mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@90258 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1536 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1536 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation  --*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements an analysis that determines, for a given memory
 | 
						|
// operation, what preceding memory operations it depends on.  It builds on 
 | 
						|
// alias analysis information, and tries to provide a lazy, caching interface to
 | 
						|
// a common kind of alias information query.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "memdep"
 | 
						|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/PredIteratorCache.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
 | 
						|
STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
 | 
						|
STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
 | 
						|
 | 
						|
STATISTIC(NumCacheNonLocalPtr,
 | 
						|
          "Number of fully cached non-local ptr responses");
 | 
						|
STATISTIC(NumCacheDirtyNonLocalPtr,
 | 
						|
          "Number of cached, but dirty, non-local ptr responses");
 | 
						|
STATISTIC(NumUncacheNonLocalPtr,
 | 
						|
          "Number of uncached non-local ptr responses");
 | 
						|
STATISTIC(NumCacheCompleteNonLocalPtr,
 | 
						|
          "Number of block queries that were completely cached");
 | 
						|
 | 
						|
char MemoryDependenceAnalysis::ID = 0;
 | 
						|
  
 | 
						|
// Register this pass...
 | 
						|
static RegisterPass<MemoryDependenceAnalysis> X("memdep",
 | 
						|
                                     "Memory Dependence Analysis", false, true);
 | 
						|
 | 
						|
MemoryDependenceAnalysis::MemoryDependenceAnalysis()
 | 
						|
: FunctionPass(&ID), PredCache(0) {
 | 
						|
}
 | 
						|
MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
 | 
						|
}
 | 
						|
 | 
						|
/// Clean up memory in between runs
 | 
						|
void MemoryDependenceAnalysis::releaseMemory() {
 | 
						|
  LocalDeps.clear();
 | 
						|
  NonLocalDeps.clear();
 | 
						|
  NonLocalPointerDeps.clear();
 | 
						|
  ReverseLocalDeps.clear();
 | 
						|
  ReverseNonLocalDeps.clear();
 | 
						|
  ReverseNonLocalPtrDeps.clear();
 | 
						|
  PredCache->clear();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
 | 
						|
///
 | 
						|
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequiredTransitive<AliasAnalysis>();
 | 
						|
}
 | 
						|
 | 
						|
bool MemoryDependenceAnalysis::runOnFunction(Function &) {
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
  if (PredCache == 0)
 | 
						|
    PredCache.reset(new PredIteratorCache());
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveFromReverseMap - This is a helper function that removes Val from
 | 
						|
/// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
 | 
						|
template <typename KeyTy>
 | 
						|
static void RemoveFromReverseMap(DenseMap<Instruction*, 
 | 
						|
                                 SmallPtrSet<KeyTy, 4> > &ReverseMap,
 | 
						|
                                 Instruction *Inst, KeyTy Val) {
 | 
						|
  typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
 | 
						|
  InstIt = ReverseMap.find(Inst);
 | 
						|
  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
 | 
						|
  bool Found = InstIt->second.erase(Val);
 | 
						|
  assert(Found && "Invalid reverse map!"); Found=Found;
 | 
						|
  if (InstIt->second.empty())
 | 
						|
    ReverseMap.erase(InstIt);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getCallSiteDependencyFrom - Private helper for finding the local
 | 
						|
/// dependencies of a call site.
 | 
						|
MemDepResult MemoryDependenceAnalysis::
 | 
						|
getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
 | 
						|
                          BasicBlock::iterator ScanIt, BasicBlock *BB) {
 | 
						|
  // Walk backwards through the block, looking for dependencies
 | 
						|
  while (ScanIt != BB->begin()) {
 | 
						|
    Instruction *Inst = --ScanIt;
 | 
						|
    
 | 
						|
    // If this inst is a memory op, get the pointer it accessed
 | 
						|
    Value *Pointer = 0;
 | 
						|
    uint64_t PointerSize = 0;
 | 
						|
    if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
 | 
						|
      Pointer = S->getPointerOperand();
 | 
						|
      PointerSize = AA->getTypeStoreSize(S->getOperand(0)->getType());
 | 
						|
    } else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
 | 
						|
      Pointer = V->getOperand(0);
 | 
						|
      PointerSize = AA->getTypeStoreSize(V->getType());
 | 
						|
    } else if (isFreeCall(Inst)) {
 | 
						|
      Pointer = Inst->getOperand(1);
 | 
						|
      // calls to free() erase the entire structure
 | 
						|
      PointerSize = ~0ULL;
 | 
						|
    } else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
 | 
						|
      // Debug intrinsics don't cause dependences.
 | 
						|
      if (isa<DbgInfoIntrinsic>(Inst)) continue;
 | 
						|
      CallSite InstCS = CallSite::get(Inst);
 | 
						|
      // If these two calls do not interfere, look past it.
 | 
						|
      switch (AA->getModRefInfo(CS, InstCS)) {
 | 
						|
      case AliasAnalysis::NoModRef:
 | 
						|
        // If the two calls don't interact (e.g. InstCS is readnone) keep
 | 
						|
        // scanning.
 | 
						|
        continue;
 | 
						|
      case AliasAnalysis::Ref:
 | 
						|
        // If the two calls read the same memory locations and CS is a readonly
 | 
						|
        // function, then we have two cases: 1) the calls may not interfere with
 | 
						|
        // each other at all.  2) the calls may produce the same value.  In case
 | 
						|
        // #1 we want to ignore the values, in case #2, we want to return Inst
 | 
						|
        // as a Def dependence.  This allows us to CSE in cases like:
 | 
						|
        //   X = strlen(P);
 | 
						|
        //    memchr(...);
 | 
						|
        //   Y = strlen(P);  // Y = X
 | 
						|
        if (isReadOnlyCall) {
 | 
						|
          if (CS.getCalledFunction() != 0 &&
 | 
						|
              CS.getCalledFunction() == InstCS.getCalledFunction())
 | 
						|
            return MemDepResult::getDef(Inst);
 | 
						|
          // Ignore unrelated read/read call dependences.
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // FALL THROUGH
 | 
						|
      default:
 | 
						|
        return MemDepResult::getClobber(Inst);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Non-memory instruction.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (AA->getModRefInfo(CS, Pointer, PointerSize) != AliasAnalysis::NoModRef)
 | 
						|
      return MemDepResult::getClobber(Inst);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // No dependence found.  If this is the entry block of the function, it is a
 | 
						|
  // clobber, otherwise it is non-local.
 | 
						|
  if (BB != &BB->getParent()->getEntryBlock())
 | 
						|
    return MemDepResult::getNonLocal();
 | 
						|
  return MemDepResult::getClobber(ScanIt);
 | 
						|
}
 | 
						|
 | 
						|
/// getPointerDependencyFrom - Return the instruction on which a memory
 | 
						|
/// location depends.  If isLoad is true, this routine ignore may-aliases with
 | 
						|
/// read-only operations.
 | 
						|
MemDepResult MemoryDependenceAnalysis::
 | 
						|
getPointerDependencyFrom(Value *MemPtr, uint64_t MemSize, bool isLoad, 
 | 
						|
                         BasicBlock::iterator ScanIt, BasicBlock *BB) {
 | 
						|
 | 
						|
  Value *InvariantTag = 0;
 | 
						|
 | 
						|
  // Walk backwards through the basic block, looking for dependencies.
 | 
						|
  while (ScanIt != BB->begin()) {
 | 
						|
    Instruction *Inst = --ScanIt;
 | 
						|
 | 
						|
    // If we're in an invariant region, no dependencies can be found before
 | 
						|
    // we pass an invariant-begin marker.
 | 
						|
    if (InvariantTag == Inst) {
 | 
						|
      InvariantTag = 0;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | 
						|
      // If we pass an invariant-end marker, then we've just entered an
 | 
						|
      // invariant region and can start ignoring dependencies.
 | 
						|
      if (II->getIntrinsicID() == Intrinsic::invariant_end) {
 | 
						|
        uint64_t InvariantSize = ~0ULL;
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(2)))
 | 
						|
          InvariantSize = CI->getZExtValue();
 | 
						|
        
