mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	As pr19627 points out, every use of AliasedSymbol is likely a bug. The main use was to avoid the oddity of a variable showing up as undefined. That was fixed in r233995, which made these calls nops. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@234169 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1322 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1322 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/MC/MCAssembler.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/MC/MCAsmBackend.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCAsmLayout.h"
 | |
| #include "llvm/MC/MCCodeEmitter.h"
 | |
| #include "llvm/MC/MCContext.h"
 | |
| #include "llvm/MC/MCDwarf.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCFixupKindInfo.h"
 | |
| #include "llvm/MC/MCObjectWriter.h"
 | |
| #include "llvm/MC/MCSection.h"
 | |
| #include "llvm/MC/MCSectionELF.h"
 | |
| #include "llvm/MC/MCSymbol.h"
 | |
| #include "llvm/MC/MCValue.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/LEB128.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <tuple>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "assembler"
 | |
| 
 | |
| namespace {
 | |
| namespace stats {
 | |
| STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
 | |
| STATISTIC(EmittedRelaxableFragments,
 | |
|           "Number of emitted assembler fragments - relaxable");
 | |
| STATISTIC(EmittedDataFragments,
 | |
|           "Number of emitted assembler fragments - data");
 | |
| STATISTIC(EmittedCompactEncodedInstFragments,
 | |
|           "Number of emitted assembler fragments - compact encoded inst");
 | |
| STATISTIC(EmittedAlignFragments,
 | |
|           "Number of emitted assembler fragments - align");
 | |
| STATISTIC(EmittedFillFragments,
 | |
|           "Number of emitted assembler fragments - fill");
 | |
| STATISTIC(EmittedOrgFragments,
 | |
|           "Number of emitted assembler fragments - org");
 | |
| STATISTIC(evaluateFixup, "Number of evaluated fixups");
 | |
| STATISTIC(FragmentLayouts, "Number of fragment layouts");
 | |
| STATISTIC(ObjectBytes, "Number of emitted object file bytes");
 | |
| STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
 | |
| STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
 | |
| }
 | |
| }
 | |
| 
 | |
| // FIXME FIXME FIXME: There are number of places in this file where we convert
 | |
| // what is a 64-bit assembler value used for computation into a value in the
 | |
| // object file, which may truncate it. We should detect that truncation where
 | |
| // invalid and report errors back.
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
 | |
|   : Assembler(Asm), LastValidFragment()
 | |
|  {
 | |
|   // Compute the section layout order. Virtual sections must go last.
 | |
|   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
 | |
|     if (!it->getSection().isVirtualSection())
 | |
|       SectionOrder.push_back(&*it);
 | |
|   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
 | |
|     if (it->getSection().isVirtualSection())
 | |
|       SectionOrder.push_back(&*it);
 | |
| }
 | |
| 
 | |
| bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
 | |
|   const MCSectionData &SD = *F->getParent();
 | |
|   const MCFragment *LastValid = LastValidFragment.lookup(&SD);
 | |
|   if (!LastValid)
 | |
|     return false;
 | |
|   assert(LastValid->getParent() == F->getParent());
 | |
|   return F->getLayoutOrder() <= LastValid->getLayoutOrder();
 | |
| }
 | |
| 
 | |
| void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
 | |
|   // If this fragment wasn't already valid, we don't need to do anything.
 | |
|   if (!isFragmentValid(F))
 | |
|     return;
 | |
| 
 | |
|   // Otherwise, reset the last valid fragment to the previous fragment
 | |
|   // (if this is the first fragment, it will be NULL).
 | |
|   const MCSectionData &SD = *F->getParent();
 | |
|   LastValidFragment[&SD] = F->getPrevNode();
 | |
| }
 | |
| 
 | |
| void MCAsmLayout::ensureValid(const MCFragment *F) const {
 | |
|   MCSectionData &SD = *F->getParent();
 | |
| 
 | |
|   MCFragment *Cur = LastValidFragment[&SD];
 | |
|   if (!Cur)
 | |
|     Cur = &*SD.begin();
 | |
|   else
 | |
|     Cur = Cur->getNextNode();
 | |
| 
 | |
|   // Advance the layout position until the fragment is valid.
 | |
|   while (!isFragmentValid(F)) {
 | |
|     assert(Cur && "Layout bookkeeping error");
 | |
|     const_cast<MCAsmLayout*>(this)->layoutFragment(Cur);
 | |
|     Cur = Cur->getNextNode();
 | |
|   }
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
 | |
|   ensureValid(F);
 | |
|   assert(F->Offset != ~UINT64_C(0) && "Address not set!");
 | |
|   return F->Offset;
 | |
| }
 | |
| 
 | |
| // Simple getSymbolOffset helper for the non-varibale case.
 | |
| static bool getLabelOffset(const MCAsmLayout &Layout, const MCSymbolData &SD,
 | |
|                            bool ReportError, uint64_t &Val) {
 | |
|   if (!SD.getFragment()) {
 | |
|     if (ReportError)
 | |
|       report_fatal_error("unable to evaluate offset to undefined symbol '" +
 | |
|                          SD.getSymbol().getName() + "'");
 | |
|     return false;
 | |
|   }
 | |
|   Val = Layout.getFragmentOffset(SD.getFragment()) + SD.getOffset();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool getSymbolOffsetImpl(const MCAsmLayout &Layout,
 | |
|                                 const MCSymbolData *SD, bool ReportError,
 | |
|                                 uint64_t &Val) {
 | |
|   const MCSymbol &S = SD->getSymbol();
 | |
| 
 | |
|   if (!S.isVariable())
 | |
|     return getLabelOffset(Layout, *SD, ReportError, Val);
 | |
| 
 | |
|   // If SD is a variable, evaluate it.
