llvm-6502/lib/Transforms/InstCombine/InstCombineCompares.cpp
Quentin Colombet 2c6ef1c433 [InstCombiner] Expose opportunities to merge subtract and comparison.
Several architectures use the same instruction to perform both a comparison and
a subtract. The instruction selection framework does not allow to consider
different basic blocks to expose such fusion opportunities.

Therefore, these instructions are “merged” by CSE at MI IR level.

To increase the likelihood of CSE to apply in such situation, we reorder the
operands of the comparison, when they have the same complexity, so that they
matches the order of the most frequent subtract.
E.g.,

icmp A, B
...
sub B, A

<rdar://problem/14514580>


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190352 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-09 20:56:48 +00:00

3392 lines
140 KiB
C++

//===- InstCombineCompares.cpp --------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitICmp and visitFCmp functions.
//
//===----------------------------------------------------------------------===//
#include "InstCombine.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/PatternMatch.h"
#include "llvm/Target/TargetLibraryInfo.h"
using namespace llvm;
using namespace PatternMatch;
static ConstantInt *getOne(Constant *C) {
return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
}
/// AddOne - Add one to a ConstantInt
static Constant *AddOne(Constant *C) {
return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
}
/// SubOne - Subtract one from a ConstantInt
static Constant *SubOne(Constant *C) {
return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
}
static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
}
static bool HasAddOverflow(ConstantInt *Result,
ConstantInt *In1, ConstantInt *In2,
bool IsSigned) {
if (!IsSigned)
return Result->getValue().ult(In1->getValue());
if (In2->isNegative())
return Result->getValue().sgt(In1->getValue());
return Result->getValue().slt(In1->getValue());
}
/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
/// overflowed for this type.
static bool AddWithOverflow(Constant *&Result, Constant *In1,
Constant *In2, bool IsSigned = false) {
Result = ConstantExpr::getAdd(In1, In2);
if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
if (HasAddOverflow(ExtractElement(Result, Idx),
ExtractElement(In1, Idx),
ExtractElement(In2, Idx),
IsSigned))
return true;
}
return false;
}
return HasAddOverflow(cast<ConstantInt>(Result),
cast<ConstantInt>(In1), cast<ConstantInt>(In2),
IsSigned);
}
static bool HasSubOverflow(ConstantInt *Result,
ConstantInt *In1, ConstantInt *In2,
bool IsSigned) {
if (!IsSigned)
return Result->getValue().ugt(In1->getValue());
if (In2->isNegative())
return Result->getValue().slt(In1->getValue());
return Result->getValue().sgt(In1->getValue());
}
/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
/// overflowed for this type.
static bool SubWithOverflow(Constant *&Result, Constant *In1,
Constant *In2, bool IsSigned = false) {
Result = ConstantExpr::getSub(In1, In2);
if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
if (HasSubOverflow(ExtractElement(Result, Idx),
ExtractElement(In1, Idx),
ExtractElement(In2, Idx),
IsSigned))
return true;
}
return false;
}
return HasSubOverflow(cast<ConstantInt>(Result),
cast<ConstantInt>(In1), cast<ConstantInt>(In2),
IsSigned);
}
/// isSignBitCheck - Given an exploded icmp instruction, return true if the
/// comparison only checks the sign bit. If it only checks the sign bit, set
/// TrueIfSigned if the result of the comparison is true when the input value is
/// signed.
static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
bool &TrueIfSigned) {
switch (pred) {
case ICmpInst::ICMP_SLT: // True if LHS s< 0
TrueIfSigned = true;
return RHS->isZero();
case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
TrueIfSigned = true;
return RHS->isAllOnesValue();
case ICmpInst::ICMP_SGT: // True if LHS s> -1
TrueIfSigned = false;
return RHS->isAllOnesValue();
case ICmpInst::ICMP_UGT:
// True if LHS u> RHS and RHS == high-bit-mask - 1
TrueIfSigned = true;
return RHS->isMaxValue(true);
case ICmpInst::ICMP_UGE:
// True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
TrueIfSigned = true;
return RHS->getValue().isSignBit();
default:
return false;
}
}
/// Returns true if the exploded icmp can be expressed as a signed comparison
/// to zero and updates the predicate accordingly.
/// The signedness of the comparison is preserved.
static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
if (!ICmpInst::isSigned(pred))
return false;
if (RHS->isZero())
return ICmpInst::isRelational(pred);
if (RHS->isOne()) {
if (pred == ICmpInst::ICMP_SLT) {
pred = ICmpInst::ICMP_SLE;
return true;
}
} else if (RHS->isAllOnesValue()) {
if (pred == ICmpInst::ICMP_SGT) {
pred = ICmpInst::ICMP_SGE;
return true;
}
}
return false;
}
// isHighOnes - Return true if the constant is of the form 1+0+.
// This is the same as lowones(~X).
static bool isHighOnes(const ConstantInt *CI) {
return (~CI->getValue() + 1).isPowerOf2();
}
/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
/// set of known zero and one bits, compute the maximum and minimum values that
/// could have the specified known zero and known one bits, returning them in
/// min/max.
static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
const APInt& KnownOne,
APInt& Min, APInt& Max) {
assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
KnownZero.getBitWidth() == Min.getBitWidth() &&
KnownZero.getBitWidth() == Max.getBitWidth() &&
"KnownZero, KnownOne and Min, Max must have equal bitwidth.");
APInt UnknownBits = ~(KnownZero|KnownOne);
// The minimum value is when all unknown bits are zeros, EXCEPT for the sign
// bit if it is unknown.
Min = KnownOne;
Max = KnownOne|UnknownBits;
if (UnknownBits.isNegative()) { // Sign bit is unknown
Min.setBit(Min.getBitWidth()-1);
Max.clearBit(Max.getBitWidth()-1);
}
}
// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
// a set of known zero and one bits, compute the maximum and minimum values that
// could have the specified known zero and known one bits, returning them in
// min/max.
static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
const APInt &KnownOne,
APInt &Min, APInt &Max) {
assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
KnownZero.getBitWidth() == Min.getBitWidth() &&
KnownZero.getBitWidth() == Max.getBitWidth() &&
"Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
APInt UnknownBits = ~(KnownZero|KnownOne);
// The minimum value is when the unknown bits are all zeros.
Min = KnownOne;
// The maximum value is when the unknown bits are all ones.
Max = KnownOne|UnknownBits;
}
/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
/// cmp pred (load (gep GV, ...)), cmpcst
/// where GV is a global variable with a constant initializer. Try to simplify
/// this into some simple computation that does not need the load. For example
/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
///
/// If AndCst is non-null, then the loaded value is masked with that constant
/// before doing the comparison. This handles cases like "A[i]&4 == 0".
Instruction *InstCombiner::
FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
CmpInst &ICI, ConstantInt *AndCst) {
// We need TD information to know the pointer size unless this is inbounds.
if (!GEP->isInBounds() && TD == 0)
return 0;
Constant *Init = GV->getInitializer();
if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
return 0;
uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
if (ArrayElementCount > 1024) return 0; // Don't blow up on huge arrays.
// There are many forms of this optimization we can handle, for now, just do
// the simple index into a single-dimensional array.
//
// Require: GEP GV, 0, i {{, constant indices}}
if (GEP->getNumOperands() < 3 ||
!isa<ConstantInt>(GEP->getOperand(1)) ||
!cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
isa<Constant>(GEP->getOperand(2)))
return 0;
// Check that indices after the variable are constants and in-range for the
// type they index. Collect the indices. This is typically for arrays of
// structs.
SmallVector<unsigned, 4> LaterIndices;
Type *EltTy = Init->getType()->getArrayElementType();
for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (Idx == 0) return 0; // Variable index.
uint64_t IdxVal = Idx->getZExtValue();
if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
if (StructType *STy = dyn_cast<StructType>(EltTy))
EltTy = STy->getElementType(IdxVal);
else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
if (IdxVal >= ATy->getNumElements()) return 0;
EltTy = ATy->getElementType();
} else {
return 0; // Unknown type.
}
LaterIndices.push_back(IdxVal);
}
enum { Overdefined = -3, Undefined = -2 };
// Variables for our state machines.
// FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
// "i == 47 | i == 87", where 47 is the first index the condition is true for,
// and 87 is the second (and last) index. FirstTrueElement is -2 when
// undefined, otherwise set to the first true element. SecondTrueElement is
// -2 when undefined, -3 when overdefined and >= 0 when that index is true.
int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
// FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
// form "i != 47 & i != 87". Same state transitions as for true elements.
int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
/// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
/// define a state machine that triggers for ranges of values that the index
/// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
/// This is -2 when undefined, -3 when overdefined, and otherwise the last
/// index in the range (inclusive). We use -2 for undefined here because we
/// use relative comparisons and don't want 0-1 to match -1.
int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
// MagicBitvector - This is a magic bitvector where we set a bit if the
// comparison is true for element 'i'. If there are 64 elements or less in
// the array, this will fully represent all the comparison results.
uint64_t MagicBitvector = 0;
// Scan the array and see if one of our patterns matches.
Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
Constant *Elt = Init->getAggregateElement(i);
if (Elt == 0) return 0;
// If this is indexing an array of structures, get the structure element.
if (!LaterIndices.empty())
Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
// If the element is masked, handle it.
if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
// Find out if the comparison would be true or false for the i'th element.
Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
CompareRHS, TD, TLI);
// If the result is undef for this element, ignore it.
if (isa<UndefValue>(C)) {
// Extend range state machines to cover this element in case there is an
// undef in the middle of the range.
if (TrueRangeEnd == (int)i-1)
TrueRangeEnd = i;
if (FalseRangeEnd == (int)i-1)
FalseRangeEnd = i;
continue;
}
// If we can't compute the result for any of the elements, we have to give
// up evaluating the entire conditional.
if (!isa<ConstantInt>(C)) return 0;
// Otherwise, we know if the comparison is true or false for this element,
// update our state machines.
bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
// State machine for single/double/range index comparison.
if (IsTrueForElt) {
// Update the TrueElement state machine.
if (FirstTrueElement == Undefined)
FirstTrueElement = TrueRangeEnd = i; // First true element.
else {
// Update double-compare state machine.
if (SecondTrueElement == Undefined)
SecondTrueElement = i;
else
SecondTrueElement = Overdefined;
// Update range state machine.
if (TrueRangeEnd == (int)i-1)
TrueRangeEnd = i;
else
TrueRangeEnd = Overdefined;
}
} else {
// Update the FalseElement state machine.
if (FirstFalseElement == Undefined)
FirstFalseElement = FalseRangeEnd = i; // First false element.
else {
// Update double-compare state machine.
if (SecondFalseElement == Undefined)
SecondFalseElement = i;
else
SecondFalseElement = Overdefined;
// Update range state machine.
if (FalseRangeEnd == (int)i-1)
FalseRangeEnd = i;
else
FalseRangeEnd = Overdefined;
}
}
// If this element is in range, update our magic bitvector.
if (i < 64 && IsTrueForElt)
MagicBitvector |= 1ULL << i;
// If all of our states become overdefined, bail out early. Since the
// predicate is expensive, only check it every 8 elements. This is only
// really useful for really huge arrays.
if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
FalseRangeEnd == Overdefined)
return 0;
}
// Now that we've scanned the entire array, emit our new comparison(s). We
// order the state machines in complexity of the generated code.