 | 
						|
        AliasAnalysis::AliasResult R =
 | 
						|
          AA->alias(II->getOperand(3), InvariantSize, MemPtr, MemSize);
 | 
						|
        if (R == AliasAnalysis::MustAlias) {
 | 
						|
          InvariantTag = II->getOperand(1);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      
 | 
						|
      // If we reach a lifetime begin or end marker, then the query ends here
 | 
						|
      // because the value is undefined.
 | 
						|
      } else if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | 
						|
                 II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | 
						|
        uint64_t InvariantSize = ~0ULL;
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getOperand(1)))
 | 
						|
          InvariantSize = CI->getZExtValue();
 | 
						|
 | 
						|
        AliasAnalysis::AliasResult R =
 | 
						|
          AA->alias(II->getOperand(2), InvariantSize, MemPtr, MemSize);
 | 
						|
        if (R == AliasAnalysis::MustAlias)
 | 
						|
          return MemDepResult::getDef(II);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we're querying on a load and we're in an invariant region, we're done
 | 
						|
    // at this point. Nothing a load depends on can live in an invariant region.
 | 
						|
    if (isLoad && InvariantTag) continue;
 | 
						|
 | 
						|
    // Debug intrinsics don't cause dependences.
 | 
						|
    if (isa<DbgInfoIntrinsic>(Inst)) continue;
 | 
						|
 | 
						|
    // Values depend on loads if the pointers are must aliased.  This means that
 | 
						|
    // a load depends on another must aliased load from the same value.
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | 
						|
      Value *Pointer = LI->getPointerOperand();
 | 
						|
      uint64_t PointerSize = AA->getTypeStoreSize(LI->getType());
 | 
						|
      
 | 
						|
      // If we found a pointer, check if it could be the same as our pointer.
 | 
						|
      AliasAnalysis::AliasResult R =
 | 
						|
        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
 | 
						|
      if (R == AliasAnalysis::NoAlias)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // May-alias loads don't depend on each other without a dependence.
 | 
						|
      if (isLoad && R == AliasAnalysis::MayAlias)
 | 
						|
        continue;
 | 
						|
      // Stores depend on may and must aliased loads, loads depend on must-alias
 | 
						|
      // loads.
 | 
						|
      return MemDepResult::getDef(Inst);
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
      // There can't be stores to the value we care about inside an 
 | 
						|
      // invariant region.
 | 
						|
      if (InvariantTag) continue;
 | 
						|
      
 | 
						|
      // If alias analysis can tell that this store is guaranteed to not modify
 | 
						|
      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
 | 
						|
      // the query pointer points to constant memory etc.
 | 
						|
      if (AA->getModRefInfo(SI, MemPtr, MemSize) == AliasAnalysis::NoModRef)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Ok, this store might clobber the query pointer.  Check to see if it is
 | 
						|
      // a must alias: in this case, we want to return this as a def.
 | 
						|
      Value *Pointer = SI->getPointerOperand();
 | 
						|
      uint64_t PointerSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
 | 
						|
      
 | 
						|
      // If we found a pointer, check if it could be the same as our pointer.
 | 
						|
      AliasAnalysis::AliasResult R =
 | 
						|
        AA->alias(Pointer, PointerSize, MemPtr, MemSize);
 | 
						|
      
 | 
						|
      if (R == AliasAnalysis::NoAlias)
 | 
						|
        continue;
 | 
						|
      if (R == AliasAnalysis::MayAlias)
 | 
						|
        return MemDepResult::getClobber(Inst);
 | 
						|
      return MemDepResult::getDef(Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is an allocation, and if we know that the accessed pointer is to
 | 
						|
    // the allocation, return Def.  This means that there is no dependence and
 | 
						|
    // the access can be optimized based on that.  For example, a load could
 | 
						|
    // turn into undef.
 | 
						|
    // Note: Only determine this to be a malloc if Inst is the malloc call, not
 | 
						|
    // a subsequent bitcast of the malloc call result.  There can be stores to
 | 
						|
    // the malloced memory between the malloc call and its bitcast uses, and we
 | 
						|
    // need to continue scanning until the malloc call.
 | 
						|
    if (isa<AllocaInst>(Inst) || extractMallocCall(Inst)) {
 | 
						|
      Value *AccessPtr = MemPtr->getUnderlyingObject();
 | 
						|
      
 | 
						|
      if (AccessPtr == Inst ||
 | 
						|
          AA->alias(Inst, 1, AccessPtr, 1) == AliasAnalysis::MustAlias)
 | 
						|
        return MemDepResult::getDef(Inst);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
 | 
						|
    switch (AA->getModRefInfo(Inst, MemPtr, MemSize)) {
 | 
						|
    case AliasAnalysis::NoModRef:
 | 
						|
      // If the call has no effect on the queried pointer, just ignore it.
 | 
						|
      continue;
 | 
						|
    case AliasAnalysis::Mod:
 | 
						|
      // If we're in an invariant region, we can ignore calls that ONLY
 | 
						|
      // modify the pointer.
 | 
						|
      if (InvariantTag) continue;
 | 
						|
      return MemDepResult::getClobber(Inst);
 | 
						|
    case AliasAnalysis::Ref:
 | 
						|
      // If the call is known to never store to the pointer, and if this is a
 | 
						|
      // load query, we can safely ignore it (scan past it).
 | 
						|
      if (isLoad)
 | 
						|
        continue;
 | 
						|
    default:
 | 
						|
      // Otherwise, there is a potential dependence.  Return a clobber.
 | 
						|
      return MemDepResult::getClobber(Inst);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // No dependence found.  If this is the entry block of the function, it is a
 | 
						|
  // clobber, otherwise it is non-local.
 | 
						|
  if (BB != &BB->getParent()->getEntryBlock())
 | 
						|
    return MemDepResult::getNonLocal();
 | 
						|
  return MemDepResult::getClobber(ScanIt);
 | 
						|
}
 | 
						|
 | 
						|
/// getDependency - Return the instruction on which a memory operation
 | 
						|
/// depends.
 | 
						|
MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
 | 
						|
  Instruction *ScanPos = QueryInst;
 | 
						|
  
 | 
						|
  // Check for a cached result
 | 
						|
  MemDepResult &LocalCache = LocalDeps[QueryInst];
 | 
						|
  
 | 
						|
  // If the cached entry is non-dirty, just return it.  Note that this depends
 | 
						|
  // on MemDepResult's default constructing to 'dirty'.
 | 
						|
  if (!LocalCache.isDirty())
 | 
						|
    return LocalCache;
 | 
						|
    
 | 
						|
  // Otherwise, if we have a dirty entry, we know we can start the scan at that
 | 
						|
  // instruction, which may save us some work.
 | 
						|
  if (Instruction *Inst = LocalCache.getInst()) {
 | 
						|
    ScanPos = Inst;
 | 
						|
   
 | 
						|
    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
 | 
						|
  }
 | 
						|
  
 | 
						|
  BasicBlock *QueryParent = QueryInst->getParent();
 | 
						|
  
 | 
						|
  Value *MemPtr = 0;
 | 
						|
  uint64_t MemSize = 0;
 | 
						|
  
 | 
						|
  // Do the scan.
 | 
						|
  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
 | 
						|
    // No dependence found.  If this is the entry block of the function, it is a
 | 
						|
    // clobber, otherwise it is non-local.
 | 
						|
    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
 | 
						|
      LocalCache = MemDepResult::getNonLocal();
 | 
						|
    else
 | 
						|
      LocalCache = MemDepResult::getClobber(QueryInst);
 | 
						|
  } else if (StoreInst *SI = dyn_cast<StoreInst>(QueryInst)) {
 | 
						|
    // If this is a volatile store, don't mess around with it.  Just return the
 | 
						|
    // previous instruction as a clobber.
 | 
						|
    if (SI->isVolatile())
 | 
						|
      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
 | 
						|
    else {
 | 
						|
      MemPtr = SI->getPointerOperand();
 | 
						|
      MemSize = AA->getTypeStoreSize(SI->getOperand(0)->getType());
 | 
						|
    }
 | 
						|
  } else if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
 | 
						|
    // If this is a volatile load, don't mess around with it.  Just return the
 | 
						|
    // previous instruction as a clobber.
 | 
						|
    if (LI->isVolatile())
 | 
						|
      LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
 | 
						|
    else {
 | 
						|
      MemPtr = LI->getPointerOperand();
 | 
						|
      MemSize = AA->getTypeStoreSize(LI->getType());
 | 
						|
    }
 | 
						|
  } else if (isFreeCall(QueryInst)) {
 | 
						|
    MemPtr = QueryInst->getOperand(1);
 | 
						|
    // calls to free() erase the entire structure, not just a field.
 | 
						|
    MemSize = ~0UL;
 | 
						|
  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
 | 
						|
    int IntrinsicID = 0;  // Intrinsic IDs start at 1.
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
 | 
						|
      IntrinsicID = II->getIntrinsicID();
 | 
						|
 | 
						|
    switch (IntrinsicID) {
 | 
						|
      case Intrinsic::lifetime_start:
 | 
						|
      case Intrinsic::lifetime_end:
 | 
						|
      case Intrinsic::invariant_start:
 | 
						|
        MemPtr = QueryInst->getOperand(2);
 | 
						|
        MemSize = cast<ConstantInt>(QueryInst->getOperand(1))->getZExtValue();
 | 
						|
        break;
 | 
						|
      case Intrinsic::invariant_end:
 | 
						|
        MemPtr = QueryInst->getOperand(3);
 | 
						|
        MemSize = cast<ConstantInt>(QueryInst->getOperand(2))->getZExtValue();
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        CallSite QueryCS = CallSite::get(QueryInst);
 | 
						|
        bool isReadOnly = AA->onlyReadsMemory(QueryCS);
 | 
						|
        LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
 | 
						|
                                               QueryParent);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Non-memory instruction.
 | 
						|
    LocalCache = MemDepResult::getClobber(--BasicBlock::iterator(ScanPos));
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we need to do a pointer scan, make it happen.
 | 
						|
  if (MemPtr) {
 | 
						|
    bool isLoad = !QueryInst->mayWriteToMemory();
 | 
						|
    if (IntrinsicInst *II = dyn_cast<MemoryUseIntrinsic>(QueryInst)) {
 | 
						|
      isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_end;
 | 
						|
    }
 | 
						|
    LocalCache = getPointerDependencyFrom(MemPtr, MemSize, isLoad, ScanPos,
 | 
						|
                                          QueryParent);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Remember the result!
 | 
						|
  if (Instruction *I = LocalCache.getInst())
 | 
						|
    ReverseLocalDeps[I].insert(QueryInst);
 | 
						|
  