 | |
|   MCValue Target;
 | |
|   if (!S.getVariableValue()->EvaluateAsRelocatable(Target, &Layout, nullptr))
 | |
|     report_fatal_error("unable to evaluate offset for variable '" +
 | |
|                        S.getName() + "'");
 | |
| 
 | |
|   uint64_t Offset = Target.getConstant();
 | |
| 
 | |
|   const MCAssembler &Asm = Layout.getAssembler();
 | |
| 
 | |
|   const MCSymbolRefExpr *A = Target.getSymA();
 | |
|   if (A) {
 | |
|     uint64_t ValA;
 | |
|     if (!getLabelOffset(Layout, Asm.getSymbolData(A->getSymbol()), ReportError,
 | |
|                         ValA))
 | |
|       return false;
 | |
|     Offset += ValA;
 | |
|   }
 | |
| 
 | |
|   const MCSymbolRefExpr *B = Target.getSymB();
 | |
|   if (B) {
 | |
|     uint64_t ValB;
 | |
|     if (!getLabelOffset(Layout, Asm.getSymbolData(B->getSymbol()), ReportError,
 | |
|                         ValB))
 | |
|       return false;
 | |
|     Offset -= ValB;
 | |
|   }
 | |
| 
 | |
|   Val = Offset;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MCAsmLayout::getSymbolOffset(const MCSymbolData *SD, uint64_t &Val) const {
 | |
|   return getSymbolOffsetImpl(*this, SD, false, Val);
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
 | |
|   uint64_t Val;
 | |
|   getSymbolOffsetImpl(*this, SD, true, Val);
 | |
|   return Val;
 | |
| }
 | |
| 
 | |
| const MCSymbol *MCAsmLayout::getBaseSymbol(const MCSymbol &Symbol) const {
 | |
|   if (!Symbol.isVariable())
 | |
|     return &Symbol;
 | |
| 
 | |
|   const MCExpr *Expr = Symbol.getVariableValue();
 | |
|   MCValue Value;
 | |
|   if (!Expr->evaluateAsValue(Value, *this))
 | |
|     llvm_unreachable("Invalid Expression");
 | |
| 
 | |
|   const MCSymbolRefExpr *RefB = Value.getSymB();
 | |
|   if (RefB)
 | |
|     Assembler.getContext().FatalError(
 | |
|         SMLoc(), Twine("symbol '") + RefB->getSymbol().getName() +
 | |
|                      "' could not be evaluated in a subtraction expression");
 | |
| 
 | |
|   const MCSymbolRefExpr *A = Value.getSymA();
 | |
|   if (!A)
 | |
|     return nullptr;
 | |
| 
 | |
|   const MCSymbol &ASym = A->getSymbol();
 | |
|   const MCAssembler &Asm = getAssembler();
 | |
|   const MCSymbolData &ASD = Asm.getSymbolData(ASym);
 | |
|   if (ASD.isCommon()) {
 | |
|     // FIXME: we should probably add a SMLoc to MCExpr.
 | |
|     Asm.getContext().FatalError(SMLoc(),
 | |
|                                 "Common symbol " + ASym.getName() +
 | |
|                                     " cannot be used in assignment expr");
 | |
|   }
 | |
| 
 | |
|   return &ASym;
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
 | |
|   // The size is the last fragment's end offset.
 | |
|   const MCFragment &F = SD->getFragmentList().back();
 | |
|   return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
 | |
|   // Virtual sections have no file size.
 | |
|   if (SD->getSection().isVirtualSection())
 | |
|     return 0;
 | |
| 
 | |
|   // Otherwise, the file size is the same as the address space size.
 | |
|   return getSectionAddressSize(SD);
 | |
| }
 | |
| 
 | |
| uint64_t MCAsmLayout::computeBundlePadding(const MCFragment *F,
 | |
|                                            uint64_t FOffset, uint64_t FSize) {
 | |
|   uint64_t BundleSize = Assembler.getBundleAlignSize();
 | |
|   assert(BundleSize > 0 &&
 | |
|          "computeBundlePadding should only be called if bundling is enabled");
 | |
|   uint64_t BundleMask = BundleSize - 1;
 | |
|   uint64_t OffsetInBundle = FOffset & BundleMask;
 | |
|   uint64_t EndOfFragment = OffsetInBundle + FSize;
 | |
| 
 | |
|   // There are two kinds of bundling restrictions:
 | |
|   //
 | |
|   // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
 | |
|   //    *end* on a bundle boundary.
 | |
|   // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
 | |
|   //    would, add padding until the end of the bundle so that the fragment
 | |
|   //    will start in a new one.
 | |
|   if (F->alignToBundleEnd()) {
 | |
|     // Three possibilities here:
 | |
|     //
 | |
|     // A) The fragment just happens to end at a bundle boundary, so we're good.
 | |
|     // B) The fragment ends before the current bundle boundary: pad it just
 | |
|     //    enough to reach the boundary.
 | |
|     // C) The fragment ends after the current bundle boundary: pad it until it
 | |
|     //    reaches the end of the next bundle boundary.
 | |
|     //
 | |
|     // Note: this code could be made shorter with some modulo trickery, but it's
 | |
|     // intentionally kept in its more explicit form for simplicity.
 | |
|     if (EndOfFragment == BundleSize)
 | |
|       return 0;
 | |
|     else if (EndOfFragment < BundleSize)
 | |
|       return BundleSize - EndOfFragment;
 | |
|     else { // EndOfFragment > BundleSize
 | |
|       return 2 * BundleSize - EndOfFragment;
 | |
|     }
 | |
|   } else if (EndOfFragment > BundleSize)
 | |
|     return BundleSize - OffsetInBundle;
 | |
|   else
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCFragment::MCFragment() : Kind(FragmentType(~0)) {
 | |
| }
 | |
| 
 | |
| MCFragment::~MCFragment() {
 | |
| }
 | |
| 
 | |
| MCFragment::MCFragment(FragmentType Kind, MCSectionData *Parent)
 | |
|     : Kind(Kind), Parent(Parent), Atom(nullptr), Offset(~UINT64_C(0)) {
 | |
|   if (Parent)
 | |
|     Parent->getFragmentList().push_back(this);
 | |
| }
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCEncodedFragment::~MCEncodedFragment() {
 | |
| }
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCEncodedFragmentWithFixups::~MCEncodedFragmentWithFixups() {
 | |
| }
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCSectionData::MCSectionData() : Section(nullptr) {}
 | |
| 
 | |
| MCSectionData::MCSectionData(const MCSection &Section, MCAssembler *A)
 | |
|     : Section(&Section), Ordinal(~UINT32_C(0)), Alignment(1),
 | |
|       BundleLockState(NotBundleLocked), BundleLockNestingDepth(0),
 | |
|       BundleGroupBeforeFirstInst(false), HasInstructions(false) {
 | |
|   if (A)
 | |
|     A->getSectionList().push_back(this);
 | |
| }
 | |
| 
 | |
| MCSectionData::iterator
 | |
| MCSectionData::getSubsectionInsertionPoint(unsigned Subsection) {
 | |
|   if (Subsection == 0 && SubsectionFragmentMap.empty())
 | |
|     return end();
 | |
| 
 | |
|   SmallVectorImpl<std::pair<unsigned, MCFragment *> >::iterator MI =
 | |
|     std::lower_bound(SubsectionFragmentMap.begin(), SubsectionFragmentMap.end(),
 | |
|                      std::make_pair(Subsection, (MCFragment *)nullptr));
 | |
|   bool ExactMatch = false;
 | |
|   if (MI != SubsectionFragmentMap.end()) {
 | |
|     ExactMatch = MI->first == Subsection;
 | |
|     if (ExactMatch)
 | |
|       ++MI;
 | |
|   }
 | |
|   iterator IP;
 | |
|   if (MI == SubsectionFragmentMap.end())
 | |
|     IP = end();
 | |
|   else
 | |
|     IP = MI->second;
 | |
|   if (!ExactMatch && Subsection != 0) {
 | |
|     // The GNU as documentation claims that subsections have an alignment of 4,
 | |
|     // although this appears not to be the case.