Value *Idx = GEP->getOperand(2);
// If the index is larger than the pointer size of the target, truncate the
// index down like the GEP would do implicitly. We don't have to do this for
// an inbounds GEP because the index can't be out of range.
if (!GEP->isInBounds() &&
Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
// If the comparison is only true for one or two elements, emit direct
// comparisons.
if (SecondTrueElement != Overdefined) {
// None true -> false.
if (FirstTrueElement == Undefined)
return ReplaceInstUsesWith(ICI, Builder->getFalse());
Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
// True for one element -> 'i == 47'.
if (SecondTrueElement == Undefined)
return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
// True for two elements -> 'i == 47 | i == 72'.
Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
return BinaryOperator::CreateOr(C1, C2);
}
// If the comparison is only false for one or two elements, emit direct
// comparisons.
if (SecondFalseElement != Overdefined) {
// None false -> true.
if (FirstFalseElement == Undefined)
return ReplaceInstUsesWith(ICI, Builder->getTrue());
Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
// False for one element -> 'i != 47'.
if (SecondFalseElement == Undefined)
return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
// False for two elements -> 'i != 47 & i != 72'.
Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
return BinaryOperator::CreateAnd(C1, C2);
}
// If the comparison can be replaced with a range comparison for the elements
// where it is true, emit the range check.
if (TrueRangeEnd != Overdefined) {
assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
// Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
if (FirstTrueElement) {
Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
Idx = Builder->CreateAdd(Idx, Offs);
}
Value *End = ConstantInt::get(Idx->getType(),
TrueRangeEnd-FirstTrueElement+1);
return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
}
// False range check.
if (FalseRangeEnd != Overdefined) {
assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
// Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
if (FirstFalseElement) {
Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
Idx = Builder->CreateAdd(Idx, Offs);
}
Value *End = ConstantInt::get(Idx->getType(),
FalseRangeEnd-FirstFalseElement);
return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
}
// If a magic bitvector captures the entire comparison state
// of this load, replace it with computation that does:
// ((magic_cst >> i) & 1) != 0
{
Type *Ty = 0;
// Look for an appropriate type:
// - The type of Idx if the magic fits
// - The smallest fitting legal type if we have a DataLayout
// - Default to i32
if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
Ty = Idx->getType();
else if (TD)
Ty = TD->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
else if (ArrayElementCount <= 32)
Ty = Type::getInt32Ty(Init->getContext());
if (Ty != 0) {
Value *V = Builder->CreateIntCast(Idx, Ty, false);
V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
}
}
return 0;
}
/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
/// be complex, and scales are involved. The above expression would also be
/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
/// This later form is less amenable to optimization though, and we are allowed
/// to generate the first by knowing that pointer arithmetic doesn't overflow.
///
/// If we can't emit an optimized form for this expression, this returns null.
///
static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
DataLayout &TD = *IC.getDataLayout();
gep_type_iterator GTI = gep_type_begin(GEP);
// Check to see if this gep only has a single variable index. If so, and if
// any constant indices are a multiple of its scale, then we can compute this
// in terms of the scale of the variable index. For example, if the GEP
// implies an offset of "12 + i*4", then we can codegen this as "3 + i",
// because the expression will cross zero at the same point.
unsigned i, e = GEP->getNumOperands();
int64_t Offset = 0;
for (i = 1; i != e; ++i, ++GTI) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
// Compute the aggregate offset of constant indices.
if (CI->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
} else {
uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
Offset += Size*CI->getSExtValue();
}
} else {
// Found our variable index.
break;
}
}
// If there are no variable indices, we must have a constant offset, just
// evaluate it the general way.
if (i == e) return 0;
Value *VariableIdx = GEP->getOperand(i);
// Determine the scale factor of the variable element. For example, this is
// 4 if the variable index is into an array of i32.
uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
// Verify that there are no other variable indices. If so, emit the hard way.
for (++i, ++GTI; i != e; ++i, ++GTI) {
ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
if (!CI) return 0;
// Compute the aggregate offset of constant indices.
if (CI->isZero()) continue;
// Handle a struct index, which adds its field offset to the pointer.
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
} else {
uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
Offset += Size*CI->getSExtValue();
}
}
// Okay, we know we have a single variable index, which must be a
// pointer/array/vector index. If there is no offset, life is simple, return
// the index.
Type *IntPtrTy = TD.getIntPtrType(GEP->getOperand(0)->getType());
unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
if (Offset == 0) {
// Cast to intptrty in case a truncation occurs. If an extension is needed,
// we don't need to bother extending: the extension won't affect where the
// computation crosses zero.
if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
}
return VariableIdx;
}
// Otherwise, there is an index. The computation we will do will be modulo
// the pointer size, so get it.
uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
Offset &= PtrSizeMask;
VariableScale &= PtrSizeMask;
// To do this transformation, any constant index must be a multiple of the
// variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
// but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
// multiple of the variable scale.
int64_t NewOffs = Offset / (int64_t)VariableScale;
if (Offset != NewOffs*(int64_t)VariableScale)
return 0;
// Okay, we can do this evaluation. Start by converting the index to intptr.
if (VariableIdx->getType() != IntPtrTy)
VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
true /*Signed*/);
Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
}
/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
/// else. At this point we know that the GEP is on the LHS of the comparison.
Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
ICmpInst::Predicate Cond,
Instruction &I) {
// Don't transform signed compares of GEPs into index compares. Even if the
// GEP is inbounds, the final add of the base pointer can have signed overflow
// and would change the result of the icmp.
// e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
// the maximum signed value for the pointer type.
if (ICmpInst::isSigned(Cond))
return 0;
// Look through bitcasts.
if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
RHS = BCI->getOperand(0);
Value *PtrBase = GEPLHS->getOperand(0);
if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
// ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
// This transformation (ignoring the base and scales) is valid because we
// know pointers can't overflow since the gep is inbounds. See if we can
// output an optimized form.
Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
// If not, synthesize the offset the hard way.
if (Offset == 0)
Offset = EmitGEPOffset(GEPLHS);
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
Constant::getNullValue(Offset->getType()));
} else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
// If the base pointers are different, but the indices are the same, just
// compare the base pointer.
if (PtrBase != GEPRHS->getOperand(0)) {
bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
GEPRHS->getOperand(0)->getType();
if (IndicesTheSame)
for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
IndicesTheSame = false;
break;
}
// If all indices are the same, just compare the base pointers.
if (IndicesTheSame)
return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
// If we're comparing GEPs with two base pointers that only differ in type
// and both GEPs have only constant indices or just one use, then fold
// the compare with the adjusted indices.
if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
(GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
(GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
PtrBase->stripPointerCasts() ==
GEPRHS->getOperand(0)->stripPointerCasts()) {
Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
EmitGEPOffset(GEPLHS),
EmitGEPOffset(GEPRHS));
return ReplaceInstUsesWith(I, Cmp);
}
// Otherwise, the base pointers are different and the indices are
// different, bail out.
return 0;
}
// If one of the GEPs has all zero indices, recurse.
bool AllZeros = true;
for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
if (!isa<Constant>(GEPLHS->getOperand(i)) ||
!cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
AllZeros = false;
break;
}
if (AllZeros)
return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
ICmpInst::getSwappedPredicate(Cond), I);
// If the other GEP has all zero indices, recurse.
AllZeros = true;
for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
if (!isa<Constant>(GEPRHS->getOperand(i)) ||
!cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
AllZeros = false;
break;
}
if (AllZeros)
return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
// If the GEPs only differ by one index, compare it.
unsigned NumDifferences = 0; // Keep track of # differences.
unsigned DiffOperand = 0; // The operand that differs.
for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
// Irreconcilable differences.
NumDifferences = 2;
break;
} else {
if (NumDifferences++) break;
DiffOperand = i;
}
}
if (NumDifferences == 0) // SAME GEP?
return ReplaceInstUsesWith(I, // No comparison is needed here.
Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
else if (NumDifferences == 1 && GEPsInBounds) {
Value *LHSV = GEPLHS->getOperand(DiffOperand);
Value *RHSV = GEPRHS->getOperand(DiffOperand);
// Make sure we do a signed comparison here.
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
}
}
// Only lower this if the icmp is the only user of the GEP or if we expect
// the result to fold to a constant!
if (TD &&
GEPsInBounds &&
(isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
(isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
// ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
Value *L = EmitGEPOffset(GEPLHS);
Value *R = EmitGEPOffset(GEPRHS);
return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
}
}
return 0;
}
/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
Value *X, ConstantInt *CI,
ICmpInst::Predicate Pred,
Value *TheAdd) {
// If we have X+0, exit early (simplifying logic below) and let it get folded
// elsewhere. icmp X+0, X -> icmp X, X
if (CI->isZero()) {
bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
}
// (X+4) == X -> false.
if (Pred == ICmpInst::ICMP_EQ)
return ReplaceInstUsesWith(ICI, Builder->getFalse());
// (X+4) != X -> true.
if (Pred == ICmpInst::ICMP_NE)
return ReplaceInstUsesWith(ICI, Builder->getTrue());
// From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
// so the values can never be equal. Similarly for all other "or equals"
// operators.
// (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
// (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
// (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
Value *R =
ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
}
// (X+1) >u X --> X <u (0-1) --> X != 255
// (X+2) >u X --> X <u (0-2) --> X <u 254
// (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
ConstantInt *SMax = ConstantInt::get(X->getContext(),
APInt::getSignedMaxValue(BitWidth));
// (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
// (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
// (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
// (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
// (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
// (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
// (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
// (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
// (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
// (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
// (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
// (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
Constant *C = Builder->getInt(CI->getValue()-1);
return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
}
/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
/// and CmpRHS are both known to be integer constants.
Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
ConstantInt *DivRHS) {
ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
const APInt &CmpRHSV = CmpRHS->getValue();
// FIXME: If the operand types don't match the type of the divide
// then don't attempt this transform. The code below doesn't have the
// logic to deal with a signed divide and an unsigned compare (and
// vice versa). This is because (x /s C1) <s C2 produces different
// results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
// (x /u C1) <u C2. Simply casting the operands and result won't
// work. :( The if statement below tests that condition and bails
// if it finds it.
bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
return 0;
if (DivRHS->isZero())
return 0; // The ProdOV computation fails on divide by zero.
if (DivIsSigned && DivRHS->isAllOnesValue())
return 0; // The overflow computation also screws up here
if (DivRHS->isOne()) {
// This eliminates some funny cases with INT_MIN.
ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
return &ICI;
}
// Compute Prod = CI * DivRHS. We are essentially solving an equation
// of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
// C2 (CI). By solving for X we can turn this into a range check
// instead of computing a divide.
Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
// Determine if the product overflows by seeing if the product is
// not equal to the divide. Make sure we do the same kind of divide
// as in the LHS instruction that we're folding.
bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
// Get the ICmp opcode
ICmpInst::Predicate Pred = ICI.getPredicate();
/// If the division is known to be exact, then there is no remainder from the
/// divide, so the covered range size is unit, otherwise it is the divisor.
ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
// Figure out the interval that is being checked. For example, a comparison
// like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
// Compute this interval based on the constants involved and the signedness of
// the compare/divide. This computes a half-open interval, keeping track of
// whether either value in the interval overflows. After analysis each
// overflow variable is set to 0 if it's corresponding bound variable is valid
// -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
int LoOverflow = 0, HiOverflow = 0;
Constant *LoBound = 0, *HiBound = 0;
if (!DivIsSigned) { // udiv
// e.g. X/5 op 3 --> [15, 20)
LoBound = Prod;
HiOverflow = LoOverflow = ProdOV;
if (!HiOverflow) {
// If this is not an exact divide, then many values in the range collapse
// to the same result value.
HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
}
} else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
if (CmpRHSV == 0) { // (X / pos) op 0
// Can't overflow. e.g. X/2 op 0 --> [-1, 2)
LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
HiBound = RangeSize;
} else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
HiOverflow = LoOverflow = ProdOV;
if (!HiOverflow)
HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
} else { // (X / pos) op neg
// e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
HiBound = AddOne(Prod);
LoOverflow = HiOverflow = ProdOV ? -1 : 0;
if (!LoOverflow) {
ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
}
}
} else if (DivRHS->isNegative()) { // Divisor is < 0.
if (DivI->isExact())
RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
if (CmpRHSV == 0) { // (X / neg) op 0
// e.g. X/-5 op 0 --> [-4, 5)
LoBound = AddOne(RangeSize);
HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
if (HiBound == DivRHS) { // -INTMIN = INTMIN
HiOverflow = 1; // [INTMIN+1, overflow)
HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
}
} else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
// e.g. X/-5 op 3 --> [-19, -14)
HiBound = AddOne(Prod);
HiOverflow = LoOverflow = ProdOV ? -1 : 0;
if (!LoOverflow)
LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
} else { // (X / neg) op neg
LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
LoOverflow = HiOverflow = ProdOV;
if (!HiOverflow)
HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
}
// Dividing by a negative swaps the condition. LT <-> GT
Pred = ICmpInst::getSwappedPredicate(Pred);
}
Value *X = DivI->getOperand(0);
switch (Pred) {
default: llvm_unreachable("Unhandled icmp opcode!");
case ICmpInst::ICMP_EQ:
if (LoOverflow && HiOverflow)
return ReplaceInstUsesWith(ICI, Builder->getFalse());
if (HiOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, LoBound);
if (LoOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, HiBound);
return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
DivIsSigned, true));
case ICmpInst::ICMP_NE:
if (LoOverflow && HiOverflow)
return ReplaceInstUsesWith(ICI, Builder->getTrue());
if (HiOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
ICmpInst::ICMP_ULT, X, LoBound);
if (LoOverflow)
return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
ICmpInst::ICMP_UGE, X, HiBound);
return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
DivIsSigned, false));
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_SLT:
if (LoOverflow == +1) // Low bound is greater than input range.
return ReplaceInstUsesWith(ICI, Builder->getTrue());
if (LoOverflow == -1) // Low bound is less than input range.
return ReplaceInstUsesWith(ICI, Builder->getFalse());
return new ICmpInst(Pred, X, LoBound);
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_SGT:
if (HiOverflow == +1) // High bound greater than input range.
return ReplaceInstUsesWith(ICI, Builder->getFalse());
if (HiOverflow == -1) // High bound less than input range.
return ReplaceInstUsesWith(ICI, Builder->getTrue());
if (Pred == ICmpInst::ICMP_UGT)
return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
}
}
/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
ConstantInt *ShAmt) {
const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
// Check that the shift amount is in range. If not, don't perform
// undefined shifts. When the shift is visited it will be
// simplified.
uint32_t TypeBits = CmpRHSV.getBitWidth();
uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
if (ShAmtVal >= TypeBits || ShAmtVal == 0)
return 0;
if (!ICI.isEquality()) {
// If we have an unsigned comparison and an ashr, we can't simplify this.
// Similarly for signed comparisons with lshr.
if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
return 0;
// Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
// by a power of 2. Since we already have logic to simplify these,
// transform to div and then simplify the resultant comparison.
if (Shr->getOpcode() == Instruction::AShr &&
(!Shr->isExact() || ShAmtVal == TypeBits - 1))
return 0;
// Revisit the shift (to delete it).
Worklist.Add(Shr);
Constant *DivCst =
ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
Value *Tmp =
Shr->getOpcode() == Instruction::AShr ?
Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
ICI.setOperand(0, Tmp);
// If the builder folded the binop, just return it.
BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
if (TheDiv == 0)
return &ICI;
// Otherwise, fold this div/compare.
assert(TheDiv->getOpcode() == Instruction::SDiv ||
TheDiv->getOpcode() == Instruction::UDiv);
Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
assert(Res && "This div/cst should have folded!");
return Res;
}
// If we are comparing against bits always shifted out, the
// comparison cannot succeed.
APInt Comp = CmpRHSV << ShAmtVal;
ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
if (Shr->getOpcode() == Instruction::LShr)
Comp = Comp.lshr(ShAmtVal);
else
Comp = Comp.ashr(ShAmtVal);
if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
Constant *Cst = Builder->getInt1(IsICMP_NE);
return ReplaceInstUsesWith(ICI, Cst);
}
// Otherwise, check to see if the bits shifted out are known to be zero.
// If so, we can compare against the unshifted value:
// (X & 4) >> 1 == 2 --> (X & 4) == 4.
if (Shr->hasOneUse() && Shr->isExact())
return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
if (Shr->hasOneUse()) {
// Otherwise strength reduce the shift into an and.
APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
Constant *Mask = Builder->getInt(Val);
Value *And = Builder->CreateAnd(Shr->getOperand(0),
Mask, Shr->getName()+".mask");
return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
}
return 0;
}
/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
///
Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
Instruction *LHSI,
ConstantInt *RHS) {
const APInt &RHSV = RHS->getValue();
switch (LHSI->getOpcode()) {
case Instruction::Trunc:
if (ICI.isEquality() && LHSI->hasOneUse()) {
// Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
// of the high bits truncated out of x are known.
unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne);
// If all the high bits are known, we can do this xform.
if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
// Pull in the high bits from known-ones set.
APInt NewRHS = RHS->getValue().zext(SrcBits);
NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
Builder->getInt(NewRHS));
}
}
break;
case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
// If this is a comparison that tests the signbit (X < 0) or (x > -1),
// fold the xor.
if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
(ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
Value *CompareVal = LHSI->getOperand(0);
// If the sign bit of the XorCST is not set, there is no change to
// the operation, just stop using the Xor.
if (!XorCST->isNegative()) {
ICI.setOperand(0, CompareVal);
Worklist.Add(LHSI);
return &ICI;
}
// Was the old condition true if the operand is positive?
bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
// If so, the new one isn't.
isTrueIfPositive ^= true;
if (isTrueIfPositive)
return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
SubOne(RHS));
else
return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
AddOne(RHS));
}
if (LHSI->hasOneUse()) {
// (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
const APInt &SignBit = XorCST->getValue();
ICmpInst::Predicate Pred = ICI.isSigned()
? ICI.getUnsignedPredicate()
: ICI.getSignedPredicate();
return new ICmpInst(Pred, LHSI->getOperand(0),
Builder->getInt(RHSV ^ SignBit));
}
// (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
const APInt &NotSignBit = XorCST->getValue();
ICmpInst::Predicate Pred = ICI.isSigned()
? ICI.getUnsignedPredicate()
: ICI.getSignedPredicate();
Pred = ICI.getSwappedPredicate(Pred);
return new ICmpInst(Pred, LHSI->getOperand(0),
Builder->getInt(RHSV ^ NotSignBit));
}
}
// (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
// iff -C is a power of 2
if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
XorCST->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCST);
// (icmp ult (xor X, C), -C) -> (icmp uge X, C)
// iff -C is a power of 2
if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
XorCST->getValue() == -RHSV && RHSV.isPowerOf2())
return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCST);
}
break;
case Instruction::And: // (icmp pred (and X, AndCST), RHS)
if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
LHSI->getOperand(0)->hasOneUse()) {
ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
// If the LHS is an AND of a truncating cast, we can widen the
// and/compare to be the input width without changing the value
// produced, eliminating a cast.
if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
// We can do this transformation if either the AND constant does not
// have its sign bit set or if it is an equality comparison.
// Extending a relational comparison when we're checking the sign
// bit would not work.
if (ICI.isEquality() ||
(!AndCST->isNegative() && RHSV.isNonNegative())) {
Value *NewAnd =
Builder->CreateAnd(Cast->getOperand(0),
ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
NewAnd->takeName(LHSI);
return new ICmpInst(ICI.getPredicate(), NewAnd,
ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
}
}
// If the LHS is an AND of a zext, and we have an equality compare, we can
// shrink the and/compare to the smaller type, eliminating the cast.
if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
// Make sure we don't compare the upper bits, SimplifyDemandedBits
// should fold the icmp to true/false in that case.
if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
Value *NewAnd =
Builder->CreateAnd(Cast->getOperand(0),
ConstantExpr::getTrunc(AndCST, Ty));
NewAnd->takeName(LHSI);
return new ICmpInst(ICI.getPredicate(), NewAnd,
ConstantExpr::getTrunc(RHS, Ty));
}
}
// If this is: (X >> C1) & C2 != C3 (where any shift and any compare
// could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
// happens a LOT in code produced by the C front-end, for bitfield
// access.
BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
if (Shift && !Shift->isShift())
Shift = 0;
ConstantInt *ShAmt;
ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
Type *AndTy = AndCST->getType(); // Type of the and.
// We can fold this as long as we can't shift unknown bits
// into the mask. This can only happen with signed shift
// rights, as they sign-extend.
if (ShAmt) {
bool CanFold = Shift->isLogicalShift();
if (!CanFold) {
// To test for the bad case of the signed shr, see if any
// of the bits shifted in could be tested after the mask.
uint32_t TyBits = Ty->getPrimitiveSizeInBits();
int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
AndCST->getValue()) == 0)
CanFold = true;
}
if (CanFold) {
Constant *NewCst;
if (Shift->getOpcode() == Instruction::Shl)
NewCst = ConstantExpr::getLShr(RHS, ShAmt);
else
NewCst = ConstantExpr::getShl(RHS, ShAmt);
// Check to see if we are shifting out any of the bits being
// compared.
if (ConstantExpr::get(Shift->getOpcode(),
NewCst, ShAmt) != RHS) {
// If we shifted bits out, the fold is not going to work out.
// As a special case, check to see if this means that the
// result is always true or false now.
if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
return ReplaceInstUsesWith(ICI, Builder->getFalse());
if (ICI.getPredicate() == ICmpInst::ICMP_NE)
return ReplaceInstUsesWith(ICI, Builder->getTrue());
} else {
ICI.setOperand(1, NewCst);
Constant *NewAndCST;
if (Shift->getOpcode() == Instruction::Shl)
NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
else
NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
LHSI->setOperand(1, NewAndCST);
LHSI->setOperand(0, Shift->getOperand(0));
Worklist.Add(Shift); // Shift is dead.
return &ICI;
}
}
}
// Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
// preferable because it allows the C<<Y expression to be hoisted out
// of a loop if Y is invariant and X is not.
if (Shift && Shift->hasOneUse() && RHSV == 0 &&
ICI.isEquality() && !Shift->isArithmeticShift() &&
!isa<Constant>(Shift->getOperand(0))) {
// Compute C << Y.
Value *NS;
if (Shift->getOpcode() == Instruction::LShr) {
NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
} else {
// Insert a logical shift.
NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
}
// Compute X & (C << Y).
Value *NewAnd =
Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
ICI.setOperand(0, NewAnd);
return &ICI;
}
// Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any
// bit set in (X & AndCST) will produce a result greater than RHSV.
if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
unsigned NTZ = AndCST->getValue().countTrailingZeros();
if ((NTZ < AndCST->getBitWidth()) &&
APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV))
return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
Constant::getNullValue(RHS->getType()));
}
}
// Try to optimize things like "A[i]&42 == 0" to index computations.
if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
if (GetElementPtrInst *GEP =
dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
!LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
return Res;
}
}
// X & -C == -C -> X > u ~C
// X & -C != -C -> X <= u ~C
// iff C is a power of 2
if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
return new ICmpInst(
ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_ULE,
LHSI->getOperand(0), SubOne(RHS));
break;
case Instruction::Or: {
if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
break;
Value *P, *Q;
if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
// Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
// -> and (icmp eq P, null), (icmp eq Q, null).
Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
Constant::getNullValue(P->getType()));
Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
Constant::getNullValue(Q->getType()));
Instruction *Op;
if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
else
Op = BinaryOperator::CreateOr(ICIP, ICIQ);
return Op;
}
break;
}
case Instruction::Mul: { // (icmp pred (mul X, Val), CI)
ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
if (!Val) break;
// If this is a signed comparison to 0 and the mul is sign preserving,
// use the mul LHS operand instead.
ICmpInst::Predicate pred = ICI.getPredicate();
if (isSignTest(pred, RHS) && !Val->isZero() &&
cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
return new ICmpInst(Val->isNegative() ?
ICmpInst::getSwappedPredicate(pred) : pred,
LHSI->getOperand(0),
Constant::getNullValue(RHS->getType()));
break;
}
case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
uint32_t TypeBits = RHSV.getBitWidth();
ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
if (!ShAmt) {
Value *X;
// (1 << X) pred P2 -> X pred Log2(P2)
if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
ICmpInst::Predicate Pred = ICI.getPredicate();
if (ICI.isUnsigned()) {
if (!RHSVIsPowerOf2) {
// (1 << X) < 30 -> X <= 4
// (1 << X) <= 30 -> X <= 4
// (1 << X) >= 30 -> X > 4
// (1 << X) > 30 -> X > 4
if (Pred == ICmpInst::ICMP_ULT)
Pred = ICmpInst::ICMP_ULE;
else if (Pred == ICmpInst::ICMP_UGE)
Pred = ICmpInst::ICMP_UGT;
}
unsigned RHSLog2 = RHSV.logBase2();
// (1 << X) >= 2147483648 -> X >= 31 -> X == 31
// (1 << X) > 2147483648 -> X > 31 -> false
// (1 << X) <= 2147483648 -> X <= 31 -> true
// (1 << X) < 2147483648 -> X < 31 -> X != 31
if (RHSLog2 == TypeBits-1) {
if (Pred == ICmpInst::ICMP_UGE)
Pred = ICmpInst::ICMP_EQ;
else if (Pred == ICmpInst::ICMP_UGT)
return ReplaceInstUsesWith(ICI, Builder->getFalse());
else if (Pred == ICmpInst::ICMP_ULE)
return ReplaceInstUsesWith(ICI, Builder->getTrue());
else if (Pred == ICmpInst::ICMP_ULT)
Pred = ICmpInst::ICMP_NE;
}
return new ICmpInst(Pred, X,
ConstantInt::get(RHS->getType(), RHSLog2));
} else if (ICI.isSigned()) {
if (RHSV.isAllOnesValue()) {
// (1 << X) <= -1 -> X == 31
if (Pred == ICmpInst::ICMP_SLE)
return new ICmpInst(ICmpInst::ICMP_EQ, X,
ConstantInt::get(RHS->getType(), TypeBits-1));
// (1 << X) > -1 -> X != 31
if (Pred == ICmpInst::ICMP_SGT)
return new ICmpInst(ICmpInst::ICMP_NE, X,
ConstantInt::get(RHS->getType(), TypeBits-1));
} else if (!RHSV) {
// (1 << X) < 0 -> X == 31
// (1 << X) <= 0 -> X == 31
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
return new ICmpInst(ICmpInst::ICMP_EQ, X,
ConstantInt::get(RHS->getType(), TypeBits-1));
// (1 << X) >= 0 -> X != 31
// (1 << X) > 0 -> X != 31
if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
return new ICmpInst(ICmpInst::ICMP_NE, X,
ConstantInt::get(RHS->getType(), TypeBits-1));
}
} else if (ICI.isEquality()) {
if (RHSVIsPowerOf2)
return new ICmpInst(
Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
return ReplaceInstUsesWith(
ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse()
: Builder->getTrue());
}
}
break;
}
// Check that the shift amount is in range. If not, don't perform
// undefined shifts. When the shift is visited it will be
// simplified.
if (ShAmt->uge(TypeBits))
break;
if (ICI.isEquality()) {
// If we are comparing against bits always shifted out, the
// comparison cannot succeed.
Constant *Comp =
ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
ShAmt);
if (Comp != RHS) {// Comparing against a bit that we know is zero.
bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
Constant *Cst = Builder->getInt1(IsICMP_NE);
return ReplaceInstUsesWith(ICI, Cst);
}
// If the shift is NUW, then it is just shifting out zeros, no need for an
// AND.
if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
ConstantExpr::getLShr(RHS, ShAmt));
// If the shift is NSW and we compare to 0, then it is just shifting out
// sign bits, no need for an AND either.
if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
ConstantExpr::getLShr(RHS, ShAmt));
if (LHSI->hasOneUse()) {
// Otherwise strength reduce the shift into an and.
uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
TypeBits - ShAmtVal));
Value *And =
Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
return new ICmpInst(ICI.getPredicate(), And,
ConstantExpr::getLShr(RHS, ShAmt));
}
}
// If this is a signed comparison to 0 and the shift is sign preserving,
// use the shift LHS operand instead.
ICmpInst::Predicate pred = ICI.getPredicate();
if (isSignTest(pred, RHS) &&
cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
return new ICmpInst(pred,
LHSI->getOperand(0),
Constant::getNullValue(RHS->getType()));
// Otherwise, if this is a comparison of the sign bit, simplify to and/test.
bool TrueIfSigned = false;
if (LHSI->hasOneUse() &&
isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
// (X << 31) <s 0 --> (X&1) != 0
Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
APInt::getOneBitSet(TypeBits,
TypeBits-ShAmt->getZExtValue()-1));
Value *And =
Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
And, Constant::getNullValue(And->getType()));
}
// Transform (icmp pred iM (shl iM %v, N), CI)
// -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
// Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
// This enables to get rid of the shift in favor of a trunc which can be
// free on the target. It has the additional benefit of comparing to a
// smaller constant, which will be target friendly.
unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
if (LHSI->hasOneUse() &&
Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
Constant *NCI = ConstantExpr::getTrunc(
ConstantExpr::getAShr(RHS,
ConstantInt::get(RHS->getType(), Amt)),
NTy);
return new ICmpInst(ICI.getPredicate(),
Builder->CreateTrunc(LHSI->getOperand(0), NTy),
NCI);
}
break;
}
case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
case Instruction::AShr: {
// Handle equality comparisons of shift-by-constant.
BinaryOperator *BO = cast<BinaryOperator>(LHSI);
if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
return Res;
}
// Handle exact shr's.
if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
if (RHSV.isMinValue())
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
}
break;
}
case Instruction::SDiv:
case Instruction::UDiv:
// Fold: icmp pred ([us]div X, C1), C2 -> range test
// Fold this div into the comparison, producing a range check.
// Determine, based on the divide type, what the range is being
// checked. If there is an overflow on the low or high side, remember
// it, otherwise compute the range [low, hi) bounding the new value.
// See: InsertRangeTest above for the kinds of replacements possible.
if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
DivRHS))
return R;
break;
case Instruction::Sub: {
ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
if (!LHSC) break;
const APInt &LHSV = LHSC->getValue();
// C1-X <u C2 -> (X|(C2-1)) == C1
// iff C1 & (C2-1) == C2-1
// C2 is a power of 2
if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
return new ICmpInst(ICmpInst::ICMP_EQ,
Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
LHSC);
// C1-X >u C2 -> (X|C2) != C1
// iff C1 & C2 == C2
// C2+1 is a power of 2
if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
(RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
return new ICmpInst(ICmpInst::ICMP_NE,
Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
break;
}
case Instruction::Add:
// Fold: icmp pred (add X, C1), C2
if (!ICI.isEquality()) {
ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
if (!LHSC) break;
const APInt &LHSV = LHSC->getValue();
ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
.subtract(LHSV);
if (ICI.isSigned()) {
if (CR.getLower().isSignBit()) {
return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
Builder->getInt(CR.getUpper()));
} else if (CR.getUpper().isSignBit()) {
return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
Builder->getInt(CR.getLower()));
}
} else {
if (CR.getLower().isMinValue()) {
return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
Builder->getInt(CR.getUpper()));
} else if (CR.getUpper().isMinValue()) {
return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
Builder->getInt(CR.getLower()));
}
}
// X-C1 <u C2 -> (X & -C2) == C1
// iff C1 & (C2-1) == 0
// C2 is a power of 2
if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
return new ICmpInst(ICmpInst::ICMP_EQ,
Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
ConstantExpr::getNeg(LHSC));
// X-C1 >u C2 -> (X & ~C2) != C1
// iff C1 & C2 == 0
// C2+1 is a power of 2
if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
(RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
return new ICmpInst(ICmpInst::ICMP_NE,
Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
ConstantExpr::getNeg(LHSC));
}
break;
}
// Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
if (ICI.isEquality()) {
bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
// If the first operand is (add|sub|and|or|xor|rem) with a constant, and
// the second operand is a constant, simplify a bit.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
switch (BO->getOpcode()) {
case Instruction::SRem:
// If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
if (V.sgt(1) && V.isPowerOf2()) {
Value *NewRem =
Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
BO->getName());
return new ICmpInst(ICI.getPredicate(), NewRem,
Constant::getNullValue(BO->getType()));
}
}
break;
case Instruction::Add:
// Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
if (BO->hasOneUse())
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
ConstantExpr::getSub(RHS, BOp1C));
} else if (RHSV == 0) {
// Replace ((add A, B) != 0) with (A != -B) if A or B is
// efficiently invertible, or if the add has just this one use.
Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
if (Value *NegVal = dyn_castNegVal(BOp1))
return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
if (Value *NegVal = dyn_castNegVal(BOp0))
return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
if (BO->hasOneUse()) {
Value *Neg = Builder->CreateNeg(BOp1);
Neg->takeName(BO);
return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
}
}
break;
case Instruction::Xor:
// For the xor case, we can xor two constants together, eliminating
// the explicit xor.
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
ConstantExpr::getXor(RHS, BOC));
} else if (RHSV == 0) {
// Replace ((xor A, B) != 0) with (A != B)
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
BO->getOperand(1));
}
break;
case Instruction::Sub:
// Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
if (BO->hasOneUse())
return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
ConstantExpr::getSub(BOp0C, RHS));
} else if (RHSV == 0) {
// Replace ((sub A, B) != 0) with (A != B)
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
BO->getOperand(1));
}
break;
case Instruction::Or:
// If bits are being or'd in that are not present in the constant we
// are comparing against, then the comparison could never succeed!
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Constant *NotCI = ConstantExpr::getNot(RHS);
if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
}
break;
case Instruction::And:
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
// If bits are being compared against that are and'd out, then the
// comparison can never succeed!
if ((RHSV & ~BOC->getValue()) != 0)
return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
// If we have ((X & C) == C), turn it into ((X & C) != 0).
if (RHS == BOC && RHSV.isPowerOf2())
return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
ICmpInst::ICMP_NE, LHSI,
Constant::getNullValue(RHS->getType()));
// Don't perform the following transforms if the AND has multiple uses
if (!BO->hasOneUse())
break;
// Replace (and X, (1 << size(X)-1) != 0) with x s< 0
if (BOC->getValue().isSignBit()) {
Value *X = BO->getOperand(0);
Constant *Zero = Constant::getNullValue(X->getType());
ICmpInst::Predicate pred = isICMP_NE ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
return new ICmpInst(pred, X, Zero);
}
// ((X & ~7) == 0) --> X < 8
if (RHSV == 0 && isHighOnes(BOC)) {
Value *X = BO->getOperand(0);
Constant *NegX = ConstantExpr::getNeg(BOC);
ICmpInst::Predicate pred = isICMP_NE ?
ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
return new ICmpInst(pred, X, NegX);
}
}
break;
case Instruction::Mul:
if (RHSV == 0 && BO->hasNoSignedWrap()) {
if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
// The trivial case (mul X, 0) is handled by InstSimplify
// General case : (mul X, C) != 0 iff X != 0
// (mul X, C) == 0 iff X == 0
if (!BOC->isZero())
return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
Constant::getNullValue(RHS->getType()));
}
}
break;
default: break;
}
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
// Handle icmp {eq|ne} <intrinsic>, intcst.
switch (II->getIntrinsicID()) {
case Intrinsic::bswap:
Worklist.Add(II);
ICI.setOperand(0, II->getArgOperand(0));
ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
return &ICI;
case Intrinsic::ctlz:
case Intrinsic::cttz:
// ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
if (RHSV == RHS->getType()->getBitWidth()) {
Worklist.Add(II);
ICI.setOperand(0, II->getArgOperand(0));
ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
return &ICI;
}
break;
case Intrinsic::ctpop:
// popcount(A) == 0 -> A == 0 and likewise for !=
if (RHS->isZero()) {
Worklist.Add(II);
ICI.setOperand(0, II->getArgOperand(0));
ICI.setOperand(1, RHS);
return &ICI;
}
break;
default:
break;
}
}
}
return 0;
}
/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
/// We only handle extending casts so far.
///
Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
Value *LHSCIOp = LHSCI->getOperand(0);
Type *SrcTy = LHSCIOp->getType();
Type *DestTy = LHSCI->getType();
Value *RHSCIOp;
// Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
// integer type is the same size as the pointer type.
if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
TD->getPointerSizeInBits() ==
cast<IntegerType>(DestTy)->getBitWidth()) {
Value *RHSOp = 0;
if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
} else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
RHSOp = RHSC->getOperand(0);
// If the pointer types don't match, insert a bitcast.
if (LHSCIOp->getType() != RHSOp->getType())
RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
}
if (RHSOp)
return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
}
// The code below only handles extension cast instructions, so far.
// Enforce this.
if (LHSCI->getOpcode() != Instruction::ZExt &&
LHSCI->getOpcode() != Instruction::SExt)
return 0;
bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
bool isSignedCmp = ICI.isSigned();
if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
// Not an extension from the same type?
RHSCIOp = CI->getOperand(0);
if (RHSCIOp->getType() != LHSCIOp->getType())
return 0;
// If the signedness of the two casts doesn't agree (i.e. one is a sext
// and the other is a zext), then we can't handle this.
if (CI->getOpcode() != LHSCI->getOpcode())
return 0;
// Deal with equality cases early.
if (ICI.isEquality())
return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
// A signed comparison of sign extended values simplifies into a
// signed comparison.
if (isSignedCmp && isSignedExt)
return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
// The other three cases all fold into an unsigned comparison.
return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
}
// If we aren't dealing with a constant on the RHS, exit early
ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
if (!CI)
return 0;
// Compute the constant that would happen if we truncated to SrcTy then
// reextended to DestTy.
Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
Res1, DestTy);
// If the re-extended constant didn't change...
if (Res2 == CI) {
// Deal with equality cases early.
if (ICI.isEquality())
return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
// A signed comparison of sign extended values simplifies into a
// signed comparison.
if (isSignedExt && isSignedCmp)
return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
// The other three cases all fold into an unsigned comparison.
return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
}
// The re-extended constant changed so the constant cannot be represented
// in the shorter type. Consequently, we cannot emit a simple comparison.
// All the cases that fold to true or false will have already been handled
// by SimplifyICmpInst, so only deal with the tricky case.
if (isSignedCmp || !isSignedExt)
return 0;
// Evaluate the comparison for LT (we invert for GT below). LE and GE cases
// should have been folded away previously and not enter in here.
// We're performing an unsigned comp with a sign extended value.
// This is true if the input is >= 0. [aka >s -1]
Constant *NegOne = Constant::getAllOnesValue(SrcTy);
Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
// Finally, return the value computed.
if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
return ReplaceInstUsesWith(ICI, Result);
assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
return BinaryOperator::CreateNot(Result);
}
/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
/// I = icmp ugt (add (add A, B), CI2), CI1
/// If this is of the form:
/// sum = a + b
/// if (sum+128 >u 255)
/// Then replace it with llvm.sadd.with.overflow.i8.
///
static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
ConstantInt *CI2, ConstantInt *CI1,
InstCombiner &IC) {
// The transformation we're trying to do here is to transform this into an
// llvm.sadd.with.overflow. To do this, we have to replace the original add
// with a narrower add, and discard the add-with-constant that is part of the
// range check (if we can't eliminate it, this isn't profitable).
// In order to eliminate the add-with-constant, the compare can be its only
// use.
Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
if (!AddWithCst->hasOneUse()) return 0;
// If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
if (!CI2->getValue().isPowerOf2()) return 0;
unsigned NewWidth = CI2->getValue().countTrailingZeros();
if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
// The width of the new add formed is 1 more than the bias.
++NewWidth;
// Check to see that CI1 is an all-ones value with NewWidth bits.
if (CI1->getBitWidth() == NewWidth ||
CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
return 0;
// This is only really a signed overflow check if the inputs have been
// sign-extended; check for that condition. For example, if CI2 is 2^31 and
// the operands of the add are 64 bits wide, we need at least 33 sign bits.
unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
if (IC.ComputeNumSignBits(A) < NeededSignBits ||
IC.ComputeNumSignBits(B) < NeededSignBits)
return 0;
// In order to replace the original add with a narrower
// llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
// and truncates that discard the high bits of the add. Verify that this is
// the case.
Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
UI != E; ++UI) {
if (*UI == AddWithCst) continue;
// Only accept truncates for now. We would really like a nice recursive
// predicate like SimplifyDemandedBits, but which goes downwards the use-def
// chain to see which bits of a value are actually demanded. If the
// original add had another add which was then immediately truncated, we
// could still do the transformation.
TruncInst *TI = dyn_cast<TruncInst>(*UI);
if (TI == 0 ||
TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
}
// If the pattern matches, truncate the inputs to the narrower type and
// use the sadd_with_overflow intrinsic to efficiently compute both the
// result and the overflow bit.
Module *M = I.getParent()->getParent()->getParent();
Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
NewType);
InstCombiner::BuilderTy *Builder = IC.Builder;
// Put the new code above the original add, in case there are any uses of the
// add between the add and the compare.
Builder->SetInsertPoint(OrigAdd);
Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
// The inner add was the result of the narrow add, zero extended to the
// wider type. Replace it with the result computed by the intrinsic.
IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
// The original icmp gets replaced with the overflow value.
return ExtractValueInst::Create(Call, 1, "sadd.overflow");
}
static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
InstCombiner &IC) {
// Don't bother doing this transformation for pointers, don't do it for
// vectors.
if (!isa<IntegerType>(OrigAddV->getType())) return 0;
// If the add is a constant expr, then we don't bother transforming it.
Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
if (OrigAdd == 0) return 0;
Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
// Put the new code above the original add, in case there are any uses of the
// add between the add and the compare.
InstCombiner::BuilderTy *Builder = IC.Builder;
Builder->SetInsertPoint(OrigAdd);
Module *M = I.getParent()->getParent()->getParent();
Type *Ty = LHS->getType();
Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
Value *Add = Builder->CreateExtractValue(Call, 0);
IC.ReplaceInstUsesWith(*OrigAdd, Add);
// The original icmp gets replaced with the overflow value.
return ExtractValueInst::Create(Call, 1, "uadd.overflow");
}
// DemandedBitsLHSMask - When performing a comparison against a constant,
// it is possible that not all the bits in the LHS are demanded. This helper
// method computes the mask that IS demanded.
static APInt DemandedBitsLHSMask(ICmpInst &I,
unsigned BitWidth, bool isSignCheck) {
if (isSignCheck)
return APInt::getSignBit(BitWidth);
ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
if (!CI) return APInt::getAllOnesValue(BitWidth);
const APInt &RHS = CI->getValue();
switch (I.getPredicate()) {
// For a UGT comparison, we don't care about any bits that
// correspond to the trailing ones of the comparand. The value of these
// bits doesn't impact the outcome of the comparison, because any value
// greater than the RHS must differ in a bit higher than these due to carry.
case ICmpInst::ICMP_UGT: {
unsigned trailingOnes = RHS.countTrailingOnes();
APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
return ~lowBitsSet;
}
// Similarly, for a ULT comparison, we don't care about the trailing zeros.
// Any value less than the RHS must differ in a higher bit because of carries.
case ICmpInst::ICMP_ULT: {
unsigned trailingZeros = RHS.countTrailingZeros();
APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
return ~lowBitsSet;
}
default:
return APInt::getAllOnesValue(BitWidth);
}
}
/// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
/// should be swapped.
/// The descision is based on how many times these two operands are reused
/// as subtract operands and their positions in those instructions.
/// The rational is that several architectures use the same instruction for
/// both subtract and cmp, thus it is better if the order of those operands
/// match.
/// \return true if Op0 and Op1 should be swapped.
static bool swapMayExposeCSEOpportunities(const Value * Op0,
const Value * Op1) {
// Filter out pointer value as those cannot appears directly in subtract.
// FIXME: we may want to go through inttoptrs or bitcasts.
if (Op0->getType()->isPointerTy())
return false;
// Count every uses of both Op0 and Op1 in a subtract.
// Each time Op0 is the first operand, count -1: swapping is bad, the
// subtract has already the same layout as the compare.
// Each time Op0 is the second operand, count +1: swapping is good, the
// subtract has a diffrent layout as the compare.
