llvm-6502/lib/Target/X86/X86InstrInfo.def
Brian Gaeke c03a0cb01b Brian Gaeke says:
lib/Target/X86/InstSelectSimple.cpp: Add a little something to
 visitBranchInst which supports conditional branches.
lib/Target/X86/X86InstrInfo.def: Add defs of JNE, JE, CMPri8


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4755 91177308-0d34-0410-b5e6-96231b3b80d8
2002-11-19 09:08:47 +00:00

154 lines
9.8 KiB
C++

//===-- X86InstructionInfo.def - X86 Instruction Information ----*- C++ -*-===//
//
// This file describes all of the instructions that the X86 backend uses. It
// relys on an external 'I' macro being defined that takes the arguments
// specified below, and is used to make all of the information relevant to an
// instruction be in one place.
//
// Note that X86 Instructions always have the destination register listed as
// operand 0, unless it does not produce a value (in which case the TSFlags will
// include X86II::Void).
//
//===----------------------------------------------------------------------===//
// NOTE: No include guards desired
#ifndef I
#errror "Must define I macro before including X86/X86InstructionInfo.def!"
#endif
// Arguments to be passed into the I macro
// #1: Enum name - This ends up being the opcode symbol in the X86 namespace
// #2: Opcode name, as used by the gnu assembler
// #3: The base opcode for the instruction
// #4: Instruction Flags - This should be a field or'd together that contains
// constants from the MachineInstrInfo.h file.
// #5: Target Specific Flags - Another bitfield containing X86 specific flags
// that we are interested in for each instruction. These should be flags
// defined in X86InstrInfo.h in the X86II namespace.
//
// The first instruction must always be the PHI instruction:
I(PHI , "phi", 0, 0, 0)
// The second instruction must always be the noop instruction:
I(NOOP , "nop", 0x90, 0, X86II::RawFrm | X86II::Void) // nop
// Flow control instructions
I(RET , "ret", 0xCB, M_RET_FLAG, X86II::RawFrm | X86II::Void) // ret
I(JMP , "jmp", 0x00, M_BRANCH_FLAG, X86II::Void) // jmp foo EB|E9 cb|w
I(JNE , "jne", 0x00, M_BRANCH_FLAG, X86II::Void) // 75 cb, or 0f 85 cw|cd
I(JE , "je", 0x00, M_BRANCH_FLAG, X86II::Void) // 74 cb, or 0f 84 cw|cd
// Misc instructions
I(LEAVE , "leave", 0xC9, 0, X86II::RawFrm) // leave
// Move instructions
I(MOVrr8 , "movb", 0x88, 0, X86II::MRMDestReg) // R8 = R8 88/r
I(MOVrr16 , "movw", 0x89, 0, X86II::MRMDestReg) // R16 = R16 89/r
I(MOVrr32 , "movl", 0x89, 0, X86II::MRMDestReg) // R32 = R32 89/r
I(MOVir8 , "movb", 0xB0, 0, X86II::AddRegFrm) // R8 = imm8 B0+ rb
I(MOVir16 , "movw", 0xB8, 0, X86II::AddRegFrm) // R16 = imm16 B8+ rw
I(MOVir32 , "movl", 0xB8, 0, X86II::AddRegFrm) // R32 = imm32 B8+ rd
I(MOVmr8 , "movb", 0x8A, 0, X86II::MRMSrcMem) // R8 = [mem] 8A/r
I(MOVmr16 , "movw", 0x8B, 0, X86II::MRMSrcMem) // R16 = [mem] 8B/r
I(MOVmr32 , "movl", 0x8B, 0, X86II::MRMSrcMem) // R32 = [mem] 8B/r
I(MOVrm8 , "movb", 0x88, 0, X86II::MRMDestMem | X86II::Void) // [mem] = R8 88/r
I(MOVrm16 , "movw", 0x89, 0, X86II::MRMDestMem | X86II::Void) // [mem] = R16 89/r