 | |
|     MCFragment *F = new MCDataFragment();
 | |
|     SubsectionFragmentMap.insert(MI, std::make_pair(Subsection, F));
 | |
|     getFragmentList().insert(IP, F);
 | |
|     F->setParent(this);
 | |
|   }
 | |
|   return IP;
 | |
| }
 | |
| 
 | |
| void MCSectionData::setBundleLockState(BundleLockStateType NewState) {
 | |
|   if (NewState == NotBundleLocked) {
 | |
|     if (BundleLockNestingDepth == 0) {
 | |
|       report_fatal_error("Mismatched bundle_lock/unlock directives");
 | |
|     }
 | |
|     if (--BundleLockNestingDepth == 0) {
 | |
|       BundleLockState = NotBundleLocked;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If any of the directives is an align_to_end directive, the whole nested
 | |
|   // group is align_to_end. So don't downgrade from align_to_end to just locked.
 | |
|   if (BundleLockState != BundleLockedAlignToEnd) {
 | |
|     BundleLockState = NewState;
 | |
|   }
 | |
|   ++BundleLockNestingDepth;
 | |
| }
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCSymbolData::MCSymbolData() : Symbol(nullptr) {}
 | |
| 
 | |
| MCSymbolData::MCSymbolData(const MCSymbol &Symbol, MCFragment *Fragment,
 | |
|                            uint64_t Offset, MCAssembler *A)
 | |
|     : Symbol(&Symbol), Fragment(Fragment), Offset(Offset), SymbolSize(nullptr),
 | |
|       CommonAlign(-1U), Flags(0), Index(0) {
 | |
|   if (A)
 | |
|     A->getSymbolList().push_back(this);
 | |
| }
 | |
| 
 | |
| /* *** */
 | |
| 
 | |
| MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
 | |
|                          MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
 | |
|                          raw_ostream &OS_)
 | |
|     : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
 | |
|       OS(OS_), BundleAlignSize(0), RelaxAll(false),
 | |
|       SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
 | |
|   VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
 | |
| }
 | |
| 
 | |
| MCAssembler::~MCAssembler() {
 | |
| }
 | |
| 
 | |
| void MCAssembler::reset() {
 | |
|   Sections.clear();
 | |
|   Symbols.clear();
 | |
|   SectionMap.clear();
 | |
|   SymbolMap.clear();
 | |
|   IndirectSymbols.clear();
 | |
|   DataRegions.clear();
 | |
|   LinkerOptions.clear();
 | |
|   FileNames.clear();
 | |
|   ThumbFuncs.clear();
 | |
|   BundleAlignSize = 0;
 | |
|   RelaxAll = false;
 | |
|   SubsectionsViaSymbols = false;
 | |
|   ELFHeaderEFlags = 0;
 | |
|   LOHContainer.reset();
 | |
|   VersionMinInfo.Major = 0;
 | |
| 
 | |
|   // reset objects owned by us
 | |
|   getBackend().reset();
 | |
|   getEmitter().reset();
 | |
|   getWriter().reset();
 | |
|   getLOHContainer().reset();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
 | |
|   if (ThumbFuncs.count(Symbol))
 | |
|     return true;
 | |
| 
 | |
|   if (!Symbol->isVariable())
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: It looks like gas supports some cases of the form "foo + 2". It
 | |
|   // is not clear if that is a bug or a feature.
 | |
|   const MCExpr *Expr = Symbol->getVariableValue();
 | |
|   const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr);
 | |
|   if (!Ref)
 | |
|     return false;
 | |
| 
 | |
|   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
 | |
|     return false;
 | |
| 
 | |
|   const MCSymbol &Sym = Ref->getSymbol();
 | |
|   if (!isThumbFunc(&Sym))
 | |
|     return false;
 | |
| 
 | |
|   ThumbFuncs.insert(Symbol); // Cache it.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void MCAssembler::addLocalUsedInReloc(const MCSymbol &Sym) {
 | |
|   assert(Sym.isTemporary());
 | |
|   LocalsUsedInReloc.insert(&Sym);
 | |
| }
 | |
| 
 | |
| bool MCAssembler::isLocalUsedInReloc(const MCSymbol &Sym) const {
 | |
|   assert(Sym.isTemporary());
 | |
|   return LocalsUsedInReloc.count(&Sym);
 | |
| }
 | |
| 
 | |
| bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
 | |
|   // Non-temporary labels should always be visible to the linker.
 | |
|   if (!Symbol.isTemporary())
 | |
|     return true;
 | |
| 
 | |
|   // Absolute temporary labels are never visible.
 | |
|   if (!Symbol.isInSection())
 | |
|     return false;
 | |
| 
 | |
|   if (isLocalUsedInReloc(Symbol))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
 | |
|   // Linker visible symbols define atoms.
 | |
|   if (isSymbolLinkerVisible(SD->getSymbol()))
 | |
|     return SD;
 | |
| 
 | |
|   // Absolute and undefined symbols have no defining atom.
 | |
|   if (!SD->getFragment())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Non-linker visible symbols in sections which can't be atomized have no
 | |
|   // defining atom.
 | |
|   if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
 | |
|           SD->getFragment()->getParent()->getSection()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Otherwise, return the atom for the containing fragment.
 | |
|   return SD->getFragment()->getAtom();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
 | |
|                                 const MCFixup &Fixup, const MCFragment *DF,
 | |
|                                 MCValue &Target, uint64_t &Value) const {
 | |
|   ++stats::evaluateFixup;
 | |
| 
 | |
|   // FIXME: This code has some duplication with RecordRelocation. We should
 | |
|   // probably merge the two into a single callback that tries to evaluate a
 | |
|   // fixup and records a relocation if one is needed.
