mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Add structure padding optimizations git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4749 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1187 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1187 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- DataStructure.cpp - Implement the core data structure analysis -----===//
 | |
| //
 | |
| // This file implements the core data structure functionality.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/DSGraph.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/iOther.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "Support/STLExtras.h"
 | |
| #include "Support/Statistic.h"
 | |
| #include "Support/Timer.h"
 | |
| #include <algorithm>
 | |
| #include <set>
 | |
| 
 | |
| using std::vector;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumFolds          ("dsnode", "Number of nodes completely folded");
 | |
|   Statistic<> NumCallNodesMerged("dsnode", "Number of call nodes merged");
 | |
| };
 | |
| 
 | |
| namespace DS {   // TODO: FIXME
 | |
|   extern TargetData TD;
 | |
| }
 | |
| using namespace DS;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSNode Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| DSNode::DSNode(enum NodeTy NT, const Type *T)
 | |
|   : Ty(Type::VoidTy), Size(0), NodeType(NT) {
 | |
|   // Add the type entry if it is specified...
 | |
|   if (T) mergeTypeInfo(T, 0);
 | |
| }
 | |
| 
 | |
| // DSNode copy constructor... do not copy over the referrers list!
 | |
| DSNode::DSNode(const DSNode &N)
 | |
|   : Links(N.Links), Globals(N.Globals), Ty(N.Ty), Size(N.Size), 
 | |
|     NodeType(N.NodeType) {
 | |
| }
 | |
| 
 | |
| void DSNode::removeReferrer(DSNodeHandle *H) {
 | |
|   // Search backwards, because we depopulate the list from the back for
 | |
|   // efficiency (because it's a vector).
 | |
|   vector<DSNodeHandle*>::reverse_iterator I =
 | |
|     std::find(Referrers.rbegin(), Referrers.rend(), H);
 | |
|   assert(I != Referrers.rend() && "Referrer not pointing to node!");
 | |
|   Referrers.erase(I.base()-1);
 | |
| }
 | |
| 
 | |
| // addGlobal - Add an entry for a global value to the Globals list.  This also
 | |
| // marks the node with the 'G' flag if it does not already have it.
 | |
| //
 | |
| void DSNode::addGlobal(GlobalValue *GV) {
 | |
|   // Keep the list sorted.
 | |
|   vector<GlobalValue*>::iterator I =
 | |
|     std::lower_bound(Globals.begin(), Globals.end(), GV);
 | |
| 
 | |
|   if (I == Globals.end() || *I != GV) {
 | |
|     //assert(GV->getType()->getElementType() == Ty);
 | |
|     Globals.insert(I, GV);
 | |
|     NodeType |= GlobalNode;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// foldNodeCompletely - If we determine that this node has some funny
 | |
| /// behavior happening to it that we cannot represent, we fold it down to a
 | |
| /// single, completely pessimistic, node.  This node is represented as a
 | |
| /// single byte with a single TypeEntry of "void".
 | |
| ///
 | |
| void DSNode::foldNodeCompletely() {
 | |
|   if (isNodeCompletelyFolded()) return;
 | |
| 
 | |
|   ++NumFolds;
 | |
| 
 | |
|   // We are no longer typed at all...
 | |
|   Ty = Type::VoidTy;
 | |
|   NodeType |= Array;
 | |
|   Size = 1;
 | |
| 
 | |
|   // Loop over all of our referrers, making them point to our zero bytes of
 | |
|   // space.
 | |
|   for (vector<DSNodeHandle*>::iterator I = Referrers.begin(), E=Referrers.end();
 | |
|        I != E; ++I)
 | |
|     (*I)->setOffset(0);
 | |
| 
 | |
|   // If we have links, merge all of our outgoing links together...
 | |
|   for (unsigned i = 1, e = Links.size(); i < e; ++i)
 | |
|     Links[0].mergeWith(Links[i]);
 | |
|   Links.resize(1);
 | |
| }
 | |
| 
 | |
| /// isNodeCompletelyFolded - Return true if this node has been completely
 | |
| /// folded down to something that can never be expanded, effectively losing
 | |
| /// all of the field sensitivity that may be present in the node.
 | |
| ///
 | |
| bool DSNode::isNodeCompletelyFolded() const {
 | |
|   return getSize() == 1 && Ty == Type::VoidTy && isArray();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// mergeTypeInfo - This method merges the specified type into the current node
 | |
| /// at the specified offset.  This may update the current node's type record if
 | |
| /// this gives more information to the node, it may do nothing to the node if
 | |
| /// this information is already known, or it may merge the node completely (and
 | |
| /// return true) if the information is incompatible with what is already known.
 | |
| ///
 | |
| /// This method returns true if the node is completely folded, otherwise false.
 | |
| ///
 | |
| bool DSNode::mergeTypeInfo(const Type *NewTy, unsigned Offset) {
 | |
|   // Check to make sure the Size member is up-to-date.  Size can be one of the
 | |
|   // following:
 | |
|   //  Size = 0, Ty = Void: Nothing is known about this node.
 | |
|   //  Size = 0, Ty = FnTy: FunctionPtr doesn't have a size, so we use zero
 | |
|   //  Size = 1, Ty = Void, Array = 1: The node is collapsed
 | |
|   //  Otherwise, sizeof(Ty) = Size
 | |
|   //
 | |
|   assert(((Size == 0 && Ty == Type::VoidTy && !isArray()) ||
 | |
|           (Size == 0 && !Ty->isSized() && !isArray()) ||
 | |
|           (Size == 1 && Ty == Type::VoidTy && isArray()) ||
 | |
|           (Size == 0 && !Ty->isSized() && !isArray()) ||
 | |
|           (TD.getTypeSize(Ty) == Size)) &&
 | |
|          "Size member of DSNode doesn't match the type structure!");
 | |
|   assert(NewTy != Type::VoidTy && "Cannot merge void type into DSNode!");
 | |
| 
 | |
|   if (Offset == 0 && NewTy == Ty)
 | |
|     return false;  // This should be a common case, handle it efficiently
 | |
| 
 | |
|   // Return true immediately if the node is completely folded.
 | |
|   if (isNodeCompletelyFolded()) return true;
 | |
| 
 | |
|   // If this is an array type, eliminate the outside arrays because they won't
 | |
|   // be used anyway.  This greatly reduces the size of large static arrays used
 | |
|   // as global variables, for example.
 | |
|   //
 | |
|   bool WillBeArray = false;
 | |
|   while (const ArrayType *AT = dyn_cast<ArrayType>(NewTy)) {
 | |
|     // FIXME: we might want to keep small arrays, but must be careful about
 | |
|     // things like: [2 x [10000 x int*]]
 | |
|     NewTy = AT->getElementType();
 | |
|     WillBeArray = true;
 | |
|   }
 | |
| 
 | |
|   // Figure out how big the new type we're merging in is...
 | |
|   unsigned NewTySize = NewTy->isSized() ? TD.getTypeSize(NewTy) : 0;
 | |
| 
 | |
|   // Otherwise check to see if we can fold this type into the current node.  If
 | |
|   // we can't, we fold the node completely, if we can, we potentially update our
 | |
|   // internal state.
 | |
|   //
 | |
|   if (Ty == Type::VoidTy) {
 | |
|     // If this is the first type that this node has seen, just accept it without
 | |
|     // question....