I(MOVrm32 , "movl", 0x89, 0, X86II::MRMDestMem | X86II::Void) // [mem] = R32 89/r
// Arithmetic instructions
I(ADDrr8 , "addb", 0x00, 0, X86II::MRMDestReg) // R8 += R8 00/r
I(ADDrr16 , "addw", 0x01, 0, X86II::MRMDestReg) // R16 += R16 01/r
I(ADDrr32 , "addl", 0x01, 0, X86II::MRMDestReg) // R32 += R32 01/r
I(SUBrr8 , "subb", 0x2A, 0, X86II::MRMDestReg) // R8 -= R8 2A/r
I(SUBrr16 , "subw", 0x2B, 0, X86II::MRMDestReg) // R16 -= R16 2B/r
I(SUBrr32 , "subl", 0x2B, 0, X86II::MRMDestReg) // R32 -= R32 2B/r
I(MULrr8 , "mulb", 0xF6, 0, X86II::Void) // AX = AL*R8 F6/4
I(MULrr16 , "mulw", 0xF7, 0, X86II::Void) // DX:AX= AX*R16 F7/4
I(MULrr32 , "mull", 0xF7, 0, X86II::Void) // ED:EA= EA*R32 F7/4
// unsigned division/remainder
I(DIVrr8 , "divb", 0xF6, 0, X86II::Void) // AX/r8= AL&AH F6/6
I(DIVrr16 , "divw", 0xF7, 0, X86II::Void) // DA/r16=AX&DX F7/6
I(DIVrr32 , "divl", 0xF7, 0, X86II::Void) // DA/r32=EAX&DX F7/6
// signed division/remainder
I(IDIVrr8 , "idivb", 0xF6, 0, X86II::Void) // AX/r8= AL&AH F6/6
I(IDIVrr16 , "idivw", 0xF7, 0, X86II::Void) // DA/r16=AX&DX F7/6
I(IDIVrr32 , "idivl", 0xF7, 0, X86II::Void) // DA/r32=EAX&DX F7/6
// Logical operators
I(ANDrr8 , "andb", 0x20, 0, X86II::MRMDestReg) // R8 &= R8 20/r
I(ANDrr16 , "andw", 0x21, 0, X86II::MRMDestReg) // R16 &= R16 21/r
I(ANDrr32 , "andl", 0x21, 0, X86II::MRMDestReg) // R32 &= R32 21/r
I(ORrr8 , "orb", 0x08, 0, X86II::MRMDestReg) // R8 |= R8 08/r
I(ORrr16 , "orw", 0x09, 0, X86II::MRMDestReg) // R16 |= R16 09/r
I(ORrr32 , "orl", 0x09, 0, X86II::MRMDestReg) // R32 |= R32 09/r
I(XORrr8 , "xorb", 0x30, 0, X86II::MRMDestReg) // R8 ^= R8 30/r
I(XORrr16 , "xorw", 0x31, 0, X86II::MRMDestReg) // R16 ^= R16 31/r
I(XORrr32 , "xorl", 0x31, 0, X86II::MRMDestReg) // R32 ^= R32 31/r
// Shift instructions
I(SHLrr8 , "shlb", 0xD2, 0, 0) // R8 <<= cl D2/4
I(SHLrr16 , "shlw", 0xD3, 0, 0) // R16 <<= cl D3/4
I(SHLrr32 , "shll", 0xD3, 0, 0) // R32 <<= cl D3/4
I(SHLir8 , "shlb", 0xC0, 0, 0) // R8 <<= imm8 C0/4 ib
I(SHLir16 , "shlw", 0xC1, 0, 0) // R16 <<= imm8 C1/4 ib
I(SHLir32 , "shll", 0xC1, 0, 0) // R32 <<= imm8 C1/4 ib
I(SHRrr8 , "shrb", 0xD2, 0, 0) // R8 >>>= cl D2/5
I(SHRrr16 , "shrw", 0xD3, 0, 0) // R16 >>>= cl D3/5
I(SHRrr32 , "shrl", 0xD3, 0, 0) // R32 >>>= cl D3/5
I(SHRir8 , "shrb", 0xC0, 0, 0) // R8 >>>= imm8 C0/5 ib
I(SHRir16 , "shrw", 0xC1, 0, 0) // R16 >>>= imm8 C1/5 ib
I(SHRir32 , "shrl", 0xC1, 0, 0) // R32 >>>= imm8 C1/5 ib
I(SARrr8 , "sarb", 0xD2, 0, 0) // R8 >>= cl D2/7
I(SARrr16 , "sarw", 0xD3, 0, 0) // R16 >>= cl D3/7
I(SARrr32 , "sarl", 0xD3, 0, 0) // R32 >>= cl D3/7
I(SARir8 , "sarb", 0xC0, 0, 0) // R8 >>= imm8 C0/7 ib
I(SARir16 , "sarw", 0xC1, 0, 0) // R16 >>= imm8 C1/7 ib
I(SARir32 , "sarl", 0xC1, 0, 0) // R32 >>= imm8 C1/7 ib
// Floating point loads
I(FLDr4 , "flds", 0xD9, 0, X86II::Void) // push float D9/0
I(FLDr8 , "fldl ", 0xDD, 0, X86II::Void) // push double DD/0
// Floating point compares
I(FUCOMPP , "fucompp", 0xDA, 0, X86II::Void) // compare+pop2x DA E9
// Floating point flag ops
I(FNSTSWr8 , "fnstsw", 0xDF, 0, X86II::Void) // AX = fp flags DF E0
// Condition code ops, incl. set if equal/not equal/...
