mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61715 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			470 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			470 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the TwoAddress instruction pass which is used
 | |
| // by most register allocators. Two-Address instructions are rewritten
 | |
| // from:
 | |
| //
 | |
| //     A = B op C
 | |
| //
 | |
| // to:
 | |
| //
 | |
| //     A = B
 | |
| //     A op= C
 | |
| //
 | |
| // Note that if a register allocator chooses to use this pass, that it
 | |
| // has to be capable of handling the non-SSA nature of these rewritten
 | |
| // virtual registers.
 | |
| //
 | |
| // It is also worth noting that the duplicate operand of the two
 | |
| // address instruction is removed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "twoaddrinstr"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
 | |
| STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
 | |
| STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
 | |
| STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
 | |
| STATISTIC(NumReMats,           "Number of instructions re-materialized");
 | |
| 
 | |
| namespace {
 | |
|   class VISIBILITY_HIDDEN TwoAddressInstructionPass
 | |
|     : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     MachineRegisterInfo *MRI;
 | |
|     LiveVariables *LV;
 | |
| 
 | |
|     bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
 | |
|                               unsigned Reg,
 | |
|                               MachineBasicBlock::iterator OldPos);
 | |
| 
 | |
|     bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
 | |
|                              MachineInstr *MI, MachineInstr *DefMI,
 | |
|                              MachineBasicBlock *MBB, unsigned Loc,
 | |
|                              DenseMap<MachineInstr*, unsigned> &DistanceMap);
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addPreserved<LiveVariables>();
 | |
|       AU.addPreservedID(MachineLoopInfoID);
 | |
|       AU.addPreservedID(MachineDominatorsID);
 | |
|       if (StrongPHIElim)
 | |
|         AU.addPreservedID(StrongPHIEliminationID);
 | |
|       else
 | |
|         AU.addPreservedID(PHIEliminationID);
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     /// runOnMachineFunction - Pass entry point.
 | |
|     bool runOnMachineFunction(MachineFunction&);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char TwoAddressInstructionPass::ID = 0;
 | |
| static RegisterPass<TwoAddressInstructionPass>
 | |
| X("twoaddressinstruction", "Two-Address instruction pass");
 | |
| 
 | |
| const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
 | |
| 
 | |
| /// Sink3AddrInstruction - A two-address instruction has been converted to a
 | |
| /// three-address instruction to avoid clobbering a register. Try to sink it
 | |
| /// past the instruction that would kill the above mentioned register to reduce
 | |
| /// register pressure.
 | |
| bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
 | |
|                                            MachineInstr *MI, unsigned SavedReg,
 | |
|                                            MachineBasicBlock::iterator OldPos) {
 | |
|   // Check if it's safe to move this instruction.
 | |
|   bool SeenStore = true; // Be conservative.
 | |
|   if (!MI->isSafeToMove(TII, SeenStore))
 | |
|     return false;
 | |
| 
 | |
|   unsigned DefReg = 0;
 | |
|   SmallSet<unsigned, 4> UseRegs;
 | |
| 
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     unsigned MOReg = MO.getReg();
 | |
|     if (!MOReg)
 | |
|       continue;
 | |
|     if (MO.isUse() && MOReg != SavedReg)
 | |
|       UseRegs.insert(MO.getReg());
 | |
|     if (!MO.isDef())
 | |
|       continue;
 | |
|     if (MO.isImplicit())
 | |
|       // Don't try to move it if it implicitly defines a register.
 | |
|       return false;
 | |
|     if (DefReg)
 | |
|       // For now, don't move any instructions that define multiple registers.
 | |
|       return false;
 | |
|     DefReg = MO.getReg();
 | |
|   }
 | |
| 
 | |
|   // Find the instruction that kills SavedReg.
 | |
|   MachineInstr *KillMI = NULL;
 | |
|   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(SavedReg),
 | |
|          UE = MRI->use_end(); UI != UE; ++UI) {
 | |
|     MachineOperand &UseMO = UI.getOperand();
 | |
|     if (!UseMO.isKill())
 | |
|       continue;
 | |
|     KillMI = UseMO.getParent();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!KillMI || KillMI->getParent() != MBB)
 | |
|     return false;
 | |
| 
 | |
|   // If any of the definitions are used by another instruction between the
 | |
|   // position and the kill use, then it's not safe to sink it.
 | |
|   // 
 | |
|   // FIXME: This can be sped up if there is an easy way to query whether an
 | |
|   // instruction is before or after another instruction. Then we can use
 | |
|   // MachineRegisterInfo def / use instead.