// At the end, if the benefit is greater than 0, Op0 should come second to
// expose more CSE opportunities.
int GlobalSwapBenefits = 0;
for (Value::const_use_iterator UI = Op0->use_begin(), UIEnd = Op0->use_end(); UI != UIEnd; ++UI) {
const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(*UI);
if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
continue;
// If Op0 is the first argument, this is not beneficial to swap the
// arguments.
int LocalSwapBenefits = -1;
unsigned Op1Idx = 1;
if (BinOp->getOperand(Op1Idx) == Op0) {
Op1Idx = 0;
LocalSwapBenefits = 1;
}
if (BinOp->getOperand(Op1Idx) != Op1)
continue;
GlobalSwapBenefits += LocalSwapBenefits;
}
return GlobalSwapBenefits > 0;
}
Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
bool Changed = false;
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
unsigned Op0Cplxity = getComplexity(Op0);
unsigned Op1Cplxity = getComplexity(Op1);
/// Orders the operands of the compare so that they are listed from most
/// complex to least complex. This puts constants before unary operators,
/// before binary operators.
if (Op0Cplxity < Op1Cplxity ||
(Op0Cplxity == Op1Cplxity &&
swapMayExposeCSEOpportunities(Op0, Op1))) {
I.swapOperands();
std::swap(Op0, Op1);
Changed = true;
}
if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
// comparing -val or val with non-zero is the same as just comparing val
// ie, abs(val) != 0 -> val != 0
if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
{
Value *Cond, *SelectTrue, *SelectFalse;
if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
m_Value(SelectFalse)))) {
if (Value *V = dyn_castNegVal(SelectTrue)) {
if (V == SelectFalse)
return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
}
else if (Value *V = dyn_castNegVal(SelectFalse)) {
if (V == SelectTrue)
return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
}
}
}
Type *Ty = Op0->getType();
// icmp's with boolean values can always be turned into bitwise operations
if (Ty->isIntegerTy(1)) {
switch (I.getPredicate()) {
default: llvm_unreachable("Invalid icmp instruction!");
case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
return BinaryOperator::CreateNot(Xor);
}
case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
return BinaryOperator::CreateXor(Op0, Op1);
case ICmpInst::ICMP_UGT:
std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
// FALL THROUGH
case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
return BinaryOperator::CreateAnd(Not, Op1);
}
case ICmpInst::ICMP_SGT:
std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
// FALL THROUGH
case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
return BinaryOperator::CreateAnd(Not, Op0);
}
case ICmpInst::ICMP_UGE:
std::swap(Op0, Op1); // Change icmp uge -> icmp ule
// FALL THROUGH
case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
return BinaryOperator::CreateOr(Not, Op1);
}
case ICmpInst::ICMP_SGE:
std::swap(Op0, Op1); // Change icmp sge -> icmp sle
// FALL THROUGH
case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
return BinaryOperator::CreateOr(Not, Op0);
}
}
}
unsigned BitWidth = 0;
if (Ty->isIntOrIntVectorTy())
BitWidth = Ty->getScalarSizeInBits();
else if (TD) // Pointers require TD info to get their size.
BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
bool isSignBit = false;
// See if we are doing a comparison with a constant.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Value *A = 0, *B = 0;
// Match the following pattern, which is a common idiom when writing
// overflow-safe integer arithmetic function. The source performs an
// addition in wider type, and explicitly checks for overflow using
// comparisons against INT_MIN and INT_MAX. Simplify this by using the
// sadd_with_overflow intrinsic.
//
// TODO: This could probably be generalized to handle other overflow-safe
// operations if we worked out the formulas to compute the appropriate
// magic constants.
//
// sum = a + b
// if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
{
ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
if (I.getPredicate() == ICmpInst::ICMP_UGT &&
match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
return Res;
}
// (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
if (I.isEquality() && CI->isZero() &&
match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
// (icmp cond A B) if cond is equality
return new ICmpInst(I.getPredicate(), A, B);
}
// If we have an icmp le or icmp ge instruction, turn it into the
// appropriate icmp lt or icmp gt instruction. This allows us to rely on
// them being folded in the code below. The SimplifyICmpInst code has
// already handled the edge cases for us, so we just assert on them.
switch (I.getPredicate()) {
default: break;
case ICmpInst::ICMP_ULE:
assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
Builder->getInt(CI->getValue()+1));
case ICmpInst::ICMP_SLE:
assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
Builder->getInt(CI->getValue()+1));
case ICmpInst::ICMP_UGE:
assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
Builder->getInt(CI->getValue()-1));
case ICmpInst::ICMP_SGE:
assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
Builder->getInt(CI->getValue()-1));
}
// If this comparison is a normal comparison, it demands all
// bits, if it is a sign bit comparison, it only demands the sign bit.
bool UnusedBit;
isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
}
// See if we can fold the comparison based on range information we can get
// by checking whether bits are known to be zero or one in the input.
if (BitWidth != 0) {
APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
if (SimplifyDemandedBits(I.getOperandUse(0),
DemandedBitsLHSMask(I, BitWidth, isSignBit),
Op0KnownZero, Op0KnownOne, 0))
return &I;
if (SimplifyDemandedBits(I.getOperandUse(1),
APInt::getAllOnesValue(BitWidth),
Op1KnownZero, Op1KnownOne, 0))
return &I;
// Given the known and unknown bits, compute a range that the LHS could be
// in. Compute the Min, Max and RHS values based on the known bits. For the
// EQ and NE we use unsigned values.
APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
if (I.isSigned()) {
ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
Op0Min, Op0Max);
ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
Op1Min, Op1Max);
} else {
ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
Op0Min, Op0Max);
ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
Op1Min, Op1Max);
}
// If Min and Max are known to be the same, then SimplifyDemandedBits
// figured out that the LHS is a constant. Just constant fold this now so
// that code below can assume that Min != Max.
if (!isa<Constant>(Op0) && Op0Min == Op0Max)
return new ICmpInst(I.getPredicate(),
ConstantInt::get(Op0->getType(), Op0Min), Op1);
if (!isa<Constant>(Op1) && Op1Min == Op1Max)
return new ICmpInst(I.getPredicate(), Op0,
ConstantInt::get(Op1->getType(), Op1Min));
// Based on the range information we know about the LHS, see if we can
// simplify this comparison. For example, (x&4) < 8 is always true.
switch (I.getPredicate()) {
default: llvm_unreachable("Unknown icmp opcode!");
case ICmpInst::ICMP_EQ: {
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
// If all bits are known zero except for one, then we know at most one
// bit is set. If the comparison is against zero, then this is a check
// to see if *that* bit is set.
APInt Op0KnownZeroInverted = ~Op0KnownZero;
if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
// If the LHS is an AND with the same constant, look through it.
Value *LHS = 0;
ConstantInt *LHSC = 0;
if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
LHSC->getValue() != Op0KnownZeroInverted)
LHS = Op0;
// If the LHS is 1 << x, and we know the result is a power of 2 like 8,
// then turn "((1 << x)&8) == 0" into "x != 3".
Value *X = 0;
if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
return new ICmpInst(ICmpInst::ICMP_NE, X,
ConstantInt::get(X->getType(), CmpVal));
}
// If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
// then turn "((8 >>u x)&1) == 0" into "x != 3".
const APInt *CI;
if (Op0KnownZeroInverted == 1 &&
match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
return new ICmpInst(ICmpInst::ICMP_NE, X,
ConstantInt::get(X->getType(),
CI->countTrailingZeros()));
}
break;
}
case ICmpInst::ICMP_NE: {
if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
// If all bits are known zero except for one, then we know at most one
// bit is set. If the comparison is against zero, then this is a check
// to see if *that* bit is set.
APInt Op0KnownZeroInverted = ~Op0KnownZero;
if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
// If the LHS is an AND with the same constant, look through it.
Value *LHS = 0;
ConstantInt *LHSC = 0;
if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
LHSC->getValue() != Op0KnownZeroInverted)
LHS = Op0;
// If the LHS is 1 << x, and we know the result is a power of 2 like 8,
// then turn "((1 << x)&8) != 0" into "x == 3".
Value *X = 0;
if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
return new ICmpInst(ICmpInst::ICMP_EQ, X,
ConstantInt::get(X->getType(), CmpVal));
}
// If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
// then turn "((8 >>u x)&1) != 0" into "x == 3".
const APInt *CI;
if (Op0KnownZeroInverted == 1 &&
match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
return new ICmpInst(ICmpInst::ICMP_EQ, X,
ConstantInt::get(X->getType(),
CI->countTrailingZeros()));
}
break;
}
case ICmpInst::ICMP_ULT:
if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
Builder->getInt(CI->getValue()-1));
// (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
if (CI->isMinValue(true))
return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
Constant::getAllOnesValue(Op0->getType()));
}
break;
case ICmpInst::ICMP_UGT:
if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
Builder->getInt(CI->getValue()+1));
// (x >u 2147483647) -> (x <s 0) -> true if sign bit set
if (CI->isMaxValue(true))
return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
Constant::getNullValue(Op0->getType()));
}
break;
case ICmpInst::ICMP_SLT:
if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
Builder->getInt(CI->getValue()-1));
}
break;
case ICmpInst::ICMP_SGT:
if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
Builder->getInt(CI->getValue()+1));
}
break;
case ICmpInst::ICMP_SGE:
assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
break;
case ICmpInst::ICMP_SLE:
assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
break;
case ICmpInst::ICMP_UGE:
assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
break;
case ICmpInst::ICMP_ULE:
assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
break;
}
// Turn a signed comparison into an unsigned one if both operands
// are known to have the same sign.
if (I.isSigned() &&
((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
(Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
}
// Test if the ICmpInst instruction is used exclusively by a select as
// part of a minimum or maximum operation. If so, refrain from doing
// any other folding. This helps out other analyses which understand
// non-obfuscated minimum and maximum idioms, such as ScalarEvolution
// and CodeGen. And in this case, at least one of the comparison
// operands has at least one user besides the compare (the select),
// which would often largely negate the benefit of folding anyway.
if (I.hasOneUse())
if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
(SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
return 0;
// See if we are doing a comparison between a constant and an instruction that
// can be folded into the comparison.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
// Since the RHS is a ConstantInt (CI), if the left hand side is an
// instruction, see if that instruction also has constants so that the
// instruction can be folded into the icmp
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
return Res;
}
// Handle icmp with constant (but not simple integer constant) RHS
if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
switch (LHSI->getOpcode()) {
case Instruction::GetElementPtr:
// icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
if (RHSC->isNullValue() &&
cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
Constant::getNullValue(LHSI->getOperand(0)->getType()));
break;
case Instruction::PHI:
// Only fold icmp into the PHI if the phi and icmp are in the same
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
break;
case Instruction::Select: {
// If either operand of the select is a constant, we can fold the
// comparison into the select arms, which will cause one to be
// constant folded and the select turned into a bitwise or.
Value *Op1 = 0, *Op2 = 0;
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
// We only want to perform this transformation if it will not lead to
// additional code. This is true if either both sides of the select
// fold to a constant (in which case the icmp is replaced with a select
// which will usually simplify) or this is the only user of the
// select (in which case we are trading a select+icmp for a simpler
// select+icmp).
if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
if (!Op1)
Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
RHSC, I.getName());
if (!Op2)
Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
RHSC, I.getName());
return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
}
break;
}
case Instruction::IntToPtr:
// icmp pred inttoptr(X), null -> icmp pred X, 0
if (RHSC->isNullValue() && TD &&
TD->getIntPtrType(RHSC->getType()) ==
LHSI->getOperand(0)->getType())
return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
Constant::getNullValue(LHSI->getOperand(0)->getType()));
break;
case Instruction::Load:
// Try to optimize things like "A[i] > 4" to index computations.
if (GetElementPtrInst *GEP =
dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
!cast<LoadInst>(LHSI)->isVolatile())
if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
return Res;
}
break;
}
}
// If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
return NI;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
if (Instruction *NI = FoldGEPICmp(GEP, Op0,
ICmpInst::getSwappedPredicate(I.getPredicate()), I))
return NI;
// Test to see if the operands of the icmp are casted versions of other
// values. If the ptr->ptr cast can be stripped off both arguments, we do so
// now.
if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
if (Op0->getType()->isPointerTy() &&
(isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
// We keep moving the cast from the left operand over to the right
// operand, where it can often be eliminated completely.
Op0 = CI->getOperand(0);
// If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
// so eliminate it as well.
if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
Op1 = CI2->getOperand(0);
// If Op1 is a constant, we can fold the cast into the constant.
if (Op0->getType() != Op1->getType()) {
if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
} else {
// Otherwise, cast the RHS right before the icmp
Op1 = Builder->CreateBitCast(Op1, Op0->getType());
}
}
return new ICmpInst(I.getPredicate(), Op0, Op1);
}
}
if (isa<CastInst>(Op0)) {
// Handle the special case of: icmp (cast bool to X), <cst>
// This comes up when you have code like
// int X = A < B;
// if (X) ...
