mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	The hasNoModRefInfoForCalls isn't worth it as a filter because basicaa provides m/r info and everything chains to it, so remove it. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89599 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2861 lines
		
	
	
		
			102 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2861 lines
		
	
	
		
			102 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines an implementation of Andersen's interprocedural alias
 | 
						|
// analysis
 | 
						|
//
 | 
						|
// In pointer analysis terms, this is a subset-based, flow-insensitive,
 | 
						|
// field-sensitive, and context-insensitive algorithm pointer algorithm.
 | 
						|
//
 | 
						|
// This algorithm is implemented as three stages:
 | 
						|
//   1. Object identification.
 | 
						|
//   2. Inclusion constraint identification.
 | 
						|
//   3. Offline constraint graph optimization
 | 
						|
//   4. Inclusion constraint solving.
 | 
						|
//
 | 
						|
// The object identification stage identifies all of the memory objects in the
 | 
						|
// program, which includes globals, heap allocated objects, and stack allocated
 | 
						|
// objects.
 | 
						|
//
 | 
						|
// The inclusion constraint identification stage finds all inclusion constraints
 | 
						|
// in the program by scanning the program, looking for pointer assignments and
 | 
						|
// other statements that effect the points-to graph.  For a statement like "A =
 | 
						|
// B", this statement is processed to indicate that A can point to anything that
 | 
						|
// B can point to.  Constraints can handle copies, loads, and stores, and
 | 
						|
// address taking.
 | 
						|
//
 | 
						|
// The offline constraint graph optimization portion includes offline variable
 | 
						|
// substitution algorithms intended to compute pointer and location
 | 
						|
// equivalences.  Pointer equivalences are those pointers that will have the
 | 
						|
// same points-to sets, and location equivalences are those variables that
 | 
						|
// always appear together in points-to sets.  It also includes an offline
 | 
						|
// cycle detection algorithm that allows cycles to be collapsed sooner 
 | 
						|
// during solving.
 | 
						|
//
 | 
						|
// The inclusion constraint solving phase iteratively propagates the inclusion
 | 
						|
// constraints until a fixed point is reached.  This is an O(N^3) algorithm.
 | 
						|
//
 | 
						|
// Function constraints are handled as if they were structs with X fields.
 | 
						|
// Thus, an access to argument X of function Y is an access to node index
 | 
						|
// getNode(Y) + X.  This representation allows handling of indirect calls
 | 
						|
// without any issues.  To wit, an indirect call Y(a,b) is equivalent to
 | 
						|
// *(Y + 1) = a, *(Y + 2) = b.
 | 
						|
// The return node for a function is always located at getNode(F) +
 | 
						|
// CallReturnPos. The arguments start at getNode(F) + CallArgPos.
 | 
						|
//
 | 
						|
// Future Improvements:
 | 
						|
//   Use of BDD's.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "anders-aa"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/InstIterator.h"
 | 
						|
#include "llvm/Support/InstVisitor.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/Passes.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/System/Atomic.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/SparseBitVector.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <set>
 | 
						|
#include <list>
 | 
						|
#include <map>
 | 
						|
#include <stack>
 | 
						|
#include <vector>
 | 
						|
#include <queue>
 | 
						|
 | 
						|
// Determining the actual set of nodes the universal set can consist of is very
 | 
						|
// expensive because it means propagating around very large sets.  We rely on
 | 
						|
// other analysis being able to determine which nodes can never be pointed to in
 | 
						|
// order to disambiguate further than "points-to anything".
 | 
						|
#define FULL_UNIVERSAL 0
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
#ifndef NDEBUG
 | 
						|
STATISTIC(NumIters      , "Number of iterations to reach convergence");
 | 
						|
#endif
 | 
						|
STATISTIC(NumConstraints, "Number of constraints");
 | 
						|
STATISTIC(NumNodes      , "Number of nodes");
 | 
						|
STATISTIC(NumUnified    , "Number of variables unified");
 | 
						|
STATISTIC(NumErased     , "Number of redundant constraints erased");
 | 
						|
 | 
						|
static const unsigned SelfRep = (unsigned)-1;
 | 
						|
static const unsigned Unvisited = (unsigned)-1;
 | 
						|
// Position of the function return node relative to the function node.
 | 
						|
static const unsigned CallReturnPos = 1;
 | 
						|
// Position of the function call node relative to the function node.
 | 
						|
static const unsigned CallFirstArgPos = 2;
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct BitmapKeyInfo {
 | 
						|
    static inline SparseBitVector<> *getEmptyKey() {
 | 
						|
      return reinterpret_cast<SparseBitVector<> *>(-1);
 | 
						|
    }
 | 
						|
    static inline SparseBitVector<> *getTombstoneKey() {
 | 
						|
      return reinterpret_cast<SparseBitVector<> *>(-2);
 | 
						|
    }
 | 
						|
    static unsigned getHashValue(const SparseBitVector<> *bitmap) {
 | 
						|
      return bitmap->getHashValue();
 | 
						|
    }
 | 
						|
    static bool isEqual(const SparseBitVector<> *LHS,
 | 
						|
                        const SparseBitVector<> *RHS) {
 | 
						|
      if (LHS == RHS)
 | 
						|
        return true;
 | 
						|
      else if (LHS == getEmptyKey() || RHS == getEmptyKey()
 | 
						|
               || LHS == getTombstoneKey() || RHS == getTombstoneKey())
 | 
						|
        return false;
 | 
						|
 | 
						|
      return *LHS == *RHS;
 | 
						|
    }
 | 
						|
 | 
						|
    static bool isPod() { return true; }
 | 
						|
  };
 | 
						|
 | 
						|
  class Andersens : public ModulePass, public AliasAnalysis,
 | 
						|
                    private InstVisitor<Andersens> {
 | 
						|
    struct Node;
 | 
						|
 | 
						|
    /// Constraint - Objects of this structure are used to represent the various
 | 
						|
    /// constraints identified by the algorithm.  The constraints are 'copy',
 | 
						|
    /// for statements like "A = B", 'load' for statements like "A = *B",
 | 
						|
    /// 'store' for statements like "*A = B", and AddressOf for statements like
 | 
						|
    /// A = alloca;  The Offset is applied as *(A + K) = B for stores,
 | 
						|
    /// A = *(B + K) for loads, and A = B + K for copies.  It is
 | 
						|
    /// illegal on addressof constraints (because it is statically
 | 
						|
    /// resolvable to A = &C where C = B + K)
 | 
						|
 | 
						|
    struct Constraint {
 | 
						|
      enum ConstraintType { Copy, Load, Store, AddressOf } Type;
 | 
						|
      unsigned Dest;
 | 
						|
      unsigned Src;
 | 
						|
      unsigned Offset;
 | 
						|
 | 
						|
      Constraint(ConstraintType Ty, unsigned D, unsigned S, unsigned O = 0)
 | 
						|
        : Type(Ty), Dest(D), Src(S), Offset(O) {
 | 
						|
        assert((Offset == 0 || Ty != AddressOf) &&
 | 
						|
               "Offset is illegal on addressof constraints");
 | 
						|
      }
 | 
						|
 | 
						|
      bool operator==(const Constraint &RHS) const {
 | 
						|
        return RHS.Type == Type
 | 
						|
          && RHS.Dest == Dest
 | 
						|
          && RHS.Src == Src
 | 
						|
          && RHS.Offset == Offset;
 | 
						|
      }
 | 
						|
 | 
						|
      bool operator!=(const Constraint &RHS) const {
 | 
						|
        return !(*this == RHS);
 | 
						|
      }
 | 
						|
 | 
						|
      bool operator<(const Constraint &RHS) const {
 | 
						|
        if (RHS.Type != Type)
 | 
						|
          return RHS.Type < Type;
 | 
						|
        else if (RHS.Dest != Dest)
 | 
						|
          return RHS.Dest < Dest;
 | 
						|
        else if (RHS.Src != Src)
 | 
						|
          return RHS.Src < Src;
 | 
						|
        return RHS.Offset < Offset;
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    // Information DenseSet requires implemented in order to be able to do
 | 
						|
    // it's thing
 | 
						|
    struct PairKeyInfo {
 | 
						|
      static inline std::pair<unsigned, unsigned> getEmptyKey() {
 | 
						|
        return std::make_pair(~0U, ~0U);
 | 
						|
      }
 | 
						|
      static inline std::pair<unsigned, unsigned> getTombstoneKey() {
 | 
						|
        return std::make_pair(~0U - 1, ~0U - 1);
 | 
						|
      }
 | 
						|
      static unsigned getHashValue(const std::pair<unsigned, unsigned> &P) {
 | 
						|
        return P.first ^ P.second;
 | 
						|
      }
 | 
						|
      static unsigned isEqual(const std::pair<unsigned, unsigned> &LHS,
 | 
						|
                              const std::pair<unsigned, unsigned> &RHS) {
 | 
						|
        return LHS == RHS;
 | 
						|
      }
 | 
						|
    };
 | 
						|
    
 | 
						|
    struct ConstraintKeyInfo {
 | 
						|
      static inline Constraint getEmptyKey() {
 | 
						|
        return Constraint(Constraint::Copy, ~0U, ~0U, ~0U);
 | 
						|
      }
 | 
						|
      static inline Constraint getTombstoneKey() {
 | 
						|
        return Constraint(Constraint::Copy, ~0U - 1, ~0U - 1, ~0U - 1);
 | 
						|
      }
 | 
						|
      static unsigned getHashValue(const Constraint &C) {
 | 
						|
        return C.Src ^ C.Dest ^ C.Type ^ C.Offset;
 | 
						|
      }
 | 
						|
      static bool isEqual(const Constraint &LHS,
 | 
						|
                          const Constraint &RHS) {
 | 
						|
        return LHS.Type == RHS.Type && LHS.Dest == RHS.Dest
 | 
						|
          && LHS.Src == RHS.Src && LHS.Offset == RHS.Offset;
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    // Node class - This class is used to represent a node in the constraint
 | 
						|
    // graph.  Due to various optimizations, it is not always the case that
 | 
						|
    // there is a mapping from a Node to a Value.  In particular, we add
 | 
						|
    // artificial Node's that represent the set of pointed-to variables shared
 | 
						|
    // for each location equivalent Node.
 | 
						|
    struct Node {
 | 
						|
    private:
 | 
						|
      static volatile sys::cas_flag Counter;
 | 
						|
 | 
						|
    public:
 | 
						|
      Value *Val;
 | 
						|
      SparseBitVector<> *Edges;
 | 
						|
      SparseBitVector<> *PointsTo;
 | 
						|
      SparseBitVector<> *OldPointsTo;
 | 
						|
      std::list<Constraint> Constraints;
 | 
						|
 | 
						|
      // Pointer and location equivalence labels
 | 
						|
      unsigned PointerEquivLabel;
 | 
						|
      unsigned LocationEquivLabel;
 | 
						|
      // Predecessor edges, both real and implicit
 | 
						|
      SparseBitVector<> *PredEdges;
 | 
						|
      SparseBitVector<> *ImplicitPredEdges;
 | 
						|
      // Set of nodes that point to us, only use for location equivalence.
 | 
						|
      SparseBitVector<> *PointedToBy;
 | 
						|
      // Number of incoming edges, used during variable substitution to early
 | 
						|
      // free the points-to sets
 | 
						|
      unsigned NumInEdges;
 | 
						|
      // True if our points-to set is in the Set2PEClass map
 | 
						|
      bool StoredInHash;
 | 
						|
      // True if our node has no indirect constraints (complex or otherwise)
 | 
						|
      bool Direct;
 | 
						|
      // True if the node is address taken, *or* it is part of a group of nodes
 | 
						|
      // that must be kept together.  This is set to true for functions and
 | 
						|
      // their arg nodes, which must be kept at the same position relative to
 | 
						|
      // their base function node.
 | 
						|
      bool AddressTaken;
 | 
						|
 | 
						|
      // Nodes in cycles (or in equivalence classes) are united together using a
 | 
						|
      // standard union-find representation with path compression.  NodeRep
 | 
						|
      // gives the index into GraphNodes for the representative Node.
 | 
						|
      unsigned NodeRep;
 | 
						|
 | 
						|
      // Modification timestamp.  Assigned from Counter.
 | 
						|
      // Used for work list prioritization.
 | 
						|
      unsigned Timestamp;
 | 
						|
 | 
						|
      explicit Node(bool direct = true) :
 | 
						|
        Val(0), Edges(0), PointsTo(0), OldPointsTo(0), 
 | 
						|
        PointerEquivLabel(0), LocationEquivLabel(0), PredEdges(0),
 | 
						|
        ImplicitPredEdges(0), PointedToBy(0), NumInEdges(0),
 | 
						|
        StoredInHash(false), Direct(direct), AddressTaken(false),
 | 
						|
        NodeRep(SelfRep), Timestamp(0) { }
 | 
						|
 | 
						|
      Node *setValue(Value *V) {
 | 
						|
        assert(Val == 0 && "Value already set for this node!");
 | 
						|
        Val = V;
 | 
						|
        return this;
 | 
						|
      }
 | 
						|
 | 
						|
      /// getValue - Return the LLVM value corresponding to this node.
 | 
						|
      ///
 | 
						|
      Value *getValue() const { return Val; }
 | 
						|
 | 
						|
      /// addPointerTo - Add a pointer to the list of pointees of this node,
 | 
						|
      /// returning true if this caused a new pointer to be added, or false if
 | 
						|
      /// we already knew about the points-to relation.
 | 
						|
      bool addPointerTo(unsigned Node) {
 | 
						|
        return PointsTo->test_and_set(Node);
 | 
						|
      }
 | 
						|
 | 
						|
      /// intersects - Return true if the points-to set of this node intersects
 | 
						|
      /// with the points-to set of the specified node.
 | 
						|
      bool intersects(Node *N) const;
 | 
						|
 | 
						|
      /// intersectsIgnoring - Return true if the points-to set of this node
 | 
						|
      /// intersects with the points-to set of the specified node on any nodes
 | 
						|
      /// except for the specified node to ignore.
 | 
						|
      bool intersectsIgnoring(Node *N, unsigned) const;
 | 
						|
 | 
						|
      // Timestamp a node (used for work list prioritization)
 | 
						|
      void Stamp() {
 | 
						|
        Timestamp = sys::AtomicIncrement(&Counter);
 | 
						|
        --Timestamp;
 | 
						|
      }
 | 
						|
 | 
						|
      bool isRep() const {
 | 
						|
        return( (int) NodeRep < 0 );
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    struct WorkListElement {
 | 
						|
      Node* node;
 | 
						|
      unsigned Timestamp;
 | 
						|
      WorkListElement(Node* n, unsigned t) : node(n), Timestamp(t) {}
 | 
						|
 | 
						|
      // Note that we reverse the sense of the comparison because we
 | 
						|
      // actually want to give low timestamps the priority over high,
 | 
						|
      // whereas priority is typically interpreted as a greater value is
 | 
						|
      // given high priority.
 | 
						|
      bool operator<(const WorkListElement& that) const {
 | 
						|
        return( this->Timestamp > that.Timestamp );
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    // Priority-queue based work list specialized for Nodes.
 | 
						|
    class WorkList {
 | 
						|
      std::priority_queue<WorkListElement> Q;
 | 
						|
 | 
						|
    public:
 | 
						|
      void insert(Node* n) {
 | 
						|
        Q.push( WorkListElement(n, n->Timestamp) );
 | 
						|
      }
 | 
						|
 | 
						|
      // We automatically discard non-representative nodes and nodes
 | 
						|
      // that were in the work list twice (we keep a copy of the
 | 
						|
      // timestamp in the work list so we can detect this situation by
 | 
						|
      // comparing against the node's current timestamp).
 | 
						|
      Node* pop() {
 | 
						|
        while( !Q.empty() ) {
 | 
						|
          WorkListElement x = Q.top(); Q.pop();
 | 
						|
          Node* INode = x.node;
 | 
						|
 | 
						|
          if( INode->isRep() &&
 | 
						|
              INode->Timestamp == x.Timestamp ) {
 | 
						|
            return(x.node);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        return(0);
 | 
						|
      }
 | 
						|
 | 
						|
      bool empty() {
 | 
						|
        return Q.empty();
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    /// GraphNodes - This vector is populated as part of the object
 | 
						|
    /// identification stage of the analysis, which populates this vector with a
 | 
						|
    /// node for each memory object and fills in the ValueNodes map.
 | 
						|
    std::vector<Node> GraphNodes;
 | 
						|
 | 
						|
    /// ValueNodes - This map indicates the Node that a particular Value* is
 | 
						|
    /// represented by.  This contains entries for all pointers.
 | 
						|
    DenseMap<Value*, unsigned> ValueNodes;
 | 
						|
 | 
						|
    /// ObjectNodes - This map contains entries for each memory object in the
 | 
						|
    /// program: globals, alloca's and mallocs.
 | 
						|
    DenseMap<Value*, unsigned> ObjectNodes;
 | 
						|
 | 
						|
    /// ReturnNodes - This map contains an entry for each function in the
 | 
						|
    /// program that returns a value.