 | 
						|
  return LocalCache;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// AssertSorted - This method is used when -debug is specified to verify that
 | 
						|
/// cache arrays are properly kept sorted.
 | 
						|
static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
 | 
						|
                         int Count = -1) {
 | 
						|
  if (Count == -1) Count = Cache.size();
 | 
						|
  if (Count == 0) return;
 | 
						|
 | 
						|
  for (unsigned i = 1; i != unsigned(Count); ++i)
 | 
						|
    assert(Cache[i-1] <= Cache[i] && "Cache isn't sorted!");
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// getNonLocalCallDependency - Perform a full dependency query for the
 | 
						|
/// specified call, returning the set of blocks that the value is
 | 
						|
/// potentially live across.  The returned set of results will include a
 | 
						|
/// "NonLocal" result for all blocks where the value is live across.
 | 
						|
///
 | 
						|
/// This method assumes the instruction returns a "NonLocal" dependency
 | 
						|
/// within its own block.
 | 
						|
///
 | 
						|
/// This returns a reference to an internal data structure that may be
 | 
						|
/// invalidated on the next non-local query or when an instruction is
 | 
						|
/// removed.  Clients must copy this data if they want it around longer than
 | 
						|
/// that.
 | 
						|
const MemoryDependenceAnalysis::NonLocalDepInfo &
 | 
						|
MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
 | 
						|
  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
 | 
						|
 "getNonLocalCallDependency should only be used on calls with non-local deps!");
 | 
						|
  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
 | 
						|
  NonLocalDepInfo &Cache = CacheP.first;
 | 
						|
 | 
						|
  /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
 | 
						|
  /// the cached case, this can happen due to instructions being deleted etc. In
 | 
						|
  /// the uncached case, this starts out as the set of predecessors we care
 | 
						|
  /// about.
 | 
						|
  SmallVector<BasicBlock*, 32> DirtyBlocks;
 | 
						|
  
 | 
						|
  if (!Cache.empty()) {
 | 
						|
    // Okay, we have a cache entry.  If we know it is not dirty, just return it
 | 
						|
    // with no computation.
 | 
						|
    if (!CacheP.second) {
 | 
						|
      NumCacheNonLocal++;
 | 
						|
      return Cache;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If we already have a partially computed set of results, scan them to
 | 
						|
    // determine what is dirty, seeding our initial DirtyBlocks worklist.
 | 
						|
    for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
 | 
						|
       I != E; ++I)
 | 
						|
      if (I->second.isDirty())
 | 
						|
        DirtyBlocks.push_back(I->first);
 | 
						|
    
 | 
						|
    // Sort the cache so that we can do fast binary search lookups below.
 | 
						|
    std::sort(Cache.begin(), Cache.end());
 | 
						|
    
 | 
						|
    ++NumCacheDirtyNonLocal;
 | 
						|
    //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
 | 
						|
    //     << Cache.size() << " cached: " << *QueryInst;
 | 
						|
  } else {
 | 
						|
    // Seed DirtyBlocks with each of the preds of QueryInst's block.
 | 
						|
    BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
 | 
						|
    for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
 | 
						|
      DirtyBlocks.push_back(*PI);
 | 
						|
    NumUncacheNonLocal++;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
 | 
						|
  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
 | 
						|
 | 
						|
  SmallPtrSet<BasicBlock*, 64> Visited;
 | 
						|
  
 | 
						|
  unsigned NumSortedEntries = Cache.size();
 | 
						|
  DEBUG(AssertSorted(Cache));
 | 
						|
  
 | 
						|
  // Iterate while we still have blocks to update.
 | 
						|
  while (!DirtyBlocks.empty()) {
 | 
						|
    BasicBlock *DirtyBB = DirtyBlocks.back();
 | 
						|
    DirtyBlocks.pop_back();
 | 
						|
    
 | 
						|
    // Already processed this block?
 | 
						|
    if (!Visited.insert(DirtyBB))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Do a binary search to see if we already have an entry for this block in
 | 
						|
    // the cache set.  If so, find it.
 | 
						|
    DEBUG(AssertSorted(Cache, NumSortedEntries));
 | 
						|
    NonLocalDepInfo::iterator Entry = 
 | 
						|
      std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
 | 
						|
                       std::make_pair(DirtyBB, MemDepResult()));
 | 
						|
    if (Entry != Cache.begin() && prior(Entry)->first == DirtyBB)
 | 
						|
      --Entry;
 | 
						|
    
 | 
						|
    MemDepResult *ExistingResult = 0;
 | 
						|
    if (Entry != Cache.begin()+NumSortedEntries && 
 | 
						|
        Entry->first == DirtyBB) {
 | 
						|
      // If we already have an entry, and if it isn't already dirty, the block
 | 
						|
      // is done.
 | 
						|
      if (!Entry->second.isDirty())
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // Otherwise, remember this slot so we can update the value.
 | 
						|
      ExistingResult = &Entry->second;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the dirty entry has a pointer, start scanning from it so we don't have
 | 
						|
    // to rescan the entire block.
 | 
						|
    BasicBlock::iterator ScanPos = DirtyBB->end();
 | 
						|
    if (ExistingResult) {
 | 
						|
      if (Instruction *Inst = ExistingResult->getInst()) {
 | 
						|
        ScanPos = Inst;
 | 
						|
        // We're removing QueryInst's use of Inst.
 | 
						|
        RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
 | 
						|
                             QueryCS.getInstruction());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Find out if this block has a local dependency for QueryInst.
 | 
						|
    MemDepResult Dep;
 | 
						|
    
 | 
						|
    if (ScanPos != DirtyBB->begin()) {
 | 
						|
      Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
 | 
						|
    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
 | 
						|
      // No dependence found.  If this is the entry block of the function, it is
 | 
						|
      // a clobber, otherwise it is non-local.
 | 
						|
      Dep = MemDepResult::getNonLocal();
 | 
						|
    } else {
 | 
						|
      Dep = MemDepResult::getClobber(ScanPos);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If we had a dirty entry for the block, update it.  Otherwise, just add
 | 
						|
    // a new entry.
 | 
						|
    if (ExistingResult)
 | 
						|
      *ExistingResult = Dep;
 | 
						|
    else
 | 
						|
      Cache.push_back(std::make_pair(DirtyBB, Dep));
 | 
						|
    
 | 
						|
    // If the block has a dependency (i.e. it isn't completely transparent to
 | 
						|
    // the value), remember the association!
 | 
						|
    if (!Dep.isNonLocal()) {
 | 
						|
      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
 | 
						|
      // update this when we remove instructions.
 | 
						|
      if (Instruction *Inst = Dep.getInst())
 | 
						|
        ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
 | 
						|
    } else {
 | 
						|
    
 | 
						|
      // If the block *is* completely transparent to the load, we need to check
 | 
						|
      // the predecessors of this block.  Add them to our worklist.
 | 
						|
      for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
 | 
						|
        DirtyBlocks.push_back(*PI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Cache;
 | 
						|
}
 | 
						|
 | 
						|
/// getNonLocalPointerDependency - Perform a full dependency query for an
 | 
						|
/// access to the specified (non-volatile) memory location, returning the
 | 
						|
/// set of instructions that either define or clobber the value.
 | 
						|
///
 | 
						|
/// This method assumes the pointer has a "NonLocal" dependency within its
 | 
						|
/// own block.
 | 
						|
///
 | 
						|
void MemoryDependenceAnalysis::
 | 
						|
getNonLocalPointerDependency(Value *Pointer, bool isLoad, BasicBlock *FromBB,
 | 
						|
                             SmallVectorImpl<NonLocalDepEntry> &Result) {
 | 
						|
  assert(isa<PointerType>(Pointer->getType()) &&
 | 
						|
         "Can't get pointer deps of a non-pointer!");
 | 
						|
  Result.clear();
 | 
						|
  