 | |
|   const MCExpr *Expr = Fixup.getValue();
 | |
|   if (!Expr->EvaluateAsRelocatable(Target, &Layout, &Fixup))
 | |
|     getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
 | |
| 
 | |
|   bool IsPCRel = Backend.getFixupKindInfo(
 | |
|     Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
 | |
| 
 | |
|   bool IsResolved;
 | |
|   if (IsPCRel) {
 | |
|     if (Target.getSymB()) {
 | |
|       IsResolved = false;
 | |
|     } else if (!Target.getSymA()) {
 | |
|       IsResolved = false;
 | |
|     } else {
 | |
|       const MCSymbolRefExpr *A = Target.getSymA();
 | |
|       const MCSymbol &SA = A->getSymbol();
 | |
|       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
 | |
|         IsResolved = false;
 | |
|       } else {
 | |
|         const MCSymbolData &DataA = getSymbolData(SA);
 | |
|         IsResolved = getWriter().IsSymbolRefDifferenceFullyResolvedImpl(
 | |
|             *this, DataA, nullptr, *DF, false, true);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     IsResolved = Target.isAbsolute();
 | |
|   }
 | |
| 
 | |
|   Value = Target.getConstant();
 | |
| 
 | |
|   if (const MCSymbolRefExpr *A = Target.getSymA()) {
 | |
|     const MCSymbol &Sym = A->getSymbol();
 | |
|     if (Sym.isDefined())
 | |
|       Value += Layout.getSymbolOffset(&getSymbolData(Sym));
 | |
|   }
 | |
|   if (const MCSymbolRefExpr *B = Target.getSymB()) {
 | |
|     const MCSymbol &Sym = B->getSymbol();
 | |
|     if (Sym.isDefined())
 | |
|       Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
 | |
|   }
 | |
| 
 | |
| 
 | |
|   bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
 | |
|                          MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
 | |
|   assert((ShouldAlignPC ? IsPCRel : true) &&
 | |
|     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
 | |
| 
 | |
|   if (IsPCRel) {
 | |
|     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
 | |
| 
 | |
|     // A number of ARM fixups in Thumb mode require that the effective PC
 | |
|     // address be determined as the 32-bit aligned version of the actual offset.
 | |
|     if (ShouldAlignPC) Offset &= ~0x3;
 | |
|     Value -= Offset;
 | |
|   }
 | |
| 
 | |
|   // Let the backend adjust the fixup value if necessary, including whether
 | |
|   // we need a relocation.
 | |
|   Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
 | |
|                             IsResolved);
 | |
| 
 | |
|   return IsResolved;
 | |
| }
 | |
| 
 | |
| uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
 | |
|                                           const MCFragment &F) const {
 | |
|   switch (F.getKind()) {
 | |
|   case MCFragment::FT_Data:
 | |
|   case MCFragment::FT_Relaxable:
 | |
|   case MCFragment::FT_CompactEncodedInst:
 | |
|     return cast<MCEncodedFragment>(F).getContents().size();
 | |
|   case MCFragment::FT_Fill:
 | |
|     return cast<MCFillFragment>(F).getSize();
 | |
| 
 | |
|   case MCFragment::FT_LEB:
 | |
|     return cast<MCLEBFragment>(F).getContents().size();
 | |
| 
 | |
|   case MCFragment::FT_Align: {
 | |
|     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
 | |
|     unsigned Offset = Layout.getFragmentOffset(&AF);
 | |
|     unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
 | |
|     // If we are padding with nops, force the padding to be larger than the
 | |
|     // minimum nop size.
 | |
|     if (Size > 0 && AF.hasEmitNops()) {
 | |
|       while (Size % getBackend().getMinimumNopSize())
 | |
|         Size += AF.getAlignment();
 | |
|     }
 | |
|     if (Size > AF.getMaxBytesToEmit())
 | |
|       return 0;
 | |
|     return Size;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Org: {
 | |
|     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
 | |
|     int64_t TargetLocation;
 | |
|     if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
 | |
|       report_fatal_error("expected assembly-time absolute expression");
 | |
| 
 | |
|     // FIXME: We need a way to communicate this error.
 | |
|     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
 | |
|     int64_t Size = TargetLocation - FragmentOffset;
 | |
|     if (Size < 0 || Size >= 0x40000000)
 | |
|       report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
 | |
|                          "' (at offset '" + Twine(FragmentOffset) + "')");
 | |
|     return Size;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Dwarf:
 | |
|     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
 | |
|   case MCFragment::FT_DwarfFrame:
 | |
|     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("invalid fragment kind");
 | |
| }
 | |
| 
 | |
| void MCAsmLayout::layoutFragment(MCFragment *F) {
 | |
|   MCFragment *Prev = F->getPrevNode();
 | |
| 
 | |
|   // We should never try to recompute something which is valid.
 | |
|   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
 | |
|   // We should never try to compute the fragment layout if its predecessor
 | |
|   // isn't valid.
 | |
|   assert((!Prev || isFragmentValid(Prev)) &&
 | |
|          "Attempt to compute fragment before its predecessor!");
 | |
| 
 | |
|   ++stats::FragmentLayouts;
 | |
| 
 | |
|   // Compute fragment offset and size.
 | |
|   if (Prev)
 | |
|     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
 | |
|   else
 | |
|     F->Offset = 0;
 | |
|   LastValidFragment[F->getParent()] = F;
 | |
| 
 | |
|   // If bundling is enabled and this fragment has instructions in it, it has to
 | |
|   // obey the bundling restrictions. With padding, we'll have:
 | |
|   //
 | |
|   //
 | |
|   //        BundlePadding
 | |
|   //             |||
 | |
|   // -------------------------------------
 | |
|   //   Prev  |##########|       F        |
 | |
|   // -------------------------------------
 | |
|   //                    ^
 | |
|   //                    |
 | |
|   //                    F->Offset
 | |
|   //
 | |
|   // The fragment's offset will point to after the padding, and its computed
 | |
|   // size won't include the padding.
 | |
|   //
 | |
|   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
 | |
|     assert(isa<MCEncodedFragment>(F) &&
 | |
|            "Only MCEncodedFragment implementations have instructions");
 | |
|     uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
 | |
| 
 | |
|     if (FSize > Assembler.getBundleAlignSize())
 | |
|       report_fatal_error("Fragment can't be larger than a bundle size");
 | |
| 
 | |
|     uint64_t RequiredBundlePadding = computeBundlePadding(F, F->Offset, FSize);
 | |
|     if (RequiredBundlePadding > UINT8_MAX)
 | |
|       report_fatal_error("Padding cannot exceed 255 bytes");
 | |
|     F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
 | |
|     F->Offset += RequiredBundlePadding;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Write the contents of a fragment to the given object writer. Expects
 | |
| ///        a MCEncodedFragment.
 | |
| static void writeFragmentContents(const MCFragment &F, MCObjectWriter *OW) {
 | |
|   const MCEncodedFragment &EF = cast<MCEncodedFragment>(F);
 | |
|   OW->WriteBytes(EF.getContents());
 | |
| }
 | |
| 
 | |
| /// \brief Write the fragment \p F to the output file.
 | |
| static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
 | |
|                           const MCFragment &F) {
 | |
|   MCObjectWriter *OW = &Asm.getWriter();
 | |
| 
 | |
|   // FIXME: Embed in fragments instead?