 | 
						|
    DenseMap<Function*, unsigned> ReturnNodes;
 | 
						|
 | 
						|
    /// VarargNodes - This map contains the entry used to represent all pointers
 | 
						|
    /// passed through the varargs portion of a function call for a particular
 | 
						|
    /// function.  An entry is not present in this map for functions that do not
 | 
						|
    /// take variable arguments.
 | 
						|
    DenseMap<Function*, unsigned> VarargNodes;
 | 
						|
 | 
						|
 | 
						|
    /// Constraints - This vector contains a list of all of the constraints
 | 
						|
    /// identified by the program.
 | 
						|
    std::vector<Constraint> Constraints;
 | 
						|
 | 
						|
    // Map from graph node to maximum K value that is allowed (for functions,
 | 
						|
    // this is equivalent to the number of arguments + CallFirstArgPos)
 | 
						|
    std::map<unsigned, unsigned> MaxK;
 | 
						|
 | 
						|
    /// This enum defines the GraphNodes indices that correspond to important
 | 
						|
    /// fixed sets.
 | 
						|
    enum {
 | 
						|
      UniversalSet = 0,
 | 
						|
      NullPtr      = 1,
 | 
						|
      NullObject   = 2,
 | 
						|
      NumberSpecialNodes
 | 
						|
    };
 | 
						|
    // Stack for Tarjan's
 | 
						|
    std::stack<unsigned> SCCStack;
 | 
						|
    // Map from Graph Node to DFS number
 | 
						|
    std::vector<unsigned> Node2DFS;
 | 
						|
    // Map from Graph Node to Deleted from graph.
 | 
						|
    std::vector<bool> Node2Deleted;
 | 
						|
    // Same as Node Maps, but implemented as std::map because it is faster to
 | 
						|
    // clear 
 | 
						|
    std::map<unsigned, unsigned> Tarjan2DFS;
 | 
						|
    std::map<unsigned, bool> Tarjan2Deleted;
 | 
						|
    // Current DFS number
 | 
						|
    unsigned DFSNumber;
 | 
						|
 | 
						|
    // Work lists.
 | 
						|
    WorkList w1, w2;
 | 
						|
    WorkList *CurrWL, *NextWL; // "current" and "next" work lists
 | 
						|
 | 
						|
    // Offline variable substitution related things
 | 
						|
 | 
						|
    // Temporary rep storage, used because we can't collapse SCC's in the
 | 
						|
    // predecessor graph by uniting the variables permanently, we can only do so
 | 
						|
    // for the successor graph.
 | 
						|
    std::vector<unsigned> VSSCCRep;
 | 
						|
    // Mapping from node to whether we have visited it during SCC finding yet.
 | 
						|
    std::vector<bool> Node2Visited;
 | 
						|
    // During variable substitution, we create unknowns to represent the unknown
 | 
						|
    // value that is a dereference of a variable.  These nodes are known as
 | 
						|
    // "ref" nodes (since they represent the value of dereferences).
 | 
						|
    unsigned FirstRefNode;
 | 
						|
    // During HVN, we create represent address taken nodes as if they were
 | 
						|
    // unknown (since HVN, unlike HU, does not evaluate unions).
 | 
						|
    unsigned FirstAdrNode;
 | 
						|
    // Current pointer equivalence class number
 | 
						|
    unsigned PEClass;
 | 
						|
    // Mapping from points-to sets to equivalence classes
 | 
						|
    typedef DenseMap<SparseBitVector<> *, unsigned, BitmapKeyInfo> BitVectorMap;
 | 
						|
    BitVectorMap Set2PEClass;
 | 
						|
    // Mapping from pointer equivalences to the representative node.  -1 if we
 | 
						|
    // have no representative node for this pointer equivalence class yet.
 | 
						|
    std::vector<int> PEClass2Node;
 | 
						|
    // Mapping from pointer equivalences to representative node.  This includes
 | 
						|
    // pointer equivalent but not location equivalent variables. -1 if we have
 | 
						|
    // no representative node for this pointer equivalence class yet.
 | 
						|
    std::vector<int> PENLEClass2Node;
 | 
						|
    // Union/Find for HCD
 | 
						|
    std::vector<unsigned> HCDSCCRep;
 | 
						|
    // HCD's offline-detected cycles; "Statically DeTected"
 | 
						|
    // -1 if not part of such a cycle, otherwise a representative node.
 | 
						|
    std::vector<int> SDT;
 | 
						|
    // Whether to use SDT (UniteNodes can use it during solving, but not before)
 | 
						|
    bool SDTActive;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    Andersens() : ModulePass(&ID) {}
 | 
						|
 | 
						|
    bool runOnModule(Module &M) {
 | 
						|
      InitializeAliasAnalysis(this);
 | 
						|
      IdentifyObjects(M);
 | 
						|
      CollectConstraints(M);
 | 
						|
#undef DEBUG_TYPE
 | 
						|
#define DEBUG_TYPE "anders-aa-constraints"
 | 
						|
      DEBUG(PrintConstraints());
 | 
						|
#undef DEBUG_TYPE
 | 
						|
#define DEBUG_TYPE "anders-aa"
 | 
						|
      SolveConstraints();
 | 
						|
      DEBUG(PrintPointsToGraph());
 | 
						|
 | 
						|
      // Free the constraints list, as we don't need it to respond to alias
 | 
						|
      // requests.
 | 
						|
      std::vector<Constraint>().swap(Constraints);
 | 
						|
      //These are needed for Print() (-analyze in opt)
 | 
						|
      //ObjectNodes.clear();
 | 
						|
      //ReturnNodes.clear();
 | 
						|
      //VarargNodes.clear();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    void releaseMemory() {
 | 
						|
      // FIXME: Until we have transitively required passes working correctly,
 | 
						|
      // this cannot be enabled!  Otherwise, using -count-aa with the pass
 | 
						|
      // causes memory to be freed too early. :(
 | 
						|
#if 0
 | 
						|
      // The memory objects and ValueNodes data structures at the only ones that
 | 
						|
      // are still live after construction.
 | 
						|
      std::vector<Node>().swap(GraphNodes);
 | 
						|
      ValueNodes.clear();
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AliasAnalysis::getAnalysisUsage(AU);
 | 
						|
      AU.setPreservesAll();                         // Does not transform code
 | 
						|
    }
 | 
						|
 | 
						|
    //------------------------------------------------
 | 
						|
    // Implement the AliasAnalysis API
 | 
						|
    //
 | 
						|
    AliasResult alias(const Value *V1, unsigned V1Size,
 | 
						|
                      const Value *V2, unsigned V2Size);
 | 
						|
    virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
 | 
						|
    virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
 | 
						|
    bool pointsToConstantMemory(const Value *P);
 | 
						|
 | 
						|
    virtual void deleteValue(Value *V) {
 | 
						|
      ValueNodes.erase(V);
 | 
						|
      getAnalysis<AliasAnalysis>().deleteValue(V);
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void copyValue(Value *From, Value *To) {
 | 
						|
      ValueNodes[To] = ValueNodes[From];
 | 
						|
      getAnalysis<AliasAnalysis>().copyValue(From, To);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    /// getNode - Return the node corresponding to the specified pointer scalar.
 | 
						|
    ///
 | 
						|
    unsigned getNode(Value *V) {
 | 
						|
      if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
        if (!isa<GlobalValue>(C))
 | 
						|
          return getNodeForConstantPointer(C);
 | 
						|
 | 
						|
      DenseMap<Value*, unsigned>::iterator I = ValueNodes.find(V);
 | 
						|
      if (I == ValueNodes.end()) {
 | 
						|
#ifndef NDEBUG
 | 
						|
        V->dump();
 | 
						|
#endif
 | 
						|
        llvm_unreachable("Value does not have a node in the points-to graph!");
 | 
						|
      }
 | 
						|
      return I->second;
 | 
						|
    }
 | 
						|
 | 
						|
    /// getObject - Return the node corresponding to the memory object for the
 | 
						|
    /// specified global or allocation instruction.
 | 
						|
    unsigned getObject(Value *V) const {
 | 
						|
      DenseMap<Value*, unsigned>::const_iterator I = ObjectNodes.find(V);
 | 
						|
      assert(I != ObjectNodes.end() &&
 | 
						|
             "Value does not have an object in the points-to graph!");
 | 
						|
      return I->second;
 | 
						|
    }
 | 
						|
 | 
						|
    /// getReturnNode - Return the node representing the return value for the
 | 
						|
    /// specified function.
 | 
						|
    unsigned getReturnNode(Function *F) const {
 | 
						|
      DenseMap<Function*, unsigned>::const_iterator I = ReturnNodes.find(F);
 | 
						|
      assert(I != ReturnNodes.end() && "Function does not return a value!");
 | 
						|
      return I->second;
 | 
						|
    }
 | 
						|
 | 
						|
    /// getVarargNode - Return the node representing the variable arguments
 | 
						|
    /// formal for the specified function.
 | 
						|
    unsigned getVarargNode(Function *F) const {
 | 
						|
      DenseMap<Function*, unsigned>::const_iterator I = VarargNodes.find(F);
 | 
						|
      assert(I != VarargNodes.end() && "Function does not take var args!");
 | 
						|
      return I->second;
 | 
						|
    }
 | 
						|
 | 
						|
    /// getNodeValue - Get the node for the specified LLVM value and set the
 | 
						|
    /// value for it to be the specified value.
 | 
						|
    unsigned getNodeValue(Value &V) {
 | 
						|
      unsigned Index = getNode(&V);
 | 
						|
      GraphNodes[Index].setValue(&V);
 | 
						|
      return Index;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned UniteNodes(unsigned First, unsigned Second,
 | 
						|
                        bool UnionByRank = true);
 | 
						|
    unsigned FindNode(unsigned Node);
 | 
						|
    unsigned FindNode(unsigned Node) const;
 | 
						|
 | 
						|
    void IdentifyObjects(Module &M);
 | 
						|
    void CollectConstraints(Module &M);
 | 
						|
    bool AnalyzeUsesOfFunction(Value *);
 | 
						|
    void CreateConstraintGraph();
 | 
						|
    void OptimizeConstraints();
 | 
						|
    unsigned FindEquivalentNode(unsigned, unsigned);
 | 
						|
    void ClumpAddressTaken();
 | 
						|
    void RewriteConstraints();
 | 
						|
    void HU();
 | 
						|
    void HVN();
 | 
						|
    void HCD();
 | 
						|
    void Search(unsigned Node);
 | 
						|
    void UnitePointerEquivalences();
 | 
						|
    void SolveConstraints();
 | 
						|
    bool QueryNode(unsigned Node);
 | 
						|
    void Condense(unsigned Node);
 | 
						|
    void HUValNum(unsigned Node);
 | 
						|
    void HVNValNum(unsigned Node);
 | 
						|
    unsigned getNodeForConstantPointer(Constant *C);
 | 
						|
    unsigned getNodeForConstantPointerTarget(Constant *C);
 | 
						|
    void AddGlobalInitializerConstraints(unsigned, Constant *C);
 | 
						|
 | 
						|
    void AddConstraintsForNonInternalLinkage(Function *F);
 | 
						|
    void AddConstraintsForCall(CallSite CS, Function *F);
 | 
						|
    bool AddConstraintsForExternalCall(CallSite CS, Function *F);
 | 
						|
 | 
						|
 | 
						|
    void PrintNode(const Node *N) const;
 | 
						|
    void PrintConstraints() const ;
 | 
						|
    void PrintConstraint(const Constraint &) const;
 | 
						|
    void PrintLabels() const;
 | 
						|
    void PrintPointsToGraph() const;
 | 
						|
 | 
						|
    //===------------------------------------------------------------------===//
 | 
						|
    // Instruction visitation methods for adding constraints
 | 
						|
    //
 | 
						|
    friend class InstVisitor<Andersens>;
 | 
						|
    void visitReturnInst(ReturnInst &RI);
 | 
						|
    void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
 | 
						|
    void visitCallInst(CallInst &CI) { 
 | 
						|
      if (isMalloc(&CI)) visitAlloc(CI);
 | 
						|
      else visitCallSite(CallSite(&CI)); 
 | 
						|
    }
 | 
						|
    void visitCallSite(CallSite CS);
 | 
						|
    void visitAllocaInst(AllocaInst &I);
 | 
						|
    void visitAlloc(Instruction &I);
 | 
						|
    void visitLoadInst(LoadInst &LI);
 | 
						|
    void visitStoreInst(StoreInst &SI);
 | 
						|
    void visitGetElementPtrInst(GetElementPtrInst &GEP);
 | 
						|
    void visitPHINode(PHINode &PN);
 | 
						|
    void visitCastInst(CastInst &CI);
 | 
						|
    void visitICmpInst(ICmpInst &ICI) {} // NOOP!
 | 
						|
    void visitFCmpInst(FCmpInst &ICI) {} // NOOP!
 | 
						|
    void visitSelectInst(SelectInst &SI);
 | 
						|
    void visitVAArg(VAArgInst &I);
 | 
						|
    void visitInstruction(Instruction &I);
 | 
						|
 | 
						|
    //===------------------------------------------------------------------===//
 | 
						|
    // Implement Analyize interface
 | 
						|
    //
 | 
						|
    void print(raw_ostream &O, const Module*) const {
 | 
						|
      PrintPointsToGraph();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char Andersens::ID = 0;
 | 
						|
static RegisterPass<Andersens>
 | 
						|
X("anders-aa", "Andersen's Interprocedural Alias Analysis (experimental)",
 | 
						|
  false, true);
 | 
						|
static RegisterAnalysisGroup<AliasAnalysis> Y(X);
 | 
						|
 | 
						|
// Initialize Timestamp Counter (static).
 | 
						|
volatile llvm::sys::cas_flag Andersens::Node::Counter = 0;
 | 
						|
 | 
						|
ModulePass *llvm::createAndersensPass() { return new Andersens(); }
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                  AliasAnalysis Interface Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
 | 
						|
                                            const Value *V2, unsigned V2Size) {
 | 
						|
  Node *N1 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V1)))];
 | 
						|
  Node *N2 = &GraphNodes[FindNode(getNode(const_cast<Value*>(V2)))];
 | 
						|
 | 
						|
  // Check to see if the two pointers are known to not alias.  They don't alias
 | 
						|
  // if their points-to sets do not intersect.
 | 
						|
  if (!N1->intersectsIgnoring(N2, NullObject))
 | 
						|
    return NoAlias;
 | 
						|
 | 
						|
  return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
 | 
						|
  // The only thing useful that we can contribute for mod/ref information is
 | 
						|
  // when calling external function calls: if we know that memory never escapes
 | 
						|
  // from the program, it cannot be modified by an external call.
 | 
						|
  //
 | 
						|
  // NOTE: This is not really safe, at least not when the entire program is not
 | 
						|
  // available.  The deal is that the external function could call back into the
 | 
						|
  // program and modify stuff.  We ignore this technical niggle for now.  This
 | 
						|
  // is, after all, a "research quality" implementation of Andersen's analysis.
 | 
						|
  if (Function *F = CS.getCalledFunction())
 | 
						|
    if (F->isDeclaration()) {
 | 
						|
      Node *N1 = &GraphNodes[FindNode(getNode(P))];
 | 
						|
 | 
						|
      if (N1->PointsTo->empty())
 | 
						|
        return NoModRef;
 | 
						|
#if FULL_UNIVERSAL
 | 
						|
      if (!UniversalSet->PointsTo->test(FindNode(getNode(P))))
 | 
						|
        return NoModRef;  // Universal set does not contain P
 | 
						|
#else
 | 
						|
      if (!N1->PointsTo->test(UniversalSet))
 | 
						|
        return NoModRef;  // P doesn't point to the universal set.
 | 
						|
#endif
 | 
						|
    }
 | 
						|
 | 
						|
  return AliasAnalysis::getModRefInfo(CS, P, Size);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
Andersens::getModRefInfo(CallSite CS1, CallSite CS2) {
 | 
						|
  return AliasAnalysis::getModRefInfo(CS1,CS2);
 | 
						|
}
 | 
						|
 | 
						|
/// pointsToConstantMemory - If we can determine that this pointer only points
 | 
						|
/// to constant memory, return true.  In practice, this means that if the
 | 
						|
/// pointer can only point to constant globals, functions, or the null pointer,
 | 
						|
/// return true.
 | 
						|
///
 | 
						|
bool Andersens::pointsToConstantMemory(const Value *P) {
 | 
						|
  Node *N = &GraphNodes[FindNode(getNode(const_cast<Value*>(P)))];
 | 
						|
  unsigned i;
 | 
						|
 | 
						|
  for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
 | 
						|
       bi != N->PointsTo->end();
 | 
						|
       ++bi) {
 | 
						|
    i = *bi;
 | 
						|
    Node *Pointee = &GraphNodes[i];
 | 
						|
    if (Value *V = Pointee->getValue()) {
 | 
						|
      if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
 | 
						|
                                   !cast<GlobalVariable>(V)->isConstant()))
 | 
						|
        return AliasAnalysis::pointsToConstantMemory(P);
 | 
						|
    } else {
 | 
						|
      if (i != NullObject)
 | 
						|
        return AliasAnalysis::pointsToConstantMemory(P);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       Object Identification Phase
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// IdentifyObjects - This stage scans the program, adding an entry to the
 | 
						|
/// GraphNodes list for each memory object in the program (global stack or
 | 
						|
/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
 | 
						|
///
 | 
						|
void Andersens::IdentifyObjects(Module &M) {
 | 
						|
  unsigned NumObjects = 0;
 | 
						|
 | 
						|
  // Object #0 is always the universal set: the object that we don't know
 | 
						|
  // anything about.
