))
|
|
return ConstantFoldCall(F, Ops+1, NumOps-1);
|
|
return 0;
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
return ConstantExpr::getCompare(cast<CmpInst>(I)->getPredicate(), Ops[0],
|
|
Ops[1]);
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::FPTrunc:
|
|
case Instruction::FPExt:
|
|
case Instruction::UIToFP:
|
|
case Instruction::SIToFP:
|
|
case Instruction::FPToUI:
|
|
case Instruction::FPToSI:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::BitCast:
|
|
return ConstantExpr::getCast(Opc, Ops[0], DestTy);
|
|
case Instruction::Select:
|
|
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
|
|
case Instruction::ExtractElement:
|
|
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
|
|
case Instruction::InsertElement:
|
|
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
|
|
case Instruction::ShuffleVector:
|
|
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
|
|
case Instruction::GetElementPtr:
|
|
if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, I->getType(), TD))
|
|
return C;
|
|
|
|
return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1);
|
|
}
|
|
}
|
|
|
|
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
|
|
/// getelementptr constantexpr, return the constant value being addressed by the
|
|
/// constant expression, or null if something is funny and we can't decide.
|
|
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
|
|
ConstantExpr *CE) {
|
|
if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
|
|
return 0; // Do not allow stepping over the value!
|
|
|
|
// Loop over all of the operands, tracking down which value we are
|
|
// addressing...
|
|
gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
|
|
for (++I; I != E; ++I)
|
|
if (const StructType *STy = dyn_cast<StructType>(*I)) {
|
|
ConstantInt *CU = cast<ConstantInt>(I.getOperand());
|
|
assert(CU->getZExtValue() < STy->getNumElements() &&
|
|
"Struct index out of range!");
|
|
unsigned El = (unsigned)CU->getZExtValue();
|
|
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
|
|
C = CS->getOperand(El);
|
|
} else if (isa<ConstantAggregateZero>(C)) {
|
|
C = Constant::getNullValue(STy->getElementType(El));
|
|
} else if (isa<UndefValue>(C)) {
|
|
C = UndefValue::get(STy->getElementType(El));
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
|
|
if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
|
|
if (CI->getZExtValue() >= ATy->getNumElements())
|
|
return 0;
|
|
if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
|
|
C = CA->getOperand(CI->getZExtValue());
|
|
else if (isa<ConstantAggregateZero>(C))
|
|
C = Constant::getNullValue(ATy->getElementType());
|
|
else if (isa<UndefValue>(C))
|
|
C = UndefValue::get(ATy->getElementType());
|
|
else
|
|
return 0;
|
|
} else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) {
|
|
if (CI->getZExtValue() >= PTy->getNumElements())
|
|
return 0;
|
|
if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
|
|
C = CP->getOperand(CI->getZExtValue());
|
|
else if (isa<ConstantAggregateZero>(C))
|
|
C = Constant::getNullValue(PTy->getElementType());
|
|
else if (isa<UndefValue>(C))
|
|
C = UndefValue::get(PTy->getElementType());
|
|
else
|
|
return 0;
|
|
} else {
|
|
return 0;
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
return C;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Constant Folding for Calls
|
|
//
|
|
|
|
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
|
|
/// the specified function.
|
|
bool
|
|
llvm::canConstantFoldCallTo(Function *F) {
|
|
const std::string &Name = F->getName();
|
|
|
|
switch (F->getIntrinsicID()) {
|
|
case Intrinsic::sqrt_f32:
|
|
case Intrinsic::sqrt_f64:
|
|
case Intrinsic::powi_f32:
|
|
case Intrinsic::powi_f64:
|
|
case Intrinsic::bswap:
|
|
case Intrinsic::ctpop:
|
|
case Intrinsic::ctlz:
|
|
case Intrinsic::cttz:
|
|
return true;
|
|
default: break;
|
|
}
|
|
|
|
switch (Name[0])
|
|
{
|
|
case 'a':
|
|
return Name == "acos" || Name == "asin" || Name == "atan" ||
|
|
Name == "atan2";
|
|
case 'c':
|
|
return Name == "ceil" || Name == "cos" || Name == "cosf" ||
|
|
Name == "cosh";
|
|
case 'e':
|
|
return Name == "exp";
|
|
case 'f':
|
|
return Name == "fabs" || Name == "fmod" || Name == "floor";
|
|
case 'l':
|
|
return Name == "log" || Name == "log10";
|
|
case 'p':
|
|
return Name == "pow";
|
|
case 's':
|
|
return Name == "sin" || Name == "sinh" ||
|
|
Name == "sqrt" || Name == "sqrtf";
|
|
case 't':
|
|
return Name == "tan" || Name == "tanh";
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
|
|
const Type *Ty) {
|
|
errno = 0;
|
|
V = NativeFP(V);
|
|
if (errno == 0)
|
|
return ConstantFP::get(Ty, V);
|
|
errno = 0;
|
|
return 0;
|
|
}
|
|
|
|
/// ConstantFoldCall - Attempt to constant fold a call to the specified function
|
|
/// with the specified arguments, returning null if unsuccessful.