 | |
|   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
 | |
| 
 | |
|   // Should NOP padding be written out before this fragment?
 | |
|   unsigned BundlePadding = F.getBundlePadding();
 | |
|   if (BundlePadding > 0) {
 | |
|     assert(Asm.isBundlingEnabled() &&
 | |
|            "Writing bundle padding with disabled bundling");
 | |
|     assert(F.hasInstructions() &&
 | |
|            "Writing bundle padding for a fragment without instructions");
 | |
| 
 | |
|     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FragmentSize);
 | |
|     if (F.alignToBundleEnd() && TotalLength > Asm.getBundleAlignSize()) {
 | |
|       // If the padding itself crosses a bundle boundary, it must be emitted
 | |
|       // in 2 pieces, since even nop instructions must not cross boundaries.
 | |
|       //             v--------------v   <- BundleAlignSize
 | |
|       //        v---------v             <- BundlePadding
 | |
|       // ----------------------------
 | |
|       // | Prev |####|####|    F    |
 | |
|       // ----------------------------
 | |
|       //        ^-------------------^   <- TotalLength
 | |
|       unsigned DistanceToBoundary = TotalLength - Asm.getBundleAlignSize();
 | |
|       if (!Asm.getBackend().writeNopData(DistanceToBoundary, OW))
 | |
|           report_fatal_error("unable to write NOP sequence of " +
 | |
|                              Twine(DistanceToBoundary) + " bytes");
 | |
|       BundlePadding -= DistanceToBoundary;
 | |
|     }
 | |
|     if (!Asm.getBackend().writeNopData(BundlePadding, OW))
 | |
|       report_fatal_error("unable to write NOP sequence of " +
 | |
|                          Twine(BundlePadding) + " bytes");
 | |
|   }
 | |
| 
 | |
|   // This variable (and its dummy usage) is to participate in the assert at
 | |
|   // the end of the function.
 | |
|   uint64_t Start = OW->getStream().tell();
 | |
|   (void) Start;
 | |
| 
 | |
|   ++stats::EmittedFragments;
 | |
| 
 | |
|   switch (F.getKind()) {
 | |
|   case MCFragment::FT_Align: {
 | |
|     ++stats::EmittedAlignFragments;
 | |
|     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
 | |
|     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
 | |
| 
 | |
|     uint64_t Count = FragmentSize / AF.getValueSize();
 | |
| 
 | |
|     // FIXME: This error shouldn't actually occur (the front end should emit
 | |
|     // multiple .align directives to enforce the semantics it wants), but is
 | |
|     // severe enough that we want to report it. How to handle this?
 | |
|     if (Count * AF.getValueSize() != FragmentSize)
 | |
|       report_fatal_error("undefined .align directive, value size '" +
 | |
|                         Twine(AF.getValueSize()) +
 | |
|                         "' is not a divisor of padding size '" +
 | |
|                         Twine(FragmentSize) + "'");
 | |
| 
 | |
|     // See if we are aligning with nops, and if so do that first to try to fill
 | |
|     // the Count bytes.  Then if that did not fill any bytes or there are any
 | |
|     // bytes left to fill use the Value and ValueSize to fill the rest.
 | |
|     // If we are aligning with nops, ask that target to emit the right data.
 | |
|     if (AF.hasEmitNops()) {
 | |
|       if (!Asm.getBackend().writeNopData(Count, OW))
 | |
|         report_fatal_error("unable to write nop sequence of " +
 | |
|                           Twine(Count) + " bytes");
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, write out in multiples of the value size.
 | |
|     for (uint64_t i = 0; i != Count; ++i) {
 | |
|       switch (AF.getValueSize()) {
 | |
|       default: llvm_unreachable("Invalid size!");
 | |
|       case 1: OW->Write8 (uint8_t (AF.getValue())); break;
 | |
|       case 2: OW->Write16(uint16_t(AF.getValue())); break;
 | |
|       case 4: OW->Write32(uint32_t(AF.getValue())); break;
 | |
|       case 8: OW->Write64(uint64_t(AF.getValue())); break;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Data: 
 | |
|     ++stats::EmittedDataFragments;
 | |
|     writeFragmentContents(F, OW);
 | |
|     break;
 | |
| 
 | |
|   case MCFragment::FT_Relaxable:
 | |
|     ++stats::EmittedRelaxableFragments;
 | |
|     writeFragmentContents(F, OW);
 | |
|     break;
 | |
| 
 | |
|   case MCFragment::FT_CompactEncodedInst:
 | |
|     ++stats::EmittedCompactEncodedInstFragments;
 | |
|     writeFragmentContents(F, OW);
 | |
|     break;
 | |
| 
 | |
|   case MCFragment::FT_Fill: {
 | |
|     ++stats::EmittedFillFragments;
 | |
|     const MCFillFragment &FF = cast<MCFillFragment>(F);
 | |
| 
 | |
|     assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
 | |
| 
 | |
|     for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
 | |
|       switch (FF.getValueSize()) {
 | |
|       default: llvm_unreachable("Invalid size!");
 | |
|       case 1: OW->Write8 (uint8_t (FF.getValue())); break;
 | |
|       case 2: OW->Write16(uint16_t(FF.getValue())); break;
 | |
|       case 4: OW->Write32(uint32_t(FF.getValue())); break;
 | |
|       case 8: OW->Write64(uint64_t(FF.getValue())); break;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_LEB: {
 | |
|     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
 | |
|     OW->WriteBytes(LF.getContents());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Org: {
 | |
|     ++stats::EmittedOrgFragments;
 | |
|     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
 | |
| 
 | |
|     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
 | |
|       OW->Write8(uint8_t(OF.getValue()));
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case MCFragment::FT_Dwarf: {
 | |
|     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
 | |
|     OW->WriteBytes(OF.getContents());
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_DwarfFrame: {
 | |
|     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
 | |
|     OW->WriteBytes(CF.getContents());
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   assert(OW->getStream().tell() - Start == FragmentSize &&
 | |
|          "The stream should advance by fragment size");
 | |
| }
 | |
| 
 | |
| void MCAssembler::writeSectionData(const MCSectionData *SD,
 | |
|                                    const MCAsmLayout &Layout) const {
 | |
|   // Ignore virtual sections.
 | |
|   if (SD->getSection().isVirtualSection()) {
 | |
|     assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
 | |
| 
 | |
|     // Check that contents are only things legal inside a virtual section.
 | |
|     for (MCSectionData::const_iterator it = SD->begin(),
 | |
|            ie = SD->end(); it != ie; ++it) {
 | |
|       switch (it->getKind()) {
 | |
|       default: llvm_unreachable("Invalid fragment in virtual section!");
 | |
|       case MCFragment::FT_Data: {
 | |
|         // Check that we aren't trying to write a non-zero contents (or fixups)
 | |
|         // into a virtual section. This is to support clients which use standard
 | |
|         // directives to fill the contents of virtual sections.