 | 
						|
  assert(NumObjects == UniversalSet && "Something changed!");
 | 
						|
  ++NumObjects;
 | 
						|
 | 
						|
  // Object #1 always represents the null pointer.
 | 
						|
  assert(NumObjects == NullPtr && "Something changed!");
 | 
						|
  ++NumObjects;
 | 
						|
 | 
						|
  // Object #2 always represents the null object (the object pointed to by null)
 | 
						|
  assert(NumObjects == NullObject && "Something changed!");
 | 
						|
  ++NumObjects;
 | 
						|
 | 
						|
  // Add all the globals first.
 | 
						|
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    ObjectNodes[I] = NumObjects++;
 | 
						|
    ValueNodes[I] = NumObjects++;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add nodes for all of the functions and the instructions inside of them.
 | 
						|
  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
 | 
						|
    // The function itself is a memory object.
 | 
						|
    unsigned First = NumObjects;
 | 
						|
    ValueNodes[F] = NumObjects++;
 | 
						|
    if (isa<PointerType>(F->getFunctionType()->getReturnType()))
 | 
						|
      ReturnNodes[F] = NumObjects++;
 | 
						|
    if (F->getFunctionType()->isVarArg())
 | 
						|
      VarargNodes[F] = NumObjects++;
 | 
						|
 | 
						|
 | 
						|
    // Add nodes for all of the incoming pointer arguments.
 | 
						|
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
         I != E; ++I)
 | 
						|
      {
 | 
						|
        if (isa<PointerType>(I->getType()))
 | 
						|
          ValueNodes[I] = NumObjects++;
 | 
						|
      }
 | 
						|
    MaxK[First] = NumObjects - First;
 | 
						|
 | 
						|
    // Scan the function body, creating a memory object for each heap/stack
 | 
						|
    // allocation in the body of the function and a node to represent all
 | 
						|
    // pointer values defined by instructions and used as operands.
 | 
						|
    for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
 | 
						|
      // If this is an heap or stack allocation, create a node for the memory
 | 
						|
      // object.
 | 
						|
      if (isa<PointerType>(II->getType())) {
 | 
						|
        ValueNodes[&*II] = NumObjects++;
 | 
						|
        if (AllocaInst *AI = dyn_cast<AllocaInst>(&*II))
 | 
						|
          ObjectNodes[AI] = NumObjects++;
 | 
						|
        else if (isMalloc(&*II))
 | 
						|
          ObjectNodes[&*II] = NumObjects++;
 | 
						|
      }
 | 
						|
 | 
						|
      // Calls to inline asm need to be added as well because the callee isn't
 | 
						|
      // referenced anywhere else.
 | 
						|
      if (CallInst *CI = dyn_cast<CallInst>(&*II)) {
 | 
						|
        Value *Callee = CI->getCalledValue();
 | 
						|
        if (isa<InlineAsm>(Callee))
 | 
						|
          ValueNodes[Callee] = NumObjects++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we know how many objects to create, make them all now!
 | 
						|
  GraphNodes.resize(NumObjects);
 | 
						|
  NumNodes += NumObjects;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                     Constraint Identification Phase
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// getNodeForConstantPointer - Return the node corresponding to the constant
 | 
						|
/// pointer itself.
 | 
						|
unsigned Andersens::getNodeForConstantPointer(Constant *C) {
 | 
						|
  assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
 | 
						|
 | 
						|
  if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
 | 
						|
    return NullPtr;
 | 
						|
  else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | 
						|
    return getNode(GV);
 | 
						|
  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    switch (CE->getOpcode()) {
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      return getNodeForConstantPointer(CE->getOperand(0));
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
      return UniversalSet;
 | 
						|
    case Instruction::BitCast:
 | 
						|
      return getNodeForConstantPointer(CE->getOperand(0));
 | 
						|
    default:
 | 
						|
      errs() << "Constant Expr not yet handled: " << *CE << "\n";
 | 
						|
      llvm_unreachable(0);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unknown constant pointer!");
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
 | 
						|
/// specified constant pointer.
 | 
						|
unsigned Andersens::getNodeForConstantPointerTarget(Constant *C) {
 | 
						|
  assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
 | 
						|
 | 
						|
  if (isa<ConstantPointerNull>(C))
 | 
						|
    return NullObject;
 | 
						|
  else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
 | 
						|
    return getObject(GV);
 | 
						|
  else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    switch (CE->getOpcode()) {
 | 
						|
    case Instruction::GetElementPtr:
 | 
						|
      return getNodeForConstantPointerTarget(CE->getOperand(0));
 | 
						|
    case Instruction::IntToPtr:
 | 
						|
      return UniversalSet;
 | 
						|
    case Instruction::BitCast:
 | 
						|
      return getNodeForConstantPointerTarget(CE->getOperand(0));
 | 
						|
    default:
 | 
						|
      errs() << "Constant Expr not yet handled: " << *CE << "\n";
 | 
						|
      llvm_unreachable(0);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unknown constant pointer!");
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
 | 
						|
/// object N, which contains values indicated by C.
 | 
						|
void Andersens::AddGlobalInitializerConstraints(unsigned NodeIndex,
 | 
						|
                                                Constant *C) {
 | 
						|
  if (C->getType()->isSingleValueType()) {
 | 
						|
    if (isa<PointerType>(C->getType()))
 | 
						|
      Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
 | 
						|
                                       getNodeForConstantPointer(C)));
 | 
						|
  } else if (C->isNullValue()) {
 | 
						|
    Constraints.push_back(Constraint(Constraint::Copy, NodeIndex,
 | 
						|
                                     NullObject));
 | 
						|
    return;
 | 
						|
  } else if (!isa<UndefValue>(C)) {
 | 
						|
    // If this is an array or struct, include constraints for each element.
 | 
						|
    assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
 | 
						|
    for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
 | 
						|
      AddGlobalInitializerConstraints(NodeIndex,
 | 
						|
                                      cast<Constant>(C->getOperand(i)));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// AddConstraintsForNonInternalLinkage - If this function does not have
 | 
						|
/// internal linkage, realize that we can't trust anything passed into or
 | 
						|
/// returned by this function.
 | 
						|
void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
 | 
						|
  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
 | 
						|
    if (isa<PointerType>(I->getType()))
 | 
						|
      // If this is an argument of an externally accessible function, the
 | 
						|
      // incoming pointer might point to anything.
 | 
						|
      Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
 | 
						|
                                       UniversalSet));
 | 
						|
}
 | 
						|
 | 
						|
/// AddConstraintsForCall - If this is a call to a "known" function, add the
 | 
						|
/// constraints and return true.  If this is a call to an unknown function,
 | 
						|
/// return false.
 | 
						|
bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) {
 | 
						|
  assert(F->isDeclaration() && "Not an external function!");
 | 
						|
 | 
						|
  // These functions don't induce any points-to constraints.
 | 
						|
  if (F->getName() == "atoi" || F->getName() == "atof" ||
 | 
						|
      F->getName() == "atol" || F->getName() == "atoll" ||
 | 
						|
      F->getName() == "remove" || F->getName() == "unlink" ||
 | 
						|
      F->getName() == "rename" || F->getName() == "memcmp" ||
 | 
						|
      F->getName() == "llvm.memset" ||
 | 
						|
      F->getName() == "strcmp" || F->getName() == "strncmp" ||
 | 
						|
      F->getName() == "execl" || F->getName() == "execlp" ||
 | 
						|
      F->getName() == "execle" || F->getName() == "execv" ||
 | 
						|
      F->getName() == "execvp" || F->getName() == "chmod" ||
 | 
						|
      F->getName() == "puts" || F->getName() == "write" ||
 | 
						|
      F->getName() == "open" || F->getName() == "create" ||
 | 
						|
      F->getName() == "truncate" || F->getName() == "chdir" ||
 | 
						|
      F->getName() == "mkdir" || F->getName() == "rmdir" ||
 | 
						|
      F->getName() == "read" || F->getName() == "pipe" ||
 | 
						|
      F->getName() == "wait" || F->getName() == "time" ||
 | 
						|
      F->getName() == "stat" || F->getName() == "fstat" ||
 | 
						|
      F->getName() == "lstat" || F->getName() == "strtod" ||
 | 
						|
      F->getName() == "strtof" || F->getName() == "strtold" ||
 | 
						|
      F->getName() == "fopen" || F->getName() == "fdopen" ||
 | 
						|
      F->getName() == "freopen" ||
 | 
						|
      F->getName() == "fflush" || F->getName() == "feof" ||
 | 
						|
      F->getName() == "fileno" || F->getName() == "clearerr" ||
 | 
						|
      F->getName() == "rewind" || F->getName() == "ftell" ||
 | 
						|
      F->getName() == "ferror" || F->getName() == "fgetc" ||
 | 
						|
      F->getName() == "fgetc" || F->getName() == "_IO_getc" ||
 | 
						|
      F->getName() == "fwrite" || F->getName() == "fread" ||
 | 
						|
      F->getName() == "fgets" || F->getName() == "ungetc" ||
 | 
						|
      F->getName() == "fputc" ||
 | 
						|
      F->getName() == "fputs" || F->getName() == "putc" ||
 | 
						|
      F->getName() == "ftell" || F->getName() == "rewind" ||
 | 
						|
      F->getName() == "_IO_putc" || F->getName() == "fseek" ||
 | 
						|
      F->getName() == "fgetpos" || F->getName() == "fsetpos" ||
 | 
						|
      F->getName() == "printf" || F->getName() == "fprintf" ||
 | 
						|
      F->getName() == "sprintf" || F->getName() == "vprintf" ||
 | 
						|
      F->getName() == "vfprintf" || F->getName() == "vsprintf" ||
 | 
						|
      F->getName() == "scanf" || F->getName() == "fscanf" ||
 | 
						|
      F->getName() == "sscanf" || F->getName() == "__assert_fail" ||
 | 
						|
      F->getName() == "modf")
 | 
						|
    return true;
 | 
						|
 | 
						|
 | 
						|
  // These functions do induce points-to edges.
 | 
						|
  if (F->getName() == "llvm.memcpy" ||
 | 
						|
      F->getName() == "llvm.memmove" ||
 | 
						|
      F->getName() == "memmove") {
 | 
						|
 | 
						|
    const FunctionType *FTy = F->getFunctionType();
 | 
						|
    if (FTy->getNumParams() > 1 && 
 | 
						|
        isa<PointerType>(FTy->getParamType(0)) &&
 | 
						|
        isa<PointerType>(FTy->getParamType(1))) {
 | 
						|
 | 
						|
      // *Dest = *Src, which requires an artificial graph node to represent the
 | 
						|
      // constraint.  It is broken up into *Dest = temp, temp = *Src
 | 
						|
      unsigned FirstArg = getNode(CS.getArgument(0));
 | 
						|
      unsigned SecondArg = getNode(CS.getArgument(1));
 | 
						|
      unsigned TempArg = GraphNodes.size();
 | 
						|
      GraphNodes.push_back(Node());
 | 
						|
      Constraints.push_back(Constraint(Constraint::Store,
 | 
						|
                                       FirstArg, TempArg));
 | 
						|
      Constraints.push_back(Constraint(Constraint::Load,
 | 
						|
                                       TempArg, SecondArg));
 | 
						|
      // In addition, Dest = Src
 | 
						|
      Constraints.push_back(Constraint(Constraint::Copy,
 | 
						|
                                       FirstArg, SecondArg));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Result = Arg0
 | 
						|
  if (F->getName() == "realloc" || F->getName() == "strchr" ||
 | 
						|
      F->getName() == "strrchr" || F->getName() == "strstr" ||
 | 
						|
      F->getName() == "strtok") {
 | 
						|
    const FunctionType *FTy = F->getFunctionType();
 | 
						|
    if (FTy->getNumParams() > 0 && 
 | 
						|
        isa<PointerType>(FTy->getParamType(0))) {
 | 
						|
      Constraints.push_back(Constraint(Constraint::Copy,
 | 
						|
                                       getNode(CS.getInstruction()),
 | 
						|
                                       getNode(CS.getArgument(0))));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// AnalyzeUsesOfFunction - Look at all of the users of the specified function.
 | 
						|
/// If this is used by anything complex (i.e., the address escapes), return
 | 
						|
/// true.
 | 
						|
bool Andersens::AnalyzeUsesOfFunction(Value *V) {
 | 
						|
 | 
						|
  if (!isa<PointerType>(V->getType())) return true;
 | 
						|
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI)
 | 
						|
    if (isa<LoadInst>(*UI)) {
 | 
						|
      return false;
 | 
						|
    } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
 | 
						|
      if (V == SI->getOperand(1)) {
 | 
						|
        return false;
 | 
						|
      } else if (SI->getOperand(1)) {
 | 
						|
        return true;  // Storing the pointer
 | 
						|
      }
 | 
						|
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
 | 
						|
      if (AnalyzeUsesOfFunction(GEP)) return true;
 | 
						|
    } else if (isFreeCall(*UI)) {
 | 
						|
      return false;
 | 
						|
    } else if (CallInst *CI = dyn_cast<CallInst>(*UI)) {
 | 
						|
      // Make sure that this is just the function being called, not that it is
 | 
						|
      // passing into the function.
 | 
						|
      for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
 | 
						|
        if (CI->getOperand(i) == V) return true;
 | 
						|
    } else if (InvokeInst *II = dyn_cast<InvokeInst>(*UI)) {
 | 
						|
      // Make sure that this is just the function being called, not that it is
 | 
						|
      // passing into the function.
 | 
						|
      for (unsigned i = 3, e = II->getNumOperands(); i != e; ++i)
 | 
						|
        if (II->getOperand(i) == V) return true;
 | 
						|
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(*UI)) {
 | 
						|
      if (CE->getOpcode() == Instruction::GetElementPtr ||
 | 
						|
          CE->getOpcode() == Instruction::BitCast) {
 | 
						|
        if (AnalyzeUsesOfFunction(CE))
 | 
						|
          return true;
 | 
						|
      } else {
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(*UI)) {
 | 
						|
      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
 | 
						|
        return true;  // Allow comparison against null.
 | 
						|
    } else {
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// CollectConstraints - This stage scans the program, adding a constraint to
 | 
						|
/// the Constraints list for each instruction in the program that induces a
 | 
						|
/// constraint, and setting up the initial points-to graph.
 | 
						|
///
 | 
						|
void Andersens::CollectConstraints(Module &M) {
 | 
						|
  // First, the universal set points to itself.
 | 
						|
  Constraints.push_back(Constraint(Constraint::AddressOf, UniversalSet,
 | 
						|
                                   UniversalSet));
 | 
						|
  Constraints.push_back(Constraint(Constraint::Store, UniversalSet,
 | 
						|
                                   UniversalSet));
 | 
						|
 | 
						|
  // Next, the null pointer points to the null object.
 | 
						|
  Constraints.push_back(Constraint(Constraint::AddressOf, NullPtr, NullObject));
 | 
						|
 | 
						|
  // Next, add any constraints on global variables and their initializers.
 | 
						|
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    // Associate the address of the global object as pointing to the memory for
 | 
						|
    // the global: &G = <G memory>
 | 
						|
    unsigned ObjectIndex = getObject(I);
 | 
						|
    Node *Object = &GraphNodes[ObjectIndex];
 | 
						|
    Object->setValue(I);
 | 
						|
    Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(*I),
 | 
						|
                                     ObjectIndex));
 | 
						|
 | 
						|
    if (I->hasDefinitiveInitializer()) {
 | 
						|
      AddGlobalInitializerConstraints(ObjectIndex, I->getInitializer());
 | 
						|
    } else {
 | 
						|
      // If it doesn't have an initializer (i.e. it's defined in another
 | 
						|
      // translation unit), it points to the universal set.
 | 
						|
      Constraints.push_back(Constraint(Constraint::Copy, ObjectIndex,
 | 
						|
                                       UniversalSet));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
 | 
						|
    // Set up the return value node.
 | 
						|
    if (isa<PointerType>(F->getFunctionType()->getReturnType()))
 | 
						|
      GraphNodes[getReturnNode(F)].setValue(F);
 | 
						|
    if (F->getFunctionType()->isVarArg())
 | 
						|
      GraphNodes[getVarargNode(F)].setValue(F);
 | 
						|
 | 
						|
    // Set up incoming argument nodes.
 | 
						|
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
         I != E; ++I)
 | 
						|
      if (isa<PointerType>(I->getType()))
 | 
						|
        getNodeValue(*I);
 | 
						|
 | 
						|
    // At some point we should just add constraints for the escaping functions
 | 
						|
    // at solve time, but this slows down solving. For now, we simply mark
 | 
						|
    // address taken functions as escaping and treat them as external.
 | 
						|
    if (!F->hasLocalLinkage() || AnalyzeUsesOfFunction(F))
 | 
						|
      AddConstraintsForNonInternalLinkage(F);
 | 
						|
 | 
						|
    if (!F->isDeclaration()) {
 | 
						|
      // Scan the function body, creating a memory object for each heap/stack
 | 
						|
      // allocation in the body of the function and a node to represent all
 | 
						|
      // pointer values defined by instructions and used as operands.