 | |
|     assert(Offset == 0 && "Cannot have an offset into a void node!");
 | |
|     assert(!isArray() && "This shouldn't happen!");
 | |
|     Ty = NewTy;
 | |
|     NodeType &= ~Array;
 | |
|     if (WillBeArray) NodeType |= Array;
 | |
|     Size = NewTySize;
 | |
| 
 | |
|     // Calculate the number of outgoing links from this node.
 | |
|     Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Handle node expansion case here...
 | |
|   if (Offset+NewTySize > Size) {
 | |
|     // It is illegal to grow this node if we have treated it as an array of
 | |
|     // objects...
 | |
|     if (isArray()) {
 | |
|       foldNodeCompletely();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (Offset) {  // We could handle this case, but we don't for now...
 | |
|       DEBUG(std::cerr << "UNIMP: Trying to merge a growth type into "
 | |
|                       << "offset != 0: Collapsing!\n");
 | |
|       foldNodeCompletely();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Okay, the situation is nice and simple, we are trying to merge a type in
 | |
|     // at offset 0 that is bigger than our current type.  Implement this by
 | |
|     // switching to the new type and then merge in the smaller one, which should
 | |
|     // hit the other code path here.  If the other code path decides it's not
 | |
|     // ok, it will collapse the node as appropriate.
 | |
|     //
 | |
|     const Type *OldTy = Ty;
 | |
|     Ty = NewTy;
 | |
|     NodeType &= ~Array;
 | |
|     if (WillBeArray) NodeType |= Array;
 | |
|     Size = NewTySize;
 | |
| 
 | |
|     // Must grow links to be the appropriate size...
 | |
|     Links.resize((Size+DS::PointerSize-1) >> DS::PointerShift);
 | |
| 
 | |
|     // Merge in the old type now... which is guaranteed to be smaller than the
 | |
|     // "current" type.
 | |
|     return mergeTypeInfo(OldTy, 0);
 | |
|   }
 | |
| 
 | |
|   assert(Offset <= Size &&
 | |
|          "Cannot merge something into a part of our type that doesn't exist!");
 | |
| 
 | |
|   // Find the section of Ty that NewTy overlaps with... first we find the
 | |
|   // type that starts at offset Offset.
 | |
|   //
 | |
|   unsigned O = 0;
 | |
|   const Type *SubType = Ty;
 | |
|   while (O < Offset) {
 | |
|     assert(Offset-O < TD.getTypeSize(SubType) && "Offset out of range!");
 | |
| 
 | |
|     switch (SubType->getPrimitiveID()) {
 | |
|     case Type::StructTyID: {
 | |
|       const StructType *STy = cast<StructType>(SubType);
 | |
|       const StructLayout &SL = *TD.getStructLayout(STy);
 | |
| 
 | |
|       unsigned i = 0, e = SL.MemberOffsets.size();
 | |
|       for (; i+1 < e && SL.MemberOffsets[i+1] <= Offset-O; ++i)
 | |
|         /* empty */;
 | |
| 
 | |
|       // The offset we are looking for must be in the i'th element...
 | |
|       SubType = STy->getElementTypes()[i];
 | |
|       O += SL.MemberOffsets[i];
 | |
|       break;
 | |
|     }
 | |
|     case Type::ArrayTyID: {
 | |
|       SubType = cast<ArrayType>(SubType)->getElementType();
 | |
|       unsigned ElSize = TD.getTypeSize(SubType);
 | |
|       unsigned Remainder = (Offset-O) % ElSize;
 | |
|       O = Offset-Remainder;
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       assert(0 && "Unknown type!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(O == Offset && "Could not achieve the correct offset!");
 | |
| 
 | |
|   // If we found our type exactly, early exit
 | |
|   if (SubType == NewTy) return false;
 | |
| 
 | |
|   // Okay, so we found the leader type at the offset requested.  Search the list
 | |
|   // of types that starts at this offset.  If SubType is currently an array or
 | |
|   // structure, the type desired may actually be the first element of the
 | |
|   // composite type...
 | |
|   //
 | |
|   unsigned SubTypeSize = SubType->isSized() ? TD.getTypeSize(SubType) : 0;
 | |
|   unsigned PadSize = SubTypeSize; // Size, including pad memory which is ignored
 | |
|   while (SubType != NewTy) {
 | |
|     const Type *NextSubType = 0;
 | |
|     unsigned NextSubTypeSize = 0;
 | |
|     unsigned NextPadSize = 0;
 | |
|     switch (SubType->getPrimitiveID()) {
 | |
|     case Type::StructTyID: {
 | |
|       const StructType *STy = cast<StructType>(SubType);
 | |
|       const StructLayout &SL = *TD.getStructLayout(STy);
 | |
|       if (SL.MemberOffsets.size() > 1)
 | |
|         NextPadSize = SL.MemberOffsets[1];
 | |
|       else
 | |
|         NextPadSize = SubTypeSize;
 | |
|       NextSubType = STy->getElementTypes()[0];
 | |
|       NextSubTypeSize = TD.getTypeSize(NextSubType);
 | |
|       break;
 | |
|     }
 | |
|     case Type::ArrayTyID:
 | |
|       NextSubType = cast<ArrayType>(SubType)->getElementType();
 | |
|       NextSubTypeSize = TD.getTypeSize(NextSubType);
 | |
|       NextPadSize = NextSubTypeSize;
 | |
|       break;
 | |
|     default: ;
 | |
|       // fall out 
 | |
|     }
 | |
| 
 | |
|     if (NextSubType == 0)
 | |
|       break;   // In the default case, break out of the loop
 | |
| 
 | |
|     if (NextPadSize < NewTySize)
 | |
|       break;   // Don't allow shrinking to a smaller type than NewTySize
 | |
|     SubType = NextSubType;
 | |
|     SubTypeSize = NextSubTypeSize;
 | |
|     PadSize = NextPadSize;
 | |
|   }
 | |
| 
 | |
|   // If we found the type exactly, return it...
 | |
|   if (SubType == NewTy)
 | |
|     return false;
 | |
| 
 | |
|   // Check to see if we have a compatible, but different type...
 | |
|   if (NewTySize == SubTypeSize) {
 | |
|     // Check to see if this type is obviously convertable... int -> uint f.e.
 | |
|     if (NewTy->isLosslesslyConvertableTo(SubType))
 | |
|       return false;
 | |
| 
 | |
|     // Check to see if we have a pointer & integer mismatch going on here,
 | |
|     // loading a pointer as a long, for example.
 | |
|     //
 | |
|     if (SubType->isInteger() && isa<PointerType>(NewTy) ||
 | |
|         NewTy->isInteger() && isa<PointerType>(SubType))
 | |
|       return false;
 | |
|   } else if (NewTySize > SubTypeSize && NewTySize <= PadSize) {
 | |
|     // We are accessing the field, plus some structure padding.  Ignore the
 | |
|     // structure padding.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   DEBUG(std::cerr << "MergeTypeInfo Folding OrigTy: " << Ty
 | |
|                   << "\n due to:" << NewTy << " @ " << Offset << "!\n"
 | |
|                   << "SubType: " << SubType << "\n\n");
 | |
| 
 | |
|   foldNodeCompletely();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| // addEdgeTo - Add an edge from the current node to the specified node.  This
 | |
| // can cause merging of nodes in the graph.
 | |
| //
 | |
| void DSNode::addEdgeTo(unsigned Offset, const DSNodeHandle &NH) {
 | |
|   if (NH.getNode() == 0) return;       // Nothing to do
 | |
| 
 | |
|   DSNodeHandle &ExistingEdge = getLink(Offset);
 | |
|   if (ExistingEdge.getNode()) {
 | |
|     // Merge the two nodes...
 | |
|     ExistingEdge.mergeWith(NH);
 | |
|   } else {                             // No merging to perform...
 | |
|     setLink(Offset, NH);               // Just force a link in there...