I(SAHF , "sahf", 0x9E, 0, 0) // flags = AH 9E
I(SETA , "seta", 0x97, 0, X86II::TB) // R8 = > unsign 0F 97
I(SETAE , "setae", 0x93, 0, X86II::TB) // R8 = >=unsign 0F 93
I(SETB , "setb", 0x92, 0, X86II::TB) // R8 = < unsign 0F 92
I(SETBE , "setbe", 0x96, 0, X86II::TB) // R8 = <=unsign 0F 96
I(SETE , "sete", 0x94, 0, X86II::TB) // R8 = == 0F 94
I(SETG , "setg", 0x9F, 0, X86II::TB) // R8 = > signed 0F 9F
I(SETGE , "setge", 0x9D, 0, X86II::TB) // R8 = >=signed 0F 9D
I(SETL , "setl", 0x9C, 0, X86II::TB) // R8 = < signed 0F 9C
I(SETLE , "setle", 0x9E, 0, X86II::TB) // R8 = <=signed 0F 9E
I(SETNE , "setne", 0x95, 0, X86II::TB) // R8 = != 0F 95
// Integer comparisons
I(CMPrr8 , "cmpb", 0x38, 0, X86II::MRMDestReg) // compare R8,R8 38/r
I(CMPrr16 , "cmpw", 0x39, 0, X86II::MRMDestReg) // compare R16,R16 39/r
I(CMPrr32 , "cmpl", 0x39, 0, X86II::MRMDestReg) // compare R32,R32 39/r
I(CMPri8 , "cmp", 0x80, 0, 0) // compare R8, imm8 80 /7 ib
// Sign extenders (first 3 are good for DIV/IDIV; the others are more general)
I(CBW , "cbw", 0x98, 0, X86II::RawFrm) // AX = signext(AL)
I(CWD , "cwd", 0x99, 0, X86II::RawFrm) // DX:AX = signext(AX)
I(CDQ , "cdq", 0x99, 0, X86II::RawFrm) // EDX:EAX = signext(EAX)
I(MOVSXr16r8 , "movsx", 0xBE, 0, X86II::MRMSrcReg | X86II::TB) // R32 = signext(R8) 0F BE /r
I(MOVSXr32r8 , "movsx", 0xBE, 0, X86II::MRMSrcReg | X86II::TB) // R32 = signext(R8) 0F BE /r
I(MOVSXr32r16 , "movsx", 0xBF, 0, X86II::MRMSrcReg | X86II::TB) // R32 = signext(R16) 0F BF /r
I(MOVZXr16r8 , "movzx", 0xB6, 0, X86II::MRMSrcReg | X86II::TB) // R32 = zeroext(R8) 0F B6 /r
I(MOVZXr32r8 , "movzx", 0xB6, 0, X86II::MRMSrcReg | X86II::TB) // R32 = zeroext(R8) 0F B6 /r
I(MOVZXr32r16 , "movzx", 0xB7, 0, X86II::MRMSrcReg | X86II::TB) // R32 = zeroext(R16) 0F B7 /r
// At this point, I is dead, so undefine the macro
#undef I