 | 
						|
  // We know that the pointer value is live into FromBB find the def/clobbers
 | 
						|
  // from presecessors.
 | 
						|
  const Type *EltTy = cast<PointerType>(Pointer->getType())->getElementType();
 | 
						|
  uint64_t PointeeSize = AA->getTypeStoreSize(EltTy);
 | 
						|
  
 | 
						|
  // This is the set of blocks we've inspected, and the pointer we consider in
 | 
						|
  // each block.  Because of critical edges, we currently bail out if querying
 | 
						|
  // a block with multiple different pointers.  This can happen during PHI
 | 
						|
  // translation.
 | 
						|
  DenseMap<BasicBlock*, Value*> Visited;
 | 
						|
  if (!getNonLocalPointerDepFromBB(Pointer, PointeeSize, isLoad, FromBB,
 | 
						|
                                   Result, Visited, true))
 | 
						|
    return;
 | 
						|
  Result.clear();
 | 
						|
  Result.push_back(std::make_pair(FromBB,
 | 
						|
                                  MemDepResult::getClobber(FromBB->begin())));
 | 
						|
}
 | 
						|
 | 
						|
/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
 | 
						|
/// Pointer/PointeeSize using either cached information in Cache or by doing a
 | 
						|
/// lookup (which may use dirty cache info if available).  If we do a lookup,
 | 
						|
/// add the result to the cache.
 | 
						|
MemDepResult MemoryDependenceAnalysis::
 | 
						|
GetNonLocalInfoForBlock(Value *Pointer, uint64_t PointeeSize,
 | 
						|
                        bool isLoad, BasicBlock *BB,
 | 
						|
                        NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
 | 
						|
  
 | 
						|
  // Do a binary search to see if we already have an entry for this block in
 | 
						|
  // the cache set.  If so, find it.
 | 
						|
  NonLocalDepInfo::iterator Entry =
 | 
						|
    std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
 | 
						|
                     std::make_pair(BB, MemDepResult()));
 | 
						|
  if (Entry != Cache->begin() && prior(Entry)->first == BB)
 | 
						|
    --Entry;
 | 
						|
  
 | 
						|
  MemDepResult *ExistingResult = 0;
 | 
						|
  if (Entry != Cache->begin()+NumSortedEntries && Entry->first == BB)
 | 
						|
    ExistingResult = &Entry->second;
 | 
						|
  
 | 
						|
  // If we have a cached entry, and it is non-dirty, use it as the value for
 | 
						|
  // this dependency.
 | 
						|
  if (ExistingResult && !ExistingResult->isDirty()) {
 | 
						|
    ++NumCacheNonLocalPtr;
 | 
						|
    return *ExistingResult;
 | 
						|
  }    
 | 
						|
  
 | 
						|
  // Otherwise, we have to scan for the value.  If we have a dirty cache
 | 
						|
  // entry, start scanning from its position, otherwise we scan from the end
 | 
						|
  // of the block.
 | 
						|
  BasicBlock::iterator ScanPos = BB->end();
 | 
						|
  if (ExistingResult && ExistingResult->getInst()) {
 | 
						|
    assert(ExistingResult->getInst()->getParent() == BB &&
 | 
						|
           "Instruction invalidated?");
 | 
						|
    ++NumCacheDirtyNonLocalPtr;
 | 
						|
    ScanPos = ExistingResult->getInst();
 | 
						|
    
 | 
						|
    // Eliminating the dirty entry from 'Cache', so update the reverse info.
 | 
						|
    ValueIsLoadPair CacheKey(Pointer, isLoad);
 | 
						|
    RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
 | 
						|
  } else {
 | 
						|
    ++NumUncacheNonLocalPtr;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Scan the block for the dependency.
 | 
						|
  MemDepResult Dep = getPointerDependencyFrom(Pointer, PointeeSize, isLoad, 
 | 
						|
                                              ScanPos, BB);
 | 
						|
  
 | 
						|
  // If we had a dirty entry for the block, update it.  Otherwise, just add
 | 
						|
  // a new entry.
 | 
						|
  if (ExistingResult)
 | 
						|
    *ExistingResult = Dep;
 | 
						|
  else
 | 
						|
    Cache->push_back(std::make_pair(BB, Dep));
 | 
						|
  
 | 
						|
  // If the block has a dependency (i.e. it isn't completely transparent to
 | 
						|
  // the value), remember the reverse association because we just added it
 | 
						|
  // to Cache!
 | 
						|
  if (Dep.isNonLocal())
 | 
						|
    return Dep;
 | 
						|
  
 | 
						|
  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
 | 
						|
  // update MemDep when we remove instructions.
 | 
						|
  Instruction *Inst = Dep.getInst();
 | 
						|
  assert(Inst && "Didn't depend on anything?");
 | 
						|
  ValueIsLoadPair CacheKey(Pointer, isLoad);
 | 
						|
  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
 | 
						|
  return Dep;
 | 
						|
}
 | 
						|
 | 
						|
/// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
 | 
						|
/// number of elements in the array that are already properly ordered.  This is
 | 
						|
/// optimized for the case when only a few entries are added.
 | 
						|
static void 
 | 
						|
SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
 | 
						|
                         unsigned NumSortedEntries) {
 | 
						|
  switch (Cache.size() - NumSortedEntries) {
 | 
						|
  case 0:
 | 
						|
    // done, no new entries.
 | 
						|
    break;
 | 
						|
  case 2: {
 | 
						|
    // Two new entries, insert the last one into place.
 | 
						|
    MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
 | 
						|
    Cache.pop_back();
 | 
						|
    MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
 | 
						|
      std::upper_bound(Cache.begin(), Cache.end()-1, Val);
 | 
						|
    Cache.insert(Entry, Val);
 | 
						|
    // FALL THROUGH.
 | 
						|
  }
 | 
						|
  case 1:
 | 
						|
    // One new entry, Just insert the new value at the appropriate position.
 | 
						|
    if (Cache.size() != 1) {
 | 
						|
      MemoryDependenceAnalysis::NonLocalDepEntry Val = Cache.back();
 | 
						|
      Cache.pop_back();
 | 
						|
      MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
 | 
						|
        std::upper_bound(Cache.begin(), Cache.end(), Val);
 | 
						|
      Cache.insert(Entry, Val);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // Added many values, do a full scale sort.
 | 
						|
    std::sort(Cache.begin(), Cache.end());
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isPHITranslatable - Return true if the specified computation is derived from
 | 
						|
/// a PHI node in the current block and if it is simple enough for us to handle.
 | 
						|
static bool isPHITranslatable(Instruction *Inst) {
 | 
						|
  if (isa<PHINode>(Inst))
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  // We can handle bitcast of a PHI, but the PHI needs to be in the same block
 | 
						|
  // as the bitcast.
 | 
						|
  if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
 | 
						|
    Instruction *OpI = dyn_cast<Instruction>(BC->getOperand(0));
 | 
						|
    if (OpI == 0 || OpI->getParent() != Inst->getParent())
 | 
						|
      return true;
 | 
						|
    return isPHITranslatable(OpI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We can translate a GEP if all of its operands defined in this block are phi
 | 
						|
  // translatable. 
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
 | 
						|
    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
 | 
						|
      Instruction *OpI = dyn_cast<Instruction>(GEP->getOperand(i));
 | 
						|
      if (OpI == 0 || OpI->getParent() != Inst->getParent())
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      if (!isPHITranslatable(OpI))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (Inst->getOpcode() == Instruction::Add &&
 | 
						|
      isa<ConstantInt>(Inst->getOperand(1))) {
 | 
						|
    Instruction *OpI = dyn_cast<Instruction>(Inst->getOperand(0));
 | 
						|
    if (OpI == 0 || OpI->getParent() != Inst->getParent())
 | 
						|
      return true;
 | 
						|
    return isPHITranslatable(OpI);
 | 
						|
  }
 | 
						|
 | 
						|
  //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
 | 
						|
  //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
 | 
						|
  //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// GetPHITranslatedValue - Given a computation that satisfied the
 | 
						|
/// isPHITranslatable predicate, see if we can translate the computation into
 | 
						|
/// the specified predecessor block.  If so, return that value.
 | 
						|
Value *MemoryDependenceAnalysis::
 | 
						|
GetPHITranslatedValue(Value *InVal, BasicBlock *CurBB, BasicBlock *Pred,
 | 
						|
                      const TargetData *TD) const {  
 | 
						|
  // If the input value is not an instruction, or if it is not defined in CurBB,
 | 
						|
  // then we don't need to phi translate it.
 | 
						|
  Instruction *Inst = dyn_cast<Instruction>(InVal);
 | 
						|
  if (Inst == 0 || Inst->getParent() != CurBB)
 | 
						|
    return InVal;
 | 
						|
  