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // MergeSortedVectors - Efficiently merge a vector into another vector where
 | |
| // duplicates are not allowed and both are sorted.  This assumes that 'T's are
 | |
| // efficiently copyable and have sane comparison semantics.
 | |
| //
 | |
| static void MergeSortedVectors(vector<GlobalValue*> &Dest,
 | |
|                                const vector<GlobalValue*> &Src) {
 | |
|   // By far, the most common cases will be the simple ones.  In these cases,
 | |
|   // avoid having to allocate a temporary vector...
 | |
|   //
 | |
|   if (Src.empty()) {             // Nothing to merge in...
 | |
|     return;
 | |
|   } else if (Dest.empty()) {     // Just copy the result in...
 | |
|     Dest = Src;
 | |
|   } else if (Src.size() == 1) {  // Insert a single element...
 | |
|     const GlobalValue *V = Src[0];
 | |
|     vector<GlobalValue*>::iterator I =
 | |
|       std::lower_bound(Dest.begin(), Dest.end(), V);
 | |
|     if (I == Dest.end() || *I != Src[0])  // If not already contained...
 | |
|       Dest.insert(I, Src[0]);
 | |
|   } else if (Dest.size() == 1) {
 | |
|     GlobalValue *Tmp = Dest[0];           // Save value in temporary...
 | |
|     Dest = Src;                           // Copy over list...
 | |
|     vector<GlobalValue*>::iterator I =
 | |
|       std::lower_bound(Dest.begin(), Dest.end(), Tmp);
 | |
|     if (I == Dest.end() || *I != Tmp)     // If not already contained...
 | |
|       Dest.insert(I, Tmp);
 | |
| 
 | |
|   } else {
 | |
|     // Make a copy to the side of Dest...
 | |
|     vector<GlobalValue*> Old(Dest);
 | |
|     
 | |
|     // Make space for all of the type entries now...
 | |
|     Dest.resize(Dest.size()+Src.size());
 | |
|     
 | |
|     // Merge the two sorted ranges together... into Dest.
 | |
|     std::merge(Old.begin(), Old.end(), Src.begin(), Src.end(), Dest.begin());
 | |
|     
 | |
|     // Now erase any duplicate entries that may have accumulated into the 
 | |
|     // vectors (because they were in both of the input sets)
 | |
|     Dest.erase(std::unique(Dest.begin(), Dest.end()), Dest.end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // mergeWith - Merge this node and the specified node, moving all links to and
 | |
| // from the argument node into the current node, deleting the node argument.
 | |
| // Offset indicates what offset the specified node is to be merged into the
 | |
| // current node.
 | |
| //
 | |
| // The specified node may be a null pointer (in which case, nothing happens).
 | |
| //
 | |
| void DSNode::mergeWith(const DSNodeHandle &NH, unsigned Offset) {
 | |
|   DSNode *N = NH.getNode();
 | |
|   if (N == 0 || (N == this && NH.getOffset() == Offset))
 | |
|     return;  // Noop
 | |
| 
 | |
|   assert((N->NodeType & DSNode::DEAD) == 0);
 | |
|   assert((NodeType & DSNode::DEAD) == 0);
 | |
|   assert(!hasNoReferrers() && "Should not try to fold a useless node!");
 | |
| 
 | |
|   if (N == this) {
 | |
|     // We cannot merge two pieces of the same node together, collapse the node
 | |
|     // completely.
 | |
|     DEBUG(std::cerr << "Attempting to merge two chunks of"
 | |
|                     << " the same node together!\n");
 | |
|     foldNodeCompletely();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If both nodes are not at offset 0, make sure that we are merging the node
 | |
|   // at an later offset into the node with the zero offset.
 | |
|   //
 | |
|   if (Offset < NH.getOffset()) {
 | |
|     N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
 | |
|     return;
 | |
|   } else if (Offset == NH.getOffset() && getSize() < N->getSize()) {
 | |
|     // If the offsets are the same, merge the smaller node into the bigger node
 | |
|     N->mergeWith(DSNodeHandle(this, Offset), NH.getOffset());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Now we know that Offset >= NH.Offset, so convert it so our "Offset" (with
 | |
|   // respect to NH.Offset) is now zero.  NOffset is the distance from the base
 | |
|   // of our object that N starts from.
 | |
|   //
 | |
|   unsigned NOffset = Offset-NH.getOffset();
 | |
|   unsigned NSize = N->getSize();
 | |
| 
 | |
|   // Merge the type entries of the two nodes together...
 | |
|   if (N->Ty != Type::VoidTy) {
 | |
|     mergeTypeInfo(N->Ty, NOffset);
 | |
| 
 | |
|     // mergeTypeInfo can cause collapsing, which can cause this node to become
 | |
|     // dead.
 | |
|     if (hasNoReferrers()) return;
 | |
|   }
 | |
|   assert((NodeType & DSNode::DEAD) == 0);
 | |
| 
 | |
|   // If we are merging a node with a completely folded node, then both nodes are
 | |
|   // now completely folded.
 | |
|   //
 | |
|   if (isNodeCompletelyFolded()) {
 | |
|     if (!N->isNodeCompletelyFolded()) {
 | |
|       N->foldNodeCompletely();
 | |
|       if (hasNoReferrers()) return;
 | |
|       NSize = N->getSize();
 | |
|     }
 | |
|   } else if (N->isNodeCompletelyFolded()) {
 | |
|     foldNodeCompletely();
 | |
|     if (hasNoReferrers()) return;
 | |
|     Offset = 0;
 | |
|     NOffset = NH.getOffset();
 | |
|     NSize = N->getSize();
 | |
|   }
 | |
|   N = NH.getNode();
 | |
|   if (this == N || N == 0) return;
 | |
|   assert((NodeType & DSNode::DEAD) == 0);
 | |
| 
 | |
| #if 0
 | |
|   std::cerr << "\n\nMerging:\n";
 | |
|   N->print(std::cerr, 0);
 | |
|   std::cerr << " and:\n";
 | |
|   print(std::cerr, 0);
 | |
| #endif
 | |
| 
 | |
|   // Remove all edges pointing at N, causing them to point to 'this' instead.
 | |
|   // Make sure to adjust their offset, not just the node pointer.
 | |
|   //
 | |
|   while (!N->Referrers.empty()) {
 | |
|     DSNodeHandle &Ref = *N->Referrers.back();
 | |
|     Ref = DSNodeHandle(this, NOffset+Ref.getOffset());
 | |
|   }
 | |
|   assert((NodeType & DSNode::DEAD) == 0);
 | |
| 
 | |
|   // Make all of the outgoing links of N now be outgoing links of this.  This
 | |
|   // can cause recursive merging!