|
|
Constant *
|
|
llvm::ConstantFoldCall(Function *F, Constant** Operands, unsigned NumOperands) {
|
|
const std::string &Name = F->getName();
|
|
const Type *Ty = F->getReturnType();
|
|
|
|
if (NumOperands == 1) {
|
|
if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
|
|
double V = Op->getValue();
|
|
switch (Name[0])
|
|
{
|
|
case 'a':
|
|
if (Name == "acos")
|
|
return ConstantFoldFP(acos, V, Ty);
|
|
else if (Name == "asin")
|
|
return ConstantFoldFP(asin, V, Ty);
|
|
else if (Name == "atan")
|
|
return ConstantFP::get(Ty, atan(V));
|
|
break;
|
|
case 'c':
|
|
if (Name == "ceil")
|
|
return ConstantFoldFP(ceil, V, Ty);
|
|
else if (Name == "cos")
|
|
return ConstantFP::get(Ty, cos(V));
|
|
else if (Name == "cosh")
|
|
return ConstantFP::get(Ty, cosh(V));
|
|
break;
|
|
case 'e':
|
|
if (Name == "exp")
|
|
return ConstantFP::get(Ty, exp(V));
|
|
break;
|
|
case 'f':
|
|
if (Name == "fabs")
|
|
return ConstantFP::get(Ty, fabs(V));
|
|
else if (Name == "floor")
|
|
return ConstantFoldFP(floor, V, Ty);
|
|
break;
|
|
case 'l':
|
|
if (Name == "log" && V > 0)
|
|
return ConstantFP::get(Ty, log(V));
|
|
else if (Name == "log10" && V > 0)
|
|
return ConstantFoldFP(log10, V, Ty);
|
|
else if (Name == "llvm.sqrt.f32" || Name == "llvm.sqrt.f64") {
|
|
if (V >= -0.0)
|
|
return ConstantFP::get(Ty, sqrt(V));
|
|
else // Undefined
|
|
return ConstantFP::get(Ty, 0.0);
|
|
}
|
|
break;
|
|
case 's':
|
|
if (Name == "sin")
|
|
return ConstantFP::get(Ty, sin(V));
|
|
else if (Name == "sinh")
|
|
return ConstantFP::get(Ty, sinh(V));
|
|
else if (Name == "sqrt" && V >= 0)
|
|
return ConstantFP::get(Ty, sqrt(V));
|
|
else if (Name == "sqrtf" && V >= 0)
|
|
return ConstantFP::get(Ty, sqrt((float)V));
|
|
break;
|
|
case 't':
|
|
if (Name == "tan")
|
|
return ConstantFP::get(Ty, tan(V));
|
|
else if (Name == "tanh")
|
|
return ConstantFP::get(Ty, tanh(V));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
|
|
if (Name.size() > 11 && !memcmp(&Name[0], "llvm.bswap", 10)) {
|
|
return ConstantInt::get(Op->getValue().byteSwap());
|
|
} else if (Name.size() > 11 && !memcmp(&Name[0],"llvm.ctpop",10)) {
|
|
uint64_t ctpop = Op->getValue().countPopulation();
|
|
return ConstantInt::get(Type::Int32Ty, ctpop);
|
|
} else if (Name.size() > 10 && !memcmp(&Name[0], "llvm.cttz", 9)) {
|
|
uint64_t cttz = Op->getValue().countTrailingZeros();
|
|
return ConstantInt::get(Type::Int32Ty, cttz);
|
|
} else if (Name.size() > 10 && !memcmp(&Name[0], "llvm.ctlz", 9)) {
|
|
uint64_t ctlz = Op->getValue().countLeadingZeros();
|
|
return ConstantInt::get(Type::Int32Ty, ctlz);
|
|
}
|
|
}
|
|
} else if (NumOperands == 2) {
|
|
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
|
|
double Op1V = Op1->getValue();
|
|
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
|
|
double Op2V = Op2->getValue();
|
|
|
|
if (Name == "pow") {
|
|
errno = 0;
|
|
double V = pow(Op1V, Op2V);
|
|
if (errno == 0)
|
|
return ConstantFP::get(Ty, V);
|
|
} else if (Name == "fmod") {
|
|
errno = 0;
|
|
double V = fmod(Op1V, Op2V);
|
|
if (errno == 0)
|
|
return ConstantFP::get(Ty, V);
|
|
} else if (Name == "atan2") {
|
|
return ConstantFP::get(Ty, atan2(Op1V,Op2V));
|
|
}
|
|
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
|
|
if (Name == "llvm.powi.f32") {
|
|
return ConstantFP::get(Ty, std::pow((float)Op1V,
|
|
(int)Op2C->getZExtValue()));
|
|
} else if (Name == "llvm.powi.f64") {
|
|
return ConstantFP::get(Ty, std::pow((double)Op1V,
|
|
(int)Op2C->getZExtValue()));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|