 | 
						|
      visit(F);
 | 
						|
    } else {
 | 
						|
      // External functions that return pointers return the universal set.
 | 
						|
      if (isa<PointerType>(F->getFunctionType()->getReturnType()))
 | 
						|
        Constraints.push_back(Constraint(Constraint::Copy,
 | 
						|
                                         getReturnNode(F),
 | 
						|
                                         UniversalSet));
 | 
						|
 | 
						|
      // Any pointers that are passed into the function have the universal set
 | 
						|
      // stored into them.
 | 
						|
      for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
           I != E; ++I)
 | 
						|
        if (isa<PointerType>(I->getType())) {
 | 
						|
          // Pointers passed into external functions could have anything stored
 | 
						|
          // through them.
 | 
						|
          Constraints.push_back(Constraint(Constraint::Store, getNode(I),
 | 
						|
                                           UniversalSet));
 | 
						|
          // Memory objects passed into external function calls can have the
 | 
						|
          // universal set point to them.
 | 
						|
#if FULL_UNIVERSAL
 | 
						|
          Constraints.push_back(Constraint(Constraint::Copy,
 | 
						|
                                           UniversalSet,
 | 
						|
                                           getNode(I)));
 | 
						|
#else
 | 
						|
          Constraints.push_back(Constraint(Constraint::Copy,
 | 
						|
                                           getNode(I),
 | 
						|
                                           UniversalSet));
 | 
						|
#endif
 | 
						|
        }
 | 
						|
 | 
						|
      // If this is an external varargs function, it can also store pointers
 | 
						|
      // into any pointers passed through the varargs section.
 | 
						|
      if (F->getFunctionType()->isVarArg())
 | 
						|
        Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
 | 
						|
                                         UniversalSet));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  NumConstraints += Constraints.size();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Andersens::visitInstruction(Instruction &I) {
 | 
						|
#ifdef NDEBUG
 | 
						|
  return;          // This function is just a big assert.
 | 
						|
#endif
 | 
						|
  if (isa<BinaryOperator>(I))
 | 
						|
    return;
 | 
						|
  // Most instructions don't have any effect on pointer values.
 | 
						|
  switch (I.getOpcode()) {
 | 
						|
  case Instruction::Br:
 | 
						|
  case Instruction::Switch:
 | 
						|
  case Instruction::Unwind:
 | 
						|
  case Instruction::Unreachable:
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::FCmp:
 | 
						|
    return;
 | 
						|
  default:
 | 
						|
    // Is this something we aren't handling yet?
 | 
						|
    errs() << "Unknown instruction: " << I;
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::visitAllocaInst(AllocaInst &I) {
 | 
						|
  visitAlloc(I);
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::visitAlloc(Instruction &I) {
 | 
						|
  unsigned ObjectIndex = getObject(&I);
 | 
						|
  GraphNodes[ObjectIndex].setValue(&I);
 | 
						|
  Constraints.push_back(Constraint(Constraint::AddressOf, getNodeValue(I),
 | 
						|
                                   ObjectIndex));
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::visitReturnInst(ReturnInst &RI) {
 | 
						|
  if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
 | 
						|
    // return V   -->   <Copy/retval{F}/v>
 | 
						|
    Constraints.push_back(Constraint(Constraint::Copy,
 | 
						|
                                     getReturnNode(RI.getParent()->getParent()),
 | 
						|
                                     getNode(RI.getOperand(0))));
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::visitLoadInst(LoadInst &LI) {
 | 
						|
  if (isa<PointerType>(LI.getType()))
 | 
						|
    // P1 = load P2  -->  <Load/P1/P2>
 | 
						|
    Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
 | 
						|
                                     getNode(LI.getOperand(0))));
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::visitStoreInst(StoreInst &SI) {
 | 
						|
  if (isa<PointerType>(SI.getOperand(0)->getType()))
 | 
						|
    // store P1, P2  -->  <Store/P2/P1>
 | 
						|
    Constraints.push_back(Constraint(Constraint::Store,
 | 
						|
                                     getNode(SI.getOperand(1)),
 | 
						|
                                     getNode(SI.getOperand(0))));
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | 
						|
  // P1 = getelementptr P2, ... --> <Copy/P1/P2>
 | 
						|
  Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
 | 
						|
                                   getNode(GEP.getOperand(0))));
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::visitPHINode(PHINode &PN) {
 | 
						|
  if (isa<PointerType>(PN.getType())) {
 | 
						|
    unsigned PNN = getNodeValue(PN);
 | 
						|
    for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | 
						|
      // P1 = phi P2, P3  -->  <Copy/P1/P2>, <Copy/P1/P3>, ...
 | 
						|
      Constraints.push_back(Constraint(Constraint::Copy, PNN,
 | 
						|
                                       getNode(PN.getIncomingValue(i))));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::visitCastInst(CastInst &CI) {
 | 
						|
  Value *Op = CI.getOperand(0);
 | 
						|
  if (isa<PointerType>(CI.getType())) {
 | 
						|
    if (isa<PointerType>(Op->getType())) {
 | 
						|
      // P1 = cast P2  --> <Copy/P1/P2>
 | 
						|
      Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
 | 
						|
                                       getNode(CI.getOperand(0))));
 | 
						|
    } else {
 | 
						|
      // P1 = cast int --> <Copy/P1/Univ>
 | 
						|
#if 0
 | 
						|
      Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
 | 
						|
                                       UniversalSet));
 | 
						|
#else
 | 
						|
      getNodeValue(CI);
 | 
						|
#endif
 | 
						|
    }
 | 
						|
  } else if (isa<PointerType>(Op->getType())) {
 | 
						|
    // int = cast P1 --> <Copy/Univ/P1>
 | 
						|
#if 0
 | 
						|
    Constraints.push_back(Constraint(Constraint::Copy,
 | 
						|
                                     UniversalSet,
 | 
						|
                                     getNode(CI.getOperand(0))));
 | 
						|
#else
 | 
						|
    getNode(CI.getOperand(0));
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::visitSelectInst(SelectInst &SI) {
 | 
						|
  if (isa<PointerType>(SI.getType())) {
 | 
						|
    unsigned SIN = getNodeValue(SI);
 | 
						|
    // P1 = select C, P2, P3   ---> <Copy/P1/P2>, <Copy/P1/P3>
 | 
						|
    Constraints.push_back(Constraint(Constraint::Copy, SIN,
 | 
						|
                                     getNode(SI.getOperand(1))));
 | 
						|
    Constraints.push_back(Constraint(Constraint::Copy, SIN,
 | 
						|
                                     getNode(SI.getOperand(2))));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::visitVAArg(VAArgInst &I) {
 | 
						|
  llvm_unreachable("vaarg not handled yet!");
 | 
						|
}
 | 
						|
 | 
						|
/// AddConstraintsForCall - Add constraints for a call with actual arguments
 | 
						|
/// specified by CS to the function specified by F.  Note that the types of
 | 
						|
/// arguments might not match up in the case where this is an indirect call and
 | 
						|
/// the function pointer has been casted.  If this is the case, do something
 | 
						|
/// reasonable.
 | 
						|
void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
 | 
						|
  Value *CallValue = CS.getCalledValue();
 | 
						|
  bool IsDeref = F == NULL;
 | 
						|
 | 
						|
  // If this is a call to an external function, try to handle it directly to get
 | 
						|
  // some taste of context sensitivity.
 | 
						|
  if (F && F->isDeclaration() && AddConstraintsForExternalCall(CS, F))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (isa<PointerType>(CS.getType())) {
 | 
						|
    unsigned CSN = getNode(CS.getInstruction());
 | 
						|
    if (!F || isa<PointerType>(F->getFunctionType()->getReturnType())) {
 | 
						|
      if (IsDeref)
 | 
						|
        Constraints.push_back(Constraint(Constraint::Load, CSN,
 | 
						|
                                         getNode(CallValue), CallReturnPos));
 | 
						|
      else
 | 
						|
        Constraints.push_back(Constraint(Constraint::Copy, CSN,
 | 
						|
                                         getNode(CallValue) + CallReturnPos));
 | 
						|
    } else {
 | 
						|
      // If the function returns a non-pointer value, handle this just like we
 | 
						|
      // treat a nonpointer cast to pointer.
 | 
						|
      Constraints.push_back(Constraint(Constraint::Copy, CSN,
 | 
						|
                                       UniversalSet));
 | 
						|
    }
 | 
						|
  } else if (F && isa<PointerType>(F->getFunctionType()->getReturnType())) {
 | 
						|
#if FULL_UNIVERSAL
 | 
						|
    Constraints.push_back(Constraint(Constraint::Copy,
 | 
						|
                                     UniversalSet,
 | 
						|
                                     getNode(CallValue) + CallReturnPos));
 | 
						|
#else
 | 
						|
    Constraints.push_back(Constraint(Constraint::Copy,
 | 
						|
                                      getNode(CallValue) + CallReturnPos,
 | 
						|
                                      UniversalSet));
 | 
						|
#endif
 | 
						|
                          
 | 
						|
    
 | 
						|
  }
 | 
						|
 | 
						|
  CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
 | 
						|
  bool external = !F ||  F->isDeclaration();
 | 
						|
  if (F) {
 | 
						|
    // Direct Call
 | 
						|
    Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
 | 
						|
    for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI) 
 | 
						|
      {
 | 
						|
#if !FULL_UNIVERSAL
 | 
						|
        if (external && isa<PointerType>((*ArgI)->getType())) 
 | 
						|
          {
 | 
						|
            // Add constraint that ArgI can now point to anything due to
 | 
						|
            // escaping, as can everything it points to. The second portion of
 | 
						|
            // this should be taken care of by universal = *universal
 | 
						|
            Constraints.push_back(Constraint(Constraint::Copy,
 | 
						|
                                             getNode(*ArgI),
 | 
						|
                                             UniversalSet));
 | 
						|
          }
 | 
						|
#endif
 | 
						|
        if (isa<PointerType>(AI->getType())) {
 | 
						|
          if (isa<PointerType>((*ArgI)->getType())) {
 | 
						|
            // Copy the actual argument into the formal argument.
 | 
						|
            Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
 | 
						|
                                             getNode(*ArgI)));
 | 
						|
          } else {
 | 
						|
            Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
 | 
						|
                                             UniversalSet));
 | 
						|
          }
 | 
						|
        } else if (isa<PointerType>((*ArgI)->getType())) {
 | 
						|
#if FULL_UNIVERSAL
 | 
						|
          Constraints.push_back(Constraint(Constraint::Copy,
 | 
						|
                                           UniversalSet,
 | 
						|
                                           getNode(*ArgI)));
 | 
						|
#else
 | 
						|
          Constraints.push_back(Constraint(Constraint::Copy,
 | 
						|
                                           getNode(*ArgI),
 | 
						|
                                           UniversalSet));
 | 
						|
#endif
 | 
						|
        }
 | 
						|
      }
 | 
						|
  } else {
 | 
						|
    //Indirect Call
 | 
						|
    unsigned ArgPos = CallFirstArgPos;
 | 
						|
    for (; ArgI != ArgE; ++ArgI) {
 | 
						|
      if (isa<PointerType>((*ArgI)->getType())) {
 | 
						|
        // Copy the actual argument into the formal argument.
 | 
						|
        Constraints.push_back(Constraint(Constraint::Store,
 | 
						|
                                         getNode(CallValue),
 | 
						|
                                         getNode(*ArgI), ArgPos++));
 | 
						|
      } else {
 | 
						|
        Constraints.push_back(Constraint(Constraint::Store,
 | 
						|
                                         getNode (CallValue),
 | 
						|
                                         UniversalSet, ArgPos++));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Copy all pointers passed through the varargs section to the varargs node.
 | 
						|
  if (F && F->getFunctionType()->isVarArg())
 | 
						|
    for (; ArgI != ArgE; ++ArgI)
 | 
						|
      if (isa<PointerType>((*ArgI)->getType()))
 | 
						|
        Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
 | 
						|
                                         getNode(*ArgI)));
 | 
						|
  // If more arguments are passed in than we track, just drop them on the floor.
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::visitCallSite(CallSite CS) {
 | 
						|
  if (isa<PointerType>(CS.getType()))
 | 
						|
    getNodeValue(*CS.getInstruction());
 | 
						|
 | 
						|
  if (Function *F = CS.getCalledFunction()) {
 | 
						|
    AddConstraintsForCall(CS, F);
 | 
						|
  } else {
 | 
						|
    AddConstraintsForCall(CS, NULL);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Constraint Solving Phase
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// intersects - Return true if the points-to set of this node intersects
 | 
						|
/// with the points-to set of the specified node.
 | 
						|
bool Andersens::Node::intersects(Node *N) const {
 | 
						|
  return PointsTo->intersects(N->PointsTo);
 | 
						|
}
 | 
						|
 | 
						|
/// intersectsIgnoring - Return true if the points-to set of this node
 | 
						|
/// intersects with the points-to set of the specified node on any nodes
 | 
						|
/// except for the specified node to ignore.
 | 
						|
bool Andersens::Node::intersectsIgnoring(Node *N, unsigned Ignoring) const {
 | 
						|
  // TODO: If we are only going to call this with the same value for Ignoring,
 | 
						|
  // we should move the special values out of the points-to bitmap.
 | 
						|
  bool WeHadIt = PointsTo->test(Ignoring);
 | 
						|
  bool NHadIt = N->PointsTo->test(Ignoring);
 | 
						|
  bool Result = false;
 | 
						|
  if (WeHadIt)
 | 
						|
    PointsTo->reset(Ignoring);
 | 
						|
  if (NHadIt)
 | 
						|
    N->PointsTo->reset(Ignoring);
 | 
						|
  Result = PointsTo->intersects(N->PointsTo);
 | 
						|
  if (WeHadIt)
 | 
						|
    PointsTo->set(Ignoring);
 | 
						|
  if (NHadIt)
 | 
						|
    N->PointsTo->set(Ignoring);
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Clump together address taken variables so that the points-to sets use up
 | 
						|
/// less space and can be operated on faster.
 | 
						|
 | 
						|
void Andersens::ClumpAddressTaken() {
 | 
						|
#undef DEBUG_TYPE
 | 
						|
#define DEBUG_TYPE "anders-aa-renumber"
 | 
						|
  std::vector<unsigned> Translate;
 | 
						|
  std::vector<Node> NewGraphNodes;
 | 
						|
 | 
						|
  Translate.resize(GraphNodes.size());
 | 
						|
  unsigned NewPos = 0;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < Constraints.size(); ++i) {
 | 
						|
    Constraint &C = Constraints[i];
 | 
						|
    if (C.Type == Constraint::AddressOf) {
 | 
						|
      GraphNodes[C.Src].AddressTaken = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0; i < NumberSpecialNodes; ++i) {
 | 
						|
    unsigned Pos = NewPos++;
 | 
						|
    Translate[i] = Pos;
 | 
						|
    NewGraphNodes.push_back(GraphNodes[i]);
 | 
						|
    DEBUG(errs() << "Renumbering node " << i << " to node " << Pos << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // I believe this ends up being faster than making two vectors and splicing
 | 
						|
  // them.
 | 
						|
  for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
 | 
						|
    if (GraphNodes[i].AddressTaken) {
 | 
						|
      unsigned Pos = NewPos++;
 | 
						|
      Translate[i] = Pos;
 | 
						|
      NewGraphNodes.push_back(GraphNodes[i]);
 | 
						|
      DEBUG(errs() << "Renumbering node " << i << " to node " << Pos << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = NumberSpecialNodes; i < GraphNodes.size(); ++i) {
 | 
						|
    if (!GraphNodes[i].AddressTaken) {
 | 
						|
      unsigned Pos = NewPos++;
 | 
						|
      Translate[i] = Pos;
 | 
						|
      NewGraphNodes.push_back(GraphNodes[i]);
 | 
						|
      DEBUG(errs() << "Renumbering node " << i << " to node " << Pos << "\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (DenseMap<Value*, unsigned>::iterator Iter = ValueNodes.begin();
 | 
						|
       Iter != ValueNodes.end();
 | 
						|
       ++Iter)
 | 
						|
    Iter->second = Translate[Iter->second];
 | 
						|
 | 
						|
  for (DenseMap<Value*, unsigned>::iterator Iter = ObjectNodes.begin();
 | 
						|
       Iter != ObjectNodes.end();
 | 
						|
       ++Iter)
 | 
						|
    Iter->second = Translate[Iter->second];
 | 
						|
 | 
						|
  for (DenseMap<Function*, unsigned>::iterator Iter = ReturnNodes.begin();
 | 
						|
       Iter != ReturnNodes.end();
 | 
						|
       ++Iter)
 | 
						|
    Iter->second = Translate[Iter->second];
 | 
						|
 | 
						|
  for (DenseMap<Function*, unsigned>::iterator Iter = VarargNodes.begin();
 | 
						|
       Iter != VarargNodes.end();
 | 
						|
       ++Iter)
 | 
						|
    Iter->second = Translate[Iter->second];
 | 
						|
 | 
						|
  for (unsigned i = 0; i < Constraints.size(); ++i) {
 | 
						|
    Constraint &C = Constraints[i];
 | 
						|
    C.Src = Translate[C.Src];
 | 
						|
    C.Dest = Translate[C.Dest];
 | 
						|
  }
 | 
						|
 | 
						|
  GraphNodes.swap(NewGraphNodes);
 | 
						|
#undef DEBUG_TYPE
 | 
						|
#define DEBUG_TYPE "anders-aa"
 | 
						|
}
 | 
						|
 | 
						|
/// The technique used here is described in "Exploiting Pointer and Location
 | 
						|
/// Equivalence to Optimize Pointer Analysis. In the 14th International Static
 | 
						|
/// Analysis Symposium (SAS), August 2007."  It is known as the "HVN" algorithm,
 | 
						|
/// and is equivalent to value numbering the collapsed constraint graph without
 | 
						|
/// evaluating unions.  This is used as a pre-pass to HU in order to resolve
 | 
						|
/// first order pointer dereferences and speed up/reduce memory usage of HU.