 | |
|   //
 | |
|   for (unsigned i = 0; i < NSize; i += DS::PointerSize) {
 | |
|     DSNodeHandle &Link = N->getLink(i);
 | |
|     if (Link.getNode()) {
 | |
|       addEdgeTo((i+NOffset) % getSize(), Link);
 | |
| 
 | |
|       // It's possible that after adding the new edge that some recursive
 | |
|       // merging just occured, causing THIS node to get merged into oblivion.
 | |
|       // If that happens, we must not try to merge any more edges into it!
 | |
|       //
 | |
|       if (Size == 0)
 | |
|         return;             // Node is now dead
 | |
|       if (Size == 1)
 | |
|         break;              // Node got collapsed
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that there are no outgoing edges, all of the Links are dead.
 | |
|   N->Links.clear();
 | |
|   N->Size = 0;
 | |
|   N->Ty = Type::VoidTy;
 | |
| 
 | |
|   // Merge the node types
 | |
|   NodeType |= N->NodeType;
 | |
|   N->NodeType = DEAD;   // N is now a dead node.
 | |
| 
 | |
|   // Merge the globals list...
 | |
|   if (!N->Globals.empty()) {
 | |
|     MergeSortedVectors(Globals, N->Globals);
 | |
| 
 | |
|     // Delete the globals from the old node...
 | |
|     N->Globals.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSCallSite Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Define here to avoid including iOther.h and BasicBlock.h in DSGraph.h
 | |
| Function &DSCallSite::getCaller() const {
 | |
|   return *Inst->getParent()->getParent();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // DSGraph Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| DSGraph::DSGraph(const DSGraph &G) : Func(G.Func), GlobalsGraph(0) {
 | |
|   PrintAuxCalls = false;
 | |
|   std::map<const DSNode*, DSNodeHandle> NodeMap;
 | |
|   RetNode = cloneInto(G, ScalarMap, NodeMap);
 | |
| }
 | |
| 
 | |
| DSGraph::DSGraph(const DSGraph &G,
 | |
|                  std::map<const DSNode*, DSNodeHandle> &NodeMap)
 | |
|   : Func(G.Func), GlobalsGraph(0) {
 | |
|   PrintAuxCalls = false;
 | |
|   RetNode = cloneInto(G, ScalarMap, NodeMap);
 | |
| }
 | |
| 
 | |
| DSGraph::~DSGraph() {
 | |
|   FunctionCalls.clear();
 | |
|   AuxFunctionCalls.clear();
 | |
|   ScalarMap.clear();
 | |
|   RetNode.setNode(0);
 | |
| 
 | |
|   // Drop all intra-node references, so that assertions don't fail...
 | |
|   std::for_each(Nodes.begin(), Nodes.end(),
 | |
|                 std::mem_fun(&DSNode::dropAllReferences));
 | |
| 
 | |
|   // Delete all of the nodes themselves...
 | |
|   std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>);
 | |
| }
 | |
| 
 | |
| // dump - Allow inspection of graph in a debugger.
 | |
| void DSGraph::dump() const { print(std::cerr); }
 | |
| 
 | |
| 
 | |
| /// remapLinks - Change all of the Links in the current node according to the
 | |
| /// specified mapping.
 | |
| ///
 | |
| void DSNode::remapLinks(std::map<const DSNode*, DSNodeHandle> &OldNodeMap) {
 | |
|   for (unsigned i = 0, e = Links.size(); i != e; ++i) {
 | |
|     DSNodeHandle &H = OldNodeMap[Links[i].getNode()];
 | |
|     Links[i].setNode(H.getNode());
 | |
|     Links[i].setOffset(Links[i].getOffset()+H.getOffset());
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // cloneInto - Clone the specified DSGraph into the current graph, returning the
 | |
| // Return node of the graph.  The translated ScalarMap for the old function is
 | |
| // filled into the OldValMap member.  If StripAllocas is set to true, Alloca
 | |
| // markers are removed from the graph, as the graph is being cloned into a
 | |
| // calling function's graph.
 | |
| //
 | |
| DSNodeHandle DSGraph::cloneInto(const DSGraph &G, 
 | |
|                                 std::map<Value*, DSNodeHandle> &OldValMap,
 | |
|                               std::map<const DSNode*, DSNodeHandle> &OldNodeMap,
 | |
|                                 unsigned CloneFlags) {
 | |
|   assert(OldNodeMap.empty() && "Returned OldNodeMap should be empty!");
 | |
|   assert(&G != this && "Cannot clone graph into itself!");
 | |
| 
 | |
|   unsigned FN = Nodes.size();           // First new node...
 | |
| 
 | |
|   // Duplicate all of the nodes, populating the node map...
 | |
|   Nodes.reserve(FN+G.Nodes.size());
 | |
|   for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) {
 | |
|     DSNode *Old = G.Nodes[i];
 | |
|     DSNode *New = new DSNode(*Old);
 | |
|     New->NodeType &= ~DSNode::DEAD;  // Clear dead flag...
 | |
|     Nodes.push_back(New);
 | |
|     OldNodeMap[Old] = New;
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   Timer::addPeakMemoryMeasurement();
 | |
| #endif
 | |
| 
 | |
|   // Rewrite the links in the new nodes to point into the current graph now.
 | |
|   for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
 | |
|     Nodes[i]->remapLinks(OldNodeMap);
 | |
| 
 | |
|   // Remove alloca markers as specified
 | |
|   if (CloneFlags & StripAllocaBit)
 | |
|     for (unsigned i = FN, e = Nodes.size(); i != e; ++i)
 | |
|       Nodes[i]->NodeType &= ~DSNode::AllocaNode;
 | |
| 
 | |
|   // Copy the value map... and merge all of the global nodes...
 | |
|   for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ScalarMap.begin(),
 | |
|          E = G.ScalarMap.end(); I != E; ++I) {
 | |
|     DSNodeHandle &H = OldValMap[I->first];
 | |
|     DSNodeHandle &MappedNode = OldNodeMap[I->second.getNode()];
 | |
|     H.setNode(MappedNode.getNode());
 | |
|     H.setOffset(I->second.getOffset()+MappedNode.getOffset());
 | |
| 
 | |
|     if (isa<GlobalValue>(I->first)) {  // Is this a global?
 | |
|       std::map<Value*, DSNodeHandle>::iterator GVI = ScalarMap.find(I->first);
 | |
|       if (GVI != ScalarMap.end()) {   // Is the global value in this fn already?
 | |
|         GVI->second.mergeWith(H);
 | |
|       } else {
 | |
|         ScalarMap[I->first] = H;      // Add global pointer to this graph
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!(CloneFlags & DontCloneCallNodes)) {
 | |
|     // Copy the function calls list...
 | |
|     unsigned FC = FunctionCalls.size();  // FirstCall
 | |
|     FunctionCalls.reserve(FC+G.FunctionCalls.size());
 | |
|     for (unsigned i = 0, ei = G.FunctionCalls.size(); i != ei; ++i)
 | |
|       FunctionCalls.push_back(DSCallSite(G.FunctionCalls[i], OldNodeMap));
 | |
|   }
 | |
| 
 | |
|   if (!(CloneFlags & DontCloneAuxCallNodes)) {
 | |
|     // Copy the auxillary function calls list...