 | |
|   MachineOperand *KillMO = NULL;
 | |
|   MachineBasicBlock::iterator KillPos = KillMI;
 | |
|   ++KillPos;
 | |
| 
 | |
|   unsigned NumVisited = 0;
 | |
|   for (MachineBasicBlock::iterator I = next(OldPos); I != KillPos; ++I) {
 | |
|     MachineInstr *OtherMI = I;
 | |
|     if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
 | |
|       return false;
 | |
|     ++NumVisited;
 | |
|     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = OtherMI->getOperand(i);
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       unsigned MOReg = MO.getReg();
 | |
|       if (!MOReg)
 | |
|         continue;
 | |
|       if (DefReg == MOReg)
 | |
|         return false;
 | |
| 
 | |
|       if (MO.isKill()) {
 | |
|         if (OtherMI == KillMI && MOReg == SavedReg)
 | |
|           // Save the operand that kills the register. We want to unset the kill
 | |
|           // marker if we can sink MI past it.
 | |
|           KillMO = &MO;
 | |
|         else if (UseRegs.count(MOReg))
 | |
|           // One of the uses is killed before the destination.
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update kill and LV information.
 | |
|   KillMO->setIsKill(false);
 | |
|   KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
 | |
|   KillMO->setIsKill(true);
 | |
|   
 | |
|   if (LV)
 | |
|     LV->replaceKillInstruction(SavedReg, KillMI, MI);
 | |
| 
 | |
|   // Move instruction to its destination.
 | |
|   MBB->remove(MI);
 | |
|   MBB->insert(KillPos, MI);
 | |
| 
 | |
|   ++Num3AddrSunk;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isTwoAddrUse - Return true if the specified MI is using the specified
 | |
| /// register as a two-address operand.
 | |
| static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
 | |
|   const TargetInstrDesc &TID = UseMI->getDesc();
 | |
|   for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = UseMI->getOperand(i);
 | |
|     if (MO.isReg() && MO.getReg() == Reg &&
 | |
|         (MO.isDef() || TID.getOperandConstraint(i, TOI::TIED_TO) != -1))
 | |
|       // Earlier use is a two-address one.
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isProfitableToReMat - Return true if the heuristics determines it is likely
 | |
| /// to be profitable to re-materialize the definition of Reg rather than copy
 | |
| /// the register.
 | |
| bool
 | |
| TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
 | |
|                                 const TargetRegisterClass *RC,
 | |
|                                 MachineInstr *MI, MachineInstr *DefMI,
 | |
|                                 MachineBasicBlock *MBB, unsigned Loc,
 | |
|                                 DenseMap<MachineInstr*, unsigned> &DistanceMap){
 | |
|   bool OtherUse = false;
 | |
|   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
 | |
|          UE = MRI->use_end(); UI != UE; ++UI) {
 | |
|     MachineOperand &UseMO = UI.getOperand();
 | |
|     if (!UseMO.isUse())
 | |
|       continue;
 | |
|     MachineInstr *UseMI = UseMO.getParent();
 | |
|     MachineBasicBlock *UseMBB = UseMI->getParent();
 | |
|     if (UseMBB == MBB) {
 | |
|       DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
 | |
|       if (DI != DistanceMap.end() && DI->second == Loc)
 | |
|         continue;  // Current use.
 | |
|       OtherUse = true;
 | |
|       // There is at least one other use in the MBB that will clobber the
 | |
|       // register. 
 | |
|       if (isTwoAddrUse(UseMI, Reg))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If other uses in MBB are not two-address uses, then don't remat.
 | |
|   if (OtherUse)
 | |
|     return false;
 | |
| 
 | |
|   // No other uses in the same block, remat if it's defined in the same
 | |
|   // block so it does not unnecessarily extend the live range.
 | |
|   return MBB == DefMI->getParent();
 | |
| }
 | |
| 
 | |
| /// runOnMachineFunction - Reduce two-address instructions to two operands.
 | |
| ///
 | |
| bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
 | |
|   DOUT << "Machine Function\n";
 | |
|   const TargetMachine &TM = MF.getTarget();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   TII = TM.getInstrInfo();
 | |
|   TRI = TM.getRegisterInfo();
 | |
|   LV = getAnalysisToUpdate<LiveVariables>();
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   DOUT << "********** REWRITING TWO-ADDR INSTRS **********\n";
 | |
|   DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
 | |
| 
 | |
|   // ReMatRegs - Keep track of the registers whose def's are remat'ed.
 | |
|   BitVector ReMatRegs;
 | |
|   ReMatRegs.resize(MRI->getLastVirtReg()+1);
 | |
| 
 | |
|   // DistanceMap - Keep track the distance of a MI from the start of the
 | |
|   // current basic block.