 | 
						|
  if (PHINode *PN = dyn_cast<PHINode>(Inst))
 | 
						|
    return PN->getIncomingValueForBlock(Pred);
 | 
						|
  
 | 
						|
  // Handle bitcast of PHI.
 | 
						|
  if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
 | 
						|
    // PHI translate the input operand.
 | 
						|
    Value *PHIIn = GetPHITranslatedValue(BC->getOperand(0), CurBB, Pred, TD);
 | 
						|
    if (PHIIn == 0) return 0;
 | 
						|
    
 | 
						|
    // Constants are trivial to phi translate.
 | 
						|
    if (Constant *C = dyn_cast<Constant>(PHIIn))
 | 
						|
      return ConstantExpr::getBitCast(C, BC->getType());
 | 
						|
    
 | 
						|
    // Otherwise we have to see if a bitcasted version of the incoming pointer
 | 
						|
    // is available.  If so, we can use it, otherwise we have to fail.
 | 
						|
    for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
 | 
						|
         UI != E; ++UI) {
 | 
						|
      if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI))
 | 
						|
        if (BCI->getType() == BC->getType())
 | 
						|
          return BCI;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle getelementptr with at least one PHI translatable operand.
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
 | 
						|
    SmallVector<Value*, 8> GEPOps;
 | 
						|
    BasicBlock *CurBB = GEP->getParent();
 | 
						|
    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
 | 
						|
      Value *GEPOp = GEP->getOperand(i);
 | 
						|
      // No PHI translation is needed of operands whose values are live in to
 | 
						|
      // the predecessor block.
 | 
						|
      if (!isa<Instruction>(GEPOp) ||
 | 
						|
          cast<Instruction>(GEPOp)->getParent() != CurBB) {
 | 
						|
        GEPOps.push_back(GEPOp);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If the operand is a phi node, do phi translation.
 | 
						|
      Value *InOp = GetPHITranslatedValue(GEPOp, CurBB, Pred, TD);
 | 
						|
      if (InOp == 0) return 0;
 | 
						|
      
 | 
						|
      GEPOps.push_back(InOp);
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Simplify the GEP to handle 'gep x, 0' -> x etc.
 | 
						|
    if (Value *V = SimplifyGEPInst(&GEPOps[0], GEPOps.size(), TD))
 | 
						|
      return V;
 | 
						|
 | 
						|
    // Scan to see if we have this GEP available.
 | 
						|
    Value *APHIOp = GEPOps[0];
 | 
						|
    for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
 | 
						|
         UI != E; ++UI) {
 | 
						|
      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
 | 
						|
        if (GEPI->getType() == GEP->getType() &&
 | 
						|
            GEPI->getNumOperands() == GEPOps.size() &&
 | 
						|
            GEPI->getParent()->getParent() == CurBB->getParent()) {
 | 
						|
          bool Mismatch = false;
 | 
						|
          for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
 | 
						|
            if (GEPI->getOperand(i) != GEPOps[i]) {
 | 
						|
              Mismatch = true;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          if (!Mismatch)
 | 
						|
            return GEPI;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Handle add with a constant RHS.
 | 
						|
  if (Inst->getOpcode() == Instruction::Add &&
 | 
						|
      isa<ConstantInt>(Inst->getOperand(1))) {
 | 
						|
    // PHI translate the LHS.
 | 
						|
    Value *LHS;
 | 
						|
    Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
 | 
						|
    Instruction *OpI = dyn_cast<Instruction>(Inst->getOperand(0));
 | 
						|
    bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
 | 
						|
    bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
 | 
						|
    
 | 
						|
    if (OpI == 0 || OpI->getParent() != Inst->getParent())
 | 
						|
      LHS = Inst->getOperand(0);
 | 
						|
    else {
 | 
						|
      LHS = GetPHITranslatedValue(Inst->getOperand(0), CurBB, Pred, TD);
 | 
						|
      if (LHS == 0)
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the PHI translated LHS is an add of a constant, fold the immediates.
 | 
						|
    if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
 | 
						|
      if (BOp->getOpcode() == Instruction::Add)
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
 | 
						|
          LHS = BOp->getOperand(0);
 | 
						|
          RHS = ConstantExpr::getAdd(RHS, CI);
 | 
						|
          isNSW = isNUW = false;
 | 
						|
        }
 | 
						|
    
 | 
						|
    // See if the add simplifies away.
 | 
						|
    if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD))
 | 
						|
      return Res;
 | 
						|
    
 | 
						|
    // Otherwise, see if we have this add available somewhere.
 | 
						|
    for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end();
 | 
						|
         UI != E; ++UI) {
 | 
						|
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI))
 | 
						|
        if (BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
 | 
						|
            BO->getParent()->getParent() == CurBB->getParent())
 | 
						|
          return BO;
 | 
						|
    }
 | 
						|
    
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// GetAvailablePHITranslatePointer - Return the value computed by
 | 
						|
/// PHITranslatePointer if it dominates PredBB, otherwise return null.
 | 
						|
Value *MemoryDependenceAnalysis::
 | 
						|
GetAvailablePHITranslatedValue(Value *V,
 | 
						|
                               BasicBlock *CurBB, BasicBlock *PredBB,
 | 
						|
                               const TargetData *TD,
 | 
						|
                               const DominatorTree &DT) const {
 | 
						|
  // See if PHI translation succeeds.
 | 
						|
  V = GetPHITranslatedValue(V, CurBB, PredBB, TD);
 | 
						|
  if (V == 0) return 0;
 | 
						|
  
 | 
						|
  // Make sure the value is live in the predecessor.
 | 
						|
  if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
 | 
						|
    if (!DT.dominates(Inst->getParent(), PredBB))
 | 
						|
      return 0;
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// InsertPHITranslatedPointer - Insert a computation of the PHI translated
 | 
						|
/// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
 | 
						|
/// block.  All newly created instructions are added to the NewInsts list.
 | 
						|
///
 | 
						|
Value *MemoryDependenceAnalysis::
 | 
						|
InsertPHITranslatedPointer(Value *InVal, BasicBlock *CurBB,
 | 
						|
                           BasicBlock *PredBB, const TargetData *TD,
 | 
						|
                           const DominatorTree &DT,
 | 
						|
                           SmallVectorImpl<Instruction*> &NewInsts) const {
 | 
						|
  // See if we have a version of this value already available and dominating
 | 
						|
  // PredBB.  If so, there is no need to insert a new copy.
 | 
						|
  if (Value *Res = GetAvailablePHITranslatedValue(InVal, CurBB, PredBB, TD, DT))
 | 
						|
    return Res;
 | 
						|
  
 | 
						|
  // If we don't have an available version of this value, it must be an
 | 
						|
  // instruction.
 | 
						|
  Instruction *Inst = cast<Instruction>(InVal);
 | 
						|
  
 | 
						|
  // Handle bitcast of PHI translatable value.
 | 
						|
  if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) {
 | 
						|
    Value *OpVal = InsertPHITranslatedPointer(BC->getOperand(0),
 | 
						|
                                              CurBB, PredBB, TD, DT, NewInsts);
 | 
						|
    if (OpVal == 0) return 0;
 | 
						|
      
 | 
						|
    // Otherwise insert a bitcast at the end of PredBB.
 | 
						|
    BitCastInst *New = new BitCastInst(OpVal, InVal->getType(),
 | 
						|
                                       InVal->getName()+".phi.trans.insert",
 | 
						|
                                       PredBB->getTerminator());
 | 
						|
    NewInsts.push_back(New);
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Handle getelementptr with at least one PHI operand.
 | 
						|
  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
 | 
						|
    SmallVector<Value*, 8> GEPOps;
 | 
						|
    BasicBlock *CurBB = GEP->getParent();
 | 
						|
    for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
 | 
						|
      Value *OpVal = InsertPHITranslatedPointer(GEP->getOperand(i),
 | 
						|
                                                CurBB, PredBB, TD, DT, NewInsts);
 | 
						|
      if (OpVal == 0) return 0;
 | 
						|
      GEPOps.push_back(OpVal);
 | 
						|
    }
 | 
						|
    
 | 
						|
    GetElementPtrInst *Result = 
 | 
						|
      GetElementPtrInst::Create(GEPOps[0], GEPOps.begin()+1, GEPOps.end(),
 | 
						|
                                InVal->getName()+".phi.trans.insert",
 | 
						|
                                PredBB->getTerminator());
 | 
						|
    Result->setIsInBounds(GEP->isInBounds());
 | 
						|
    NewInsts.push_back(Result);
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  
 | 
						|
#if 0
 | 
						|
  // FIXME: This code works, but it is unclear that we actually want to insert
 | 
						|
  // a big chain of computation in order to make a value available in a block.
 | 
						|
  // This needs to be evaluated carefully to consider its cost trade offs.
 | 
						|
  