 | |
|         const MCDataFragment &DF = cast<MCDataFragment>(*it);
 | |
|         assert(DF.fixup_begin() == DF.fixup_end() &&
 | |
|                "Cannot have fixups in virtual section!");
 | |
|         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
 | |
|           if (DF.getContents()[i]) {
 | |
|             if (auto *ELFSec = dyn_cast<const MCSectionELF>(&SD->getSection()))
 | |
|               report_fatal_error("non-zero initializer found in section '" +
 | |
|                   ELFSec->getSectionName() + "'");
 | |
|             else
 | |
|               report_fatal_error("non-zero initializer found in virtual section");
 | |
|           }
 | |
|         break;
 | |
|       }
 | |
|       case MCFragment::FT_Align:
 | |
|         // Check that we aren't trying to write a non-zero value into a virtual
 | |
|         // section.
 | |
|         assert((cast<MCAlignFragment>(it)->getValueSize() == 0 ||
 | |
|                 cast<MCAlignFragment>(it)->getValue() == 0) &&
 | |
|                "Invalid align in virtual section!");
 | |
|         break;
 | |
|       case MCFragment::FT_Fill:
 | |
|         assert((cast<MCFillFragment>(it)->getValueSize() == 0 ||
 | |
|                 cast<MCFillFragment>(it)->getValue() == 0) &&
 | |
|                "Invalid fill in virtual section!");
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   uint64_t Start = getWriter().getStream().tell();
 | |
|   (void)Start;
 | |
| 
 | |
|   for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end();
 | |
|        it != ie; ++it)
 | |
|     writeFragment(*this, Layout, *it);
 | |
| 
 | |
|   assert(getWriter().getStream().tell() - Start ==
 | |
|          Layout.getSectionAddressSize(SD));
 | |
| }
 | |
| 
 | |
| std::pair<uint64_t, bool> MCAssembler::handleFixup(const MCAsmLayout &Layout,
 | |
|                                                    MCFragment &F,
 | |
|                                                    const MCFixup &Fixup) {
 | |
|   // Evaluate the fixup.
 | |
|   MCValue Target;
 | |
|   uint64_t FixedValue;
 | |
|   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
 | |
|                  MCFixupKindInfo::FKF_IsPCRel;
 | |
|   if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
 | |
|     // The fixup was unresolved, we need a relocation. Inform the object
 | |
|     // writer of the relocation, and give it an opportunity to adjust the
 | |
|     // fixup value if need be.
 | |
|     getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, IsPCRel,
 | |
|                                  FixedValue);
 | |
|   }
 | |
|   return std::make_pair(FixedValue, IsPCRel);
 | |
| }
 | |
| 
 | |
| void MCAssembler::Finish() {
 | |
|   DEBUG_WITH_TYPE("mc-dump", {
 | |
|       llvm::errs() << "assembler backend - pre-layout\n--\n";
 | |
|       dump(); });
 | |
| 
 | |
|   // Create the layout object.
 | |
|   MCAsmLayout Layout(*this);
 | |
| 
 | |
|   // Create dummy fragments and assign section ordinals.
 | |
|   unsigned SectionIndex = 0;
 | |
|   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     // Create dummy fragments to eliminate any empty sections, this simplifies
 | |
|     // layout.
 | |
|     if (it->getFragmentList().empty())
 | |
|       new MCDataFragment(it);
 | |
| 
 | |
|     it->setOrdinal(SectionIndex++);
 | |
|   }
 | |
| 
 | |
|   // Assign layout order indices to sections and fragments.
 | |
|   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
 | |
|     MCSectionData *SD = Layout.getSectionOrder()[i];
 | |
|     SD->setLayoutOrder(i);
 | |
| 
 | |
|     unsigned FragmentIndex = 0;
 | |
|     for (MCSectionData::iterator iFrag = SD->begin(), iFragEnd = SD->end();
 | |
|          iFrag != iFragEnd; ++iFrag)
 | |
|       iFrag->setLayoutOrder(FragmentIndex++);
 | |
|   }
 | |
| 
 | |
|   // Layout until everything fits.
 | |
|   while (layoutOnce(Layout))
 | |
|     continue;
 | |
| 
 | |
|   DEBUG_WITH_TYPE("mc-dump", {
 | |
|       llvm::errs() << "assembler backend - post-relaxation\n--\n";
 | |
|       dump(); });
 | |
| 
 | |
|   // Finalize the layout, including fragment lowering.
 | |
|   finishLayout(Layout);
 | |
| 
 | |
|   DEBUG_WITH_TYPE("mc-dump", {
 | |
|       llvm::errs() << "assembler backend - final-layout\n--\n";
 | |
|       dump(); });
 | |
| 
 | |
|   uint64_t StartOffset = OS.tell();
 | |
| 
 | |
|   // Allow the object writer a chance to perform post-layout binding (for
 | |
|   // example, to set the index fields in the symbol data).
 | |
|   getWriter().ExecutePostLayoutBinding(*this, Layout);
 | |
| 
 | |
|   // Evaluate and apply the fixups, generating relocation entries as necessary.
 | |
|   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     for (MCSectionData::iterator it2 = it->begin(),
 | |
|            ie2 = it->end(); it2 != ie2; ++it2) {
 | |
|       MCEncodedFragmentWithFixups *F =
 | |
|         dyn_cast<MCEncodedFragmentWithFixups>(it2);
 | |
|       if (F) {
 | |
|         for (MCEncodedFragmentWithFixups::fixup_iterator it3 = F->fixup_begin(),
 | |
|              ie3 = F->fixup_end(); it3 != ie3; ++it3) {
 | |
|           MCFixup &Fixup = *it3;
 | |
|           uint64_t FixedValue;
 | |
|           bool IsPCRel;
 | |
|           std::tie(FixedValue, IsPCRel) = handleFixup(Layout, *F, Fixup);
 | |
|           getBackend().applyFixup(Fixup, F->getContents().data(),
 | |
|                                   F->getContents().size(), FixedValue, IsPCRel);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Write the object file.
 | |
|   getWriter().WriteObject(*this, Layout);
 | |
| 
 | |
|   stats::ObjectBytes += OS.tell() - StartOffset;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
 | |
|                                        const MCRelaxableFragment *DF,
 | |
|                                        const MCAsmLayout &Layout) const {
 | |
|   // If we cannot resolve the fixup value, it requires relaxation.