 | |
|   DenseMap<MachineInstr*, unsigned> DistanceMap;
 | |
| 
 | |
|   for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
 | |
|        mbbi != mbbe; ++mbbi) {
 | |
|     unsigned Dist = 0;
 | |
|     DistanceMap.clear();
 | |
|     for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
 | |
|          mi != me; ) {
 | |
|       MachineBasicBlock::iterator nmi = next(mi);
 | |
|       const TargetInstrDesc &TID = mi->getDesc();
 | |
|       bool FirstTied = true;
 | |
| 
 | |
|       DistanceMap.insert(std::make_pair(mi, ++Dist));
 | |
|       for (unsigned si = 1, e = TID.getNumOperands(); si < e; ++si) {
 | |
|         int ti = TID.getOperandConstraint(si, TOI::TIED_TO);
 | |
|         if (ti == -1)
 | |
|           continue;
 | |
| 
 | |
|         if (FirstTied) {
 | |
|           ++NumTwoAddressInstrs;
 | |
|           DOUT << '\t'; DEBUG(mi->print(*cerr.stream(), &TM));
 | |
|         }
 | |
| 
 | |
|         FirstTied = false;
 | |
| 
 | |
|         assert(mi->getOperand(si).isReg() && mi->getOperand(si).getReg() &&
 | |
|                mi->getOperand(si).isUse() && "two address instruction invalid");
 | |
| 
 | |
|         // If the two operands are the same we just remove the use
 | |
|         // and mark the def as def&use, otherwise we have to insert a copy.
 | |
|         if (mi->getOperand(ti).getReg() != mi->getOperand(si).getReg()) {
 | |
|           // Rewrite:
 | |
|           //     a = b op c
 | |
|           // to:
 | |
|           //     a = b
 | |
|           //     a = a op c
 | |
|           unsigned regA = mi->getOperand(ti).getReg();
 | |
|           unsigned regB = mi->getOperand(si).getReg();
 | |
| 
 | |
|           assert(TargetRegisterInfo::isVirtualRegister(regA) &&
 | |
|                  TargetRegisterInfo::isVirtualRegister(regB) &&
 | |
|                  "cannot update physical register live information");
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|           // First, verify that we don't have a use of a in the instruction (a =
 | |
|           // b + a for example) because our transformation will not work. This
 | |
|           // should never occur because we are in SSA form.
 | |
|           for (unsigned i = 0; i != mi->getNumOperands(); ++i)
 | |
|             assert((int)i == ti ||
 | |
|                    !mi->getOperand(i).isReg() ||
 | |
|                    mi->getOperand(i).getReg() != regA);
 | |
| #endif
 | |
| 
 | |
|           // If this instruction is not the killing user of B, see if we can
 | |
|           // rearrange the code to make it so.  Making it the killing user will
 | |
|           // allow us to coalesce A and B together, eliminating the copy we are
 | |
|           // about to insert.
 | |
|           if (!mi->killsRegister(regB)) {
 | |
|             // If this instruction is commutative, check to see if C dies.  If
 | |
|             // so, swap the B and C operands.  This makes the live ranges of A
 | |
|             // and C joinable.
 | |
|             // FIXME: This code also works for A := B op C instructions.
 | |
|             if (TID.isCommutable() && mi->getNumOperands() >= 3) {
 | |
|               assert(mi->getOperand(3-si).isReg() &&
 | |
|                      "Not a proper commutative instruction!");
 | |
|               unsigned regC = mi->getOperand(3-si).getReg();
 | |
| 
 | |
|               if (mi->killsRegister(regC)) {
 | |
|                 DOUT << "2addr: COMMUTING  : " << *mi;
 | |
|                 MachineInstr *NewMI = TII->commuteInstruction(mi);
 | |
| 
 | |
|                 if (NewMI == 0) {
 | |
|                   DOUT << "2addr: COMMUTING FAILED!\n";
 | |
|                 } else {
 | |
|                   DOUT << "2addr: COMMUTED TO: " << *NewMI;
 | |
|                   // If the instruction changed to commute it, update livevar.
 | |
|                   if (NewMI != mi) {
 | |
|                     if (LV)
 | |
|                       // Update live variables
 | |
|                       LV->replaceKillInstruction(regC, mi, NewMI);
 | |
|                     
 | |
|                     mbbi->insert(mi, NewMI);           // Insert the new inst
 | |
|                     mbbi->erase(mi);                   // Nuke the old inst.