 | 
						|
  // Handle add with a constant RHS.
 | 
						|
  if (Inst->getOpcode() == Instruction::Add &&
 | 
						|
      isa<ConstantInt>(Inst->getOperand(1))) {
 | 
						|
    // PHI translate the LHS.
 | 
						|
    Value *OpVal = InsertPHITranslatedPointer(Inst->getOperand(0),
 | 
						|
                                              CurBB, PredBB, TD, DT, NewInsts);
 | 
						|
    if (OpVal == 0) return 0;
 | 
						|
    
 | 
						|
    BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
 | 
						|
                                           InVal->getName()+".phi.trans.insert",
 | 
						|
                                                    PredBB->getTerminator());
 | 
						|
    Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
 | 
						|
    Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
 | 
						|
    NewInsts.push_back(Res);
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getNonLocalPointerDepFromBB - Perform a dependency query based on
 | 
						|
/// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
 | 
						|
/// results to the results vector and keep track of which blocks are visited in
 | 
						|
/// 'Visited'.
 | 
						|
///
 | 
						|
/// This has special behavior for the first block queries (when SkipFirstBlock
 | 
						|
/// is true).  In this special case, it ignores the contents of the specified
 | 
						|
/// block and starts returning dependence info for its predecessors.
 | 
						|
///
 | 
						|
/// This function returns false on success, or true to indicate that it could
 | 
						|
/// not compute dependence information for some reason.  This should be treated
 | 
						|
/// as a clobber dependence on the first instruction in the predecessor block.
 | 
						|
bool MemoryDependenceAnalysis::
 | 
						|
getNonLocalPointerDepFromBB(Value *Pointer, uint64_t PointeeSize,
 | 
						|
                            bool isLoad, BasicBlock *StartBB,
 | 
						|
                            SmallVectorImpl<NonLocalDepEntry> &Result,
 | 
						|
                            DenseMap<BasicBlock*, Value*> &Visited,
 | 
						|
                            bool SkipFirstBlock) {
 | 
						|
  
 | 
						|
  // Look up the cached info for Pointer.
 | 
						|
  ValueIsLoadPair CacheKey(Pointer, isLoad);
 | 
						|
  
 | 
						|
  std::pair<BBSkipFirstBlockPair, NonLocalDepInfo> *CacheInfo =
 | 
						|
    &NonLocalPointerDeps[CacheKey];
 | 
						|
  NonLocalDepInfo *Cache = &CacheInfo->second;
 | 
						|
 | 
						|
  // If we have valid cached information for exactly the block we are
 | 
						|
  // investigating, just return it with no recomputation.
 | 
						|
  if (CacheInfo->first == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
 | 
						|
    // We have a fully cached result for this query then we can just return the
 | 
						|
    // cached results and populate the visited set.  However, we have to verify
 | 
						|
    // that we don't already have conflicting results for these blocks.  Check
 | 
						|
    // to ensure that if a block in the results set is in the visited set that
 | 
						|
    // it was for the same pointer query.
 | 
						|
    if (!Visited.empty()) {
 | 
						|
      for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
 | 
						|
           I != E; ++I) {
 | 
						|
        DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->first);
 | 
						|
        if (VI == Visited.end() || VI->second == Pointer) continue;
 | 
						|
        
 | 
						|
        // We have a pointer mismatch in a block.  Just return clobber, saying
 | 
						|
        // that something was clobbered in this result.  We could also do a
 | 
						|
        // non-fully cached query, but there is little point in doing this.
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
 | 
						|
         I != E; ++I) {
 | 
						|
      Visited.insert(std::make_pair(I->first, Pointer));
 | 
						|
      if (!I->second.isNonLocal())
 | 
						|
        Result.push_back(*I);
 | 
						|
    }
 | 
						|
    ++NumCacheCompleteNonLocalPtr;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Otherwise, either this is a new block, a block with an invalid cache
 | 
						|
  // pointer or one that we're about to invalidate by putting more info into it
 | 
						|
  // than its valid cache info.  If empty, the result will be valid cache info,
 | 
						|
  // otherwise it isn't.
 | 
						|
  if (Cache->empty())
 | 
						|
    CacheInfo->first = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
 | 
						|
  else
 | 
						|
    CacheInfo->first = BBSkipFirstBlockPair();
 | 
						|
  
 | 
						|
  SmallVector<BasicBlock*, 32> Worklist;
 | 
						|
  Worklist.push_back(StartBB);
 | 
						|
  
 | 
						|
  // Keep track of the entries that we know are sorted.  Previously cached
 | 
						|
  // entries will all be sorted.  The entries we add we only sort on demand (we
 | 
						|
  // don't insert every element into its sorted position).  We know that we
 | 
						|
  // won't get any reuse from currently inserted values, because we don't
 | 
						|
  // revisit blocks after we insert info for them.
 | 
						|
  unsigned NumSortedEntries = Cache->size();
 | 
						|
  DEBUG(AssertSorted(*Cache));
 | 
						|
  
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    BasicBlock *BB = Worklist.pop_back_val();
 | 
						|
    
 | 
						|
    // Skip the first block if we have it.
 | 
						|
    if (!SkipFirstBlock) {
 | 
						|
      // Analyze the dependency of *Pointer in FromBB.  See if we already have
 | 
						|
      // been here.
 | 
						|
      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
 | 
						|
 | 
						|
      // Get the dependency info for Pointer in BB.  If we have cached
 | 
						|
      // information, we will use it, otherwise we compute it.
 | 
						|
      DEBUG(AssertSorted(*Cache, NumSortedEntries));
 | 
						|
      MemDepResult Dep = GetNonLocalInfoForBlock(Pointer, PointeeSize, isLoad,
 | 
						|
                                                 BB, Cache, NumSortedEntries);
 | 
						|
      
 | 
						|
      // If we got a Def or Clobber, add this to the list of results.
 | 
						|
      if (!Dep.isNonLocal()) {
 | 
						|
        Result.push_back(NonLocalDepEntry(BB, Dep));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If 'Pointer' is an instruction defined in this block, then we need to do
 | 
						|
    // phi translation to change it into a value live in the predecessor block.
 | 
						|
    // If phi translation fails, then we can't continue dependence analysis.
 | 
						|
    Instruction *PtrInst = dyn_cast<Instruction>(Pointer);
 | 
						|
    bool NeedsPHITranslation = PtrInst && PtrInst->getParent() == BB;
 | 
						|
    
 | 
						|
    // If no PHI translation is needed, just add all the predecessors of this
 | 
						|
    // block to scan them as well.
 | 
						|
    if (!NeedsPHITranslation) {
 | 
						|
      SkipFirstBlock = false;
 | 
						|
      for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
 | 
						|
        // Verify that we haven't looked at this block yet.
 | 
						|
        std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
 | 
						|
          InsertRes = Visited.insert(std::make_pair(*PI, Pointer));
 | 
						|
        if (InsertRes.second) {
 | 
						|
          // First time we've looked at *PI.
 | 
						|
          Worklist.push_back(*PI);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        
 | 
						|
        // If we have seen this block before, but it was with a different
 | 
						|
        // pointer then we have a phi translation failure and we have to treat
 | 
						|
        // this as a clobber.
 | 
						|
        if (InsertRes.first->second != Pointer)
 | 
						|
          goto PredTranslationFailure;
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If we do need to do phi translation, then there are a bunch of different
 | 
						|
    // cases, because we have to find a Value* live in the predecessor block. We
 | 
						|
    // know that PtrInst is defined in this block at least.
 | 
						|
 | 
						|
    // We may have added values to the cache list before this PHI translation.
 | 
						|
    // If so, we haven't done anything to ensure that the cache remains sorted.
 | 
						|
    // Sort it now (if needed) so that recursive invocations of
 | 
						|
    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
 | 
						|
    // value will only see properly sorted cache arrays.
 | 
						|
    if (Cache && NumSortedEntries != Cache->size()) {
 | 
						|
      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
 | 
						|
      NumSortedEntries = Cache->size();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is a computation derived from a PHI node, use the suitably
 | 
						|
    // translated incoming values for each pred as the phi translated version.
 | 
						|
    if (!isPHITranslatable(PtrInst))
 | 
						|
      goto PredTranslationFailure;
 | 
						|
 | 
						|
    Cache = 0;
 | 
						|
      
 | 
						|
    for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
 | 
						|
      BasicBlock *Pred = *PI;
 | 
						|
      // Get the PHI translated pointer in this predecessor.  This can fail and
 | 
						|
      // return null if not translatable.
 | 
						|
      Value *PredPtr = GetPHITranslatedValue(PtrInst, BB, Pred, TD);
 | 
						|
      