 | |
|     unsigned FC = AuxFunctionCalls.size();  // FirstCall
 | |
|     AuxFunctionCalls.reserve(FC+G.AuxFunctionCalls.size());
 | |
|     for (unsigned i = 0, ei = G.AuxFunctionCalls.size(); i != ei; ++i)
 | |
|       AuxFunctionCalls.push_back(DSCallSite(G.AuxFunctionCalls[i], OldNodeMap));
 | |
|   }
 | |
| 
 | |
|   // Return the returned node pointer...
 | |
|   DSNodeHandle &MappedRet = OldNodeMap[G.RetNode.getNode()];
 | |
|   return DSNodeHandle(MappedRet.getNode(),
 | |
|                       MappedRet.getOffset()+G.RetNode.getOffset());
 | |
| }
 | |
| 
 | |
| /// mergeInGraph - The method is used for merging graphs together.  If the
 | |
| /// argument graph is not *this, it makes a clone of the specified graph, then
 | |
| /// merges the nodes specified in the call site with the formal arguments in the
 | |
| /// graph.
 | |
| ///
 | |
| void DSGraph::mergeInGraph(DSCallSite &CS, const DSGraph &Graph,
 | |
|                            unsigned CloneFlags) {
 | |
|   std::map<Value*, DSNodeHandle> OldValMap;
 | |
|   DSNodeHandle RetVal;
 | |
|   std::map<Value*, DSNodeHandle> *ScalarMap = &OldValMap;
 | |
| 
 | |
|   // If this is not a recursive call, clone the graph into this graph...
 | |
|   if (&Graph != this) {
 | |
|     // Clone the callee's graph into the current graph, keeping
 | |
|     // track of where scalars in the old graph _used_ to point,
 | |
|     // and of the new nodes matching nodes of the old graph.
 | |
|     std::map<const DSNode*, DSNodeHandle> OldNodeMap;
 | |
|     
 | |
|     // The clone call may invalidate any of the vectors in the data
 | |
|     // structure graph.  Strip locals and don't copy the list of callers
 | |
|     RetVal = cloneInto(Graph, OldValMap, OldNodeMap, CloneFlags);
 | |
|     ScalarMap = &OldValMap;
 | |
|   } else {
 | |
|     RetVal = getRetNode();
 | |
|     ScalarMap = &getScalarMap();
 | |
|   }
 | |
| 
 | |
|   // Merge the return value with the return value of the context...
 | |
|   RetVal.mergeWith(CS.getRetVal());
 | |
| 
 | |
|   // Resolve all of the function arguments...
 | |
|   Function &F = Graph.getFunction();
 | |
|   Function::aiterator AI = F.abegin();
 | |
|   for (unsigned i = 0, e = CS.getNumPtrArgs(); i != e; ++i, ++AI) {
 | |
|     // Advance the argument iterator to the first pointer argument...
 | |
|     while (!isPointerType(AI->getType())) {
 | |
|       ++AI;
 | |
| #ifndef NDEBUG
 | |
|       if (AI == F.aend())
 | |
|         std::cerr << "Bad call to Function: " << F.getName() << "\n";
 | |
| #endif
 | |
|       assert(AI != F.aend() && "# Args provided is not # Args required!");
 | |
|     }
 | |
|     
 | |
|     // Add the link from the argument scalar to the provided value
 | |
|     DSNodeHandle &NH = (*ScalarMap)[AI];
 | |
|     assert(NH.getNode() && "Pointer argument without scalarmap entry?");
 | |
|     NH.mergeWith(CS.getPtrArg(i));
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| // cloneGlobalInto - Clone the given global node and all its target links
 | |
| // (and all their llinks, recursively).
 | |
| // 
 | |
| DSNode *DSGraph::cloneGlobalInto(const DSNode *GNode) {
 | |
|   if (GNode == 0 || GNode->getGlobals().size() == 0) return 0;
 | |
| 
 | |
|   // If a clone has already been created for GNode, return it.
 | |
|   DSNodeHandle& ValMapEntry = ScalarMap[GNode->getGlobals()[0]];
 | |
|   if (ValMapEntry != 0)
 | |
|     return ValMapEntry;
 | |
| 
 | |
|   // Clone the node and update the ValMap.
 | |
|   DSNode* NewNode = new DSNode(*GNode);
 | |
|   ValMapEntry = NewNode;                // j=0 case of loop below!
 | |
|   Nodes.push_back(NewNode);
 | |
|   for (unsigned j = 1, N = NewNode->getGlobals().size(); j < N; ++j)
 | |
|     ScalarMap[NewNode->getGlobals()[j]] = NewNode;
 | |
| 
 | |
|   // Rewrite the links in the new node to point into the current graph.
 | |
|   for (unsigned j = 0, e = GNode->getNumLinks(); j != e; ++j)
 | |
|     NewNode->setLink(j, cloneGlobalInto(GNode->getLink(j)));
 | |
| 
 | |
|   return NewNode;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| // markIncompleteNodes - Mark the specified node as having contents that are not
 | |
| // known with the current analysis we have performed.  Because a node makes all
 | |
| // of the nodes it can reach imcomplete if the node itself is incomplete, we
 | |
| // must recursively traverse the data structure graph, marking all reachable
 | |
| // nodes as incomplete.
 | |
| //
 | |
| static void markIncompleteNode(DSNode *N) {
 | |
|   // Stop recursion if no node, or if node already marked...
 | |
|   if (N == 0 || (N->NodeType & DSNode::Incomplete)) return;
 | |
| 
 | |
|   // Actually mark the node
 | |
|   N->NodeType |= DSNode::Incomplete;
 | |
| 
 | |
|   // Recusively process children...
 | |
|   for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
 | |
|     if (DSNode *DSN = N->getLink(i).getNode())
 | |
|       markIncompleteNode(DSN);
 | |
| }
 | |
| 
 | |
| static void markIncomplete(DSCallSite &Call) {
 | |
|   // Then the return value is certainly incomplete!
 | |
|   markIncompleteNode(Call.getRetVal().getNode());
 | |
| 
 | |
|   // All objects pointed to by function arguments are incomplete!
 | |
|   for (unsigned i = 0, e = Call.getNumPtrArgs(); i != e; ++i)
 | |
|     markIncompleteNode(Call.getPtrArg(i).getNode());
 | |
| }
 | |
| 
 | |
| // markIncompleteNodes - Traverse the graph, identifying nodes that may be
 | |
| // modified by other functions that have not been resolved yet.  This marks
 | |
| // nodes that are reachable through three sources of "unknownness":
 | |
| //
 | |
| //  Global Variables, Function Calls, and Incoming Arguments
 | |
| //
 | |
| // For any node that may have unknown components (because something outside the
 | |
| // scope of current analysis may have modified it), the 'Incomplete' flag is
 | |
| // added to the NodeType.
 | |
| //
 | |
| void DSGraph::markIncompleteNodes(bool markFormalArgs) {
 | |
|   // Mark any incoming arguments as incomplete...