 | |
|                     mi = NewMI;
 | |
|                     DistanceMap.insert(std::make_pair(NewMI, Dist));
 | |
|                   }
 | |
| 
 | |
|                   ++NumCommuted;
 | |
|                   regB = regC;
 | |
|                   goto InstructionRearranged;
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
| 
 | |
|             // If this instruction is potentially convertible to a true
 | |
|             // three-address instruction,
 | |
|             if (TID.isConvertibleTo3Addr()) {
 | |
|               // FIXME: This assumes there are no more operands which are tied
 | |
|               // to another register.
 | |
| #ifndef NDEBUG
 | |
|               for (unsigned i = si + 1, e = TID.getNumOperands(); i < e; ++i)
 | |
|                 assert(TID.getOperandConstraint(i, TOI::TIED_TO) == -1);
 | |
| #endif
 | |
| 
 | |
|               MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
 | |
|               if (NewMI) {
 | |
|                 DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
 | |
|                 DOUT << "2addr:         TO 3-ADDR: " << *NewMI;
 | |
|                 bool Sunk = false;
 | |
| 
 | |
|                 if (NewMI->findRegisterUseOperand(regB, false, TRI))
 | |
|                   // FIXME: Temporary workaround. If the new instruction doesn't
 | |
|                   // uses regB, convertToThreeAddress must have created more
 | |
|                   // then one instruction.
 | |
|                   Sunk = Sink3AddrInstruction(mbbi, NewMI, regB, mi);
 | |
| 
 | |
|                 mbbi->erase(mi); // Nuke the old inst.
 | |
| 
 | |
|                 if (!Sunk) {
 | |
|                   DistanceMap.insert(std::make_pair(NewMI, Dist));
 | |
|                   mi = NewMI;
 | |
|                   nmi = next(mi);
 | |
|                 }
 | |
| 
 | |
|                 ++NumConvertedTo3Addr;
 | |
|                 break; // Done with this instruction.
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|         InstructionRearranged:
 | |
|           const TargetRegisterClass* rc = MRI->getRegClass(regA);
 | |
|           MachineInstr *DefMI = MRI->getVRegDef(regB);
 | |
|           // If it's safe and profitable, remat the definition instead of
 | |
|           // copying it.
 | |
|           if (DefMI &&
 | |
|               DefMI->getDesc().isAsCheapAsAMove() &&
 | |
|               DefMI->isSafeToReMat(TII, regB) &&
 | |
|               isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist,DistanceMap)){
 | |
|             DEBUG(cerr << "2addr: REMATTING : " << *DefMI << "\n");
 | |
|             TII->reMaterialize(*mbbi, mi, regA, DefMI);
 | |
|             ReMatRegs.set(regB);
 | |
|             ++NumReMats;
 | |
|           } else {
 | |
|             TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
 | |
|           }
 | |
| 
 | |
|           MachineBasicBlock::iterator prevMi = prior(mi);
 | |
| 
 | |
|           // Update live variables for regB.
 | |
|           if (LV) {
 | |
|             LiveVariables::VarInfo& varInfoB = LV->getVarInfo(regB);
 | |
| 
 | |
|             // regB is used in this BB.
 | |
|             varInfoB.UsedBlocks[mbbi->getNumber()] = true;
 | |
| 
 | |
|             if (LV->removeVirtualRegisterKilled(regB,  mi))
 | |
|               LV->addVirtualRegisterKilled(regB, prevMi);
 | |
| 
 | |
|             if (LV->removeVirtualRegisterDead(regB, mi))
 | |
|               LV->addVirtualRegisterDead(regB, prevMi);
 | |
|           }
 | |
| 
 | |
|           DOUT << "\t\tprepend:\t"; DEBUG(prevMi->print(*cerr.stream(), &TM));
 | |
|           
 | |
|           // Replace all occurences of regB with regA.
 | |
|           for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
 | |
|             if (mi->getOperand(i).isReg() &&
 | |
|                 mi->getOperand(i).getReg() == regB)
 | |
|               mi->getOperand(i).setReg(regA);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         assert(mi->getOperand(ti).isDef() && mi->getOperand(si).isUse());
 | |
|         mi->getOperand(ti).setReg(mi->getOperand(si).getReg());
 | |
|         MadeChange = true;
 | |
| 
 | |
|         DOUT << "\t\trewrite to:\t"; DEBUG(mi->print(*cerr.stream(), &TM));
 | |
|       }
 | |
| 
 | |
|       mi = nmi;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Some remat'ed instructions are dead.
 | |
|   int VReg = ReMatRegs.find_first();
 | |
|   while (VReg != -1) {
 | |
|     if (MRI->use_empty(VReg)) {
 | |
|       MachineInstr *DefMI = MRI->getVRegDef(VReg);
 | |
|       DefMI->eraseFromParent();
 | |
|     }
 | |
|     VReg = ReMatRegs.find_next(VReg);
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 |