 | 
						|
      // Check to see if we have already visited this pred block with another
 | 
						|
      // pointer.  If so, we can't do this lookup.  This failure can occur
 | 
						|
      // with PHI translation when a critical edge exists and the PHI node in
 | 
						|
      // the successor translates to a pointer value different than the
 | 
						|
      // pointer the block was first analyzed with.
 | 
						|
      std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
 | 
						|
        InsertRes = Visited.insert(std::make_pair(Pred, PredPtr));
 | 
						|
 | 
						|
      if (!InsertRes.second) {
 | 
						|
        // If the predecessor was visited with PredPtr, then we already did
 | 
						|
        // the analysis and can ignore it.
 | 
						|
        if (InsertRes.first->second == PredPtr)
 | 
						|
          continue;
 | 
						|
        
 | 
						|
        // Otherwise, the block was previously analyzed with a different
 | 
						|
        // pointer.  We can't represent the result of this case, so we just
 | 
						|
        // treat this as a phi translation failure.
 | 
						|
        goto PredTranslationFailure;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // If PHI translation was unable to find an available pointer in this
 | 
						|
      // predecessor, then we have to assume that the pointer is clobbered in
 | 
						|
      // that predecessor.  We can still do PRE of the load, which would insert
 | 
						|
      // a computation of the pointer in this predecessor.
 | 
						|
      if (PredPtr == 0) {
 | 
						|
        // Add the entry to the Result list.
 | 
						|
        NonLocalDepEntry Entry(Pred,
 | 
						|
                               MemDepResult::getClobber(Pred->getTerminator()));
 | 
						|
        Result.push_back(Entry);
 | 
						|
 | 
						|
        // Add it to the cache for this CacheKey so that subsequent queries get
 | 
						|
        // this result.
 | 
						|
        Cache = &NonLocalPointerDeps[CacheKey].second;
 | 
						|
        MemoryDependenceAnalysis::NonLocalDepInfo::iterator It =
 | 
						|
          std::upper_bound(Cache->begin(), Cache->end(), Entry);
 | 
						|
        
 | 
						|
        if (It != Cache->begin() && prior(It)->first == Pred)
 | 
						|
          --It;
 | 
						|
 | 
						|
        if (It == Cache->end() || It->first != Pred) {
 | 
						|
          Cache->insert(It, Entry);
 | 
						|
          // Add it to the reverse map.
 | 
						|
          ReverseNonLocalPtrDeps[Pred->getTerminator()].insert(CacheKey);
 | 
						|
        } else if (!It->second.isDirty()) {
 | 
						|
          // noop
 | 
						|
        } else if (It->second.getInst() == Pred->getTerminator()) {
 | 
						|
          // Same instruction, clear the dirty marker.
 | 
						|
          It->second = Entry.second;
 | 
						|
        } else if (It->second.getInst() == 0) {
 | 
						|
          // Dirty, with no instruction, just add this.
 | 
						|
          It->second = Entry.second;
 | 
						|
          ReverseNonLocalPtrDeps[Pred->getTerminator()].insert(CacheKey);
 | 
						|
        } else {
 | 
						|
          // Otherwise, dirty with a different instruction.
 | 
						|
          RemoveFromReverseMap(ReverseNonLocalPtrDeps, It->second.getInst(),
 | 
						|
                               CacheKey);
 | 
						|
          It->second = Entry.second;
 | 
						|
          ReverseNonLocalPtrDeps[Pred->getTerminator()].insert(CacheKey);
 | 
						|
        }
 | 
						|
        Cache = 0;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // FIXME: it is entirely possible that PHI translating will end up with
 | 
						|
      // the same value.  Consider PHI translating something like:
 | 
						|
      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
 | 
						|
      // to recurse here, pedantically speaking.
 | 
						|
      
 | 
						|
      // If we have a problem phi translating, fall through to the code below
 | 
						|
      // to handle the failure condition.
 | 
						|
      if (getNonLocalPointerDepFromBB(PredPtr, PointeeSize, isLoad, Pred,
 | 
						|
                                      Result, Visited))
 | 
						|
        goto PredTranslationFailure;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
 | 
						|
    CacheInfo = &NonLocalPointerDeps[CacheKey];
 | 
						|
    Cache = &CacheInfo->second;
 | 
						|
    NumSortedEntries = Cache->size();
 | 
						|
    
 | 
						|
    // Since we did phi translation, the "Cache" set won't contain all of the
 | 
						|
    // results for the query.  This is ok (we can still use it to accelerate
 | 
						|
    // specific block queries) but we can't do the fastpath "return all
 | 
						|
    // results from the set"  Clear out the indicator for this.
 | 
						|
    CacheInfo->first = BBSkipFirstBlockPair();
 | 
						|
    SkipFirstBlock = false;
 | 
						|
    continue;
 | 
						|
 | 
						|
  PredTranslationFailure:
 | 
						|
    
 | 
						|
    if (Cache == 0) {
 | 
						|
      // Refresh the CacheInfo/Cache pointer if it got invalidated.
 | 
						|
      CacheInfo = &NonLocalPointerDeps[CacheKey];
 | 
						|
      Cache = &CacheInfo->second;
 | 
						|
      NumSortedEntries = Cache->size();
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Since we did phi translation, the "Cache" set won't contain all of the
 | 
						|
    // results for the query.  This is ok (we can still use it to accelerate
 | 
						|
    // specific block queries) but we can't do the fastpath "return all
 | 
						|
    // results from the set"  Clear out the indicator for this.
 | 
						|
    CacheInfo->first = BBSkipFirstBlockPair();
 | 
						|
    
 | 
						|
    // If *nothing* works, mark the pointer as being clobbered by the first
 | 
						|
    // instruction in this block.
 | 
						|
    //
 | 
						|
    // If this is the magic first block, return this as a clobber of the whole
 | 
						|
    // incoming value.  Since we can't phi translate to one of the predecessors,
 | 
						|
    // we have to bail out.
 | 
						|
    if (SkipFirstBlock)
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
 | 
						|
      assert(I != Cache->rend() && "Didn't find current block??");
 | 
						|
      if (I->first != BB)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      assert(I->second.isNonLocal() &&
 | 
						|
             "Should only be here with transparent block");
 | 
						|
      I->second = MemDepResult::getClobber(BB->begin());
 | 
						|
      ReverseNonLocalPtrDeps[BB->begin()].insert(CacheKey);
 | 
						|
      Result.push_back(*I);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we're done now.  If we added new values to the cache, re-sort it.
 | 
						|
  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
 | 
						|
  DEBUG(AssertSorted(*Cache));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveCachedNonLocalPointerDependencies - If P exists in
 | 
						|
/// CachedNonLocalPointerInfo, remove it.
 | 
						|
void MemoryDependenceAnalysis::
 | 
						|
RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
 | 
						|
  CachedNonLocalPointerInfo::iterator It = 
 | 
						|
    NonLocalPointerDeps.find(P);
 | 
						|
  if (It == NonLocalPointerDeps.end()) return;
 | 
						|
  
 | 
						|
  // Remove all of the entries in the BB->val map.  This involves removing
 | 
						|
  // instructions from the reverse map.
 | 
						|
  NonLocalDepInfo &PInfo = It->second.second;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
 | 
						|
    Instruction *Target = PInfo[i].second.getInst();
 | 
						|
    if (Target == 0) continue;  // Ignore non-local dep results.
 | 
						|
    assert(Target->getParent() == PInfo[i].first);
 | 
						|
    
 | 
						|
    // Eliminating the dirty entry from 'Cache', so update the reverse info.
 | 
						|
    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
 | 
						|
  NonLocalPointerDeps.erase(It);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// invalidateCachedPointerInfo - This method is used to invalidate cached
 | 
						|
/// information about the specified pointer, because it may be too
 | 
						|
/// conservative in memdep.  This is an optional call that can be used when
 | 
						|
/// the client detects an equivalence between the pointer and some other
 | 
						|
/// value and replaces the other value with ptr. This can make Ptr available
 | 
						|
/// in more places that cached info does not necessarily keep.
 | 
						|
void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
 | 
						|
  // If Ptr isn't really a pointer, just ignore it.
 | 
						|
  if (!isa<PointerType>(Ptr->getType())) return;
 | 
						|
  // Flush store info for the pointer.
 | 
						|
  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
 | 
						|
  // Flush load info for the pointer.
 | 
						|
  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
 | 
						|
}
 | 
						|
 | 
						|
/// removeInstruction - Remove an instruction from the dependence analysis,
 | 
						|
/// updating the dependence of instructions that previously depended on it.
 | 
						|
/// This method attempts to keep the cache coherent using the reverse map.
 | 
						|
void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
 | 
						|
  // Walk through the Non-local dependencies, removing this one as the value
 | 
						|
  // for any cached queries.
 | 
						|
  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
 | 
						|
  if (NLDI != NonLocalDeps.end()) {
 | 
						|
    NonLocalDepInfo &BlockMap = NLDI->second.first;
 | 
						|
    for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
 | 
						|
         DI != DE; ++DI)
 | 
						|
      if (Instruction *Inst = DI->second.getInst())
 | 
						|
        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
 | 
						|
    NonLocalDeps.erase(NLDI);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have a cached local dependence query for this instruction, remove it.
 | 
						|
  //
 | 
						|
  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
 | 
						|
  if (LocalDepEntry != LocalDeps.end()) {
 | 
						|
    // Remove us from DepInst's reverse set now that the local dep info is gone.
 | 
						|
    if (Instruction *Inst = LocalDepEntry->second.getInst())
 | 
						|
      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
 | 
						|
 | 
						|
    // Remove this local dependency info.
 | 
						|
    LocalDeps.erase(LocalDepEntry);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we have any cached pointer dependencies on this instruction, remove
 | 
						|
  // them.  If the instruction has non-pointer type, then it can't be a pointer
 | 
						|
  // base.
 | 
						|
  