 | |
|   if (markFormalArgs && Func)
 | |
|     for (Function::aiterator I = Func->abegin(), E = Func->aend(); I != E; ++I)
 | |
|       if (isPointerType(I->getType()) && ScalarMap.find(I) != ScalarMap.end())
 | |
|         markIncompleteNode(ScalarMap[I].getNode());
 | |
| 
 | |
|   // Mark stuff passed into functions calls as being incomplete...
 | |
|   if (!shouldPrintAuxCalls())
 | |
|     for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
 | |
|       markIncomplete(FunctionCalls[i]);
 | |
|   else
 | |
|     for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
 | |
|       markIncomplete(AuxFunctionCalls[i]);
 | |
|     
 | |
| 
 | |
|   // Mark all of the nodes pointed to by global nodes as incomplete...
 | |
|   for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
 | |
|     if (Nodes[i]->NodeType & DSNode::GlobalNode) {
 | |
|       DSNode *N = Nodes[i];
 | |
|       for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
 | |
|         if (DSNode *DSN = N->getLink(i).getNode())
 | |
|           markIncompleteNode(DSN);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // removeRefsToGlobal - Helper function that removes globals from the
 | |
| // ScalarMap so that the referrer count will go down to zero.
 | |
| static void removeRefsToGlobal(DSNode* N,
 | |
|                                std::map<Value*, DSNodeHandle> &ScalarMap) {
 | |
|   while (!N->getGlobals().empty()) {
 | |
|     GlobalValue *GV = N->getGlobals().back();
 | |
|     N->getGlobals().pop_back();      
 | |
|     ScalarMap.erase(GV);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // isNodeDead - This method checks to see if a node is dead, and if it isn't, it
 | |
| // checks to see if there are simple transformations that it can do to make it
 | |
| // dead.
 | |
| //
 | |
| bool DSGraph::isNodeDead(DSNode *N) {
 | |
|   // Is it a trivially dead shadow node?
 | |
|   return N->getReferrers().empty() && (N->NodeType & ~DSNode::DEAD) == 0;
 | |
| }
 | |
| 
 | |
| static inline void killIfUselessEdge(DSNodeHandle &Edge) {
 | |
|   if (DSNode *N = Edge.getNode())  // Is there an edge?
 | |
|     if (N->getReferrers().size() == 1)  // Does it point to a lonely node?
 | |
|       if ((N->NodeType & ~DSNode::Incomplete) == 0 && // No interesting info?
 | |
|           N->getType() == Type::VoidTy && !N->isNodeCompletelyFolded())
 | |
|         Edge.setNode(0);  // Kill the edge!
 | |
| }
 | |
| 
 | |
| static inline bool nodeContainsExternalFunction(const DSNode *N) {
 | |
|   const std::vector<GlobalValue*> &Globals = N->getGlobals();
 | |
|   for (unsigned i = 0, e = Globals.size(); i != e; ++i)
 | |
|     if (Globals[i]->isExternal())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void removeIdenticalCalls(vector<DSCallSite> &Calls,
 | |
|                                  const std::string &where) {
 | |
|   // Remove trivially identical function calls
 | |
|   unsigned NumFns = Calls.size();
 | |
|   std::sort(Calls.begin(), Calls.end());  // Sort by callee as primary key!
 | |
| 
 | |
|   // Scan the call list cleaning it up as necessary...
 | |
|   DSNode *LastCalleeNode = 0;
 | |
|   unsigned NumDuplicateCalls = 0;
 | |
|   bool LastCalleeContainsExternalFunction = false;
 | |
|   for (unsigned i = 0; i != Calls.size(); ++i) {
 | |
|     DSCallSite &CS = Calls[i];
 | |
| 
 | |
|     // If the Callee is a useless edge, this must be an unreachable call site,
 | |
|     // eliminate it.
 | |
|     killIfUselessEdge(CS.getCallee());
 | |
|     if (CS.getCallee().getNode() == 0) {
 | |
|       CS.swap(Calls.back());
 | |
|       Calls.pop_back();
 | |
|       --i;
 | |
|     } else {
 | |
|       // If the return value or any arguments point to a void node with no
 | |
|       // information at all in it, and the call node is the only node to point
 | |
|       // to it, remove the edge to the node (killing the node).
 | |
|       //
 | |
|       killIfUselessEdge(CS.getRetVal());
 | |
|       for (unsigned a = 0, e = CS.getNumPtrArgs(); a != e; ++a)
 | |
|         killIfUselessEdge(CS.getPtrArg(a));
 | |
|       
 | |
|       // If this call site calls the same function as the last call site, and if
 | |
|       // the function pointer contains an external function, this node will
 | |
|       // never be resolved.  Merge the arguments of the call node because no
 | |
|       // information will be lost.
 | |
|       //
 | |
|       if (CS.getCallee().getNode() == LastCalleeNode) {
 | |
|         ++NumDuplicateCalls;
 | |
|         if (NumDuplicateCalls == 1) {
 | |
|           LastCalleeContainsExternalFunction =
 | |
|             nodeContainsExternalFunction(LastCalleeNode);
 | |
|         }
 | |
|         
 | |
|         if (LastCalleeContainsExternalFunction ||
 | |
|             // This should be more than enough context sensitivity!
 | |
|             // FIXME: Evaluate how many times this is tripped!
 | |
|             NumDuplicateCalls > 20) {
 | |
|           DSCallSite &OCS = Calls[i-1];
 | |
|           OCS.mergeWith(CS);
 | |
|           
 | |
|           // The node will now be eliminated as a duplicate!
 | |
|           if (CS.getNumPtrArgs() < OCS.getNumPtrArgs())
 | |
|             CS = OCS;
 | |
|           else if (CS.getNumPtrArgs() > OCS.getNumPtrArgs())
 | |
|             OCS = CS;
 | |
|         }
 | |
|       } else {
 | |
|         LastCalleeNode = CS.getCallee().getNode();
 | |
|         NumDuplicateCalls = 0;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Calls.erase(std::unique(Calls.begin(), Calls.end()),
 | |
|               Calls.end());
 | |
| 
 | |
|   // Track the number of call nodes merged away...
 | |
|   NumCallNodesMerged += NumFns-Calls.size();
 | |
| 
 | |
|   DEBUG(if (NumFns != Calls.size())
 | |
|           std::cerr << "Merged " << (NumFns-Calls.size())
 | |
|                     << " call nodes in " << where << "\n";);
 | |
| }
 | |
| 
 | |
| 
 | |
| // removeTriviallyDeadNodes - After the graph has been constructed, this method
 | |
| // removes all unreachable nodes that are created because they got merged with
 | |
| // other nodes in the graph.  These nodes will all be trivially unreachable, so
 | |
| // we don't have to perform any non-trivial analysis here.
 | |
| //
 | |
| void DSGraph::removeTriviallyDeadNodes() {
 | |
|   removeIdenticalCalls(FunctionCalls, Func ? Func->getName() : "");
 | |
|   removeIdenticalCalls(AuxFunctionCalls, Func ? Func->getName() : "");
 | |
| 
 | |
|   for (unsigned i = 0; i != Nodes.size(); ++i)
 | |
|     if (isNodeDead(Nodes[i])) {               // This node is dead!
 | |
|       delete Nodes[i];                        // Free memory...
 | |
|       Nodes.erase(Nodes.begin()+i--);         // Remove from node list...