 | 
						|
/// Running both is equivalent to HRU without the iteration
 | 
						|
/// HVN in more detail:
 | 
						|
/// Imagine the set of constraints was simply straight line code with no loops
 | 
						|
/// (we eliminate cycles, so there are no loops), such as:
 | 
						|
/// E = &D
 | 
						|
/// E = &C
 | 
						|
/// E = F
 | 
						|
/// F = G
 | 
						|
/// G = F
 | 
						|
/// Applying value numbering to this code tells us:
 | 
						|
/// G == F == E
 | 
						|
///
 | 
						|
/// For HVN, this is as far as it goes.  We assign new value numbers to every
 | 
						|
/// "address node", and every "reference node".
 | 
						|
/// To get the optimal result for this, we use a DFS + SCC (since all nodes in a
 | 
						|
/// cycle must have the same value number since the = operation is really
 | 
						|
/// inclusion, not overwrite), and value number nodes we receive points-to sets
 | 
						|
/// before we value our own node.
 | 
						|
/// The advantage of HU over HVN is that HU considers the inclusion property, so
 | 
						|
/// that if you have
 | 
						|
/// E = &D
 | 
						|
/// E = &C
 | 
						|
/// E = F
 | 
						|
/// F = G
 | 
						|
/// F = &D
 | 
						|
/// G = F
 | 
						|
/// HU will determine that G == F == E.  HVN will not, because it cannot prove
 | 
						|
/// that the points to information ends up being the same because they all
 | 
						|
/// receive &D from E anyway.
 | 
						|
 | 
						|
void Andersens::HVN() {
 | 
						|
  DEBUG(errs() << "Beginning HVN\n");
 | 
						|
  // Build a predecessor graph.  This is like our constraint graph with the
 | 
						|
  // edges going in the opposite direction, and there are edges for all the
 | 
						|
  // constraints, instead of just copy constraints.  We also build implicit
 | 
						|
  // edges for constraints are implied but not explicit.  I.E for the constraint
 | 
						|
  // a = &b, we add implicit edges *a = b.  This helps us capture more cycles
 | 
						|
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | 
						|
    Constraint &C = Constraints[i];
 | 
						|
    if (C.Type == Constraint::AddressOf) {
 | 
						|
      GraphNodes[C.Src].AddressTaken = true;
 | 
						|
      GraphNodes[C.Src].Direct = false;
 | 
						|
 | 
						|
      // Dest = &src edge
 | 
						|
      unsigned AdrNode = C.Src + FirstAdrNode;
 | 
						|
      if (!GraphNodes[C.Dest].PredEdges)
 | 
						|
        GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
 | 
						|
      GraphNodes[C.Dest].PredEdges->set(AdrNode);
 | 
						|
 | 
						|
      // *Dest = src edge
 | 
						|
      unsigned RefNode = C.Dest + FirstRefNode;
 | 
						|
      if (!GraphNodes[RefNode].ImplicitPredEdges)
 | 
						|
        GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
 | 
						|
      GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
 | 
						|
    } else if (C.Type == Constraint::Load) {
 | 
						|
      if (C.Offset == 0) {
 | 
						|
        // dest = *src edge
 | 
						|
        if (!GraphNodes[C.Dest].PredEdges)
 | 
						|
          GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
 | 
						|
        GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
 | 
						|
      } else {
 | 
						|
        GraphNodes[C.Dest].Direct = false;
 | 
						|
      }
 | 
						|
    } else if (C.Type == Constraint::Store) {
 | 
						|
      if (C.Offset == 0) {
 | 
						|
        // *dest = src edge
 | 
						|
        unsigned RefNode = C.Dest + FirstRefNode;
 | 
						|
        if (!GraphNodes[RefNode].PredEdges)
 | 
						|
          GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
 | 
						|
        GraphNodes[RefNode].PredEdges->set(C.Src);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Dest = Src edge and *Dest = *Src edge
 | 
						|
      if (!GraphNodes[C.Dest].PredEdges)
 | 
						|
        GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
 | 
						|
      GraphNodes[C.Dest].PredEdges->set(C.Src);
 | 
						|
      unsigned RefNode = C.Dest + FirstRefNode;
 | 
						|
      if (!GraphNodes[RefNode].ImplicitPredEdges)
 | 
						|
        GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
 | 
						|
      GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  PEClass = 1;
 | 
						|
  // Do SCC finding first to condense our predecessor graph
 | 
						|
  DFSNumber = 0;
 | 
						|
  Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
 | 
						|
  Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
 | 
						|
  Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
 | 
						|
 | 
						|
  for (unsigned i = 0; i < FirstRefNode; ++i) {
 | 
						|
    unsigned Node = VSSCCRep[i];
 | 
						|
    if (!Node2Visited[Node])
 | 
						|
      HVNValNum(Node);
 | 
						|
  }
 | 
						|
  for (BitVectorMap::iterator Iter = Set2PEClass.begin();
 | 
						|
       Iter != Set2PEClass.end();
 | 
						|
       ++Iter)
 | 
						|
    delete Iter->first;
 | 
						|
  Set2PEClass.clear();
 | 
						|
  Node2DFS.clear();
 | 
						|
  Node2Deleted.clear();
 | 
						|
  Node2Visited.clear();
 | 
						|
  DEBUG(errs() << "Finished HVN\n");
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/// This is the workhorse of HVN value numbering. We combine SCC finding at the
 | 
						|
/// same time because it's easy.
 | 
						|
void Andersens::HVNValNum(unsigned NodeIndex) {
 | 
						|
  unsigned MyDFS = DFSNumber++;
 | 
						|
  Node *N = &GraphNodes[NodeIndex];
 | 
						|
  Node2Visited[NodeIndex] = true;
 | 
						|
  Node2DFS[NodeIndex] = MyDFS;
 | 
						|
 | 
						|
  // First process all our explicit edges
 | 
						|
  if (N->PredEdges)
 | 
						|
    for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
 | 
						|
         Iter != N->PredEdges->end();
 | 
						|
         ++Iter) {
 | 
						|
      unsigned j = VSSCCRep[*Iter];
 | 
						|
      if (!Node2Deleted[j]) {
 | 
						|
        if (!Node2Visited[j])
 | 
						|
          HVNValNum(j);
 | 
						|
        if (Node2DFS[NodeIndex] > Node2DFS[j])
 | 
						|
          Node2DFS[NodeIndex] = Node2DFS[j];
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Now process all the implicit edges
 | 
						|
  if (N->ImplicitPredEdges)
 | 
						|
    for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
 | 
						|
         Iter != N->ImplicitPredEdges->end();
 | 
						|
         ++Iter) {
 | 
						|
      unsigned j = VSSCCRep[*Iter];
 | 
						|
      if (!Node2Deleted[j]) {
 | 
						|
        if (!Node2Visited[j])
 | 
						|
          HVNValNum(j);
 | 
						|
        if (Node2DFS[NodeIndex] > Node2DFS[j])
 | 
						|
          Node2DFS[NodeIndex] = Node2DFS[j];
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // See if we found any cycles
 | 
						|
  if (MyDFS == Node2DFS[NodeIndex]) {
 | 
						|
    while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
 | 
						|
      unsigned CycleNodeIndex = SCCStack.top();
 | 
						|
      Node *CycleNode = &GraphNodes[CycleNodeIndex];
 | 
						|
      VSSCCRep[CycleNodeIndex] = NodeIndex;
 | 
						|
      // Unify the nodes
 | 
						|
      N->Direct &= CycleNode->Direct;
 | 
						|
 | 
						|
      if (CycleNode->PredEdges) {
 | 
						|
        if (!N->PredEdges)
 | 
						|
          N->PredEdges = new SparseBitVector<>;
 | 
						|
        *(N->PredEdges) |= CycleNode->PredEdges;
 | 
						|
        delete CycleNode->PredEdges;
 | 
						|
        CycleNode->PredEdges = NULL;
 | 
						|
      }
 | 
						|
      if (CycleNode->ImplicitPredEdges) {
 | 
						|
        if (!N->ImplicitPredEdges)
 | 
						|
          N->ImplicitPredEdges = new SparseBitVector<>;
 | 
						|
        *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
 | 
						|
        delete CycleNode->ImplicitPredEdges;
 | 
						|
        CycleNode->ImplicitPredEdges = NULL;
 | 
						|
      }
 | 
						|
 | 
						|
      SCCStack.pop();
 | 
						|
    }
 | 
						|
 | 
						|
    Node2Deleted[NodeIndex] = true;
 | 
						|
 | 
						|
    if (!N->Direct) {
 | 
						|
      GraphNodes[NodeIndex].PointerEquivLabel = PEClass++;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Collect labels of successor nodes
 | 
						|
    bool AllSame = true;
 | 
						|
    unsigned First = ~0;
 | 
						|
    SparseBitVector<> *Labels = new SparseBitVector<>;
 | 
						|
    bool Used = false;
 | 
						|
 | 
						|
    if (N->PredEdges)
 | 
						|
      for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
 | 
						|
           Iter != N->PredEdges->end();
 | 
						|
         ++Iter) {
 | 
						|
        unsigned j = VSSCCRep[*Iter];
 | 
						|
        unsigned Label = GraphNodes[j].PointerEquivLabel;
 | 
						|
        // Ignore labels that are equal to us or non-pointers
 | 
						|
        if (j == NodeIndex || Label == 0)
 | 
						|
          continue;
 | 
						|
        if (First == (unsigned)~0)
 | 
						|
          First = Label;
 | 
						|
        else if (First != Label)
 | 
						|
          AllSame = false;
 | 
						|
        Labels->set(Label);
 | 
						|
    }
 | 
						|
 | 
						|
    // We either have a non-pointer, a copy of an existing node, or a new node.
 | 
						|
    // Assign the appropriate pointer equivalence label.
 | 
						|
    if (Labels->empty()) {
 | 
						|
      GraphNodes[NodeIndex].PointerEquivLabel = 0;
 | 
						|
    } else if (AllSame) {
 | 
						|
      GraphNodes[NodeIndex].PointerEquivLabel = First;
 | 
						|
    } else {
 | 
						|
      GraphNodes[NodeIndex].PointerEquivLabel = Set2PEClass[Labels];
 | 
						|
      if (GraphNodes[NodeIndex].PointerEquivLabel == 0) {
 | 
						|
        unsigned EquivClass = PEClass++;
 | 
						|
        Set2PEClass[Labels] = EquivClass;
 | 
						|
        GraphNodes[NodeIndex].PointerEquivLabel = EquivClass;
 | 
						|
        Used = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!Used)
 | 
						|
      delete Labels;
 | 
						|
  } else {
 | 
						|
    SCCStack.push(NodeIndex);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// The technique used here is described in "Exploiting Pointer and Location
 | 
						|
/// Equivalence to Optimize Pointer Analysis. In the 14th International Static
 | 
						|
/// Analysis Symposium (SAS), August 2007."  It is known as the "HU" algorithm,
 | 
						|
/// and is equivalent to value numbering the collapsed constraint graph
 | 
						|
/// including evaluating unions.
 | 
						|
void Andersens::HU() {
 | 
						|
  DEBUG(errs() << "Beginning HU\n");
 | 
						|
  // Build a predecessor graph.  This is like our constraint graph with the
 | 
						|
  // edges going in the opposite direction, and there are edges for all the
 | 
						|
  // constraints, instead of just copy constraints.  We also build implicit
 | 
						|
  // edges for constraints are implied but not explicit.  I.E for the constraint
 | 
						|
  // a = &b, we add implicit edges *a = b.  This helps us capture more cycles
 | 
						|
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | 
						|
    Constraint &C = Constraints[i];
 | 
						|
    if (C.Type == Constraint::AddressOf) {
 | 
						|
      GraphNodes[C.Src].AddressTaken = true;
 | 
						|
      GraphNodes[C.Src].Direct = false;
 | 
						|
 | 
						|
      GraphNodes[C.Dest].PointsTo->set(C.Src);
 | 
						|
      // *Dest = src edge
 | 
						|
      unsigned RefNode = C.Dest + FirstRefNode;
 | 
						|
      if (!GraphNodes[RefNode].ImplicitPredEdges)
 | 
						|
        GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
 | 
						|
      GraphNodes[RefNode].ImplicitPredEdges->set(C.Src);
 | 
						|
      GraphNodes[C.Src].PointedToBy->set(C.Dest);
 | 
						|
    } else if (C.Type == Constraint::Load) {
 | 
						|
      if (C.Offset == 0) {
 | 
						|
        // dest = *src edge
 | 
						|
        if (!GraphNodes[C.Dest].PredEdges)
 | 
						|
          GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
 | 
						|
        GraphNodes[C.Dest].PredEdges->set(C.Src + FirstRefNode);
 | 
						|
      } else {
 | 
						|
        GraphNodes[C.Dest].Direct = false;
 | 
						|
      }
 | 
						|
    } else if (C.Type == Constraint::Store) {
 | 
						|
      if (C.Offset == 0) {
 | 
						|
        // *dest = src edge
 | 
						|
        unsigned RefNode = C.Dest + FirstRefNode;
 | 
						|
        if (!GraphNodes[RefNode].PredEdges)
 | 
						|
          GraphNodes[RefNode].PredEdges = new SparseBitVector<>;
 | 
						|
        GraphNodes[RefNode].PredEdges->set(C.Src);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Dest = Src edge and *Dest = *Src edg
 | 
						|
      if (!GraphNodes[C.Dest].PredEdges)
 | 
						|
        GraphNodes[C.Dest].PredEdges = new SparseBitVector<>;
 | 
						|
      GraphNodes[C.Dest].PredEdges->set(C.Src);
 | 
						|
      unsigned RefNode = C.Dest + FirstRefNode;
 | 
						|
      if (!GraphNodes[RefNode].ImplicitPredEdges)
 | 
						|
        GraphNodes[RefNode].ImplicitPredEdges = new SparseBitVector<>;
 | 
						|
      GraphNodes[RefNode].ImplicitPredEdges->set(C.Src + FirstRefNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  PEClass = 1;
 | 
						|
  // Do SCC finding first to condense our predecessor graph
 | 
						|
  DFSNumber = 0;
 | 
						|
  Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
 | 
						|
  Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
 | 
						|
  Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
 | 
						|
 | 
						|
  for (unsigned i = 0; i < FirstRefNode; ++i) {
 | 
						|
    if (FindNode(i) == i) {
 | 
						|
      unsigned Node = VSSCCRep[i];
 | 
						|
      if (!Node2Visited[Node])
 | 
						|
        Condense(Node);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Reset tables for actual labeling
 | 
						|
  Node2DFS.clear();
 | 
						|
  Node2Visited.clear();
 | 
						|
  Node2Deleted.clear();
 | 
						|
  // Pre-grow our densemap so that we don't get really bad behavior
 | 
						|
  Set2PEClass.resize(GraphNodes.size());
 | 
						|
 | 
						|
  // Visit the condensed graph and generate pointer equivalence labels.
 | 
						|
  Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
 | 
						|
  for (unsigned i = 0; i < FirstRefNode; ++i) {
 | 
						|
    if (FindNode(i) == i) {
 | 
						|
      unsigned Node = VSSCCRep[i];
 | 
						|
      if (!Node2Visited[Node])
 | 
						|
        HUValNum(Node);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // PEClass nodes will be deleted by the deleting of N->PointsTo in our caller.
 | 
						|
  Set2PEClass.clear();
 | 
						|
  DEBUG(errs() << "Finished HU\n");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Implementation of standard Tarjan SCC algorithm as modified by Nuutilla.