// For generality, we handle any zero-extension of any operand comparison
// with a constant or another cast from the same type.
if (isa<Constant>(Op1) || isa<CastInst>(Op1))
if (Instruction *R = visitICmpInstWithCastAndCast(I))
return R;
}
// Special logic for binary operators.
BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
if (BO0 || BO1) {
CmpInst::Predicate Pred = I.getPredicate();
bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
if (BO0 && isa<OverflowingBinaryOperator>(BO0))
NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
(CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
(CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
if (BO1 && isa<OverflowingBinaryOperator>(BO1))
NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
(CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
(CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
// Analyze the case when either Op0 or Op1 is an add instruction.
// Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
Value *A = 0, *B = 0, *C = 0, *D = 0;
if (BO0 && BO0->getOpcode() == Instruction::Add)
A = BO0->getOperand(0), B = BO0->getOperand(1);
if (BO1 && BO1->getOpcode() == Instruction::Add)
C = BO1->getOperand(0), D = BO1->getOperand(1);
// icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
return new ICmpInst(Pred, A == Op1 ? B : A,
Constant::getNullValue(Op1->getType()));
// icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
C == Op0 ? D : C);
// icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
if (A && C && (A == C || A == D || B == C || B == D) &&
NoOp0WrapProblem && NoOp1WrapProblem &&
// Try not to increase register pressure.
BO0->hasOneUse() && BO1->hasOneUse()) {
// Determine Y and Z in the form icmp (X+Y), (X+Z).
Value *Y, *Z;
if (A == C) {
// C + B == C + D -> B == D
Y = B;
Z = D;
} else if (A == D) {
// D + B == C + D -> B == C
Y = B;
Z = C;
} else if (B == C) {
// A + C == C + D -> A == D
Y = A;
Z = D;
} else {
assert(B == D);
// A + D == C + D -> A == C
Y = A;
Z = C;
}
return new ICmpInst(Pred, Y, Z);
}
// icmp slt (X + -1), Y -> icmp sle X, Y
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
match(B, m_AllOnes()))
return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
// icmp sge (X + -1), Y -> icmp sgt X, Y
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
match(B, m_AllOnes()))
return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
// icmp sle (X + 1), Y -> icmp slt X, Y
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
match(B, m_One()))
return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
// icmp sgt (X + 1), Y -> icmp sge X, Y
if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
match(B, m_One()))
return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
// if C1 has greater magnitude than C2:
// icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
// s.t. C3 = C1 - C2
//
// if C2 has greater magnitude than C1:
// icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
// s.t. C3 = C2 - C1
if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
(BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
const APInt &AP1 = C1->getValue();
const APInt &AP2 = C2->getValue();
if (AP1.isNegative() == AP2.isNegative()) {
APInt AP1Abs = C1->getValue().abs();
APInt AP2Abs = C2->getValue().abs();
if (AP1Abs.uge(AP2Abs)) {
ConstantInt *C3 = Builder->getInt(AP1 - AP2);
Value *NewAdd = Builder->CreateNSWAdd(A, C3);
return new ICmpInst(Pred, NewAdd, C);
} else {
ConstantInt *C3 = Builder->getInt(AP2 - AP1);
Value *NewAdd = Builder->CreateNSWAdd(C, C3);
return new ICmpInst(Pred, A, NewAdd);
}
}
}
// Analyze the case when either Op0 or Op1 is a sub instruction.
// Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
A = 0; B = 0; C = 0; D = 0;
if (BO0 && BO0->getOpcode() == Instruction::Sub)
A = BO0->getOperand(0), B = BO0->getOperand(1);
if (BO1 && BO1->getOpcode() == Instruction::Sub)
C = BO1->getOperand(0), D = BO1->getOperand(1);
// icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
if (A == Op1 && NoOp0WrapProblem)
return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
// icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
if (C == Op0 && NoOp1WrapProblem)
return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
// icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
// Try not to increase register pressure.
BO0->hasOneUse() && BO1->hasOneUse())
return new ICmpInst(Pred, A, C);
// icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
// Try not to increase register pressure.
BO0->hasOneUse() && BO1->hasOneUse())
return new ICmpInst(Pred, D, B);
BinaryOperator *SRem = NULL;
// icmp (srem X, Y), Y
if (BO0 && BO0->getOpcode() == Instruction::SRem &&
Op1 == BO0->getOperand(1))
SRem = BO0;
// icmp Y, (srem X, Y)
else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
Op0 == BO1->getOperand(1))
SRem = BO1;
if (SRem) {
// We don't check hasOneUse to avoid increasing register pressure because
// the value we use is the same value this instruction was already using.
switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
default: break;
case ICmpInst::ICMP_EQ:
return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
case ICmpInst::ICMP_NE:
return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE:
return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
Constant::getAllOnesValue(SRem->getType()));
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE:
return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
Constant::getNullValue(SRem->getType()));
}
}
if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
BO0->hasOneUse() && BO1->hasOneUse() &&
BO0->getOperand(1) == BO1->getOperand(1)) {
switch (BO0->getOpcode()) {
default: break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Xor:
if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
BO1->getOperand(0));
// icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
if (CI->getValue().isSignBit()) {
ICmpInst::Predicate Pred = I.isSigned()
? I.getUnsignedPredicate()
: I.getSignedPredicate();
return new ICmpInst(Pred, BO0->getOperand(0),
BO1->getOperand(0));
}
if (CI->isMaxValue(true)) {
ICmpInst::Predicate Pred = I.isSigned()
? I.getUnsignedPredicate()
: I.getSignedPredicate();
Pred = I.getSwappedPredicate(Pred);
return new ICmpInst(Pred, BO0->getOperand(0),
BO1->getOperand(0));
}
}
break;
case Instruction::Mul:
if (!I.isEquality())
break;
if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
// a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
// Mask = -1 >> count-trailing-zeros(Cst).
if (!CI->isZero() && !CI->isOne()) {
const APInt &AP = CI->getValue();
ConstantInt *Mask = ConstantInt::get(I.getContext(),
APInt::getLowBitsSet(AP.getBitWidth(),
AP.getBitWidth() -
AP.countTrailingZeros()));
Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
return new ICmpInst(I.getPredicate(), And1, And2);
}
}
break;
case Instruction::UDiv:
case Instruction::LShr:
if (I.isSigned())
break;
// fall-through
case Instruction::SDiv:
case Instruction::AShr:
if (!BO0->isExact() || !BO1->isExact())
break;
return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
BO1->getOperand(0));
case Instruction::Shl: {
bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
if (!NUW && !NSW)
break;
if (!NSW && I.isSigned())
break;
return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
BO1->getOperand(0));
}
}
}
}
{ Value *A, *B;
// Transform (A & ~B) == 0 --> (A & B) != 0
// and (A & ~B) != 0 --> (A & B) == 0
// if A is a power of 2.
if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality())
return new ICmpInst(I.getInversePredicate(),
Builder->CreateAnd(A, B),
Op1);
// ~x < ~y --> y < x
// ~x < cst --> ~cst < x
if (match(Op0, m_Not(m_Value(A)))) {
if (match(Op1, m_Not(m_Value(B))))
return new ICmpInst(I.getPredicate(), B, A);
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
}
// (a+b) <u a --> llvm.uadd.with.overflow.
// (a+b) <u b --> llvm.uadd.with.overflow.
if (I.getPredicate() == ICmpInst::ICMP_ULT &&
match(Op0, m_Add(m_Value(A), m_Value(B))) &&
(Op1 == A || Op1 == B))
if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
return R;
// a >u (a+b) --> llvm.uadd.with.overflow.
// b >u (a+b) --> llvm.uadd.with.overflow.
if (I.getPredicate() == ICmpInst::ICMP_UGT &&
match(Op1, m_Add(m_Value(A), m_Value(B))) &&
(Op0 == A || Op0 == B))
if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
return R;
}
if (I.isEquality()) {
Value *A, *B, *C, *D;
if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
Value *OtherVal = A == Op1 ? B : A;
return new ICmpInst(I.getPredicate(), OtherVal,
Constant::getNullValue(A->getType()));
}
if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
// A^c1 == C^c2 --> A == C^(c1^c2)
ConstantInt *C1, *C2;
if (match(B, m_ConstantInt(C1)) &&
match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
Value *Xor = Builder->CreateXor(C, NC);
return new ICmpInst(I.getPredicate(), A, Xor);
}
// A^B == A^D -> B == D
if (A == C) return new ICmpInst(I.getPredicate(), B, D);
if (A == D) return new ICmpInst(I.getPredicate(), B, C);
if (B == C) return new ICmpInst(I.getPredicate(), A, D);
if (B == D) return new ICmpInst(I.getPredicate(), A, C);
}
}
if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
(A == Op0 || B == Op0)) {
// A == (A^B) -> B == 0
Value *OtherVal = A == Op0 ? B : A;
return new ICmpInst(I.getPredicate(), OtherVal,
Constant::getNullValue(A->getType()));
}
// (X&Z) == (Y&Z) -> (X^Y) & Z == 0
if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
Value *X = 0, *Y = 0, *Z = 0;
if (A == C) {
X = B; Y = D; Z = A;
} else if (A == D) {
X = B; Y = C; Z = A;
} else if (B == C) {
X = A; Y = D; Z = B;
} else if (B == D) {
X = A; Y = C; Z = B;
}
if (X) { // Build (X^Y) & Z
Op1 = Builder->CreateXor(X, Y);
Op1 = Builder->CreateAnd(Op1, Z);
I.setOperand(0, Op1);
I.setOperand(1, Constant::getNullValue(Op1->getType()));
return &I;
}
}
// Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
// and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
ConstantInt *Cst1;
if ((Op0->hasOneUse() &&
match(Op0, m_ZExt(m_Value(A))) &&
match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
(Op1->hasOneUse() &&
match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
match(Op1, m_ZExt(m_Value(A))))) {
APInt Pow2 = Cst1->getValue() + 1;
if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
return new ICmpInst(I.getPredicate(), A,
Builder->CreateTrunc(B, A->getType()));
}
// Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
// "icmp (and X, mask), cst"
uint64_t ShAmt = 0;
if (Op0->hasOneUse() &&
match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
m_ConstantInt(ShAmt))))) &&
match(Op1, m_ConstantInt(Cst1)) &&
// Only do this when A has multiple uses. This is most important to do
// when it exposes other optimizations.
!A->hasOneUse()) {
unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
if (ShAmt < ASize) {
APInt MaskV =
APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
MaskV <<= ShAmt;
APInt CmpV = Cst1->getValue().zext(ASize);
CmpV <<= ShAmt;
Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
}
}
}
{
Value *X; ConstantInt *Cst;
// icmp X+Cst, X
if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
// icmp X, X+Cst
if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
}
return Changed ? &I : 0;
}
/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
///
Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
Instruction *LHSI,
Constant *RHSC) {
if (!isa<ConstantFP>(RHSC)) return 0;
const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
// Get the width of the mantissa. We don't want to hack on conversions that
// might lose information from the integer, e.g. "i64 -> float"
int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
if (MantissaWidth == -1) return 0; // Unknown.
// Check to see that the input is converted from an integer type that is small
// enough that preserves all bits. TODO: check here for "known" sign bits.