 | |
|   MCValue Target;
 | |
|   uint64_t Value;
 | |
|   if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
 | |
|     return true;
 | |
| 
 | |
|   return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
 | |
| }
 | |
| 
 | |
| bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
 | |
|                                           const MCAsmLayout &Layout) const {
 | |
|   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
 | |
|   // are intentionally pushing out inst fragments, or because we relaxed a
 | |
|   // previous instruction to one that doesn't need relaxation.
 | |
|   if (!getBackend().mayNeedRelaxation(F->getInst()))
 | |
|     return false;
 | |
| 
 | |
|   for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(),
 | |
|        ie = F->fixup_end(); it != ie; ++it)
 | |
|     if (fixupNeedsRelaxation(*it, F, Layout))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
 | |
|                                    MCRelaxableFragment &F) {
 | |
|   if (!fragmentNeedsRelaxation(&F, Layout))
 | |
|     return false;
 | |
| 
 | |
|   ++stats::RelaxedInstructions;
 | |
| 
 | |
|   // FIXME-PERF: We could immediately lower out instructions if we can tell
 | |
|   // they are fully resolved, to avoid retesting on later passes.
 | |
| 
 | |
|   // Relax the fragment.
 | |
| 
 | |
|   MCInst Relaxed;
 | |
|   getBackend().relaxInstruction(F.getInst(), Relaxed);
 | |
| 
 | |
|   // Encode the new instruction.
 | |
|   //
 | |
|   // FIXME-PERF: If it matters, we could let the target do this. It can
 | |
|   // probably do so more efficiently in many cases.
 | |
|   SmallVector<MCFixup, 4> Fixups;
 | |
|   SmallString<256> Code;
 | |
|   raw_svector_ostream VecOS(Code);
 | |
|   getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo());
 | |
|   VecOS.flush();
 | |
| 
 | |
|   // Update the fragment.
 | |
|   F.setInst(Relaxed);
 | |
|   F.getContents() = Code;
 | |
|   F.getFixups() = Fixups;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
 | |
|   uint64_t OldSize = LF.getContents().size();
 | |
|   int64_t Value;
 | |
|   bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
 | |
|   if (!Abs)
 | |
|     report_fatal_error("sleb128 and uleb128 expressions must be absolute");
 | |
|   SmallString<8> &Data = LF.getContents();
 | |
|   Data.clear();
 | |
|   raw_svector_ostream OSE(Data);
 | |
|   if (LF.isSigned())
 | |
|     encodeSLEB128(Value, OSE);
 | |
|   else
 | |
|     encodeULEB128(Value, OSE);
 | |
|   OSE.flush();
 | |
|   return OldSize != LF.getContents().size();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
 | |
|                                      MCDwarfLineAddrFragment &DF) {
 | |
|   MCContext &Context = Layout.getAssembler().getContext();
 | |
|   uint64_t OldSize = DF.getContents().size();
 | |
|   int64_t AddrDelta;
 | |
|   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
 | |
|   assert(Abs && "We created a line delta with an invalid expression");
 | |
|   (void) Abs;
 | |
|   int64_t LineDelta;
 | |
|   LineDelta = DF.getLineDelta();
 | |
|   SmallString<8> &Data = DF.getContents();
 | |
|   Data.clear();
 | |
|   raw_svector_ostream OSE(Data);
 | |
|   MCDwarfLineAddr::Encode(Context, LineDelta, AddrDelta, OSE);
 | |
|   OSE.flush();
 | |
|   return OldSize != Data.size();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
 | |
|                                               MCDwarfCallFrameFragment &DF) {
 | |
|   MCContext &Context = Layout.getAssembler().getContext();
 | |
|   uint64_t OldSize = DF.getContents().size();
 | |
|   int64_t AddrDelta;
 | |
|   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
 | |
|   assert(Abs && "We created call frame with an invalid expression");
 | |
|   (void) Abs;
 | |
|   SmallString<8> &Data = DF.getContents();
 | |
|   Data.clear();
 | |
|   raw_svector_ostream OSE(Data);
 | |
|   MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
 | |
|   OSE.flush();
 | |
|   return OldSize != Data.size();
 | |
| }
 | |
| 
 | |
| bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD) {
 | |
|   // Holds the first fragment which needed relaxing during this layout. It will
 | |
|   // remain NULL if none were relaxed.
 | |
|   // When a fragment is relaxed, all the fragments following it should get
 | |
|   // invalidated because their offset is going to change.
 | |
|   MCFragment *FirstRelaxedFragment = nullptr;
 | |
| 
 | |
|   // Attempt to relax all the fragments in the section.
 | |
|   for (MCSectionData::iterator I = SD.begin(), IE = SD.end(); I != IE; ++I) {
 | |
|     // Check if this is a fragment that needs relaxation.
 | |
|     bool RelaxedFrag = false;
 | |
|     switch(I->getKind()) {
 | |
|     default:
 | |
|       break;
 | |
|     case MCFragment::FT_Relaxable:
 | |
|       assert(!getRelaxAll() &&
 | |
|              "Did not expect a MCRelaxableFragment in RelaxAll mode");
 | |
|       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
 | |
|       break;
 | |
|     case MCFragment::FT_Dwarf:
 | |
|       RelaxedFrag = relaxDwarfLineAddr(Layout,
 | |
|                                        *cast<MCDwarfLineAddrFragment>(I));
 | |
|       break;
 | |
|     case MCFragment::FT_DwarfFrame:
 | |
|       RelaxedFrag =
 | |
|         relaxDwarfCallFrameFragment(Layout,
 | |
|                                     *cast<MCDwarfCallFrameFragment>(I));
 | |
|       break;
 | |
|     case MCFragment::FT_LEB:
 | |
|       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
 | |
|       break;
 | |
|     }
 | |
|     if (RelaxedFrag && !FirstRelaxedFragment)
 | |
|       FirstRelaxedFragment = I;
 | |
|   }
 | |
|   if (FirstRelaxedFragment) {
 | |
|     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
 | |
|   ++stats::RelaxationSteps;
 | |
| 
 | |
|   bool WasRelaxed = false;
 | |
|   for (iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     MCSectionData &SD = *it;
 | |
|     while (layoutSectionOnce(Layout, SD))
 | |
|       WasRelaxed = true;
 | |
|   }
 | |
| 
 | |
|   return WasRelaxed;
 | |
| }
 | |
| 
 | |
| void MCAssembler::finishLayout(MCAsmLayout &Layout) {
 | |
|   // The layout is done. Mark every fragment as valid.