 | 
						|
void Andersens::Condense(unsigned NodeIndex) {
 | 
						|
  unsigned MyDFS = DFSNumber++;
 | 
						|
  Node *N = &GraphNodes[NodeIndex];
 | 
						|
  Node2Visited[NodeIndex] = true;
 | 
						|
  Node2DFS[NodeIndex] = MyDFS;
 | 
						|
 | 
						|
  // First process all our explicit edges
 | 
						|
  if (N->PredEdges)
 | 
						|
    for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
 | 
						|
         Iter != N->PredEdges->end();
 | 
						|
         ++Iter) {
 | 
						|
      unsigned j = VSSCCRep[*Iter];
 | 
						|
      if (!Node2Deleted[j]) {
 | 
						|
        if (!Node2Visited[j])
 | 
						|
          Condense(j);
 | 
						|
        if (Node2DFS[NodeIndex] > Node2DFS[j])
 | 
						|
          Node2DFS[NodeIndex] = Node2DFS[j];
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // Now process all the implicit edges
 | 
						|
  if (N->ImplicitPredEdges)
 | 
						|
    for (SparseBitVector<>::iterator Iter = N->ImplicitPredEdges->begin();
 | 
						|
         Iter != N->ImplicitPredEdges->end();
 | 
						|
         ++Iter) {
 | 
						|
      unsigned j = VSSCCRep[*Iter];
 | 
						|
      if (!Node2Deleted[j]) {
 | 
						|
        if (!Node2Visited[j])
 | 
						|
          Condense(j);
 | 
						|
        if (Node2DFS[NodeIndex] > Node2DFS[j])
 | 
						|
          Node2DFS[NodeIndex] = Node2DFS[j];
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  // See if we found any cycles
 | 
						|
  if (MyDFS == Node2DFS[NodeIndex]) {
 | 
						|
    while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
 | 
						|
      unsigned CycleNodeIndex = SCCStack.top();
 | 
						|
      Node *CycleNode = &GraphNodes[CycleNodeIndex];
 | 
						|
      VSSCCRep[CycleNodeIndex] = NodeIndex;
 | 
						|
      // Unify the nodes
 | 
						|
      N->Direct &= CycleNode->Direct;
 | 
						|
 | 
						|
      *(N->PointsTo) |= CycleNode->PointsTo;
 | 
						|
      delete CycleNode->PointsTo;
 | 
						|
      CycleNode->PointsTo = NULL;
 | 
						|
      if (CycleNode->PredEdges) {
 | 
						|
        if (!N->PredEdges)
 | 
						|
          N->PredEdges = new SparseBitVector<>;
 | 
						|
        *(N->PredEdges) |= CycleNode->PredEdges;
 | 
						|
        delete CycleNode->PredEdges;
 | 
						|
        CycleNode->PredEdges = NULL;
 | 
						|
      }
 | 
						|
      if (CycleNode->ImplicitPredEdges) {
 | 
						|
        if (!N->ImplicitPredEdges)
 | 
						|
          N->ImplicitPredEdges = new SparseBitVector<>;
 | 
						|
        *(N->ImplicitPredEdges) |= CycleNode->ImplicitPredEdges;
 | 
						|
        delete CycleNode->ImplicitPredEdges;
 | 
						|
        CycleNode->ImplicitPredEdges = NULL;
 | 
						|
      }
 | 
						|
      SCCStack.pop();
 | 
						|
    }
 | 
						|
 | 
						|
    Node2Deleted[NodeIndex] = true;
 | 
						|
 | 
						|
    // Set up number of incoming edges for other nodes
 | 
						|
    if (N->PredEdges)
 | 
						|
      for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
 | 
						|
           Iter != N->PredEdges->end();
 | 
						|
           ++Iter)
 | 
						|
        ++GraphNodes[VSSCCRep[*Iter]].NumInEdges;
 | 
						|
  } else {
 | 
						|
    SCCStack.push(NodeIndex);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::HUValNum(unsigned NodeIndex) {
 | 
						|
  Node *N = &GraphNodes[NodeIndex];
 | 
						|
  Node2Visited[NodeIndex] = true;
 | 
						|
 | 
						|
  // Eliminate dereferences of non-pointers for those non-pointers we have
 | 
						|
  // already identified.  These are ref nodes whose non-ref node:
 | 
						|
  // 1. Has already been visited determined to point to nothing (and thus, a
 | 
						|
  // dereference of it must point to nothing)
 | 
						|
  // 2. Any direct node with no predecessor edges in our graph and with no
 | 
						|
  // points-to set (since it can't point to anything either, being that it
 | 
						|
  // receives no points-to sets and has none).
 | 
						|
  if (NodeIndex >= FirstRefNode) {
 | 
						|
    unsigned j = VSSCCRep[FindNode(NodeIndex - FirstRefNode)];
 | 
						|
    if ((Node2Visited[j] && !GraphNodes[j].PointerEquivLabel)
 | 
						|
        || (GraphNodes[j].Direct && !GraphNodes[j].PredEdges
 | 
						|
            && GraphNodes[j].PointsTo->empty())){
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
    // Process all our explicit edges
 | 
						|
  if (N->PredEdges)
 | 
						|
    for (SparseBitVector<>::iterator Iter = N->PredEdges->begin();
 | 
						|
         Iter != N->PredEdges->end();
 | 
						|
         ++Iter) {
 | 
						|
      unsigned j = VSSCCRep[*Iter];
 | 
						|
      if (!Node2Visited[j])
 | 
						|
        HUValNum(j);
 | 
						|
 | 
						|
      // If this edge turned out to be the same as us, or got no pointer
 | 
						|
      // equivalence label (and thus points to nothing) , just decrement our
 | 
						|
      // incoming edges and continue.
 | 
						|
      if (j == NodeIndex || GraphNodes[j].PointerEquivLabel == 0) {
 | 
						|
        --GraphNodes[j].NumInEdges;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      *(N->PointsTo) |= GraphNodes[j].PointsTo;
 | 
						|
 | 
						|
      // If we didn't end up storing this in the hash, and we're done with all
 | 
						|
      // the edges, we don't need the points-to set anymore.
 | 
						|
      --GraphNodes[j].NumInEdges;
 | 
						|
      if (!GraphNodes[j].NumInEdges && !GraphNodes[j].StoredInHash) {
 | 
						|
        delete GraphNodes[j].PointsTo;
 | 
						|
        GraphNodes[j].PointsTo = NULL;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  // If this isn't a direct node, generate a fresh variable.
 | 
						|
  if (!N->Direct) {
 | 
						|
    N->PointsTo->set(FirstRefNode + NodeIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  // See If we have something equivalent to us, if not, generate a new
 | 
						|
  // equivalence class.
 | 
						|
  if (N->PointsTo->empty()) {
 | 
						|
    delete N->PointsTo;
 | 
						|
    N->PointsTo = NULL;
 | 
						|
  } else {
 | 
						|
    if (N->Direct) {
 | 
						|
      N->PointerEquivLabel = Set2PEClass[N->PointsTo];
 | 
						|
      if (N->PointerEquivLabel == 0) {
 | 
						|
        unsigned EquivClass = PEClass++;
 | 
						|
        N->StoredInHash = true;
 | 
						|
        Set2PEClass[N->PointsTo] = EquivClass;
 | 
						|
        N->PointerEquivLabel = EquivClass;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      N->PointerEquivLabel = PEClass++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Rewrite our list of constraints so that pointer equivalent nodes are
 | 
						|
/// replaced by their the pointer equivalence class representative.
 | 
						|
void Andersens::RewriteConstraints() {
 | 
						|
  std::vector<Constraint> NewConstraints;
 | 
						|
  DenseSet<Constraint, ConstraintKeyInfo> Seen;
 | 
						|
 | 
						|
  PEClass2Node.clear();
 | 
						|
  PENLEClass2Node.clear();
 | 
						|
 | 
						|
  // We may have from 1 to Graphnodes + 1 equivalence classes.
 | 
						|
  PEClass2Node.insert(PEClass2Node.begin(), GraphNodes.size() + 1, -1);
 | 
						|
  PENLEClass2Node.insert(PENLEClass2Node.begin(), GraphNodes.size() + 1, -1);
 | 
						|
 | 
						|
  // Rewrite constraints, ignoring non-pointer constraints, uniting equivalent
 | 
						|
  // nodes, and rewriting constraints to use the representative nodes.
 | 
						|
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | 
						|
    Constraint &C = Constraints[i];
 | 
						|
    unsigned RHSNode = FindNode(C.Src);
 | 
						|
    unsigned LHSNode = FindNode(C.Dest);
 | 
						|
    unsigned RHSLabel = GraphNodes[VSSCCRep[RHSNode]].PointerEquivLabel;
 | 
						|
    unsigned LHSLabel = GraphNodes[VSSCCRep[LHSNode]].PointerEquivLabel;
 | 
						|
 | 
						|
    // First we try to eliminate constraints for things we can prove don't point
 | 
						|
    // to anything.
 | 
						|
    if (LHSLabel == 0) {
 | 
						|
      DEBUG(PrintNode(&GraphNodes[LHSNode]));
 | 
						|
      DEBUG(errs() << " is a non-pointer, ignoring constraint.\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (RHSLabel == 0) {
 | 
						|
      DEBUG(PrintNode(&GraphNodes[RHSNode]));
 | 
						|
      DEBUG(errs() << " is a non-pointer, ignoring constraint.\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // This constraint may be useless, and it may become useless as we translate
 | 
						|
    // it.
 | 
						|
    if (C.Src == C.Dest && C.Type == Constraint::Copy)
 | 
						|
      continue;
 | 
						|
 | 
						|
    C.Src = FindEquivalentNode(RHSNode, RHSLabel);
 | 
						|
    C.Dest = FindEquivalentNode(FindNode(LHSNode), LHSLabel);
 | 
						|
    if ((C.Src == C.Dest && C.Type == Constraint::Copy)
 | 
						|
        || Seen.count(C))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Seen.insert(C);
 | 
						|
    NewConstraints.push_back(C);
 | 
						|
  }
 | 
						|
  Constraints.swap(NewConstraints);
 | 
						|
  PEClass2Node.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// See if we have a node that is pointer equivalent to the one being asked
 | 
						|
/// about, and if so, unite them and return the equivalent node.  Otherwise,
 | 
						|
/// return the original node.
 | 
						|
unsigned Andersens::FindEquivalentNode(unsigned NodeIndex,
 | 
						|
                                       unsigned NodeLabel) {
 | 
						|
  if (!GraphNodes[NodeIndex].AddressTaken) {
 | 
						|
    if (PEClass2Node[NodeLabel] != -1) {
 | 
						|
      // We found an existing node with the same pointer label, so unify them.
 | 
						|
      // We specifically request that Union-By-Rank not be used so that
 | 
						|
      // PEClass2Node[NodeLabel] U= NodeIndex and not the other way around.
 | 
						|
      return UniteNodes(PEClass2Node[NodeLabel], NodeIndex, false);
 | 
						|
    } else {
 | 
						|
      PEClass2Node[NodeLabel] = NodeIndex;
 | 
						|
      PENLEClass2Node[NodeLabel] = NodeIndex;
 | 
						|
    }
 | 
						|
  } else if (PENLEClass2Node[NodeLabel] == -1) {
 | 
						|
    PENLEClass2Node[NodeLabel] = NodeIndex;
 | 
						|
  }
 | 
						|
 | 
						|
  return NodeIndex;
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::PrintLabels() const {
 | 
						|
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | 
						|
    if (i < FirstRefNode) {
 | 
						|
      PrintNode(&GraphNodes[i]);
 | 
						|
    } else if (i < FirstAdrNode) {
 | 
						|
      DEBUG(errs() << "REF(");
 | 
						|
      PrintNode(&GraphNodes[i-FirstRefNode]);
 | 
						|
      DEBUG(errs() <<")");
 | 
						|
    } else {
 | 
						|
      DEBUG(errs() << "ADR(");
 | 
						|
      PrintNode(&GraphNodes[i-FirstAdrNode]);
 | 
						|
      DEBUG(errs() <<")");
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG(errs() << " has pointer label " << GraphNodes[i].PointerEquivLabel
 | 
						|
         << " and SCC rep " << VSSCCRep[i]
 | 
						|
         << " and is " << (GraphNodes[i].Direct ? "Direct" : "Not direct")
 | 
						|
         << "\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// The technique used here is described in "The Ant and the
 | 
						|
/// Grasshopper: Fast and Accurate Pointer Analysis for Millions of
 | 
						|
/// Lines of Code. In Programming Language Design and Implementation
 | 
						|
/// (PLDI), June 2007." It is known as the "HCD" (Hybrid Cycle
 | 
						|
/// Detection) algorithm. It is called a hybrid because it performs an
 | 
						|
/// offline analysis and uses its results during the solving (online)
 | 
						|
/// phase. This is just the offline portion; the results of this
 | 
						|
/// operation are stored in SDT and are later used in SolveContraints()
 | 
						|
/// and UniteNodes().
 | 
						|
void Andersens::HCD() {
 | 
						|
  DEBUG(errs() << "Starting HCD.\n");
 | 
						|
  HCDSCCRep.resize(GraphNodes.size());
 | 
						|
 | 
						|
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | 
						|
    GraphNodes[i].Edges = new SparseBitVector<>;
 | 
						|
    HCDSCCRep[i] = i;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | 
						|
    Constraint &C = Constraints[i];
 | 
						|
    assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
 | 
						|
    if (C.Type == Constraint::AddressOf) {
 | 
						|
      continue;
 | 
						|
    } else if (C.Type == Constraint::Load) {
 | 
						|
      if( C.Offset == 0 )
 | 
						|
        GraphNodes[C.Dest].Edges->set(C.Src + FirstRefNode);
 | 
						|
    } else if (C.Type == Constraint::Store) {
 | 
						|
      if( C.Offset == 0 )
 | 
						|
        GraphNodes[C.Dest + FirstRefNode].Edges->set(C.Src);
 | 
						|
    } else {
 | 
						|
      GraphNodes[C.Dest].Edges->set(C.Src);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
 | 
						|
  Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
 | 
						|
  Node2Visited.insert(Node2Visited.begin(), GraphNodes.size(), false);
 | 
						|
  SDT.insert(SDT.begin(), GraphNodes.size() / 2, -1);
 | 
						|
 | 
						|
  DFSNumber = 0;
 | 
						|
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | 
						|
    unsigned Node = HCDSCCRep[i];
 | 
						|
    if (!Node2Deleted[Node])
 | 
						|
      Search(Node);
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0; i < GraphNodes.size(); ++i)
 | 
						|
    if (GraphNodes[i].Edges != NULL) {
 | 
						|
      delete GraphNodes[i].Edges;
 | 
						|
      GraphNodes[i].Edges = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
  while( !SCCStack.empty() )
 | 
						|
    SCCStack.pop();
 | 
						|
 | 
						|
  Node2DFS.clear();
 | 
						|
  Node2Visited.clear();
 | 
						|
  Node2Deleted.clear();
 | 
						|
  HCDSCCRep.clear();
 | 
						|
  DEBUG(errs() << "HCD complete.\n");
 | 
						|
}
 | 
						|
 | 
						|
// Component of HCD: 
 | 
						|
// Use Nuutila's variant of Tarjan's algorithm to detect
 | 
						|
// Strongly-Connected Components (SCCs). For non-trivial SCCs
 | 
						|
// containing ref nodes, insert the appropriate information in SDT.
 | 
						|
void Andersens::Search(unsigned Node) {
 | 
						|
  unsigned MyDFS = DFSNumber++;
 | 
						|
 | 
						|
  Node2Visited[Node] = true;
 | 
						|
  Node2DFS[Node] = MyDFS;
 | 
						|
 | 
						|
  for (SparseBitVector<>::iterator Iter = GraphNodes[Node].Edges->begin(),
 | 
						|
                                   End  = GraphNodes[Node].Edges->end();
 | 
						|
       Iter != End;
 | 
						|
       ++Iter) {
 | 
						|
    unsigned J = HCDSCCRep[*Iter];
 | 
						|
    assert(GraphNodes[J].isRep() && "Debug check; must be representative");
 | 
						|
    if (!Node2Deleted[J]) {
 | 
						|
      if (!Node2Visited[J])
 | 
						|
        Search(J);
 | 
						|
      if (Node2DFS[Node] > Node2DFS[J])
 | 
						|
        Node2DFS[Node] = Node2DFS[J];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if( MyDFS != Node2DFS[Node] ) {
 | 
						|
    SCCStack.push(Node);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // This node is the root of a SCC, so process it.
 | 
						|
  //
 | 
						|
  // If the SCC is "non-trivial" (not a singleton) and contains a reference 
 | 
						|
  // node, we place this SCC into SDT.  We unite the nodes in any case.
 | 
						|
  if (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS) {
 | 
						|
    SparseBitVector<> SCC;
 | 
						|
 | 
						|
    SCC.set(Node);
 | 
						|
 | 
						|
    bool Ref = (Node >= FirstRefNode);
 | 
						|
 | 
						|
    Node2Deleted[Node] = true;
 | 
						|
 | 
						|
    do {
 | 
						|
      unsigned P = SCCStack.top(); SCCStack.pop();
 | 
						|
      Ref |= (P >= FirstRefNode);
 | 
						|
      SCC.set(P);
 | 
						|
      HCDSCCRep[P] = Node;
 | 
						|
    } while (!SCCStack.empty() && Node2DFS[SCCStack.top()] >= MyDFS);
 | 
						|
 | 
						|
    if (Ref) {
 | 
						|
      unsigned Rep = SCC.find_first();
 | 
						|
      assert(Rep < FirstRefNode && "The SCC didn't have a non-Ref node!");
 | 
						|
 | 
						|
      SparseBitVector<>::iterator i = SCC.begin();
 | 
						|
 | 
						|
      // Skip over the non-ref nodes
 | 
						|
      while( *i < FirstRefNode )
 | 
						|
        ++i;
 | 
						|
 | 
						|
      while( i != SCC.end() )
 | 
						|
        SDT[ (*i++) - FirstRefNode ] = Rep;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Optimize the constraints by performing offline variable substitution and
 | 
						|
/// other optimizations.