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // markAlive - Simple graph walker that recursively traverses the graph, marking
 | |
| // stuff to be alive.
 | |
| //
 | |
| static void markAlive(DSNode *N, std::set<DSNode*> &Alive) {
 | |
|   if (N == 0) return;
 | |
|   std::set<DSNode*>::iterator I = Alive.lower_bound(N);
 | |
|   if (I != Alive.end() && *I == N) return;  // Already marked alive
 | |
|   Alive.insert(I, N);                       // Is alive now
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
 | |
|     markAlive(N->getLink(i).getNode(), Alive);
 | |
| }
 | |
| 
 | |
| // markAliveIfCanReachAlive - Simple graph walker that recursively traverses the
 | |
| // graph looking for a node that is marked alive.  If the node is marked alive,
 | |
| // the recursive unwind marks node alive that can point to the alive node.  This
 | |
| // is basically just a post-order traversal.
 | |
| //
 | |
| // This function returns true if the specified node is alive.
 | |
| //
 | |
| static bool markAliveIfCanReachAlive(DSNode *N, std::set<DSNode*> &Alive,
 | |
|                                      std::set<DSNode*> &Visited) {
 | |
|   if (N == 0) return false;
 | |
| 
 | |
|   // If we know that this node is alive, return so!
 | |
|   if (Alive.count(N)) return true;
 | |
| 
 | |
|   // Otherwise, we don't think the node is alive yet, check for infinite
 | |
|   // recursion.
 | |
|   std::set<DSNode*>::iterator VI = Visited.lower_bound(N);
 | |
|   if (VI != Visited.end() && *VI == N) return false;  // Found a cycle
 | |
|   // No recursion, insert into Visited...
 | |
|   Visited.insert(VI, N);
 | |
| 
 | |
|   if (N->NodeType & DSNode::GlobalNode)
 | |
|     return false; // Global nodes will be marked on their own
 | |
| 
 | |
|   bool ChildrenAreAlive = false;
 | |
| 
 | |
|   for (unsigned i = 0, e = N->getSize(); i < e; i += DS::PointerSize)
 | |
|     ChildrenAreAlive |= markAliveIfCanReachAlive(N->getLink(i).getNode(),
 | |
|                                                  Alive, Visited);
 | |
|   if (ChildrenAreAlive)
 | |
|     markAlive(N, Alive);
 | |
|   return ChildrenAreAlive;
 | |
| }
 | |
| 
 | |
| static bool CallSiteUsesAliveArgs(DSCallSite &CS, std::set<DSNode*> &Alive,
 | |
|                                   std::set<DSNode*> &Visited) {
 | |
|   if (markAliveIfCanReachAlive(CS.getRetVal().getNode(), Alive, Visited) ||
 | |
|       markAliveIfCanReachAlive(CS.getCallee().getNode(), Alive, Visited))
 | |
|     return true;
 | |
|   for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j)
 | |
|     if (markAliveIfCanReachAlive(CS.getPtrArg(j).getNode(), Alive, Visited))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void markAlive(DSCallSite &CS, std::set<DSNode*> &Alive) {
 | |
|   markAlive(CS.getRetVal().getNode(), Alive);
 | |
|   markAlive(CS.getCallee().getNode(), Alive);
 | |
|   
 | |
|   for (unsigned j = 0, e = CS.getNumPtrArgs(); j != e; ++j)
 | |
|     markAlive(CS.getPtrArg(j).getNode(), Alive);
 | |
| }
 | |
| 
 | |
| // removeDeadNodes - Use a more powerful reachability analysis to eliminate
 | |
| // subgraphs that are unreachable.  This often occurs because the data
 | |
| // structure doesn't "escape" into it's caller, and thus should be eliminated
 | |
| // from the caller's graph entirely.  This is only appropriate to use when
 | |
| // inlining graphs.
 | |
| //
 | |
| void DSGraph::removeDeadNodes() {
 | |
|   // Reduce the amount of work we have to do...
 | |
|   removeTriviallyDeadNodes();
 | |
| 
 | |
|   // FIXME: Merge nontrivially identical call nodes...
 | |
| 
 | |
|   // Alive - a set that holds all nodes found to be reachable/alive.
 | |
|   std::set<DSNode*> Alive;
 | |
|   std::vector<std::pair<Value*, DSNode*> > GlobalNodes;
 | |
| 
 | |
|   // Mark all nodes reachable by (non-global) scalar nodes as alive...
 | |
|   for (std::map<Value*, DSNodeHandle>::iterator I = ScalarMap.begin(),
 | |
|          E = ScalarMap.end(); I != E; ++I)
 | |
|     if (!isa<GlobalValue>(I->first))              // Don't mark globals!
 | |
|       markAlive(I->second.getNode(), Alive);
 | |
|     else                    // Keep track of global nodes
 | |
|       GlobalNodes.push_back(std::make_pair(I->first, I->second.getNode()));
 | |
| 
 | |
|   // The return value is alive as well...
 | |
|   markAlive(RetNode.getNode(), Alive);
 | |
| 
 | |
|   // If any global nodes points to a non-global that is "alive", the global is
 | |
|   // "alive" as well...
 | |
|   //
 | |
|   std::set<DSNode*> Visited;
 | |
|   for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
 | |
|     markAliveIfCanReachAlive(GlobalNodes[i].second, Alive, Visited);
 | |
| 
 | |
|   std::vector<bool> FCallsAlive(FunctionCalls.size());
 | |
|   for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
 | |
|     if (CallSiteUsesAliveArgs(FunctionCalls[i], Alive, Visited)) {
 | |
|       markAlive(FunctionCalls[i], Alive);
 | |
|       FCallsAlive[i] = true;
 | |
|     }
 | |
| 
 | |
|   std::vector<bool> AuxFCallsAlive(AuxFunctionCalls.size());
 | |
|   for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
 | |
|     if (CallSiteUsesAliveArgs(AuxFunctionCalls[i], Alive, Visited)) {
 | |
|       markAlive(AuxFunctionCalls[i], Alive);
 | |
|       AuxFCallsAlive[i] = true;
 | |
|     }
 | |
| 
 | |
|   // Remove all dead function calls...
 | |
|   unsigned CurIdx = 0;
 | |
|   for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i)
 | |
|     if (FCallsAlive[i])
 | |
|       FunctionCalls[CurIdx++].swap(FunctionCalls[i]);
 | |
|   // Crop all the bad ones out...
 | |
|   FunctionCalls.erase(FunctionCalls.begin()+CurIdx, FunctionCalls.end());
 | |
| 
 | |
|   // Remove all dead aux function calls...
 | |
|   CurIdx = 0;
 | |
|   for (unsigned i = 0, e = AuxFunctionCalls.size(); i != e; ++i)
 | |
|     if (AuxFCallsAlive[i])
 | |
|       AuxFunctionCalls[CurIdx++].swap(AuxFunctionCalls[i]);
 | |
|   // Crop all the bad ones out...