 | |
|   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
 | |
|     Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Debugging methods
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
 | |
|   OS << "<MCFixup" << " Offset:" << AF.getOffset()
 | |
|      << " Value:" << *AF.getValue()
 | |
|      << " Kind:" << AF.getKind() << ">";
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void MCFragment::dump() {
 | |
|   raw_ostream &OS = llvm::errs();
 | |
| 
 | |
|   OS << "<";
 | |
|   switch (getKind()) {
 | |
|   case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
 | |
|   case MCFragment::FT_Data:  OS << "MCDataFragment"; break;
 | |
|   case MCFragment::FT_CompactEncodedInst:
 | |
|     OS << "MCCompactEncodedInstFragment"; break;
 | |
|   case MCFragment::FT_Fill:  OS << "MCFillFragment"; break;
 | |
|   case MCFragment::FT_Relaxable:  OS << "MCRelaxableFragment"; break;
 | |
|   case MCFragment::FT_Org:   OS << "MCOrgFragment"; break;
 | |
|   case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
 | |
|   case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
 | |
|   case MCFragment::FT_LEB:   OS << "MCLEBFragment"; break;
 | |
|   }
 | |
| 
 | |
|   OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
 | |
|      << " Offset:" << Offset
 | |
|      << " HasInstructions:" << hasInstructions() 
 | |
|      << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
 | |
| 
 | |
|   switch (getKind()) {
 | |
|   case MCFragment::FT_Align: {
 | |
|     const MCAlignFragment *AF = cast<MCAlignFragment>(this);
 | |
|     if (AF->hasEmitNops())
 | |
|       OS << " (emit nops)";
 | |
|     OS << "\n       ";
 | |
|     OS << " Alignment:" << AF->getAlignment()
 | |
|        << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
 | |
|        << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_Data:  {
 | |
|     const MCDataFragment *DF = cast<MCDataFragment>(this);
 | |
|     OS << "\n       ";
 | |
|     OS << " Contents:[";
 | |
|     const SmallVectorImpl<char> &Contents = DF->getContents();
 | |
|     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
 | |
|       if (i) OS << ",";
 | |
|       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
 | |
|     }
 | |
|     OS << "] (" << Contents.size() << " bytes)";
 | |
| 
 | |
|     if (DF->fixup_begin() != DF->fixup_end()) {
 | |
|       OS << ",\n       ";
 | |
|       OS << " Fixups:[";
 | |
|       for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
 | |
|              ie = DF->fixup_end(); it != ie; ++it) {
 | |
|         if (it != DF->fixup_begin()) OS << ",\n                ";
 | |
|         OS << *it;
 | |
|       }
 | |
|       OS << "]";
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_CompactEncodedInst: {
 | |
|     const MCCompactEncodedInstFragment *CEIF =
 | |
|       cast<MCCompactEncodedInstFragment>(this);
 | |
|     OS << "\n       ";
 | |
|     OS << " Contents:[";
 | |
|     const SmallVectorImpl<char> &Contents = CEIF->getContents();
 | |
|     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
 | |
|       if (i) OS << ",";
 | |
|       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
 | |
|     }
 | |
|     OS << "] (" << Contents.size() << " bytes)";
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_Fill:  {
 | |
|     const MCFillFragment *FF = cast<MCFillFragment>(this);
 | |
|     OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
 | |
|        << " Size:" << FF->getSize();
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_Relaxable:  {
 | |
|     const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
 | |
|     OS << "\n       ";
 | |
|     OS << " Inst:";
 | |
|     F->getInst().dump_pretty(OS);
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_Org:  {
 | |
|     const MCOrgFragment *OF = cast<MCOrgFragment>(this);
 | |
|     OS << "\n       ";
 | |
|     OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_Dwarf:  {
 | |
|     const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
 | |
|     OS << "\n       ";
 | |
|     OS << " AddrDelta:" << OF->getAddrDelta()
 | |
|        << " LineDelta:" << OF->getLineDelta();
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_DwarfFrame:  {
 | |
|     const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
 | |
|     OS << "\n       ";
 | |
|     OS << " AddrDelta:" << CF->getAddrDelta();
 | |
|     break;
 | |
|   }
 | |
|   case MCFragment::FT_LEB: {
 | |
|     const MCLEBFragment *LF = cast<MCLEBFragment>(this);
 | |
|     OS << "\n       ";
 | |
|     OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   OS << ">";
 | |
| }
 | |
| 
 | |
| void MCSectionData::dump() {
 | |
|   raw_ostream &OS = llvm::errs();
 | |
| 
 | |
|   OS << "<MCSectionData";
 | |
|   OS << " Alignment:" << getAlignment()
 | |
|      << " Fragments:[\n      ";
 | |
|   for (iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     if (it != begin()) OS << ",\n      ";
 | |
|     it->dump();
 | |
|   }
 | |
|   OS << "]>";
 | |
| }
 | |
| 
 | |
| void MCSymbolData::dump() const {
 | |
|   raw_ostream &OS = llvm::errs();
 | |
| 
 | |
|   OS << "<MCSymbolData Symbol:" << getSymbol()
 | |
|      << " Fragment:" << getFragment();
 | |
|   if (!isCommon())
 | |
|     OS << " Offset:" << getOffset();
 | |
|   OS << " Flags:" << getFlags() << " Index:" << getIndex();
 | |
|   if (isCommon())
 | |
|     OS << " (common, size:" << getCommonSize()
 | |
|        << " align: " << getCommonAlignment() << ")";
 | |
|   if (isExternal())
 | |
|     OS << " (external)";
 | |
|   if (isPrivateExtern())
 | |
|     OS << " (private extern)";
 | |
|   OS << ">";
 | |
| }
 | |
| 
 | |
| void MCAssembler::dump() {
 | |
|   raw_ostream &OS = llvm::errs();
 | |
| 
 | |
|   OS << "<MCAssembler\n";
 | |
|   OS << "  Sections:[\n    ";
 | |
|   for (iterator it = begin(), ie = end(); it != ie; ++it) {
 | |
|     if (it != begin()) OS << ",\n    ";
 | |
|     it->dump();
 | |
|   }
 | |
|   OS << "],\n";
 | |
|   OS << "  Symbols:[";
 | |
| 
 | |
|   for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
 | |
|     if (it != symbol_begin()) OS << ",\n           ";
 | |
|     it->dump();
 | |
|   }
 | |
|   OS << "]>\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // anchors for MC*Fragment vtables
 | |
| void MCEncodedFragment::anchor() { }
 | |
| void MCEncodedFragmentWithFixups::anchor() { }
 | |
| void MCDataFragment::anchor() { }
 | |
| void MCCompactEncodedInstFragment::anchor() { }
 | |
| void MCRelaxableFragment::anchor() { }
 | |
| void MCAlignFragment::anchor() { }
 | |
| void MCFillFragment::anchor() { }
 | |
| void MCOrgFragment::anchor() { }
 | |
| void MCLEBFragment::anchor() { }
 | |
| void MCDwarfLineAddrFragment::anchor() { }
 | |
| void MCDwarfCallFrameFragment::anchor() { }
 |