 | 
						|
void Andersens::OptimizeConstraints() {
 | 
						|
  DEBUG(errs() << "Beginning constraint optimization\n");
 | 
						|
 | 
						|
  SDTActive = false;
 | 
						|
 | 
						|
  // Function related nodes need to stay in the same relative position and can't
 | 
						|
  // be location equivalent.
 | 
						|
  for (std::map<unsigned, unsigned>::iterator Iter = MaxK.begin();
 | 
						|
       Iter != MaxK.end();
 | 
						|
       ++Iter) {
 | 
						|
    for (unsigned i = Iter->first;
 | 
						|
         i != Iter->first + Iter->second;
 | 
						|
         ++i) {
 | 
						|
      GraphNodes[i].AddressTaken = true;
 | 
						|
      GraphNodes[i].Direct = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ClumpAddressTaken();
 | 
						|
  FirstRefNode = GraphNodes.size();
 | 
						|
  FirstAdrNode = FirstRefNode + GraphNodes.size();
 | 
						|
  GraphNodes.insert(GraphNodes.end(), 2 * GraphNodes.size(),
 | 
						|
                    Node(false));
 | 
						|
  VSSCCRep.resize(GraphNodes.size());
 | 
						|
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | 
						|
    VSSCCRep[i] = i;
 | 
						|
  }
 | 
						|
  HVN();
 | 
						|
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | 
						|
    Node *N = &GraphNodes[i];
 | 
						|
    delete N->PredEdges;
 | 
						|
    N->PredEdges = NULL;
 | 
						|
    delete N->ImplicitPredEdges;
 | 
						|
    N->ImplicitPredEdges = NULL;
 | 
						|
  }
 | 
						|
#undef DEBUG_TYPE
 | 
						|
#define DEBUG_TYPE "anders-aa-labels"
 | 
						|
  DEBUG(PrintLabels());
 | 
						|
#undef DEBUG_TYPE
 | 
						|
#define DEBUG_TYPE "anders-aa"
 | 
						|
  RewriteConstraints();
 | 
						|
  // Delete the adr nodes.
 | 
						|
  GraphNodes.resize(FirstRefNode * 2);
 | 
						|
 | 
						|
  // Now perform HU
 | 
						|
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | 
						|
    Node *N = &GraphNodes[i];
 | 
						|
    if (FindNode(i) == i) {
 | 
						|
      N->PointsTo = new SparseBitVector<>;
 | 
						|
      N->PointedToBy = new SparseBitVector<>;
 | 
						|
      // Reset our labels
 | 
						|
    }
 | 
						|
    VSSCCRep[i] = i;
 | 
						|
    N->PointerEquivLabel = 0;
 | 
						|
  }
 | 
						|
  HU();
 | 
						|
#undef DEBUG_TYPE
 | 
						|
#define DEBUG_TYPE "anders-aa-labels"
 | 
						|
  DEBUG(PrintLabels());
 | 
						|
#undef DEBUG_TYPE
 | 
						|
#define DEBUG_TYPE "anders-aa"
 | 
						|
  RewriteConstraints();
 | 
						|
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | 
						|
    if (FindNode(i) == i) {
 | 
						|
      Node *N = &GraphNodes[i];
 | 
						|
      delete N->PointsTo;
 | 
						|
      N->PointsTo = NULL;
 | 
						|
      delete N->PredEdges;
 | 
						|
      N->PredEdges = NULL;
 | 
						|
      delete N->ImplicitPredEdges;
 | 
						|
      N->ImplicitPredEdges = NULL;
 | 
						|
      delete N->PointedToBy;
 | 
						|
      N->PointedToBy = NULL;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // perform Hybrid Cycle Detection (HCD)
 | 
						|
  HCD();
 | 
						|
  SDTActive = true;
 | 
						|
 | 
						|
  // No longer any need for the upper half of GraphNodes (for ref nodes).
 | 
						|
  GraphNodes.erase(GraphNodes.begin() + FirstRefNode, GraphNodes.end());
 | 
						|
 | 
						|
  // HCD complete.
 | 
						|
 | 
						|
  DEBUG(errs() << "Finished constraint optimization\n");
 | 
						|
  FirstRefNode = 0;
 | 
						|
  FirstAdrNode = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Unite pointer but not location equivalent variables, now that the constraint
 | 
						|
/// graph is built.
 | 
						|
void Andersens::UnitePointerEquivalences() {
 | 
						|
  DEBUG(errs() << "Uniting remaining pointer equivalences\n");
 | 
						|
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | 
						|
    if (GraphNodes[i].AddressTaken && GraphNodes[i].isRep()) {
 | 
						|
      unsigned Label = GraphNodes[i].PointerEquivLabel;
 | 
						|
 | 
						|
      if (Label && PENLEClass2Node[Label] != -1)
 | 
						|
        UniteNodes(i, PENLEClass2Node[Label]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  DEBUG(errs() << "Finished remaining pointer equivalences\n");
 | 
						|
  PENLEClass2Node.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// Create the constraint graph used for solving points-to analysis.
 | 
						|
///
 | 
						|
void Andersens::CreateConstraintGraph() {
 | 
						|
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
 | 
						|
    Constraint &C = Constraints[i];
 | 
						|
    assert (C.Src < GraphNodes.size() && C.Dest < GraphNodes.size());
 | 
						|
    if (C.Type == Constraint::AddressOf)
 | 
						|
      GraphNodes[C.Dest].PointsTo->set(C.Src);
 | 
						|
    else if (C.Type == Constraint::Load)
 | 
						|
      GraphNodes[C.Src].Constraints.push_back(C);
 | 
						|
    else if (C.Type == Constraint::Store)
 | 
						|
      GraphNodes[C.Dest].Constraints.push_back(C);
 | 
						|
    else if (C.Offset != 0)
 | 
						|
      GraphNodes[C.Src].Constraints.push_back(C);
 | 
						|
    else
 | 
						|
      GraphNodes[C.Src].Edges->set(C.Dest);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Perform DFS and cycle detection.
 | 
						|
bool Andersens::QueryNode(unsigned Node) {
 | 
						|
  assert(GraphNodes[Node].isRep() && "Querying a non-rep node");
 | 
						|
  unsigned OurDFS = ++DFSNumber;
 | 
						|
  SparseBitVector<> ToErase;
 | 
						|
  SparseBitVector<> NewEdges;
 | 
						|
  Tarjan2DFS[Node] = OurDFS;
 | 
						|
 | 
						|
  // Changed denotes a change from a recursive call that we will bubble up.
 | 
						|
  // Merged is set if we actually merge a node ourselves.
 | 
						|
  bool Changed = false, Merged = false;
 | 
						|
 | 
						|
  for (SparseBitVector<>::iterator bi = GraphNodes[Node].Edges->begin();
 | 
						|
       bi != GraphNodes[Node].Edges->end();
 | 
						|
       ++bi) {
 | 
						|
    unsigned RepNode = FindNode(*bi);
 | 
						|
    // If this edge points to a non-representative node but we are
 | 
						|
    // already planning to add an edge to its representative, we have no
 | 
						|
    // need for this edge anymore.
 | 
						|
    if (RepNode != *bi && NewEdges.test(RepNode)){
 | 
						|
      ToErase.set(*bi);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Continue about our DFS.
 | 
						|
    if (!Tarjan2Deleted[RepNode]){
 | 
						|
      if (Tarjan2DFS[RepNode] == 0) {
 | 
						|
        Changed |= QueryNode(RepNode);
 | 
						|
        // May have been changed by QueryNode
 | 
						|
        RepNode = FindNode(RepNode);
 | 
						|
      }
 | 
						|
      if (Tarjan2DFS[RepNode] < Tarjan2DFS[Node])
 | 
						|
        Tarjan2DFS[Node] = Tarjan2DFS[RepNode];
 | 
						|
    }
 | 
						|
 | 
						|
    // We may have just discovered that this node is part of a cycle, in
 | 
						|
    // which case we can also erase it.
 | 
						|
    if (RepNode != *bi) {
 | 
						|
      ToErase.set(*bi);
 | 
						|
      NewEdges.set(RepNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  GraphNodes[Node].Edges->intersectWithComplement(ToErase);
 | 
						|
  GraphNodes[Node].Edges |= NewEdges;
 | 
						|
 | 
						|
  // If this node is a root of a non-trivial SCC, place it on our 
 | 
						|
  // worklist to be processed.
 | 
						|
  if (OurDFS == Tarjan2DFS[Node]) {
 | 
						|
    while (!SCCStack.empty() && Tarjan2DFS[SCCStack.top()] >= OurDFS) {
 | 
						|
      Node = UniteNodes(Node, SCCStack.top());
 | 
						|
 | 
						|
      SCCStack.pop();
 | 
						|
      Merged = true;
 | 
						|
    }
 | 
						|
    Tarjan2Deleted[Node] = true;
 | 
						|
 | 
						|
    if (Merged)
 | 
						|
      NextWL->insert(&GraphNodes[Node]);
 | 
						|
  } else {
 | 
						|
    SCCStack.push(Node);
 | 
						|
  }
 | 
						|
 | 
						|
  return(Changed | Merged);
 | 
						|
}
 | 
						|
 | 
						|
/// SolveConstraints - This stage iteratively processes the constraints list
 | 
						|
/// propagating constraints (adding edges to the Nodes in the points-to graph)
 | 
						|
/// until a fixed point is reached.
 | 
						|
///
 | 
						|
/// We use a variant of the technique called "Lazy Cycle Detection", which is
 | 
						|
/// described in "The Ant and the Grasshopper: Fast and Accurate Pointer
 | 
						|
/// Analysis for Millions of Lines of Code. In Programming Language Design and
 | 
						|
/// Implementation (PLDI), June 2007."
 | 
						|
/// The paper describes performing cycle detection one node at a time, which can
 | 
						|
/// be expensive if there are no cycles, but there are long chains of nodes that
 | 
						|
/// it heuristically believes are cycles (because it will DFS from each node
 | 
						|
/// without state from previous nodes).
 | 
						|
/// Instead, we use the heuristic to build a worklist of nodes to check, then
 | 
						|
/// cycle detect them all at the same time to do this more cheaply.  This
 | 
						|
/// catches cycles slightly later than the original technique did, but does it
 | 
						|
/// make significantly cheaper.
 | 
						|
 | 
						|
void Andersens::SolveConstraints() {
 | 
						|
  CurrWL = &w1;
 | 
						|
  NextWL = &w2;
 | 
						|
 | 
						|
  OptimizeConstraints();
 | 
						|
#undef DEBUG_TYPE
 | 
						|
#define DEBUG_TYPE "anders-aa-constraints"
 | 
						|
      DEBUG(PrintConstraints());
 | 
						|
#undef DEBUG_TYPE
 | 
						|
#define DEBUG_TYPE "anders-aa"
 | 
						|
 | 
						|
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | 
						|
    Node *N = &GraphNodes[i];
 | 
						|
    N->PointsTo = new SparseBitVector<>;
 | 
						|
    N->OldPointsTo = new SparseBitVector<>;
 | 
						|
    N->Edges = new SparseBitVector<>;
 | 
						|
  }
 | 
						|
  CreateConstraintGraph();
 | 
						|
  UnitePointerEquivalences();
 | 
						|
  assert(SCCStack.empty() && "SCC Stack should be empty by now!");
 | 
						|
  Node2DFS.clear();
 | 
						|
  Node2Deleted.clear();
 | 
						|
  Node2DFS.insert(Node2DFS.begin(), GraphNodes.size(), 0);
 | 
						|
  Node2Deleted.insert(Node2Deleted.begin(), GraphNodes.size(), false);
 | 
						|
  DFSNumber = 0;
 | 
						|
  DenseSet<Constraint, ConstraintKeyInfo> Seen;
 | 
						|
  DenseSet<std::pair<unsigned,unsigned>, PairKeyInfo> EdgesChecked;
 | 
						|
 | 
						|
  // Order graph and add initial nodes to work list.
 | 
						|
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | 
						|
    Node *INode = &GraphNodes[i];
 | 
						|
 | 
						|
    // Add to work list if it's a representative and can contribute to the
 | 
						|
    // calculation right now.
 | 
						|
    if (INode->isRep() && !INode->PointsTo->empty()
 | 
						|
        && (!INode->Edges->empty() || !INode->Constraints.empty())) {
 | 
						|
      INode->Stamp();
 | 
						|
      CurrWL->insert(INode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  std::queue<unsigned int> TarjanWL;
 | 
						|
#if !FULL_UNIVERSAL
 | 
						|
  // "Rep and special variables" - in order for HCD to maintain conservative
 | 
						|
  // results when !FULL_UNIVERSAL, we need to treat the special variables in
 | 
						|
  // the same way that the !FULL_UNIVERSAL tweak does throughout the rest of
 | 
						|
  // the analysis - it's ok to add edges from the special nodes, but never
 | 
						|
  // *to* the special nodes.
 | 
						|
  std::vector<unsigned int> RSV;
 | 
						|
#endif
 | 
						|
  while( !CurrWL->empty() ) {
 | 
						|
    DEBUG(errs() << "Starting iteration #" << ++NumIters << "\n");
 | 
						|
 | 
						|
    Node* CurrNode;
 | 
						|
    unsigned CurrNodeIndex;
 | 
						|
 | 
						|
    // Actual cycle checking code.  We cycle check all of the lazy cycle
 | 
						|
    // candidates from the last iteration in one go.
 | 
						|
    if (!TarjanWL.empty()) {
 | 
						|
      DFSNumber = 0;
 | 
						|
      
 | 
						|
      Tarjan2DFS.clear();
 | 
						|
      Tarjan2Deleted.clear();
 | 
						|
      while (!TarjanWL.empty()) {
 | 
						|
        unsigned int ToTarjan = TarjanWL.front();
 | 
						|
        TarjanWL.pop();
 | 
						|
        if (!Tarjan2Deleted[ToTarjan]
 | 
						|
            && GraphNodes[ToTarjan].isRep()
 | 
						|
            && Tarjan2DFS[ToTarjan] == 0)
 | 
						|
          QueryNode(ToTarjan);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Add to work list if it's a representative and can contribute to the
 | 
						|
    // calculation right now.
 | 
						|
    while( (CurrNode = CurrWL->pop()) != NULL ) {
 | 
						|
      CurrNodeIndex = CurrNode - &GraphNodes[0];
 | 
						|
      CurrNode->Stamp();
 | 
						|
      
 | 
						|
          
 | 
						|
      // Figure out the changed points to bits
 | 
						|
      SparseBitVector<> CurrPointsTo;
 | 
						|
      CurrPointsTo.intersectWithComplement(CurrNode->PointsTo,
 | 
						|
                                           CurrNode->OldPointsTo);
 | 
						|
      if (CurrPointsTo.empty())
 | 
						|
        continue;
 | 
						|
 | 
						|
      *(CurrNode->OldPointsTo) |= CurrPointsTo;
 | 
						|
 | 
						|
      // Check the offline-computed equivalencies from HCD.
 | 
						|
      bool SCC = false;
 | 
						|
      unsigned Rep;
 | 
						|
 | 
						|
      if (SDT[CurrNodeIndex] >= 0) {
 | 
						|
        SCC = true;
 | 
						|
        Rep = FindNode(SDT[CurrNodeIndex]);
 | 
						|
 | 
						|
#if !FULL_UNIVERSAL
 | 
						|
        RSV.clear();
 | 
						|
#endif
 | 
						|
        for (SparseBitVector<>::iterator bi = CurrPointsTo.begin();
 | 
						|
             bi != CurrPointsTo.end(); ++bi) {
 | 
						|
          unsigned Node = FindNode(*bi);
 | 
						|
#if !FULL_UNIVERSAL
 | 
						|
          if (Node < NumberSpecialNodes) {
 | 
						|
            RSV.push_back(Node);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
#endif
 | 
						|
          Rep = UniteNodes(Rep,Node);
 | 
						|
        }
 | 
						|
#if !FULL_UNIVERSAL
 | 
						|
        RSV.push_back(Rep);
 | 
						|
#endif
 | 
						|
 | 
						|
        NextWL->insert(&GraphNodes[Rep]);
 | 
						|
 | 
						|
        if ( ! CurrNode->isRep() )
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
 | 
						|
      Seen.clear();
 | 
						|
 | 
						|
      /* Now process the constraints for this node.  */
 | 
						|
      for (std::list<Constraint>::iterator li = CurrNode->Constraints.begin();
 | 
						|
           li != CurrNode->Constraints.end(); ) {
 | 
						|
        li->Src = FindNode(li->Src);
 | 
						|
        li->Dest = FindNode(li->Dest);
 | 
						|
 | 
						|
        // Delete redundant constraints
 | 
						|
        if( Seen.count(*li) ) {
 | 
						|
          std::list<Constraint>::iterator lk = li; li++;
 | 
						|
 | 
						|
          CurrNode->Constraints.erase(lk);
 | 
						|
          ++NumErased;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        Seen.insert(*li);
 | 
						|
 | 
						|
        // Src and Dest will be the vars we are going to process.