 | |
|   AuxFunctionCalls.erase(AuxFunctionCalls.begin()+CurIdx,
 | |
|                          AuxFunctionCalls.end());
 | |
| 
 | |
| 
 | |
|   // Remove all unreachable globals from the ScalarMap
 | |
|   for (unsigned i = 0, e = GlobalNodes.size(); i != e; ++i)
 | |
|     if (!Alive.count(GlobalNodes[i].second))
 | |
|       ScalarMap.erase(GlobalNodes[i].first);
 | |
| 
 | |
|   // Loop over all unreachable nodes, dropping their references...
 | |
|   vector<DSNode*> DeadNodes;
 | |
|   DeadNodes.reserve(Nodes.size());     // Only one allocation is allowed.
 | |
|   for (unsigned i = 0; i != Nodes.size(); ++i)
 | |
|     if (!Alive.count(Nodes[i])) {
 | |
|       DSNode *N = Nodes[i];
 | |
|       Nodes.erase(Nodes.begin()+i--);  // Erase node from alive list.
 | |
|       DeadNodes.push_back(N);          // Add node to our list of dead nodes
 | |
|       N->dropAllReferences();          // Drop all outgoing edges
 | |
|     }
 | |
|   
 | |
|   // Delete all dead nodes...
 | |
|   std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter<DSNode>);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| //===----------------------------------------------------------------------===//
 | |
| // GlobalDSGraph Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #if 0
 | |
| // Bits used in the next function
 | |
| static const char ExternalTypeBits = DSNode::GlobalNode | DSNode::HeapNode;
 | |
| 
 | |
| 
 | |
| // GlobalDSGraph::cloneNodeInto - Clone a global node and all its externally
 | |
| // visible target links (and recursively their such links) into this graph.
 | |
| // NodeCache maps the node being cloned to its clone in the Globals graph,
 | |
| // in order to track cycles.
 | |
| // GlobalsAreFinal is a flag that says whether it is safe to assume that
 | |
| // an existing global node is complete.  This is important to avoid
 | |
| // reinserting all globals when inserting Calls to functions.
 | |
| // This is a helper function for cloneGlobals and cloneCalls.
 | |
| // 
 | |
| DSNode* GlobalDSGraph::cloneNodeInto(DSNode *OldNode,
 | |
|                                     std::map<const DSNode*, DSNode*> &NodeCache,
 | |
|                                     bool GlobalsAreFinal) {
 | |
|   if (OldNode == 0) return 0;
 | |
| 
 | |
|   // The caller should check this is an external node.  Just more  efficient...
 | |
|   assert((OldNode->NodeType & ExternalTypeBits) && "Non-external node");
 | |
| 
 | |
|   // If a clone has already been created for OldNode, return it.
 | |
|   DSNode*& CacheEntry = NodeCache[OldNode];
 | |
|   if (CacheEntry != 0)
 | |
|     return CacheEntry;
 | |
| 
 | |
|   // The result value...
 | |
|   DSNode* NewNode = 0;
 | |
| 
 | |
|   // If nodes already exist for any of the globals of OldNode,
 | |
|   // merge all such nodes together since they are merged in OldNode.
 | |
|   // If ValueCacheIsFinal==true, look for an existing node that has
 | |
|   // an identical list of globals and return it if it exists.
 | |
|   //
 | |
|   for (unsigned j = 0, N = OldNode->getGlobals().size(); j != N; ++j)
 | |
|     if (DSNode *PrevNode = ScalarMap[OldNode->getGlobals()[j]].getNode()) {
 | |
|       if (NewNode == 0) {
 | |
|         NewNode = PrevNode;             // first existing node found
 | |
|         if (GlobalsAreFinal && j == 0)
 | |
|           if (OldNode->getGlobals() == PrevNode->getGlobals()) {
 | |
|             CacheEntry = NewNode;
 | |
|             return NewNode;
 | |
|           }
 | |
|       }
 | |
|       else if (NewNode != PrevNode) {   // found another, different from prev
 | |
|         // update ValMap *before* merging PrevNode into NewNode
 | |
|         for (unsigned k = 0, NK = PrevNode->getGlobals().size(); k < NK; ++k)
 | |
|           ScalarMap[PrevNode->getGlobals()[k]] = NewNode;
 | |
|         NewNode->mergeWith(PrevNode);
 | |
|       }
 | |
|     } else if (NewNode != 0) {
 | |
|       ScalarMap[OldNode->getGlobals()[j]] = NewNode; // add the merged node
 | |
|     }
 | |
| 
 | |
|   // If no existing node was found, clone the node and update the ValMap.
 | |
|   if (NewNode == 0) {
 | |
|     NewNode = new DSNode(*OldNode);
 | |
|     Nodes.push_back(NewNode);
 | |
|     for (unsigned j = 0, e = NewNode->getNumLinks(); j != e; ++j)
 | |
|       NewNode->setLink(j, 0);
 | |
|     for (unsigned j = 0, N = NewNode->getGlobals().size(); j < N; ++j)
 | |
|       ScalarMap[NewNode->getGlobals()[j]] = NewNode;
 | |
|   }
 | |
|   else
 | |
|     NewNode->NodeType |= OldNode->NodeType; // Markers may be different!
 | |
| 
 | |
|   // Add the entry to NodeCache
 | |
|   CacheEntry = NewNode;
 | |
| 
 | |
|   // Rewrite the links in the new node to point into the current graph,
 | |
|   // but only for links to external nodes.  Set other links to NULL.
 | |
|   for (unsigned j = 0, e = OldNode->getNumLinks(); j != e; ++j) {
 | |
|     DSNode* OldTarget = OldNode->getLink(j);
 | |
|     if (OldTarget && (OldTarget->NodeType & ExternalTypeBits)) {
 | |
|       DSNode* NewLink = this->cloneNodeInto(OldTarget, NodeCache);
 | |
|       if (NewNode->getLink(j))
 | |
|         NewNode->getLink(j)->mergeWith(NewLink);
 | |
|       else
 | |
|         NewNode->setLink(j, NewLink);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove all local markers
 | |
|   NewNode->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode);
 | |
| 
 | |
|   return NewNode;
 | |
| }
 | |
| 
 | |
| 
 | |
| // GlobalDSGraph::cloneCalls - Clone function calls and their visible target
 | |
| // links (and recursively their such links) into this graph.
 | |
| // 
 | |
| void GlobalDSGraph::cloneCalls(DSGraph& Graph) {
 | |
|   std::map<const DSNode*, DSNode*> NodeCache;
 | |
|   vector<DSCallSite >& FromCalls =Graph.FunctionCalls;
 | |
| 
 | |
|   FunctionCalls.reserve(FunctionCalls.size() + FromCalls.size());
 | |
| 
 | |
|   for (int i = 0, ei = FromCalls.size(); i < ei; ++i) {
 | |
|     DSCallSite& callCopy = FunctionCalls.back();
 | |
|     callCopy.reserve(FromCalls[i].size());
 | |
|     for (unsigned j = 0, ej = FromCalls[i].size(); j != ej; ++j)
 | |
|       callCopy.push_back
 | |
|         ((FromCalls[i][j] && (FromCalls[i][j]->NodeType & ExternalTypeBits))
 | |
|          ? cloneNodeInto(FromCalls[i][j], NodeCache, true)
 | |
|          : 0);
 | |
|   }
 | |
| 
 | |
|   // remove trivially identical function calls
 | |
|   removeIdenticalCalls(FunctionCalls, "Globals Graph");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif
 |