 | 
						|
  // Remove it from both the load info and the store info.  The instruction
 | 
						|
  // can't be in either of these maps if it is non-pointer.
 | 
						|
  if (isa<PointerType>(RemInst->getType())) {
 | 
						|
    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
 | 
						|
    RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Loop over all of the things that depend on the instruction we're removing.
 | 
						|
  // 
 | 
						|
  SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
 | 
						|
 | 
						|
  // If we find RemInst as a clobber or Def in any of the maps for other values,
 | 
						|
  // we need to replace its entry with a dirty version of the instruction after
 | 
						|
  // it.  If RemInst is a terminator, we use a null dirty value.
 | 
						|
  //
 | 
						|
  // Using a dirty version of the instruction after RemInst saves having to scan
 | 
						|
  // the entire block to get to this point.
 | 
						|
  MemDepResult NewDirtyVal;
 | 
						|
  if (!RemInst->isTerminator())
 | 
						|
    NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
 | 
						|
  
 | 
						|
  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
 | 
						|
  if (ReverseDepIt != ReverseLocalDeps.end()) {
 | 
						|
    SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
 | 
						|
    // RemInst can't be the terminator if it has local stuff depending on it.
 | 
						|
    assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
 | 
						|
           "Nothing can locally depend on a terminator");
 | 
						|
    
 | 
						|
    for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
 | 
						|
         E = ReverseDeps.end(); I != E; ++I) {
 | 
						|
      Instruction *InstDependingOnRemInst = *I;
 | 
						|
      assert(InstDependingOnRemInst != RemInst &&
 | 
						|
             "Already removed our local dep info");
 | 
						|
                        
 | 
						|
      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
 | 
						|
      
 | 
						|
      // Make sure to remember that new things depend on NewDepInst.
 | 
						|
      assert(NewDirtyVal.getInst() && "There is no way something else can have "
 | 
						|
             "a local dep on this if it is a terminator!");
 | 
						|
      ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(), 
 | 
						|
                                                InstDependingOnRemInst));
 | 
						|
    }
 | 
						|
    
 | 
						|
    ReverseLocalDeps.erase(ReverseDepIt);
 | 
						|
 | 
						|
    // Add new reverse deps after scanning the set, to avoid invalidating the
 | 
						|
    // 'ReverseDeps' reference.
 | 
						|
    while (!ReverseDepsToAdd.empty()) {
 | 
						|
      ReverseLocalDeps[ReverseDepsToAdd.back().first]
 | 
						|
        .insert(ReverseDepsToAdd.back().second);
 | 
						|
      ReverseDepsToAdd.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
 | 
						|
  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
 | 
						|
    SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
 | 
						|
    for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
 | 
						|
      
 | 
						|
      PerInstNLInfo &INLD = NonLocalDeps[*I];
 | 
						|
      // The information is now dirty!
 | 
						|
      INLD.second = true;
 | 
						|
      
 | 
						|
      for (NonLocalDepInfo::iterator DI = INLD.first.begin(), 
 | 
						|
           DE = INLD.first.end(); DI != DE; ++DI) {
 | 
						|
        if (DI->second.getInst() != RemInst) continue;
 | 
						|
        
 | 
						|
        // Convert to a dirty entry for the subsequent instruction.
 | 
						|
        DI->second = NewDirtyVal;
 | 
						|
        
 | 
						|
        if (Instruction *NextI = NewDirtyVal.getInst())
 | 
						|
          ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ReverseNonLocalDeps.erase(ReverseDepIt);
 | 
						|
 | 
						|
    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
 | 
						|
    while (!ReverseDepsToAdd.empty()) {
 | 
						|
      ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
 | 
						|
        .insert(ReverseDepsToAdd.back().second);
 | 
						|
      ReverseDepsToAdd.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
 | 
						|
  // value in the NonLocalPointerDeps info.
 | 
						|
  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
 | 
						|
    ReverseNonLocalPtrDeps.find(RemInst);
 | 
						|
  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
 | 
						|
    SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
 | 
						|
    SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
 | 
						|
    
 | 
						|
    for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
 | 
						|
         E = Set.end(); I != E; ++I) {
 | 
						|
      ValueIsLoadPair P = *I;
 | 
						|
      assert(P.getPointer() != RemInst &&
 | 
						|
             "Already removed NonLocalPointerDeps info for RemInst");
 | 
						|
      
 | 
						|
      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].second;
 | 
						|
      
 | 
						|
      // The cache is not valid for any specific block anymore.
 | 
						|
      NonLocalPointerDeps[P].first = BBSkipFirstBlockPair();
 | 
						|
      
 | 
						|
      // Update any entries for RemInst to use the instruction after it.
 | 
						|
      for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
 | 
						|
           DI != DE; ++DI) {
 | 
						|
        if (DI->second.getInst() != RemInst) continue;
 | 
						|
        
 | 
						|
        // Convert to a dirty entry for the subsequent instruction.
 | 
						|
        DI->second = NewDirtyVal;
 | 
						|
        
 | 
						|
        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
 | 
						|
          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
 | 
						|
      // subsequent value may invalidate the sortedness.
 | 
						|
      std::sort(NLPDI.begin(), NLPDI.end());
 | 
						|
    }
 | 
						|
    
 | 
						|
    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
 | 
						|
    
 | 
						|
    while (!ReversePtrDepsToAdd.empty()) {
 | 
						|
      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
 | 
						|
        .insert(ReversePtrDepsToAdd.back().second);
 | 
						|
      ReversePtrDepsToAdd.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
 | 
						|
  AA->deleteValue(RemInst);
 | 
						|
  DEBUG(verifyRemoved(RemInst));
 | 
						|
}
 | 
						|
/// verifyRemoved - Verify that the specified instruction does not occur
 | 
						|
/// in our internal data structures.
 | 
						|
void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
 | 
						|
  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
 | 
						|
       E = LocalDeps.end(); I != E; ++I) {
 | 
						|
    assert(I->first != D && "Inst occurs in data structures");
 | 
						|
    assert(I->second.getInst() != D &&
 | 
						|
           "Inst occurs in data structures");
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
 | 
						|
       E = NonLocalPointerDeps.end(); I != E; ++I) {
 | 
						|
    assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
 | 
						|
    const NonLocalDepInfo &Val = I->second.second;
 | 
						|
    for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
 | 
						|
         II != E; ++II)
 | 
						|
      assert(II->second.getInst() != D && "Inst occurs as NLPD value");
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
 | 
						|
       E = NonLocalDeps.end(); I != E; ++I) {
 | 
						|
    assert(I->first != D && "Inst occurs in data structures");
 | 
						|
    const PerInstNLInfo &INLD = I->second;
 | 
						|
    for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
 | 
						|
         EE = INLD.first.end(); II  != EE; ++II)
 | 
						|
      assert(II->second.getInst() != D && "Inst occurs in data structures");
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
 | 
						|
       E = ReverseLocalDeps.end(); I != E; ++I) {
 | 
						|
    assert(I->first != D && "Inst occurs in data structures");
 | 
						|
    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
 | 
						|
         EE = I->second.end(); II != EE; ++II)
 | 
						|
      assert(*II != D && "Inst occurs in data structures");
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
 | 
						|
       E = ReverseNonLocalDeps.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    assert(I->first != D && "Inst occurs in data structures");
 | 
						|
    for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
 | 
						|
         EE = I->second.end(); II != EE; ++II)
 | 
						|
      assert(*II != D && "Inst occurs in data structures");
 | 
						|
  }
 | 
						|
  
 | 
						|
  for (ReverseNonLocalPtrDepTy::const_iterator
 | 
						|
       I = ReverseNonLocalPtrDeps.begin(),
 | 
						|
       E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
 | 
						|
    assert(I->first != D && "Inst occurs in rev NLPD map");
 | 
						|
    
 | 
						|
    for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
 | 
						|
         E = I->second.end(); II != E; ++II)
 | 
						|
      assert(*II != ValueIsLoadPair(D, false) &&
 | 
						|
             *II != ValueIsLoadPair(D, true) &&
 | 
						|
             "Inst occurs in ReverseNonLocalPtrDeps map");
 | 
						|
  }
 | 
						|
  
 | 
						|
}
 |