// This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
// If this is a uitofp instruction, we need an extra bit to hold the sign.
bool LHSUnsigned = isa<UIToFPInst>(LHSI);
if (LHSUnsigned)
++InputSize;
// If the conversion would lose info, don't hack on this.
if ((int)InputSize > MantissaWidth)
return 0;
// Otherwise, we can potentially simplify the comparison. We know that it
// will always come through as an integer value and we know the constant is
// not a NAN (it would have been previously simplified).
assert(!RHS.isNaN() && "NaN comparison not already folded!");
ICmpInst::Predicate Pred;
switch (I.getPredicate()) {
default: llvm_unreachable("Unexpected predicate!");
case FCmpInst::FCMP_UEQ:
case FCmpInst::FCMP_OEQ:
Pred = ICmpInst::ICMP_EQ;
break;
case FCmpInst::FCMP_UGT:
case FCmpInst::FCMP_OGT:
Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
break;
case FCmpInst::FCMP_UGE:
case FCmpInst::FCMP_OGE:
Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
break;
case FCmpInst::FCMP_ULT:
case FCmpInst::FCMP_OLT:
Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
break;
case FCmpInst::FCMP_ULE:
case FCmpInst::FCMP_OLE:
Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
break;
case FCmpInst::FCMP_UNE:
case FCmpInst::FCMP_ONE:
Pred = ICmpInst::ICMP_NE;
break;
case FCmpInst::FCMP_ORD:
return ReplaceInstUsesWith(I, Builder->getTrue());
case FCmpInst::FCMP_UNO:
return ReplaceInstUsesWith(I, Builder->getFalse());
}
IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
// Now we know that the APFloat is a normal number, zero or inf.
// See if the FP constant is too large for the integer. For example,
// comparing an i8 to 300.0.
unsigned IntWidth = IntTy->getScalarSizeInBits();
if (!LHSUnsigned) {
// If the RHS value is > SignedMax, fold the comparison. This handles +INF
// and large values.
APFloat SMax(RHS.getSemantics());
SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
APFloat::rmNearestTiesToEven);
if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
Pred == ICmpInst::ICMP_SLE)
return ReplaceInstUsesWith(I, Builder->getTrue());
return ReplaceInstUsesWith(I, Builder->getFalse());
}
} else {
// If the RHS value is > UnsignedMax, fold the comparison. This handles
// +INF and large values.
APFloat UMax(RHS.getSemantics());
UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
APFloat::rmNearestTiesToEven);
if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
Pred == ICmpInst::ICMP_ULE)
return ReplaceInstUsesWith(I, Builder->getTrue());
return ReplaceInstUsesWith(I, Builder->getFalse());
}
}
if (!LHSUnsigned) {
// See if the RHS value is < SignedMin.
APFloat SMin(RHS.getSemantics());
SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
APFloat::rmNearestTiesToEven);
if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
Pred == ICmpInst::ICMP_SGE)
return ReplaceInstUsesWith(I, Builder->getTrue());
return ReplaceInstUsesWith(I, Builder->getFalse());
}
} else {
// See if the RHS value is < UnsignedMin.
APFloat SMin(RHS.getSemantics());
SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
APFloat::rmNearestTiesToEven);
if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
Pred == ICmpInst::ICMP_UGE)
return ReplaceInstUsesWith(I, Builder->getTrue());
return ReplaceInstUsesWith(I, Builder->getFalse());
}
}
// Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
// [0, UMAX], but it may still be fractional. See if it is fractional by
// casting the FP value to the integer value and back, checking for equality.
// Don't do this for zero, because -0.0 is not fractional.
Constant *RHSInt = LHSUnsigned
? ConstantExpr::getFPToUI(RHSC, IntTy)
: ConstantExpr::getFPToSI(RHSC, IntTy);
if (!RHS.isZero()) {
bool Equal = LHSUnsigned
? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
: ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
if (!Equal) {
// If we had a comparison against a fractional value, we have to adjust
// the compare predicate and sometimes the value. RHSC is rounded towards
// zero at this point.
switch (Pred) {
default: llvm_unreachable("Unexpected integer comparison!");
case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
return ReplaceInstUsesWith(I, Builder->getTrue());
case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
return ReplaceInstUsesWith(I, Builder->getFalse());
case ICmpInst::ICMP_ULE:
// (float)int <= 4.4 --> int <= 4
// (float)int <= -4.4 --> false
if (RHS.isNegative())
return ReplaceInstUsesWith(I, Builder->getFalse());
break;
case ICmpInst::ICMP_SLE:
// (float)int <= 4.4 --> int <= 4
// (float)int <= -4.4 --> int < -4
if (RHS.isNegative())
Pred = ICmpInst::ICMP_SLT;
break;
case ICmpInst::ICMP_ULT:
// (float)int < -4.4 --> false
// (float)int < 4.4 --> int <= 4
if (RHS.isNegative())
return ReplaceInstUsesWith(I, Builder->getFalse());
Pred = ICmpInst::ICMP_ULE;
break;
case ICmpInst::ICMP_SLT:
// (float)int < -4.4 --> int < -4
// (float)int < 4.4 --> int <= 4
if (!RHS.isNegative())
Pred = ICmpInst::ICMP_SLE;
break;
case ICmpInst::ICMP_UGT:
// (float)int > 4.4 --> int > 4
// (float)int > -4.4 --> true
if (RHS.isNegative())
return ReplaceInstUsesWith(I, Builder->getTrue());
break;
case ICmpInst::ICMP_SGT:
// (float)int > 4.4 --> int > 4
// (float)int > -4.4 --> int >= -4
if (RHS.isNegative())
Pred = ICmpInst::ICMP_SGE;
break;
case ICmpInst::ICMP_UGE:
// (float)int >= -4.4 --> true
// (float)int >= 4.4 --> int > 4
if (RHS.isNegative())
return ReplaceInstUsesWith(I, Builder->getTrue());
Pred = ICmpInst::ICMP_UGT;
break;
case ICmpInst::ICMP_SGE:
// (float)int >= -4.4 --> int >= -4
// (float)int >= 4.4 --> int > 4
if (!RHS.isNegative())
Pred = ICmpInst::ICMP_SGT;
break;
}
}
}
// Lower this FP comparison into an appropriate integer version of the
// comparison.
return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
}
Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
bool Changed = false;
/// Orders the operands of the compare so that they are listed from most
/// complex to least complex. This puts constants before unary operators,
/// before binary operators.
if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
I.swapOperands();
Changed = true;
}
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
return ReplaceInstUsesWith(I, V);
// Simplify 'fcmp pred X, X'
if (Op0 == Op1) {
switch (I.getPredicate()) {
default: llvm_unreachable("Unknown predicate!");
case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
case FCmpInst::FCMP_ULT: // True if unordered or less than
case FCmpInst::FCMP_UGT: // True if unordered or greater than
case FCmpInst::FCMP_UNE: // True if unordered or not equal
// Canonicalize these to be 'fcmp uno %X, 0.0'.
I.setPredicate(FCmpInst::FCMP_UNO);
I.setOperand(1, Constant::getNullValue(Op0->getType()));
return &I;
case FCmpInst::FCMP_ORD: // True if ordered (no nans)
case FCmpInst::FCMP_OEQ: // True if ordered and equal
case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
// Canonicalize these to be 'fcmp ord %X, 0.0'.
I.setPredicate(FCmpInst::FCMP_ORD);
I.setOperand(1, Constant::getNullValue(Op0->getType()));
return &I;
}
}
// Handle fcmp with constant RHS
if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
switch (LHSI->getOpcode()) {
case Instruction::FPExt: {
// fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
if (!RHSF)
break;
const fltSemantics *Sem;
// FIXME: This shouldn't be here.
if (LHSExt->getSrcTy()->isHalfTy())
Sem = &APFloat::IEEEhalf;
else if (LHSExt->getSrcTy()->isFloatTy())
Sem = &APFloat::IEEEsingle;
else if (LHSExt->getSrcTy()->isDoubleTy())
Sem = &APFloat::IEEEdouble;
else if (LHSExt->getSrcTy()->isFP128Ty())
Sem = &APFloat::IEEEquad;
else if (LHSExt->getSrcTy()->isX86_FP80Ty())
Sem = &APFloat::x87DoubleExtended;
else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
Sem = &APFloat::PPCDoubleDouble;
else
break;
bool Lossy;
APFloat F = RHSF->getValueAPF();
F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
// Avoid lossy conversions and denormals. Zero is a special case
// that's OK to convert.
APFloat Fabs = F;
Fabs.clearSign();
if (!Lossy &&
((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
APFloat::cmpLessThan) || Fabs.isZero()))
return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
ConstantFP::get(RHSC->getContext(), F));
break;
}
case Instruction::PHI:
// Only fold fcmp into the PHI if the phi and fcmp are in the same
// block. If in the same block, we're encouraging jump threading. If
// not, we are just pessimizing the code by making an i1 phi.
if (LHSI->getParent() == I.getParent())
if (Instruction *NV = FoldOpIntoPhi(I))
return NV;
break;
case Instruction::SIToFP:
case Instruction::UIToFP:
if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
return NV;
break;
case Instruction::Select: {
// If either operand of the select is a constant, we can fold the
// comparison into the select arms, which will cause one to be
// constant folded and the select turned into a bitwise or.
Value *Op1 = 0, *Op2 = 0;
if (LHSI->hasOneUse()) {
if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
// Fold the known value into the constant operand.
Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
// Insert a new FCmp of the other select operand.
Op2 = Builder->CreateFCmp(I.getPredicate(),
LHSI->getOperand(2), RHSC, I.getName());
} else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
// Fold the known value into the constant operand.
Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
// Insert a new FCmp of the other select operand.
Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
RHSC, I.getName());
}
}
if (Op1)
return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
break;
}
case Instruction::FSub: {
// fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
Value *Op;
if (match(LHSI, m_FNeg(m_Value(Op))))
return new FCmpInst(I.getSwappedPredicate(), Op,
ConstantExpr::getFNeg(RHSC));
break;
}
case Instruction::Load:
if (GetElementPtrInst *GEP =
dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
!cast<LoadInst>(LHSI)->isVolatile())
if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
return Res;
}
break;
case Instruction::Call: {
CallInst *CI = cast<CallInst>(LHSI);
LibFunc::Func Func;
// Various optimization for fabs compared with zero.
if (RHSC->isNullValue() && CI->getCalledFunction() &&
TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
TLI->has(Func)) {
if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
Func == LibFunc::fabsl) {
switch (I.getPredicate()) {
default: break;
// fabs(x) < 0 --> false
case FCmpInst::FCMP_OLT:
return ReplaceInstUsesWith(I, Builder->getFalse());
// fabs(x) > 0 --> x != 0
case FCmpInst::FCMP_OGT:
return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
RHSC);
// fabs(x) <= 0 --> x == 0
case FCmpInst::FCMP_OLE:
return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
RHSC);
// fabs(x) >= 0 --> !isnan(x)
case FCmpInst::FCMP_OGE:
return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
RHSC);
// fabs(x) == 0 --> x == 0
// fabs(x) != 0 --> x != 0
case FCmpInst::FCMP_OEQ:
case FCmpInst::FCMP_UEQ:
case FCmpInst::FCMP_ONE:
case FCmpInst::FCMP_UNE:
return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
RHSC);
}
}
}
}
}
}
// fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
Value *X, *Y;
if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
return new FCmpInst(I.getSwappedPredicate(), X, Y);
// fcmp (fpext x), (fpext y) -> fcmp x, y
if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
RHSExt->getOperand(0));
return Changed ? &I : 0;
}