 | 
						|
        // This may look a bit ugly, but what it does is allow us to process
 | 
						|
        // both store and load constraints with the same code.
 | 
						|
        // Load constraints say that every member of our RHS solution has K
 | 
						|
        // added to it, and that variable gets an edge to LHS. We also union
 | 
						|
        // RHS+K's solution into the LHS solution.
 | 
						|
        // Store constraints say that every member of our LHS solution has K
 | 
						|
        // added to it, and that variable gets an edge from RHS. We also union
 | 
						|
        // RHS's solution into the LHS+K solution.
 | 
						|
        unsigned *Src;
 | 
						|
        unsigned *Dest;
 | 
						|
        unsigned K = li->Offset;
 | 
						|
        unsigned CurrMember;
 | 
						|
        if (li->Type == Constraint::Load) {
 | 
						|
          Src = &CurrMember;
 | 
						|
          Dest = &li->Dest;
 | 
						|
        } else if (li->Type == Constraint::Store) {
 | 
						|
          Src = &li->Src;
 | 
						|
          Dest = &CurrMember;
 | 
						|
        } else {
 | 
						|
          // TODO Handle offseted copy constraint
 | 
						|
          li++;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // See if we can use Hybrid Cycle Detection (that is, check
 | 
						|
        // if it was a statically detected offline equivalence that
 | 
						|
        // involves pointers; if so, remove the redundant constraints).
 | 
						|
        if( SCC && K == 0 ) {
 | 
						|
#if FULL_UNIVERSAL
 | 
						|
          CurrMember = Rep;
 | 
						|
 | 
						|
          if (GraphNodes[*Src].Edges->test_and_set(*Dest))
 | 
						|
            if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
 | 
						|
              NextWL->insert(&GraphNodes[*Dest]);
 | 
						|
#else
 | 
						|
          for (unsigned i=0; i < RSV.size(); ++i) {
 | 
						|
            CurrMember = RSV[i];
 | 
						|
 | 
						|
            if (*Dest < NumberSpecialNodes)
 | 
						|
              continue;
 | 
						|
            if (GraphNodes[*Src].Edges->test_and_set(*Dest))
 | 
						|
              if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
 | 
						|
                NextWL->insert(&GraphNodes[*Dest]);
 | 
						|
          }
 | 
						|
#endif
 | 
						|
          // since all future elements of the points-to set will be
 | 
						|
          // equivalent to the current ones, the complex constraints
 | 
						|
          // become redundant.
 | 
						|
          //
 | 
						|
          std::list<Constraint>::iterator lk = li; li++;
 | 
						|
#if !FULL_UNIVERSAL
 | 
						|
          // In this case, we can still erase the constraints when the
 | 
						|
          // elements of the points-to sets are referenced by *Dest,
 | 
						|
          // but not when they are referenced by *Src (i.e. for a Load
 | 
						|
          // constraint). This is because if another special variable is
 | 
						|
          // put into the points-to set later, we still need to add the
 | 
						|
          // new edge from that special variable.
 | 
						|
          if( lk->Type != Constraint::Load)
 | 
						|
#endif
 | 
						|
          GraphNodes[CurrNodeIndex].Constraints.erase(lk);
 | 
						|
        } else {
 | 
						|
          const SparseBitVector<> &Solution = CurrPointsTo;
 | 
						|
 | 
						|
          for (SparseBitVector<>::iterator bi = Solution.begin();
 | 
						|
               bi != Solution.end();
 | 
						|
               ++bi) {
 | 
						|
            CurrMember = *bi;
 | 
						|
 | 
						|
            // Need to increment the member by K since that is where we are
 | 
						|
            // supposed to copy to/from.  Note that in positive weight cycles,
 | 
						|
            // which occur in address taking of fields, K can go past
 | 
						|
            // MaxK[CurrMember] elements, even though that is all it could point
 | 
						|
            // to.
 | 
						|
            if (K > 0 && K > MaxK[CurrMember])
 | 
						|
              continue;
 | 
						|
            else
 | 
						|
              CurrMember = FindNode(CurrMember + K);
 | 
						|
 | 
						|
            // Add an edge to the graph, so we can just do regular
 | 
						|
            // bitmap ior next time.  It may also let us notice a cycle.
 | 
						|
#if !FULL_UNIVERSAL
 | 
						|
            if (*Dest < NumberSpecialNodes)
 | 
						|
              continue;
 | 
						|
#endif
 | 
						|
            if (GraphNodes[*Src].Edges->test_and_set(*Dest))
 | 
						|
              if (GraphNodes[*Dest].PointsTo |= *(GraphNodes[*Src].PointsTo))
 | 
						|
                NextWL->insert(&GraphNodes[*Dest]);
 | 
						|
 | 
						|
          }
 | 
						|
          li++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      SparseBitVector<> NewEdges;
 | 
						|
      SparseBitVector<> ToErase;
 | 
						|
 | 
						|
      // Now all we have left to do is propagate points-to info along the
 | 
						|
      // edges, erasing the redundant edges.
 | 
						|
      for (SparseBitVector<>::iterator bi = CurrNode->Edges->begin();
 | 
						|
           bi != CurrNode->Edges->end();
 | 
						|
           ++bi) {
 | 
						|
 | 
						|
        unsigned DestVar = *bi;
 | 
						|
        unsigned Rep = FindNode(DestVar);
 | 
						|
 | 
						|
        // If we ended up with this node as our destination, or we've already
 | 
						|
        // got an edge for the representative, delete the current edge.
 | 
						|
        if (Rep == CurrNodeIndex ||
 | 
						|
            (Rep != DestVar && NewEdges.test(Rep))) {
 | 
						|
            ToErase.set(DestVar);
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        std::pair<unsigned,unsigned> edge(CurrNodeIndex,Rep);
 | 
						|
        
 | 
						|
        // This is where we do lazy cycle detection.
 | 
						|
        // If this is a cycle candidate (equal points-to sets and this
 | 
						|
        // particular edge has not been cycle-checked previously), add to the
 | 
						|
        // list to check for cycles on the next iteration.
 | 
						|
        if (!EdgesChecked.count(edge) &&
 | 
						|
            *(GraphNodes[Rep].PointsTo) == *(CurrNode->PointsTo)) {
 | 
						|
          EdgesChecked.insert(edge);
 | 
						|
          TarjanWL.push(Rep);
 | 
						|
        }
 | 
						|
        // Union the points-to sets into the dest
 | 
						|
#if !FULL_UNIVERSAL
 | 
						|
        if (Rep >= NumberSpecialNodes)
 | 
						|
#endif
 | 
						|
        if (GraphNodes[Rep].PointsTo |= CurrPointsTo) {
 | 
						|
          NextWL->insert(&GraphNodes[Rep]);
 | 
						|
        }
 | 
						|
        // If this edge's destination was collapsed, rewrite the edge.
 | 
						|
        if (Rep != DestVar) {
 | 
						|
          ToErase.set(DestVar);
 | 
						|
          NewEdges.set(Rep);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      CurrNode->Edges->intersectWithComplement(ToErase);
 | 
						|
      CurrNode->Edges |= NewEdges;
 | 
						|
    }
 | 
						|
 | 
						|
    // Switch to other work list.
 | 
						|
    WorkList* t = CurrWL; CurrWL = NextWL; NextWL = t;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  Node2DFS.clear();
 | 
						|
  Node2Deleted.clear();
 | 
						|
  for (unsigned i = 0; i < GraphNodes.size(); ++i) {
 | 
						|
    Node *N = &GraphNodes[i];
 | 
						|
    delete N->OldPointsTo;
 | 
						|
    delete N->Edges;
 | 
						|
  }
 | 
						|
  SDTActive = false;
 | 
						|
  SDT.clear();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               Union-Find
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Unite nodes First and Second, returning the one which is now the
 | 
						|
// representative node.  First and Second are indexes into GraphNodes
 | 
						|
unsigned Andersens::UniteNodes(unsigned First, unsigned Second,
 | 
						|
                               bool UnionByRank) {
 | 
						|
  assert (First < GraphNodes.size() && Second < GraphNodes.size() &&
 | 
						|
          "Attempting to merge nodes that don't exist");
 | 
						|
 | 
						|
  Node *FirstNode = &GraphNodes[First];
 | 
						|
  Node *SecondNode = &GraphNodes[Second];
 | 
						|
 | 
						|
  assert (SecondNode->isRep() && FirstNode->isRep() &&
 | 
						|
          "Trying to unite two non-representative nodes!");
 | 
						|
  if (First == Second)
 | 
						|
    return First;
 | 
						|
 | 
						|
  if (UnionByRank) {
 | 
						|
    int RankFirst  = (int) FirstNode ->NodeRep;
 | 
						|
    int RankSecond = (int) SecondNode->NodeRep;
 | 
						|
 | 
						|
    // Rank starts at -1 and gets decremented as it increases.
 | 
						|
    // Translation: higher rank, lower NodeRep value, which is always negative.
 | 
						|
    if (RankFirst > RankSecond) {
 | 
						|
      unsigned t = First; First = Second; Second = t;
 | 
						|
      Node* tp = FirstNode; FirstNode = SecondNode; SecondNode = tp;
 | 
						|
    } else if (RankFirst == RankSecond) {
 | 
						|
      FirstNode->NodeRep = (unsigned) (RankFirst - 1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SecondNode->NodeRep = First;
 | 
						|
#if !FULL_UNIVERSAL
 | 
						|
  if (First >= NumberSpecialNodes)
 | 
						|
#endif
 | 
						|
  if (FirstNode->PointsTo && SecondNode->PointsTo)
 | 
						|
    FirstNode->PointsTo |= *(SecondNode->PointsTo);
 | 
						|
  if (FirstNode->Edges && SecondNode->Edges)
 | 
						|
    FirstNode->Edges |= *(SecondNode->Edges);
 | 
						|
  if (!SecondNode->Constraints.empty())
 | 
						|
    FirstNode->Constraints.splice(FirstNode->Constraints.begin(),
 | 
						|
                                  SecondNode->Constraints);
 | 
						|
  if (FirstNode->OldPointsTo) {
 | 
						|
    delete FirstNode->OldPointsTo;
 | 
						|
    FirstNode->OldPointsTo = new SparseBitVector<>;
 | 
						|
  }
 | 
						|
 | 
						|
  // Destroy interesting parts of the merged-from node.
 | 
						|
  delete SecondNode->OldPointsTo;
 | 
						|
  delete SecondNode->Edges;
 | 
						|
  delete SecondNode->PointsTo;
 | 
						|
  SecondNode->Edges = NULL;
 | 
						|
  SecondNode->PointsTo = NULL;
 | 
						|
  SecondNode->OldPointsTo = NULL;
 | 
						|
 | 
						|
  NumUnified++;
 | 
						|
  DEBUG(errs() << "Unified Node ");
 | 
						|
  DEBUG(PrintNode(FirstNode));
 | 
						|
  DEBUG(errs() << " and Node ");
 | 
						|
  DEBUG(PrintNode(SecondNode));
 | 
						|
  DEBUG(errs() << "\n");
 | 
						|
 | 
						|
  if (SDTActive)
 | 
						|
    if (SDT[Second] >= 0) {
 | 
						|
      if (SDT[First] < 0)
 | 
						|
        SDT[First] = SDT[Second];
 | 
						|
      else {
 | 
						|
        UniteNodes( FindNode(SDT[First]), FindNode(SDT[Second]) );
 | 
						|
        First = FindNode(First);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
  return First;
 | 
						|
}
 | 
						|
 | 
						|
// Find the index into GraphNodes of the node representing Node, performing
 | 
						|
// path compression along the way
 | 
						|
unsigned Andersens::FindNode(unsigned NodeIndex) {
 | 
						|
  assert (NodeIndex < GraphNodes.size()
 | 
						|
          && "Attempting to find a node that can't exist");
 | 
						|
  Node *N = &GraphNodes[NodeIndex];
 | 
						|
  if (N->isRep())
 | 
						|
    return NodeIndex;
 | 
						|
  else
 | 
						|
    return (N->NodeRep = FindNode(N->NodeRep));
 | 
						|
}
 | 
						|
 | 
						|
// Find the index into GraphNodes of the node representing Node, 
 | 
						|
// don't perform path compression along the way (for Print)
 | 
						|
unsigned Andersens::FindNode(unsigned NodeIndex) const {
 | 
						|
  assert (NodeIndex < GraphNodes.size()
 | 
						|
          && "Attempting to find a node that can't exist");
 | 
						|
  const Node *N = &GraphNodes[NodeIndex];
 | 
						|
  if (N->isRep())
 | 
						|
    return NodeIndex;
 | 
						|
  else
 | 
						|
    return FindNode(N->NodeRep);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               Debugging Output
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void Andersens::PrintNode(const Node *N) const {
 | 
						|
  if (N == &GraphNodes[UniversalSet]) {
 | 
						|
    errs() << "<universal>";
 | 
						|
    return;
 | 
						|
  } else if (N == &GraphNodes[NullPtr]) {
 | 
						|
    errs() << "<nullptr>";
 | 
						|
    return;
 | 
						|
  } else if (N == &GraphNodes[NullObject]) {
 | 
						|
    errs() << "<null>";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (!N->getValue()) {
 | 
						|
    errs() << "artificial" << (intptr_t) N;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(N->getValue() != 0 && "Never set node label!");
 | 
						|
  Value *V = N->getValue();
 | 
						|
  if (Function *F = dyn_cast<Function>(V)) {
 | 
						|
    if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
 | 
						|
        N == &GraphNodes[getReturnNode(F)]) {
 | 
						|
      errs() << F->getName() << ":retval";
 | 
						|
      return;
 | 
						|
    } else if (F->getFunctionType()->isVarArg() &&
 | 
						|
               N == &GraphNodes[getVarargNode(F)]) {
 | 
						|
      errs() << F->getName() << ":vararg";
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    errs() << I->getParent()->getParent()->getName() << ":";
 | 
						|
  else if (Argument *Arg = dyn_cast<Argument>(V))
 | 
						|
    errs() << Arg->getParent()->getName() << ":";
 | 
						|
 | 
						|
  if (V->hasName())
 | 
						|
    errs() << V->getName();
 | 
						|
  else
 | 
						|
    errs() << "(unnamed)";
 | 
						|
 | 
						|
  if (isa<GlobalValue>(V) || isa<AllocaInst>(V) || isMalloc(V))
 | 
						|
    if (N == &GraphNodes[getObject(V)])
 | 
						|
      errs() << "<mem>";
 | 
						|
}
 | 
						|
void Andersens::PrintConstraint(const Constraint &C) const {
 | 
						|
  if (C.Type == Constraint::Store) {
 | 
						|
    errs() << "*";
 | 
						|
    if (C.Offset != 0)
 | 
						|
      errs() << "(";
 | 
						|
  }
 | 
						|
  PrintNode(&GraphNodes[C.Dest]);
 | 
						|
  if (C.Type == Constraint::Store && C.Offset != 0)
 | 
						|
    errs() << " + " << C.Offset << ")";
 | 
						|
  errs() << " = ";
 | 
						|
  if (C.Type == Constraint::Load) {
 | 
						|
    errs() << "*";
 | 
						|
    if (C.Offset != 0)
 | 
						|
      errs() << "(";
 | 
						|
  }
 | 
						|
  else if (C.Type == Constraint::AddressOf)
 | 
						|
    errs() << "&";
 | 
						|
  PrintNode(&GraphNodes[C.Src]);
 | 
						|
  if (C.Offset != 0 && C.Type != Constraint::Store)
 | 
						|
    errs() << " + " << C.Offset;
 | 
						|
  if (C.Type == Constraint::Load && C.Offset != 0)
 | 
						|
    errs() << ")";
 | 
						|
  errs() << "\n";
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::PrintConstraints() const {
 | 
						|
  errs() << "Constraints:\n";
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Constraints.size(); i != e; ++i)
 | 
						|
    PrintConstraint(Constraints[i]);
 | 
						|
}
 | 
						|
 | 
						|
void Andersens::PrintPointsToGraph() const {
 | 
						|
  errs() << "Points-to graph:\n";
 | 
						|
  for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
 | 
						|
    const Node *N = &GraphNodes[i];
 | 
						|
    if (FindNode(i) != i) {
 | 
						|
      PrintNode(N);
 | 
						|
      errs() << "\t--> same as ";
 | 
						|
      PrintNode(&GraphNodes[FindNode(i)]);
 | 
						|
      errs() << "\n";
 | 
						|
    } else {
 | 
						|
      errs() << "[" << (N->PointsTo->count()) << "] ";
 | 
						|
      PrintNode(N);
 | 
						|
      errs() << "\t--> ";
 | 
						|
 | 
						|
      bool first = true;
 | 
						|
      for (SparseBitVector<>::iterator bi = N->PointsTo->begin();
 | 
						|
           bi != N->PointsTo->end();
 | 
						|
           ++bi) {
 | 
						|
        if (!first)
 | 
						|
          errs() << ", ";
 | 
						|
        PrintNode(&GraphNodes[*bi]);
 | 
						|
        first = false;
 | 
						|
      }
 | 
						|
      errs() << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |