mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45418 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2800 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2800 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a class to represent arbitrary precision floating
 | |
| // point values and provide a variety of arithmetic operations on them.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include <cassert>
 | |
| #include <cstring>
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define convolve(lhs, rhs) ((lhs) * 4 + (rhs))
 | |
| 
 | |
| /* Assumed in hexadecimal significand parsing, and conversion to
 | |
|    hexadecimal strings.  */
 | |
| COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
|   /* Represents floating point arithmetic semantics.  */
 | |
|   struct fltSemantics {
 | |
|     /* The largest E such that 2^E is representable; this matches the
 | |
|        definition of IEEE 754.  */
 | |
|     exponent_t maxExponent;
 | |
| 
 | |
|     /* The smallest E such that 2^E is a normalized number; this
 | |
|        matches the definition of IEEE 754.  */
 | |
|     exponent_t minExponent;
 | |
| 
 | |
|     /* Number of bits in the significand.  This includes the integer
 | |
|        bit.  */
 | |
|     unsigned int precision;
 | |
| 
 | |
|     /* True if arithmetic is supported.  */
 | |
|     unsigned int arithmeticOK;
 | |
|   };
 | |
| 
 | |
|   const fltSemantics APFloat::IEEEsingle = { 127, -126, 24, true };
 | |
|   const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
 | |
|   const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
 | |
|   const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, true };
 | |
|   const fltSemantics APFloat::Bogus = { 0, 0, 0, true };
 | |
| 
 | |
|   // The PowerPC format consists of two doubles.  It does not map cleanly
 | |
|   // onto the usual format above.  For now only storage of constants of
 | |
|   // this type is supported, no arithmetic.
 | |
|   const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022, 106, false };
 | |
| 
 | |
|   /* A tight upper bound on number of parts required to hold the value
 | |
|      pow(5, power) is
 | |
| 
 | |
|        power * 815 / (351 * integerPartWidth) + 1
 | |
|        
 | |
|      However, whilst the result may require only this many parts,
 | |
|      because we are multiplying two values to get it, the
 | |
|      multiplication may require an extra part with the excess part
 | |
|      being zero (consider the trivial case of 1 * 1, tcFullMultiply
 | |
|      requires two parts to hold the single-part result).  So we add an
 | |
|      extra one to guarantee enough space whilst multiplying.  */
 | |
|   const unsigned int maxExponent = 16383;
 | |
|   const unsigned int maxPrecision = 113;
 | |
|   const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
 | |
|   const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
 | |
|                                                 / (351 * integerPartWidth));
 | |
| }
 | |
| 
 | |
| /* Put a bunch of private, handy routines in an anonymous namespace.  */
 | |
| namespace {
 | |
| 
 | |
|   inline unsigned int
 | |
|   partCountForBits(unsigned int bits)
 | |
|   {
 | |
|     return ((bits) + integerPartWidth - 1) / integerPartWidth;
 | |
|   }
 | |
| 
 | |
|   /* Returns 0U-9U.  Return values >= 10U are not digits.  */
 | |
|   inline unsigned int
 | |
|   decDigitValue(unsigned int c)
 | |
|   {
 | |
|     return c - '0';
 | |
|   }
 | |
| 
 | |
|   unsigned int
 | |
|   hexDigitValue(unsigned int c)
 | |
|   {
 | |
|     unsigned int r;
 | |
| 
 | |
|     r = c - '0';
 | |
|     if(r <= 9)
 | |
|       return r;
 | |
| 
 | |
|     r = c - 'A';
 | |
|     if(r <= 5)
 | |
|       return r + 10;
 | |
| 
 | |
|     r = c - 'a';
 | |
|     if(r <= 5)
 | |
|       return r + 10;
 | |
| 
 | |
|     return -1U;
 | |
|   }
 | |
| 
 | |
|   inline void
 | |
|   assertArithmeticOK(const llvm::fltSemantics &semantics) {
 | |
|     assert(semantics.arithmeticOK
 | |
|            && "Compile-time arithmetic does not support these semantics");
 | |
|   }
 | |
| 
 | |
|   /* Return the value of a decimal exponent of the form
 | |
|      [+-]ddddddd.
 | |
| 
 | |
|      If the exponent overflows, returns a large exponent with the
 | |
|      appropriate sign.  */
 | |
|   int
 | |
|   readExponent(const char *p)
 | |
|   {
 | |
|     bool isNegative;
 | |
|     unsigned int absExponent;
 | |
|     const unsigned int overlargeExponent = 24000;  /* FIXME.  */
 | |
| 
 | |
|     isNegative = (*p == '-');
 | |
|     if (*p == '-' || *p == '+')
 | |
|       p++;
 | |
| 
 | |
|     absExponent = decDigitValue(*p++);
 | |
|     assert (absExponent < 10U);
 | |
| 
 | |
|     for (;;) {
 | |
|       unsigned int value;
 | |
| 
 | |
|       value = decDigitValue(*p);
 | |
|       if (value >= 10U)
 | |
|         break;
 | |
| 
 | |
|       p++;
 | |
|       value += absExponent * 10;
 | |
|       if (absExponent >= overlargeExponent) {
 | |
|         absExponent = overlargeExponent;
 | |
|         break;
 | |
|       }
 | |
|       absExponent = value;
 | |
|     }
 | |
| 
 | |
|     if (isNegative)
 | |
|       return -(int) absExponent;
 | |
|     else
 | |
|       return (int) absExponent;
 | |
|   }
 | |
| 
 | |
|   /* This is ugly and needs cleaning up, but I don't immediately see
 | |
|      how whilst remaining safe.  */
 | |
|   int
 | |
|   totalExponent(const char *p, int exponentAdjustment)
 | |
|   {
 | |
|     integerPart unsignedExponent;
 | |
|     bool negative, overflow;
 | |
|     long exponent;
 | |
| 
 | |
|     /* Move past the exponent letter and sign to the digits.  */
 | |
|     p++;
 | |
|     negative = *p == '-';
 | |
|     if(*p == '-' || *p == '+')
 | |
|       p++;
 | |
| 
 | |
|     unsignedExponent = 0;
 | |
|     overflow = false;
 | |
|     for(;;) {
 | |
|       unsigned int value;
 | |
| 
 | |
|       value = decDigitValue(*p);
 | |
|       if(value >= 10U)
 | |
|         break;
 | |
| 
 | |
|       p++;
 | |
|       unsignedExponent = unsignedExponent * 10 + value;
 | |
|       if(unsignedExponent > 65535)
 | |
|         overflow = true;
 | |
|     }
 | |
| 
 | |
|     if(exponentAdjustment > 65535 || exponentAdjustment < -65536)
 | |
|       overflow = true;
 | |
| 
 | |
|     if(!overflow) {
 | |
|       exponent = unsignedExponent;
 | |
|       if(negative)
 | |
|         exponent = -exponent;
 | |
|       exponent += exponentAdjustment;
 | |
|       if(exponent > 65535 || exponent < -65536)
 | |
|         overflow = true;
 | |
|     }
 | |
| 
 | |
|     if(overflow)
 | |
|       exponent = negative ? -65536: 65535;
 | |
| 
 | |
|     return exponent;
 | |
|   }
 | |
| 
 | |
|   const char *
 | |
|   skipLeadingZeroesAndAnyDot(const char *p, const char **dot)
 | |
|   {
 | |
|     *dot = 0;
 | |
|     while(*p == '0')
 | |
|       p++;
 | |
| 
 | |
|     if(*p == '.') {
 | |
|       *dot = p++;
 | |
|       while(*p == '0')
 | |
|         p++;
 | |
|     }
 | |
| 
 | |
|     return p;
 | |
|   }
 | |
| 
 | |
|   /* Given a normal decimal floating point number of the form
 | |
| 
 | |
|        dddd.dddd[eE][+-]ddd
 | |
| 
 | |
|      where the decimal point and exponent are optional, fill out the
 | |
|      structure D.  Exponent is appropriate if the significand is
 | |
|      treated as an integer, and normalizedExponent if the significand
 | |
|      is taken to have the decimal point after a single leading
 | |
|      non-zero digit.
 | |
| 
 | |
|      If the value is zero, V->firstSigDigit points to a non-digit, and
 | |
|      the return exponent is zero.
 | |
|   */
 | |
|   struct decimalInfo {
 | |
|     const char *firstSigDigit;
 | |
|     const char *lastSigDigit;
 | |
|     int exponent;
 | |
|     int normalizedExponent;
 | |
|   };
 | |
| 
 | |
|   void
 | |
|   interpretDecimal(const char *p, decimalInfo *D)
 | |
|   {
 | |
|     const char *dot;
 | |
| 
 | |
|     p = skipLeadingZeroesAndAnyDot (p, &dot);
 | |
| 
 | |
|     D->firstSigDigit = p;
 | |
|     D->exponent = 0;
 | |
|     D->normalizedExponent = 0;
 | |
| 
 | |
|     for (;;) {
 | |
|       if (*p == '.') {
 | |
|         assert(dot == 0);
 | |
|         dot = p++;
 | |
|       }
 | |
|       if (decDigitValue(*p) >= 10U)
 | |
|         break;
 | |
|       p++;
 | |
|     }
 | |
| 
 | |
|     /* If number is all zerooes accept any exponent.  */
 | |
|     if (p != D->firstSigDigit) {
 | |
|       if (*p == 'e' || *p == 'E')
 | |
|         D->exponent = readExponent(p + 1);
 | |
| 
 | |
|       /* Implied decimal point?  */
 | |
|       if (!dot)
 | |
|         dot = p;
 | |
| 
 | |
|       /* Drop insignificant trailing zeroes.  */
 | |
|       do
 | |
|         do
 | |
|           p--;
 | |
|         while (*p == '0');
 | |
|       while (*p == '.');
 | |
| 
 | |
|       /* Adjust the exponents for any decimal point.  */
 | |
|       D->exponent += (dot - p) - (dot > p);
 | |
|       D->normalizedExponent = (D->exponent + (p - D->firstSigDigit)
 | |
|                                - (dot > D->firstSigDigit && dot < p));
 | |
|     }
 | |
| 
 | |
|     D->lastSigDigit = p;
 | |
|   }
 | |
| 
 | |
|   /* Return the trailing fraction of a hexadecimal number.
 | |
|      DIGITVALUE is the first hex digit of the fraction, P points to
 | |
|      the next digit.  */
 | |
|   lostFraction
 | |
|   trailingHexadecimalFraction(const char *p, unsigned int digitValue)
 | |
|   {
 | |
|     unsigned int hexDigit;
 | |
| 
 | |
|     /* If the first trailing digit isn't 0 or 8 we can work out the
 | |
|        fraction immediately.  */
 | |
|     if(digitValue > 8)
 | |
|       return lfMoreThanHalf;
 | |
|     else if(digitValue < 8 && digitValue > 0)
 | |
|       return lfLessThanHalf;
 | |
| 
 | |
|     /* Otherwise we need to find the first non-zero digit.  */
 | |
|     while(*p == '0')
 | |
|       p++;
 | |
| 
 | |
|     hexDigit = hexDigitValue(*p);
 | |
| 
 | |
|     /* If we ran off the end it is exactly zero or one-half, otherwise
 | |
|        a little more.  */
 | |
|     if(hexDigit == -1U)
 | |
|       return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
 | |
|     else
 | |
|       return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
 | |
|   }
 | |
| 
 | |
|   /* Return the fraction lost were a bignum truncated losing the least
 | |
|      significant BITS bits.  */
 | |
|   lostFraction
 | |
|   lostFractionThroughTruncation(const integerPart *parts,
 | |
|                                 unsigned int partCount,
 | |
|                                 unsigned int bits)
 | |
|   {
 | |
|     unsigned int lsb;
 | |
| 
 | |
|     lsb = APInt::tcLSB(parts, partCount);
 | |
| 
 | |
|     /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
 | |
|     if(bits <= lsb)
 | |
|       return lfExactlyZero;
 | |
|     if(bits == lsb + 1)
 | |
|       return lfExactlyHalf;
 | |
|     if(bits <= partCount * integerPartWidth
 | |
|        && APInt::tcExtractBit(parts, bits - 1))
 | |
|       return lfMoreThanHalf;
 | |
| 
 | |
|     return lfLessThanHalf;
 | |
|   }
 | |
| 
 | |
|   /* Shift DST right BITS bits noting lost fraction.  */
 | |
|   lostFraction
 | |
|   shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
 | |
|   {
 | |
|     lostFraction lost_fraction;
 | |
| 
 | |
|     lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
 | |
| 
 | |
|     APInt::tcShiftRight(dst, parts, bits);
 | |
| 
 | |
|     return lost_fraction;
 | |
|   }
 | |
| 
 | |
|   /* Combine the effect of two lost fractions.  */
 | |
|   lostFraction
 | |
|   combineLostFractions(lostFraction moreSignificant,
 | |
|                        lostFraction lessSignificant)
 | |
|   {
 | |
|     if(lessSignificant != lfExactlyZero) {
 | |
|       if(moreSignificant == lfExactlyZero)
 | |
|         moreSignificant = lfLessThanHalf;
 | |
|       else if(moreSignificant == lfExactlyHalf)
 | |
|         moreSignificant = lfMoreThanHalf;
 | |
|     }
 | |
| 
 | |
|     return moreSignificant;
 | |
|   }
 | |
| 
 | |
|   /* The error from the true value, in half-ulps, on multiplying two
 | |
|      floating point numbers, which differ from the value they
 | |
|      approximate by at most HUE1 and HUE2 half-ulps, is strictly less
 | |
|      than the returned value.
 | |
| 
 | |
|      See "How to Read Floating Point Numbers Accurately" by William D
 | |
|      Clinger.  */
 | |
|   unsigned int
 | |
|   HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
 | |
|   {
 | |
|     assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
 | |
| 
 | |
|     if (HUerr1 + HUerr2 == 0)
 | |
|       return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
 | |
|     else
 | |
|       return inexactMultiply + 2 * (HUerr1 + HUerr2);
 | |
|   }
 | |
| 
 | |
|   /* The number of ulps from the boundary (zero, or half if ISNEAREST)
 | |
|      when the least significant BITS are truncated.  BITS cannot be
 | |
|      zero.  */
 | |
|   integerPart
 | |
|   ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
 | |
|   {
 | |
|     unsigned int count, partBits;
 | |
|     integerPart part, boundary;
 | |
| 
 | |
|     assert (bits != 0);
 | |
| 
 | |
|     bits--;
 | |
|     count = bits / integerPartWidth;
 | |
|     partBits = bits % integerPartWidth + 1;
 | |
| 
 | |
|     part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
 | |
| 
 | |
|     if (isNearest)
 | |
|       boundary = (integerPart) 1 << (partBits - 1);
 | |
|     else
 | |
|       boundary = 0;
 | |
| 
 | |
|     if (count == 0) {
 | |
|       if (part - boundary <= boundary - part)
 | |
|         return part - boundary;
 | |
|       else
 | |
|         return boundary - part;
 | |
|     }
 | |
| 
 | |
|     if (part == boundary) {
 | |
|       while (--count)
 | |
|         if (parts[count])
 | |
|           return ~(integerPart) 0; /* A lot.  */
 | |
| 
 | |
|       return parts[0];
 | |
|     } else if (part == boundary - 1) {
 | |
|       while (--count)
 | |
|         if (~parts[count])
 | |
|           return ~(integerPart) 0; /* A lot.  */
 | |
| 
 | |
|       return -parts[0];
 | |
|     }
 | |
| 
 | |
|     return ~(integerPart) 0; /* A lot.  */
 | |
|   }
 | |
| 
 | |
|   /* Place pow(5, power) in DST, and return the number of parts used.
 | |
|      DST must be at least one part larger than size of the answer.  */
 | |
|   unsigned int
 | |
|   powerOf5(integerPart *dst, unsigned int power)
 | |
|   {
 | |
|     static integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
 | |
|                                               15625, 78125 };
 | |
|     static integerPart pow5s[maxPowerOfFiveParts * 2 + 5] = { 78125 * 5 };
 | |
|     static unsigned int partsCount[16] = { 1 };
 | |
| 
 | |
|     integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
 | |
|     unsigned int result;
 | |
| 
 | |
|     assert(power <= maxExponent);
 | |
| 
 | |
|     p1 = dst;
 | |
|     p2 = scratch;
 | |
| 
 | |
|     *p1 = firstEightPowers[power & 7];
 | |
|     power >>= 3;
 | |
| 
 | |
|     result = 1;
 | |
|     pow5 = pow5s;
 | |
| 
 | |
|     for (unsigned int n = 0; power; power >>= 1, n++) {
 | |
|       unsigned int pc;
 | |
| 
 | |
|       pc = partsCount[n];
 | |
| 
 | |
|       /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
 | |
|       if (pc == 0) {
 | |
|         pc = partsCount[n - 1];
 | |
|         APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
 | |
|         pc *= 2;
 | |
|         if (pow5[pc - 1] == 0)
 | |
|           pc--;
 | |
|         partsCount[n] = pc;
 | |
|       }
 | |
| 
 | |
|       if (power & 1) {
 | |
|         integerPart *tmp;
 | |
| 
 | |
|         APInt::tcFullMultiply(p2, p1, pow5, result, pc);
 | |
|         result += pc;
 | |
|         if (p2[result - 1] == 0)
 | |
|           result--;
 | |
| 
 | |
|         /* Now result is in p1 with partsCount parts and p2 is scratch
 | |
|            space.  */
 | |
|         tmp = p1, p1 = p2, p2 = tmp;
 | |
|       }
 | |
| 
 | |
|       pow5 += pc;
 | |
|     }
 | |
| 
 | |
|     if (p1 != dst)
 | |
|       APInt::tcAssign(dst, p1, result);
 | |
| 
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   /* Zero at the end to avoid modular arithmetic when adding one; used
 | |
|      when rounding up during hexadecimal output.  */
 | |
|   static const char hexDigitsLower[] = "0123456789abcdef0";
 | |
|   static const char hexDigitsUpper[] = "0123456789ABCDEF0";
 | |
|   static const char infinityL[] = "infinity";
 | |
|   static const char infinityU[] = "INFINITY";
 | |
|   static const char NaNL[] = "nan";
 | |
|   static const char NaNU[] = "NAN";
 | |
| 
 | |
|   /* Write out an integerPart in hexadecimal, starting with the most
 | |
|      significant nibble.  Write out exactly COUNT hexdigits, return
 | |
|      COUNT.  */
 | |
|   unsigned int
 | |
|   partAsHex (char *dst, integerPart part, unsigned int count,
 | |
|              const char *hexDigitChars)
 | |
|   {
 | |
|     unsigned int result = count;
 | |
| 
 | |
|     assert (count != 0 && count <= integerPartWidth / 4);
 | |
| 
 | |
|     part >>= (integerPartWidth - 4 * count);
 | |
|     while (count--) {
 | |
|       dst[count] = hexDigitChars[part & 0xf];
 | |
|       part >>= 4;
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
|   }
 | |
| 
 | |
|   /* Write out an unsigned decimal integer.  */
 | |
|   char *
 | |
|   writeUnsignedDecimal (char *dst, unsigned int n)
 | |
|   {
 | |
|     char buff[40], *p;
 | |
| 
 | |
|     p = buff;
 | |
|     do
 | |
|       *p++ = '0' + n % 10;
 | |
|     while (n /= 10);
 | |
| 
 | |
|     do
 | |
|       *dst++ = *--p;
 | |
|     while (p != buff);
 | |
| 
 | |
|     return dst;
 | |
|   }
 | |
| 
 | |
|   /* Write out a signed decimal integer.  */
 | |
|   char *
 | |
|   writeSignedDecimal (char *dst, int value)
 | |
|   {
 | |
|     if (value < 0) {
 | |
|       *dst++ = '-';
 | |
|       dst = writeUnsignedDecimal(dst, -(unsigned) value);
 | |
|     } else
 | |
|       dst = writeUnsignedDecimal(dst, value);
 | |
| 
 | |
|     return dst;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Constructors.  */
 | |
| void
 | |
| APFloat::initialize(const fltSemantics *ourSemantics)
 | |
| {
 | |
|   unsigned int count;
 | |
| 
 | |
|   semantics = ourSemantics;
 | |
|   count = partCount();
 | |
|   if(count > 1)
 | |
|     significand.parts = new integerPart[count];
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::freeSignificand()
 | |
| {
 | |
|   if(partCount() > 1)
 | |
|     delete [] significand.parts;
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::assign(const APFloat &rhs)
 | |
| {
 | |
|   assert(semantics == rhs.semantics);
 | |
| 
 | |
|   sign = rhs.sign;
 | |
|   category = rhs.category;
 | |
|   exponent = rhs.exponent;
 | |
|   sign2 = rhs.sign2;
 | |
|   exponent2 = rhs.exponent2;
 | |
|   if(category == fcNormal || category == fcNaN)
 | |
|     copySignificand(rhs);
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::copySignificand(const APFloat &rhs)
 | |
| {
 | |
|   assert(category == fcNormal || category == fcNaN);
 | |
|   assert(rhs.partCount() >= partCount());
 | |
| 
 | |
|   APInt::tcAssign(significandParts(), rhs.significandParts(),
 | |
|                   partCount());
 | |
| }
 | |
| 
 | |
| /* Make this number a NaN, with an arbitrary but deterministic value
 | |
|    for the significand.  */
 | |
| void
 | |
| APFloat::makeNaN(void)
 | |
| {
 | |
|   category = fcNaN;
 | |
|   APInt::tcSet(significandParts(), ~0U, partCount());
 | |
| }
 | |
| 
 | |
| APFloat &
 | |
| APFloat::operator=(const APFloat &rhs)
 | |
| {
 | |
|   if(this != &rhs) {
 | |
|     if(semantics != rhs.semantics) {
 | |
|       freeSignificand();
 | |
|       initialize(rhs.semantics);
 | |
|     }
 | |
|     assign(rhs);
 | |
|   }
 | |
| 
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| bool
 | |
| APFloat::bitwiseIsEqual(const APFloat &rhs) const {
 | |
|   if (this == &rhs)
 | |
|     return true;
 | |
|   if (semantics != rhs.semantics ||
 | |
|       category != rhs.category ||
 | |
|       sign != rhs.sign)
 | |
|     return false;
 | |
|   if (semantics==(const llvm::fltSemantics* const)&PPCDoubleDouble &&
 | |
|       sign2 != rhs.sign2)
 | |
|     return false;
 | |
|   if (category==fcZero || category==fcInfinity)
 | |
|     return true;
 | |
|   else if (category==fcNormal && exponent!=rhs.exponent)
 | |
|     return false;
 | |
|   else if (semantics==(const llvm::fltSemantics* const)&PPCDoubleDouble &&
 | |
|            exponent2!=rhs.exponent2)
 | |
|     return false;
 | |
|   else {
 | |
|     int i= partCount();
 | |
|     const integerPart* p=significandParts();
 | |
|     const integerPart* q=rhs.significandParts();
 | |
|     for (; i>0; i--, p++, q++) {
 | |
|       if (*p != *q)
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
 | |
| {
 | |
|   assertArithmeticOK(ourSemantics);
 | |
|   initialize(&ourSemantics);
 | |
|   sign = 0;
 | |
|   zeroSignificand();
 | |
|   exponent = ourSemantics.precision - 1;
 | |
|   significandParts()[0] = value;
 | |
|   normalize(rmNearestTiesToEven, lfExactlyZero);
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(const fltSemantics &ourSemantics,
 | |
|                  fltCategory ourCategory, bool negative)
 | |
| {
 | |
|   assertArithmeticOK(ourSemantics);
 | |
|   initialize(&ourSemantics);
 | |
|   category = ourCategory;
 | |
|   sign = negative;
 | |
|   if(category == fcNormal)
 | |
|     category = fcZero;
 | |
|   else if (ourCategory == fcNaN)
 | |
|     makeNaN();
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(const fltSemantics &ourSemantics, const char *text)
 | |
| {
 | |
|   assertArithmeticOK(ourSemantics);
 | |
|   initialize(&ourSemantics);
 | |
|   convertFromString(text, rmNearestTiesToEven);
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(const APFloat &rhs)
 | |
| {
 | |
|   initialize(rhs.semantics);
 | |
|   assign(rhs);
 | |
| }
 | |
| 
 | |
| APFloat::~APFloat()
 | |
| {
 | |
|   freeSignificand();
 | |
| }
 | |
| 
 | |
| unsigned int
 | |
| APFloat::partCount() const
 | |
| {
 | |
|   return partCountForBits(semantics->precision + 1);
 | |
| }
 | |
| 
 | |
| unsigned int
 | |
| APFloat::semanticsPrecision(const fltSemantics &semantics)
 | |
| {
 | |
|   return semantics.precision;
 | |
| }
 | |
| 
 | |
| const integerPart *
 | |
| APFloat::significandParts() const
 | |
| {
 | |
|   return const_cast<APFloat *>(this)->significandParts();
 | |
| }
 | |
| 
 | |
| integerPart *
 | |
| APFloat::significandParts()
 | |
| {
 | |
|   assert(category == fcNormal || category == fcNaN);
 | |
| 
 | |
|   if(partCount() > 1)
 | |
|     return significand.parts;
 | |
|   else
 | |
|     return &significand.part;
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::zeroSignificand()
 | |
| {
 | |
|   category = fcNormal;
 | |
|   APInt::tcSet(significandParts(), 0, partCount());
 | |
| }
 | |
| 
 | |
| /* Increment an fcNormal floating point number's significand.  */
 | |
| void
 | |
| APFloat::incrementSignificand()
 | |
| {
 | |
|   integerPart carry;
 | |
| 
 | |
|   carry = APInt::tcIncrement(significandParts(), partCount());
 | |
| 
 | |
|   /* Our callers should never cause us to overflow.  */
 | |
|   assert(carry == 0);
 | |
| }
 | |
| 
 | |
| /* Add the significand of the RHS.  Returns the carry flag.  */
 | |
| integerPart
 | |
| APFloat::addSignificand(const APFloat &rhs)
 | |
| {
 | |
|   integerPart *parts;
 | |
| 
 | |
|   parts = significandParts();
 | |
| 
 | |
|   assert(semantics == rhs.semantics);
 | |
|   assert(exponent == rhs.exponent);
 | |
| 
 | |
|   return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
 | |
| }
 | |
| 
 | |
| /* Subtract the significand of the RHS with a borrow flag.  Returns
 | |
|    the borrow flag.  */
 | |
| integerPart
 | |
| APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
 | |
| {
 | |
|   integerPart *parts;
 | |
| 
 | |
|   parts = significandParts();
 | |
| 
 | |
|   assert(semantics == rhs.semantics);
 | |
|   assert(exponent == rhs.exponent);
 | |
| 
 | |
|   return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
 | |
|                            partCount());
 | |
| }
 | |
| 
 | |
| /* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it
 | |
|    on to the full-precision result of the multiplication.  Returns the
 | |
|    lost fraction.  */
 | |
| lostFraction
 | |
| APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
 | |
| {
 | |
|   unsigned int omsb;        // One, not zero, based MSB.
 | |
|   unsigned int partsCount, newPartsCount, precision;
 | |
|   integerPart *lhsSignificand;
 | |
|   integerPart scratch[4];
 | |
|   integerPart *fullSignificand;
 | |
|   lostFraction lost_fraction;
 | |
| 
 | |
|   assert(semantics == rhs.semantics);
 | |
| 
 | |
|   precision = semantics->precision;
 | |
|   newPartsCount = partCountForBits(precision * 2);
 | |
| 
 | |
|   if(newPartsCount > 4)
 | |
|     fullSignificand = new integerPart[newPartsCount];
 | |
|   else
 | |
|     fullSignificand = scratch;
 | |
| 
 | |
|   lhsSignificand = significandParts();
 | |
|   partsCount = partCount();
 | |
| 
 | |
|   APInt::tcFullMultiply(fullSignificand, lhsSignificand,
 | |
|                         rhs.significandParts(), partsCount, partsCount);
 | |
| 
 | |
|   lost_fraction = lfExactlyZero;
 | |
|   omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
 | |
|   exponent += rhs.exponent;
 | |
| 
 | |
|   if(addend) {
 | |
|     Significand savedSignificand = significand;
 | |
|     const fltSemantics *savedSemantics = semantics;
 | |
|     fltSemantics extendedSemantics;
 | |
|     opStatus status;
 | |
|     unsigned int extendedPrecision;
 | |
| 
 | |
|     /* Normalize our MSB.  */
 | |
|     extendedPrecision = precision + precision - 1;
 | |
|     if(omsb != extendedPrecision)
 | |
|       {
 | |
|         APInt::tcShiftLeft(fullSignificand, newPartsCount,
 | |
|                            extendedPrecision - omsb);
 | |
|         exponent -= extendedPrecision - omsb;
 | |
|       }
 | |
| 
 | |
|     /* Create new semantics.  */
 | |
|     extendedSemantics = *semantics;
 | |
|     extendedSemantics.precision = extendedPrecision;
 | |
| 
 | |
|     if(newPartsCount == 1)
 | |
|       significand.part = fullSignificand[0];
 | |
|     else
 | |
|       significand.parts = fullSignificand;
 | |
|     semantics = &extendedSemantics;
 | |
| 
 | |
|     APFloat extendedAddend(*addend);
 | |
|     status = extendedAddend.convert(extendedSemantics, rmTowardZero);
 | |
|     assert(status == opOK);
 | |
|     lost_fraction = addOrSubtractSignificand(extendedAddend, false);
 | |
| 
 | |
|     /* Restore our state.  */
 | |
|     if(newPartsCount == 1)
 | |
|       fullSignificand[0] = significand.part;
 | |
|     significand = savedSignificand;
 | |
|     semantics = savedSemantics;
 | |
| 
 | |
|     omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
 | |
|   }
 | |
| 
 | |
|   exponent -= (precision - 1);
 | |
| 
 | |
|   if(omsb > precision) {
 | |
|     unsigned int bits, significantParts;
 | |
|     lostFraction lf;
 | |
| 
 | |
|     bits = omsb - precision;
 | |
|     significantParts = partCountForBits(omsb);
 | |
|     lf = shiftRight(fullSignificand, significantParts, bits);
 | |
|     lost_fraction = combineLostFractions(lf, lost_fraction);
 | |
|     exponent += bits;
 | |
|   }
 | |
| 
 | |
|   APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
 | |
| 
 | |
|   if(newPartsCount > 4)
 | |
|     delete [] fullSignificand;
 | |
| 
 | |
|   return lost_fraction;
 | |
| }
 | |
| 
 | |
| /* Multiply the significands of LHS and RHS to DST.  */
 | |
| lostFraction
 | |
| APFloat::divideSignificand(const APFloat &rhs)
 | |
| {
 | |
|   unsigned int bit, i, partsCount;
 | |
|   const integerPart *rhsSignificand;
 | |
|   integerPart *lhsSignificand, *dividend, *divisor;
 | |
|   integerPart scratch[4];
 | |
|   lostFraction lost_fraction;
 | |
| 
 | |
|   assert(semantics == rhs.semantics);
 | |
| 
 | |
|   lhsSignificand = significandParts();
 | |
|   rhsSignificand = rhs.significandParts();
 | |
|   partsCount = partCount();
 | |
| 
 | |
|   if(partsCount > 2)
 | |
|     dividend = new integerPart[partsCount * 2];
 | |
|   else
 | |
|     dividend = scratch;
 | |
| 
 | |
|   divisor = dividend + partsCount;
 | |
| 
 | |
|   /* Copy the dividend and divisor as they will be modified in-place.  */
 | |
|   for(i = 0; i < partsCount; i++) {
 | |
|     dividend[i] = lhsSignificand[i];
 | |
|     divisor[i] = rhsSignificand[i];
 | |
|     lhsSignificand[i] = 0;
 | |
|   }
 | |
| 
 | |
|   exponent -= rhs.exponent;
 | |
| 
 | |
|   unsigned int precision = semantics->precision;
 | |
| 
 | |
|   /* Normalize the divisor.  */
 | |
|   bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
 | |
|   if(bit) {
 | |
|     exponent += bit;
 | |
|     APInt::tcShiftLeft(divisor, partsCount, bit);
 | |
|   }
 | |
| 
 | |
|   /* Normalize the dividend.  */
 | |
|   bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
 | |
|   if(bit) {
 | |
|     exponent -= bit;
 | |
|     APInt::tcShiftLeft(dividend, partsCount, bit);
 | |
|   }
 | |
| 
 | |
|   /* Ensure the dividend >= divisor initially for the loop below.
 | |
|      Incidentally, this means that the division loop below is
 | |
|      guaranteed to set the integer bit to one.  */
 | |
|   if(APInt::tcCompare(dividend, divisor, partsCount) < 0) {
 | |
|     exponent--;
 | |
|     APInt::tcShiftLeft(dividend, partsCount, 1);
 | |
|     assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
 | |
|   }
 | |
| 
 | |
|   /* Long division.  */
 | |
|   for(bit = precision; bit; bit -= 1) {
 | |
|     if(APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
 | |
|       APInt::tcSubtract(dividend, divisor, 0, partsCount);
 | |
|       APInt::tcSetBit(lhsSignificand, bit - 1);
 | |
|     }
 | |
| 
 | |
|     APInt::tcShiftLeft(dividend, partsCount, 1);
 | |
|   }
 | |
| 
 | |
|   /* Figure out the lost fraction.  */
 | |
|   int cmp = APInt::tcCompare(dividend, divisor, partsCount);
 | |
| 
 | |
|   if(cmp > 0)
 | |
|     lost_fraction = lfMoreThanHalf;
 | |
|   else if(cmp == 0)
 | |
|     lost_fraction = lfExactlyHalf;
 | |
|   else if(APInt::tcIsZero(dividend, partsCount))
 | |
|     lost_fraction = lfExactlyZero;
 | |
|   else
 | |
|     lost_fraction = lfLessThanHalf;
 | |
| 
 | |
|   if(partsCount > 2)
 | |
|     delete [] dividend;
 | |
| 
 | |
|   return lost_fraction;
 | |
| }
 | |
| 
 | |
| unsigned int
 | |
| APFloat::significandMSB() const
 | |
| {
 | |
|   return APInt::tcMSB(significandParts(), partCount());
 | |
| }
 | |
| 
 | |
| unsigned int
 | |
| APFloat::significandLSB() const
 | |
| {
 | |
|   return APInt::tcLSB(significandParts(), partCount());
 | |
| }
 | |
| 
 | |
| /* Note that a zero result is NOT normalized to fcZero.  */
 | |
| lostFraction
 | |
| APFloat::shiftSignificandRight(unsigned int bits)
 | |
| {
 | |
|   /* Our exponent should not overflow.  */
 | |
|   assert((exponent_t) (exponent + bits) >= exponent);
 | |
| 
 | |
|   exponent += bits;
 | |
| 
 | |
|   return shiftRight(significandParts(), partCount(), bits);
 | |
| }
 | |
| 
 | |
| /* Shift the significand left BITS bits, subtract BITS from its exponent.  */
 | |
| void
 | |
| APFloat::shiftSignificandLeft(unsigned int bits)
 | |
| {
 | |
|   assert(bits < semantics->precision);
 | |
| 
 | |
|   if(bits) {
 | |
|     unsigned int partsCount = partCount();
 | |
| 
 | |
|     APInt::tcShiftLeft(significandParts(), partsCount, bits);
 | |
|     exponent -= bits;
 | |
| 
 | |
|     assert(!APInt::tcIsZero(significandParts(), partsCount));
 | |
|   }
 | |
| }
 | |
| 
 | |
| APFloat::cmpResult
 | |
| APFloat::compareAbsoluteValue(const APFloat &rhs) const
 | |
| {
 | |
|   int compare;
 | |
| 
 | |
|   assert(semantics == rhs.semantics);
 | |
|   assert(category == fcNormal);
 | |
|   assert(rhs.category == fcNormal);
 | |
| 
 | |
|   compare = exponent - rhs.exponent;
 | |
| 
 | |
|   /* If exponents are equal, do an unsigned bignum comparison of the
 | |
|      significands.  */
 | |
|   if(compare == 0)
 | |
|     compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
 | |
|                                partCount());
 | |
| 
 | |
|   if(compare > 0)
 | |
|     return cmpGreaterThan;
 | |
|   else if(compare < 0)
 | |
|     return cmpLessThan;
 | |
|   else
 | |
|     return cmpEqual;
 | |
| }
 | |
| 
 | |
| /* Handle overflow.  Sign is preserved.  We either become infinity or
 | |
|    the largest finite number.  */
 | |
| APFloat::opStatus
 | |
| APFloat::handleOverflow(roundingMode rounding_mode)
 | |
| {
 | |
|   /* Infinity?  */
 | |
|   if(rounding_mode == rmNearestTiesToEven
 | |
|      || rounding_mode == rmNearestTiesToAway
 | |
|      || (rounding_mode == rmTowardPositive && !sign)
 | |
|      || (rounding_mode == rmTowardNegative && sign))
 | |
|     {
 | |
|       category = fcInfinity;
 | |
|       return (opStatus) (opOverflow | opInexact);
 | |
|     }
 | |
| 
 | |
|   /* Otherwise we become the largest finite number.  */
 | |
|   category = fcNormal;
 | |
|   exponent = semantics->maxExponent;
 | |
|   APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
 | |
|                                    semantics->precision);
 | |
| 
 | |
|   return opInexact;
 | |
| }
 | |
| 
 | |
| /* Returns TRUE if, when truncating the current number, with BIT the
 | |
|    new LSB, with the given lost fraction and rounding mode, the result
 | |
|    would need to be rounded away from zero (i.e., by increasing the
 | |
|    signficand).  This routine must work for fcZero of both signs, and
 | |
|    fcNormal numbers.  */
 | |
| bool
 | |
| APFloat::roundAwayFromZero(roundingMode rounding_mode,
 | |
|                            lostFraction lost_fraction,
 | |
|                            unsigned int bit) const
 | |
| {
 | |
|   /* NaNs and infinities should not have lost fractions.  */
 | |
|   assert(category == fcNormal || category == fcZero);
 | |
| 
 | |
|   /* Current callers never pass this so we don't handle it.  */
 | |
|   assert(lost_fraction != lfExactlyZero);
 | |
| 
 | |
|   switch(rounding_mode) {
 | |
|   default:
 | |
|     assert(0);
 | |
| 
 | |
|   case rmNearestTiesToAway:
 | |
|     return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
 | |
| 
 | |
|   case rmNearestTiesToEven:
 | |
|     if(lost_fraction == lfMoreThanHalf)
 | |
|       return true;
 | |
| 
 | |
|     /* Our zeroes don't have a significand to test.  */
 | |
|     if(lost_fraction == lfExactlyHalf && category != fcZero)
 | |
|       return APInt::tcExtractBit(significandParts(), bit);
 | |
| 
 | |
|     return false;
 | |
| 
 | |
|   case rmTowardZero:
 | |
|     return false;
 | |
| 
 | |
|   case rmTowardPositive:
 | |
|     return sign == false;
 | |
| 
 | |
|   case rmTowardNegative:
 | |
|     return sign == true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::normalize(roundingMode rounding_mode,
 | |
|                    lostFraction lost_fraction)
 | |
| {
 | |
|   unsigned int omsb;                /* One, not zero, based MSB.  */
 | |
|   int exponentChange;
 | |
| 
 | |
|   if(category != fcNormal)
 | |
|     return opOK;
 | |
| 
 | |
|   /* Before rounding normalize the exponent of fcNormal numbers.  */
 | |
|   omsb = significandMSB() + 1;
 | |
| 
 | |
|   if(omsb) {
 | |
|     /* OMSB is numbered from 1.  We want to place it in the integer
 | |
|        bit numbered PRECISON if possible, with a compensating change in
 | |
|        the exponent.  */
 | |
|     exponentChange = omsb - semantics->precision;
 | |
| 
 | |
|     /* If the resulting exponent is too high, overflow according to
 | |
|        the rounding mode.  */
 | |
|     if(exponent + exponentChange > semantics->maxExponent)
 | |
|       return handleOverflow(rounding_mode);
 | |
| 
 | |
|     /* Subnormal numbers have exponent minExponent, and their MSB
 | |
|        is forced based on that.  */
 | |
|     if(exponent + exponentChange < semantics->minExponent)
 | |
|       exponentChange = semantics->minExponent - exponent;
 | |
| 
 | |
|     /* Shifting left is easy as we don't lose precision.  */
 | |
|     if(exponentChange < 0) {
 | |
|       assert(lost_fraction == lfExactlyZero);
 | |
| 
 | |
|       shiftSignificandLeft(-exponentChange);
 | |
| 
 | |
|       return opOK;
 | |
|     }
 | |
| 
 | |
|     if(exponentChange > 0) {
 | |
|       lostFraction lf;
 | |
| 
 | |
|       /* Shift right and capture any new lost fraction.  */
 | |
|       lf = shiftSignificandRight(exponentChange);
 | |
| 
 | |
|       lost_fraction = combineLostFractions(lf, lost_fraction);
 | |
| 
 | |
|       /* Keep OMSB up-to-date.  */
 | |
|       if(omsb > (unsigned) exponentChange)
 | |
|         omsb -= exponentChange;
 | |
|       else
 | |
|         omsb = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Now round the number according to rounding_mode given the lost
 | |
|      fraction.  */
 | |
| 
 | |
|   /* As specified in IEEE 754, since we do not trap we do not report
 | |
|      underflow for exact results.  */
 | |
|   if(lost_fraction == lfExactlyZero) {
 | |
|     /* Canonicalize zeroes.  */
 | |
|     if(omsb == 0)
 | |
|       category = fcZero;
 | |
| 
 | |
|     return opOK;
 | |
|   }
 | |
| 
 | |
|   /* Increment the significand if we're rounding away from zero.  */
 | |
|   if(roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
 | |
|     if(omsb == 0)
 | |
|       exponent = semantics->minExponent;
 | |
| 
 | |
|     incrementSignificand();
 | |
|     omsb = significandMSB() + 1;
 | |
| 
 | |
|     /* Did the significand increment overflow?  */
 | |
|     if(omsb == (unsigned) semantics->precision + 1) {
 | |
|       /* Renormalize by incrementing the exponent and shifting our
 | |
|          significand right one.  However if we already have the
 | |
|          maximum exponent we overflow to infinity.  */
 | |
|       if(exponent == semantics->maxExponent) {
 | |
|         category = fcInfinity;
 | |
| 
 | |
|         return (opStatus) (opOverflow | opInexact);
 | |
|       }
 | |
| 
 | |
|       shiftSignificandRight(1);
 | |
| 
 | |
|       return opInexact;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* The normal case - we were and are not denormal, and any
 | |
|      significand increment above didn't overflow.  */
 | |
|   if(omsb == semantics->precision)
 | |
|     return opInexact;
 | |
| 
 | |
|   /* We have a non-zero denormal.  */
 | |
|   assert(omsb < semantics->precision);
 | |
| 
 | |
|   /* Canonicalize zeroes.  */
 | |
|   if(omsb == 0)
 | |
|     category = fcZero;
 | |
| 
 | |
|   /* The fcZero case is a denormal that underflowed to zero.  */
 | |
|   return (opStatus) (opUnderflow | opInexact);
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
 | |
| {
 | |
|   switch(convolve(category, rhs.category)) {
 | |
|   default:
 | |
|     assert(0);
 | |
| 
 | |
|   case convolve(fcNaN, fcZero):
 | |
|   case convolve(fcNaN, fcNormal):
 | |
|   case convolve(fcNaN, fcInfinity):
 | |
|   case convolve(fcNaN, fcNaN):
 | |
|   case convolve(fcNormal, fcZero):
 | |
|   case convolve(fcInfinity, fcNormal):
 | |
|   case convolve(fcInfinity, fcZero):
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcZero, fcNaN):
 | |
|   case convolve(fcNormal, fcNaN):
 | |
|   case convolve(fcInfinity, fcNaN):
 | |
|     category = fcNaN;
 | |
|     copySignificand(rhs);
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcNormal, fcInfinity):
 | |
|   case convolve(fcZero, fcInfinity):
 | |
|     category = fcInfinity;
 | |
|     sign = rhs.sign ^ subtract;
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcZero, fcNormal):
 | |
|     assign(rhs);
 | |
|     sign = rhs.sign ^ subtract;
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcZero, fcZero):
 | |
|     /* Sign depends on rounding mode; handled by caller.  */
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcInfinity, fcInfinity):
 | |
|     /* Differently signed infinities can only be validly
 | |
|        subtracted.  */
 | |
|     if((sign ^ rhs.sign) != subtract) {
 | |
|       makeNaN();
 | |
|       return opInvalidOp;
 | |
|     }
 | |
| 
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcNormal, fcNormal):
 | |
|     return opDivByZero;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Add or subtract two normal numbers.  */
 | |
| lostFraction
 | |
| APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
 | |
| {
 | |
|   integerPart carry;
 | |
|   lostFraction lost_fraction;
 | |
|   int bits;
 | |
| 
 | |
|   /* Determine if the operation on the absolute values is effectively
 | |
|      an addition or subtraction.  */
 | |
|   subtract ^= (sign ^ rhs.sign) ? true : false;
 | |
| 
 | |
|   /* Are we bigger exponent-wise than the RHS?  */
 | |
|   bits = exponent - rhs.exponent;
 | |
| 
 | |
|   /* Subtraction is more subtle than one might naively expect.  */
 | |
|   if(subtract) {
 | |
|     APFloat temp_rhs(rhs);
 | |
|     bool reverse;
 | |
| 
 | |
|     if (bits == 0) {
 | |
|       reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
 | |
|       lost_fraction = lfExactlyZero;
 | |
|     } else if (bits > 0) {
 | |
|       lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
 | |
|       shiftSignificandLeft(1);
 | |
|       reverse = false;
 | |
|     } else {
 | |
|       lost_fraction = shiftSignificandRight(-bits - 1);
 | |
|       temp_rhs.shiftSignificandLeft(1);
 | |
|       reverse = true;
 | |
|     }
 | |
| 
 | |
|     if (reverse) {
 | |
|       carry = temp_rhs.subtractSignificand
 | |
|         (*this, lost_fraction != lfExactlyZero);
 | |
|       copySignificand(temp_rhs);
 | |
|       sign = !sign;
 | |
|     } else {
 | |
|       carry = subtractSignificand
 | |
|         (temp_rhs, lost_fraction != lfExactlyZero);
 | |
|     }
 | |
| 
 | |
|     /* Invert the lost fraction - it was on the RHS and
 | |
|        subtracted.  */
 | |
|     if(lost_fraction == lfLessThanHalf)
 | |
|       lost_fraction = lfMoreThanHalf;
 | |
|     else if(lost_fraction == lfMoreThanHalf)
 | |
|       lost_fraction = lfLessThanHalf;
 | |
| 
 | |
|     /* The code above is intended to ensure that no borrow is
 | |
|        necessary.  */
 | |
|     assert(!carry);
 | |
|   } else {
 | |
|     if(bits > 0) {
 | |
|       APFloat temp_rhs(rhs);
 | |
| 
 | |
|       lost_fraction = temp_rhs.shiftSignificandRight(bits);
 | |
|       carry = addSignificand(temp_rhs);
 | |
|     } else {
 | |
|       lost_fraction = shiftSignificandRight(-bits);
 | |
|       carry = addSignificand(rhs);
 | |
|     }
 | |
| 
 | |
|     /* We have a guard bit; generating a carry cannot happen.  */
 | |
|     assert(!carry);
 | |
|   }
 | |
| 
 | |
|   return lost_fraction;
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::multiplySpecials(const APFloat &rhs)
 | |
| {
 | |
|   switch(convolve(category, rhs.category)) {
 | |
|   default:
 | |
|     assert(0);
 | |
| 
 | |
|   case convolve(fcNaN, fcZero):
 | |
|   case convolve(fcNaN, fcNormal):
 | |
|   case convolve(fcNaN, fcInfinity):
 | |
|   case convolve(fcNaN, fcNaN):
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcZero, fcNaN):
 | |
|   case convolve(fcNormal, fcNaN):
 | |
|   case convolve(fcInfinity, fcNaN):
 | |
|     category = fcNaN;
 | |
|     copySignificand(rhs);
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcNormal, fcInfinity):
 | |
|   case convolve(fcInfinity, fcNormal):
 | |
|   case convolve(fcInfinity, fcInfinity):
 | |
|     category = fcInfinity;
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcZero, fcNormal):
 | |
|   case convolve(fcNormal, fcZero):
 | |
|   case convolve(fcZero, fcZero):
 | |
|     category = fcZero;
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcZero, fcInfinity):
 | |
|   case convolve(fcInfinity, fcZero):
 | |
|     makeNaN();
 | |
|     return opInvalidOp;
 | |
| 
 | |
|   case convolve(fcNormal, fcNormal):
 | |
|     return opOK;
 | |
|   }
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::divideSpecials(const APFloat &rhs)
 | |
| {
 | |
|   switch(convolve(category, rhs.category)) {
 | |
|   default:
 | |
|     assert(0);
 | |
| 
 | |
|   case convolve(fcNaN, fcZero):
 | |
|   case convolve(fcNaN, fcNormal):
 | |
|   case convolve(fcNaN, fcInfinity):
 | |
|   case convolve(fcNaN, fcNaN):
 | |
|   case convolve(fcInfinity, fcZero):
 | |
|   case convolve(fcInfinity, fcNormal):
 | |
|   case convolve(fcZero, fcInfinity):
 | |
|   case convolve(fcZero, fcNormal):
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcZero, fcNaN):
 | |
|   case convolve(fcNormal, fcNaN):
 | |
|   case convolve(fcInfinity, fcNaN):
 | |
|     category = fcNaN;
 | |
|     copySignificand(rhs);
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcNormal, fcInfinity):
 | |
|     category = fcZero;
 | |
|     return opOK;
 | |
| 
 | |
|   case convolve(fcNormal, fcZero):
 | |
|     category = fcInfinity;
 | |
|     return opDivByZero;
 | |
| 
 | |
|   case convolve(fcInfinity, fcInfinity):
 | |
|   case convolve(fcZero, fcZero):
 | |
|     makeNaN();
 | |
|     return opInvalidOp;
 | |
| 
 | |
|   case convolve(fcNormal, fcNormal):
 | |
|     return opOK;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Change sign.  */
 | |
| void
 | |
| APFloat::changeSign()
 | |
| {
 | |
|   /* Look mummy, this one's easy.  */
 | |
|   sign = !sign;
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::clearSign()
 | |
| {
 | |
|   /* So is this one. */
 | |
|   sign = 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::copySign(const APFloat &rhs)
 | |
| {
 | |
|   /* And this one. */
 | |
|   sign = rhs.sign;
 | |
| }
 | |
| 
 | |
| /* Normalized addition or subtraction.  */
 | |
| APFloat::opStatus
 | |
| APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
 | |
|                        bool subtract)
 | |
| {
 | |
|   opStatus fs;
 | |
| 
 | |
|   assertArithmeticOK(*semantics);
 | |
| 
 | |
|   fs = addOrSubtractSpecials(rhs, subtract);
 | |
| 
 | |
|   /* This return code means it was not a simple case.  */
 | |
|   if(fs == opDivByZero) {
 | |
|     lostFraction lost_fraction;
 | |
| 
 | |
|     lost_fraction = addOrSubtractSignificand(rhs, subtract);
 | |
|     fs = normalize(rounding_mode, lost_fraction);
 | |
| 
 | |
|     /* Can only be zero if we lost no fraction.  */
 | |
|     assert(category != fcZero || lost_fraction == lfExactlyZero);
 | |
|   }
 | |
| 
 | |
|   /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
 | |
|      positive zero unless rounding to minus infinity, except that
 | |
|      adding two like-signed zeroes gives that zero.  */
 | |
|   if(category == fcZero) {
 | |
|     if(rhs.category != fcZero || (sign == rhs.sign) == subtract)
 | |
|       sign = (rounding_mode == rmTowardNegative);
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Normalized addition.  */
 | |
| APFloat::opStatus
 | |
| APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
 | |
| {
 | |
|   return addOrSubtract(rhs, rounding_mode, false);
 | |
| }
 | |
| 
 | |
| /* Normalized subtraction.  */
 | |
| APFloat::opStatus
 | |
| APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
 | |
| {
 | |
|   return addOrSubtract(rhs, rounding_mode, true);
 | |
| }
 | |
| 
 | |
| /* Normalized multiply.  */
 | |
| APFloat::opStatus
 | |
| APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
 | |
| {
 | |
|   opStatus fs;
 | |
| 
 | |
|   assertArithmeticOK(*semantics);
 | |
|   sign ^= rhs.sign;
 | |
|   fs = multiplySpecials(rhs);
 | |
| 
 | |
|   if(category == fcNormal) {
 | |
|     lostFraction lost_fraction = multiplySignificand(rhs, 0);
 | |
|     fs = normalize(rounding_mode, lost_fraction);
 | |
|     if(lost_fraction != lfExactlyZero)
 | |
|       fs = (opStatus) (fs | opInexact);
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Normalized divide.  */
 | |
| APFloat::opStatus
 | |
| APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
 | |
| {
 | |
|   opStatus fs;
 | |
| 
 | |
|   assertArithmeticOK(*semantics);
 | |
|   sign ^= rhs.sign;
 | |
|   fs = divideSpecials(rhs);
 | |
| 
 | |
|   if(category == fcNormal) {
 | |
|     lostFraction lost_fraction = divideSignificand(rhs);
 | |
|     fs = normalize(rounding_mode, lost_fraction);
 | |
|     if(lost_fraction != lfExactlyZero)
 | |
|       fs = (opStatus) (fs | opInexact);
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Normalized remainder.  This is not currently doing TRT.  */
 | |
| APFloat::opStatus
 | |
| APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
 | |
| {
 | |
|   opStatus fs;
 | |
|   APFloat V = *this;
 | |
|   unsigned int origSign = sign;
 | |
| 
 | |
|   assertArithmeticOK(*semantics);
 | |
|   fs = V.divide(rhs, rmNearestTiesToEven);
 | |
|   if (fs == opDivByZero)
 | |
|     return fs;
 | |
| 
 | |
|   int parts = partCount();
 | |
|   integerPart *x = new integerPart[parts];
 | |
|   fs = V.convertToInteger(x, parts * integerPartWidth, true,
 | |
|                           rmNearestTiesToEven);
 | |
|   if (fs==opInvalidOp)
 | |
|     return fs;
 | |
| 
 | |
|   fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
 | |
|                                         rmNearestTiesToEven);
 | |
|   assert(fs==opOK);   // should always work
 | |
| 
 | |
|   fs = V.multiply(rhs, rounding_mode);
 | |
|   assert(fs==opOK || fs==opInexact);   // should not overflow or underflow
 | |
| 
 | |
|   fs = subtract(V, rounding_mode);
 | |
|   assert(fs==opOK || fs==opInexact);   // likewise
 | |
| 
 | |
|   if (isZero())
 | |
|     sign = origSign;    // IEEE754 requires this
 | |
|   delete[] x;
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Normalized fused-multiply-add.  */
 | |
| APFloat::opStatus
 | |
| APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
 | |
|                           const APFloat &addend,
 | |
|                           roundingMode rounding_mode)
 | |
| {
 | |
|   opStatus fs;
 | |
| 
 | |
|   assertArithmeticOK(*semantics);
 | |
| 
 | |
|   /* Post-multiplication sign, before addition.  */
 | |
|   sign ^= multiplicand.sign;
 | |
| 
 | |
|   /* If and only if all arguments are normal do we need to do an
 | |
|      extended-precision calculation.  */
 | |
|   if(category == fcNormal
 | |
|      && multiplicand.category == fcNormal
 | |
|      && addend.category == fcNormal) {
 | |
|     lostFraction lost_fraction;
 | |
| 
 | |
|     lost_fraction = multiplySignificand(multiplicand, &addend);
 | |
|     fs = normalize(rounding_mode, lost_fraction);
 | |
|     if(lost_fraction != lfExactlyZero)
 | |
|       fs = (opStatus) (fs | opInexact);
 | |
| 
 | |
|     /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
 | |
|        positive zero unless rounding to minus infinity, except that
 | |
|        adding two like-signed zeroes gives that zero.  */
 | |
|     if(category == fcZero && sign != addend.sign)
 | |
|       sign = (rounding_mode == rmTowardNegative);
 | |
|   } else {
 | |
|     fs = multiplySpecials(multiplicand);
 | |
| 
 | |
|     /* FS can only be opOK or opInvalidOp.  There is no more work
 | |
|        to do in the latter case.  The IEEE-754R standard says it is
 | |
|        implementation-defined in this case whether, if ADDEND is a
 | |
|        quiet NaN, we raise invalid op; this implementation does so.
 | |
| 
 | |
|        If we need to do the addition we can do so with normal
 | |
|        precision.  */
 | |
|     if(fs == opOK)
 | |
|       fs = addOrSubtract(addend, rounding_mode, false);
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Comparison requires normalized numbers.  */
 | |
| APFloat::cmpResult
 | |
| APFloat::compare(const APFloat &rhs) const
 | |
| {
 | |
|   cmpResult result;
 | |
| 
 | |
|   assertArithmeticOK(*semantics);
 | |
|   assert(semantics == rhs.semantics);
 | |
| 
 | |
|   switch(convolve(category, rhs.category)) {
 | |
|   default:
 | |
|     assert(0);
 | |
| 
 | |
|   case convolve(fcNaN, fcZero):
 | |
|   case convolve(fcNaN, fcNormal):
 | |
|   case convolve(fcNaN, fcInfinity):
 | |
|   case convolve(fcNaN, fcNaN):
 | |
|   case convolve(fcZero, fcNaN):
 | |
|   case convolve(fcNormal, fcNaN):
 | |
|   case convolve(fcInfinity, fcNaN):
 | |
|     return cmpUnordered;
 | |
| 
 | |
|   case convolve(fcInfinity, fcNormal):
 | |
|   case convolve(fcInfinity, fcZero):
 | |
|   case convolve(fcNormal, fcZero):
 | |
|     if(sign)
 | |
|       return cmpLessThan;
 | |
|     else
 | |
|       return cmpGreaterThan;
 | |
| 
 | |
|   case convolve(fcNormal, fcInfinity):
 | |
|   case convolve(fcZero, fcInfinity):
 | |
|   case convolve(fcZero, fcNormal):
 | |
|     if(rhs.sign)
 | |
|       return cmpGreaterThan;
 | |
|     else
 | |
|       return cmpLessThan;
 | |
| 
 | |
|   case convolve(fcInfinity, fcInfinity):
 | |
|     if(sign == rhs.sign)
 | |
|       return cmpEqual;
 | |
|     else if(sign)
 | |
|       return cmpLessThan;
 | |
|     else
 | |
|       return cmpGreaterThan;
 | |
| 
 | |
|   case convolve(fcZero, fcZero):
 | |
|     return cmpEqual;
 | |
| 
 | |
|   case convolve(fcNormal, fcNormal):
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   /* Two normal numbers.  Do they have the same sign?  */
 | |
|   if(sign != rhs.sign) {
 | |
|     if(sign)
 | |
|       result = cmpLessThan;
 | |
|     else
 | |
|       result = cmpGreaterThan;
 | |
|   } else {
 | |
|     /* Compare absolute values; invert result if negative.  */
 | |
|     result = compareAbsoluteValue(rhs);
 | |
| 
 | |
|     if(sign) {
 | |
|       if(result == cmpLessThan)
 | |
|         result = cmpGreaterThan;
 | |
|       else if(result == cmpGreaterThan)
 | |
|         result = cmpLessThan;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::convert(const fltSemantics &toSemantics,
 | |
|                  roundingMode rounding_mode)
 | |
| {
 | |
|   lostFraction lostFraction;
 | |
|   unsigned int newPartCount, oldPartCount;
 | |
|   opStatus fs;
 | |
| 
 | |
|   assertArithmeticOK(*semantics);
 | |
|   lostFraction = lfExactlyZero;
 | |
|   newPartCount = partCountForBits(toSemantics.precision + 1);
 | |
|   oldPartCount = partCount();
 | |
| 
 | |
|   /* Handle storage complications.  If our new form is wider,
 | |
|      re-allocate our bit pattern into wider storage.  If it is
 | |
|      narrower, we ignore the excess parts, but if narrowing to a
 | |
|      single part we need to free the old storage.
 | |
|      Be careful not to reference significandParts for zeroes
 | |
|      and infinities, since it aborts.  */
 | |
|   if (newPartCount > oldPartCount) {
 | |
|     integerPart *newParts;
 | |
|     newParts = new integerPart[newPartCount];
 | |
|     APInt::tcSet(newParts, 0, newPartCount);
 | |
|     if (category==fcNormal || category==fcNaN)
 | |
|       APInt::tcAssign(newParts, significandParts(), oldPartCount);
 | |
|     freeSignificand();
 | |
|     significand.parts = newParts;
 | |
|   } else if (newPartCount < oldPartCount) {
 | |
|     /* Capture any lost fraction through truncation of parts so we get
 | |
|        correct rounding whilst normalizing.  */
 | |
|     if (category==fcNormal)
 | |
|       lostFraction = lostFractionThroughTruncation
 | |
|         (significandParts(), oldPartCount, toSemantics.precision);
 | |
|     if (newPartCount == 1) {
 | |
|         integerPart newPart = 0;
 | |
|         if (category==fcNormal || category==fcNaN)
 | |
|           newPart = significandParts()[0];
 | |
|         freeSignificand();
 | |
|         significand.part = newPart;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if(category == fcNormal) {
 | |
|     /* Re-interpret our bit-pattern.  */
 | |
|     exponent += toSemantics.precision - semantics->precision;
 | |
|     semantics = &toSemantics;
 | |
|     fs = normalize(rounding_mode, lostFraction);
 | |
|   } else if (category == fcNaN) {
 | |
|     int shift = toSemantics.precision - semantics->precision;
 | |
|     // No normalization here, just truncate
 | |
|     if (shift>0)
 | |
|       APInt::tcShiftLeft(significandParts(), newPartCount, shift);
 | |
|     else if (shift < 0)
 | |
|       APInt::tcShiftRight(significandParts(), newPartCount, -shift);
 | |
|     // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
 | |
|     // does not give you back the same bits.  This is dubious, and we
 | |
|     // don't currently do it.  You're really supposed to get
 | |
|     // an invalid operation signal at runtime, but nobody does that.
 | |
|     semantics = &toSemantics;
 | |
|     fs = opOK;
 | |
|   } else {
 | |
|     semantics = &toSemantics;
 | |
|     fs = opOK;
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Convert a floating point number to an integer according to the
 | |
|    rounding mode.  If the rounded integer value is out of range this
 | |
|    returns an invalid operation exception and the contents of the
 | |
|    destination parts are unspecified.  If the rounded value is in
 | |
|    range but the floating point number is not the exact integer, the C
 | |
|    standard doesn't require an inexact exception to be raised.  IEEE
 | |
|    854 does require it so we do that.
 | |
| 
 | |
|    Note that for conversions to integer type the C standard requires
 | |
|    round-to-zero to always be used.  */
 | |
| APFloat::opStatus
 | |
| APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
 | |
|                                       bool isSigned,
 | |
|                                       roundingMode rounding_mode) const
 | |
| {
 | |
|   lostFraction lost_fraction;
 | |
|   const integerPart *src;
 | |
|   unsigned int dstPartsCount, truncatedBits;
 | |
| 
 | |
|   assertArithmeticOK(*semantics);
 | |
| 
 | |
|   /* Handle the three special cases first.  */
 | |
|   if(category == fcInfinity || category == fcNaN)
 | |
|     return opInvalidOp;
 | |
| 
 | |
|   dstPartsCount = partCountForBits(width);
 | |
| 
 | |
|   if(category == fcZero) {
 | |
|     APInt::tcSet(parts, 0, dstPartsCount);
 | |
|     return opOK;
 | |
|   }
 | |
| 
 | |
|   src = significandParts();
 | |
| 
 | |
|   /* Step 1: place our absolute value, with any fraction truncated, in
 | |
|      the destination.  */
 | |
|   if (exponent < 0) {
 | |
|     /* Our absolute value is less than one; truncate everything.  */
 | |
|     APInt::tcSet(parts, 0, dstPartsCount);
 | |
|     truncatedBits = semantics->precision;
 | |
|   } else {
 | |
|     /* We want the most significant (exponent + 1) bits; the rest are
 | |
|        truncated.  */
 | |
|     unsigned int bits = exponent + 1U;
 | |
| 
 | |
|     /* Hopelessly large in magnitude?  */
 | |
|     if (bits > width)
 | |
|       return opInvalidOp;
 | |
| 
 | |
|     if (bits < semantics->precision) {
 | |
|       /* We truncate (semantics->precision - bits) bits.  */
 | |
|       truncatedBits = semantics->precision - bits;
 | |
|       APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
 | |
|     } else {
 | |
|       /* We want at least as many bits as are available.  */
 | |
|       APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
 | |
|       APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
 | |
|       truncatedBits = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Step 2: work out any lost fraction, and increment the absolute
 | |
|      value if we would round away from zero.  */
 | |
|   if (truncatedBits) {
 | |
|     lost_fraction = lostFractionThroughTruncation(src, partCount(),
 | |
|                                                   truncatedBits);
 | |
|     if (lost_fraction != lfExactlyZero
 | |
|         && roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
 | |
|       if (APInt::tcIncrement(parts, dstPartsCount))
 | |
|         return opInvalidOp;     /* Overflow.  */
 | |
|     }
 | |
|   } else {
 | |
|     lost_fraction = lfExactlyZero;
 | |
|   }
 | |
| 
 | |
|   /* Step 3: check if we fit in the destination.  */
 | |
|   unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
 | |
| 
 | |
|   if (sign) {
 | |
|     if (!isSigned) {
 | |
|       /* Negative numbers cannot be represented as unsigned.  */
 | |
|       if (omsb != 0)
 | |
|         return opInvalidOp;
 | |
|     } else {
 | |
|       /* It takes omsb bits to represent the unsigned integer value.
 | |
|          We lose a bit for the sign, but care is needed as the
 | |
|          maximally negative integer is a special case.  */
 | |
|       if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
 | |
|         return opInvalidOp;
 | |
| 
 | |
|       /* This case can happen because of rounding.  */
 | |
|       if (omsb > width)
 | |
|         return opInvalidOp;
 | |
|     }
 | |
| 
 | |
|     APInt::tcNegate (parts, dstPartsCount);
 | |
|   } else {
 | |
|     if (omsb >= width + !isSigned)
 | |
|       return opInvalidOp;
 | |
|   }
 | |
| 
 | |
|   if (lost_fraction == lfExactlyZero)
 | |
|     return opOK;
 | |
|   else
 | |
|     return opInexact;
 | |
| }
 | |
| 
 | |
| /* Same as convertToSignExtendedInteger, except we provide
 | |
|    deterministic values in case of an invalid operation exception,
 | |
|    namely zero for NaNs and the minimal or maximal value respectively
 | |
|    for underflow or overflow.  */
 | |
| APFloat::opStatus
 | |
| APFloat::convertToInteger(integerPart *parts, unsigned int width,
 | |
|                           bool isSigned,
 | |
|                           roundingMode rounding_mode) const
 | |
| {
 | |
|   opStatus fs;
 | |
| 
 | |
|   fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode);
 | |
| 
 | |
|   if (fs == opInvalidOp) {
 | |
|     unsigned int bits, dstPartsCount;
 | |
| 
 | |
|     dstPartsCount = partCountForBits(width);
 | |
| 
 | |
|     if (category == fcNaN)
 | |
|       bits = 0;
 | |
|     else if (sign)
 | |
|       bits = isSigned;
 | |
|     else
 | |
|       bits = width - isSigned;
 | |
| 
 | |
|     APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
 | |
|     if (sign && isSigned)
 | |
|       APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| /* Convert an unsigned integer SRC to a floating point number,
 | |
|    rounding according to ROUNDING_MODE.  The sign of the floating
 | |
|    point number is not modified.  */
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromUnsignedParts(const integerPart *src,
 | |
|                                   unsigned int srcCount,
 | |
|                                   roundingMode rounding_mode)
 | |
| {
 | |
|   unsigned int omsb, precision, dstCount;
 | |
|   integerPart *dst;
 | |
|   lostFraction lost_fraction;
 | |
| 
 | |
|   assertArithmeticOK(*semantics);
 | |
|   category = fcNormal;
 | |
|   omsb = APInt::tcMSB(src, srcCount) + 1;
 | |
|   dst = significandParts();
 | |
|   dstCount = partCount();
 | |
|   precision = semantics->precision;
 | |
| 
 | |
|   /* We want the most significant PRECISON bits of SRC.  There may not
 | |
|      be that many; extract what we can.  */
 | |
|   if (precision <= omsb) {
 | |
|     exponent = omsb - 1;
 | |
|     lost_fraction = lostFractionThroughTruncation(src, srcCount,
 | |
|                                                   omsb - precision);
 | |
|     APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
 | |
|   } else {
 | |
|     exponent = precision - 1;
 | |
|     lost_fraction = lfExactlyZero;
 | |
|     APInt::tcExtract(dst, dstCount, src, omsb, 0);
 | |
|   }
 | |
| 
 | |
|   return normalize(rounding_mode, lost_fraction);
 | |
| }
 | |
| 
 | |
| /* Convert a two's complement integer SRC to a floating point number,
 | |
|    rounding according to ROUNDING_MODE.  ISSIGNED is true if the
 | |
|    integer is signed, in which case it must be sign-extended.  */
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromSignExtendedInteger(const integerPart *src,
 | |
|                                         unsigned int srcCount,
 | |
|                                         bool isSigned,
 | |
|                                         roundingMode rounding_mode)
 | |
| {
 | |
|   opStatus status;
 | |
| 
 | |
|   assertArithmeticOK(*semantics);
 | |
|   if (isSigned
 | |
|       && APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
 | |
|     integerPart *copy;
 | |
| 
 | |
|     /* If we're signed and negative negate a copy.  */
 | |
|     sign = true;
 | |
|     copy = new integerPart[srcCount];
 | |
|     APInt::tcAssign(copy, src, srcCount);
 | |
|     APInt::tcNegate(copy, srcCount);
 | |
|     status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
 | |
|     delete [] copy;
 | |
|   } else {
 | |
|     sign = false;
 | |
|     status = convertFromUnsignedParts(src, srcCount, rounding_mode);
 | |
|   }
 | |
| 
 | |
|   return status;
 | |
| }
 | |
| 
 | |
| /* FIXME: should this just take a const APInt reference?  */
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
 | |
|                                         unsigned int width, bool isSigned,
 | |
|                                         roundingMode rounding_mode)
 | |
| {
 | |
|   unsigned int partCount = partCountForBits(width);
 | |
|   APInt api = APInt(width, partCount, parts);
 | |
| 
 | |
|   sign = false;
 | |
|   if(isSigned && APInt::tcExtractBit(parts, width - 1)) {
 | |
|     sign = true;
 | |
|     api = -api;
 | |
|   }
 | |
| 
 | |
|   return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromHexadecimalString(const char *p,
 | |
|                                       roundingMode rounding_mode)
 | |
| {
 | |
|   lostFraction lost_fraction;
 | |
|   integerPart *significand;
 | |
|   unsigned int bitPos, partsCount;
 | |
|   const char *dot, *firstSignificantDigit;
 | |
| 
 | |
|   zeroSignificand();
 | |
|   exponent = 0;
 | |
|   category = fcNormal;
 | |
| 
 | |
|   significand = significandParts();
 | |
|   partsCount = partCount();
 | |
|   bitPos = partsCount * integerPartWidth;
 | |
| 
 | |
|   /* Skip leading zeroes and any (hexa)decimal point.  */
 | |
|   p = skipLeadingZeroesAndAnyDot(p, &dot);
 | |
|   firstSignificantDigit = p;
 | |
| 
 | |
|   for(;;) {
 | |
|     integerPart hex_value;
 | |
| 
 | |
|     if(*p == '.') {
 | |
|       assert(dot == 0);
 | |
|       dot = p++;
 | |
|     }
 | |
| 
 | |
|     hex_value = hexDigitValue(*p);
 | |
|     if(hex_value == -1U) {
 | |
|       lost_fraction = lfExactlyZero;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     p++;
 | |
| 
 | |
|     /* Store the number whilst 4-bit nibbles remain.  */
 | |
|     if(bitPos) {
 | |
|       bitPos -= 4;
 | |
|       hex_value <<= bitPos % integerPartWidth;
 | |
|       significand[bitPos / integerPartWidth] |= hex_value;
 | |
|     } else {
 | |
|       lost_fraction = trailingHexadecimalFraction(p, hex_value);
 | |
|       while(hexDigitValue(*p) != -1U)
 | |
|         p++;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Hex floats require an exponent but not a hexadecimal point.  */
 | |
|   assert(*p == 'p' || *p == 'P');
 | |
| 
 | |
|   /* Ignore the exponent if we are zero.  */
 | |
|   if(p != firstSignificantDigit) {
 | |
|     int expAdjustment;
 | |
| 
 | |
|     /* Implicit hexadecimal point?  */
 | |
|     if(!dot)
 | |
|       dot = p;
 | |
| 
 | |
|     /* Calculate the exponent adjustment implicit in the number of
 | |
|        significant digits.  */
 | |
|     expAdjustment = dot - firstSignificantDigit;
 | |
|     if(expAdjustment < 0)
 | |
|       expAdjustment++;
 | |
|     expAdjustment = expAdjustment * 4 - 1;
 | |
| 
 | |
|     /* Adjust for writing the significand starting at the most
 | |
|        significant nibble.  */
 | |
|     expAdjustment += semantics->precision;
 | |
|     expAdjustment -= partsCount * integerPartWidth;
 | |
| 
 | |
|     /* Adjust for the given exponent.  */
 | |
|     exponent = totalExponent(p, expAdjustment);
 | |
|   }
 | |
| 
 | |
|   return normalize(rounding_mode, lost_fraction);
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
 | |
|                                       unsigned sigPartCount, int exp,
 | |
|                                       roundingMode rounding_mode)
 | |
| {
 | |
|   unsigned int parts, pow5PartCount;
 | |
|   fltSemantics calcSemantics = { 32767, -32767, 0, true };
 | |
|   integerPart pow5Parts[maxPowerOfFiveParts];
 | |
|   bool isNearest;
 | |
| 
 | |
|   isNearest = (rounding_mode == rmNearestTiesToEven
 | |
|                || rounding_mode == rmNearestTiesToAway);
 | |
| 
 | |
|   parts = partCountForBits(semantics->precision + 11);
 | |
| 
 | |
|   /* Calculate pow(5, abs(exp)).  */
 | |
|   pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
 | |
| 
 | |
|   for (;; parts *= 2) {
 | |
|     opStatus sigStatus, powStatus;
 | |
|     unsigned int excessPrecision, truncatedBits;
 | |
| 
 | |
|     calcSemantics.precision = parts * integerPartWidth - 1;
 | |
|     excessPrecision = calcSemantics.precision - semantics->precision;
 | |
|     truncatedBits = excessPrecision;
 | |
| 
 | |
|     APFloat decSig(calcSemantics, fcZero, sign);
 | |
|     APFloat pow5(calcSemantics, fcZero, false);
 | |
| 
 | |
|     sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
 | |
|                                                 rmNearestTiesToEven);
 | |
|     powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
 | |
|                                               rmNearestTiesToEven);
 | |
|     /* Add exp, as 10^n = 5^n * 2^n.  */
 | |
|     decSig.exponent += exp;
 | |
| 
 | |
|     lostFraction calcLostFraction;
 | |
|     integerPart HUerr, HUdistance, powHUerr;
 | |
| 
 | |
|     if (exp >= 0) {
 | |
|       /* multiplySignificand leaves the precision-th bit set to 1.  */
 | |
|       calcLostFraction = decSig.multiplySignificand(pow5, NULL);
 | |
|       powHUerr = powStatus != opOK;
 | |
|     } else {
 | |
|       calcLostFraction = decSig.divideSignificand(pow5);
 | |
|       /* Denormal numbers have less precision.  */
 | |
|       if (decSig.exponent < semantics->minExponent) {
 | |
|         excessPrecision += (semantics->minExponent - decSig.exponent);
 | |
|         truncatedBits = excessPrecision;
 | |
|         if (excessPrecision > calcSemantics.precision)
 | |
|           excessPrecision = calcSemantics.precision;
 | |
|       }
 | |
|       /* Extra half-ulp lost in reciprocal of exponent.  */
 | |
|       powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0: 2;
 | |
|     }
 | |
| 
 | |
|     /* Both multiplySignificand and divideSignificand return the
 | |
|        result with the integer bit set.  */
 | |
|     assert (APInt::tcExtractBit
 | |
|             (decSig.significandParts(), calcSemantics.precision - 1) == 1);
 | |
| 
 | |
|     HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
 | |
|                        powHUerr);
 | |
|     HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
 | |
|                                       excessPrecision, isNearest);
 | |
| 
 | |
|     /* Are we guaranteed to round correctly if we truncate?  */
 | |
|     if (HUdistance >= HUerr) {
 | |
|       APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
 | |
|                        calcSemantics.precision - excessPrecision,
 | |
|                        excessPrecision);
 | |
|       /* Take the exponent of decSig.  If we tcExtract-ed less bits
 | |
|          above we must adjust our exponent to compensate for the
 | |
|          implicit right shift.  */
 | |
|       exponent = (decSig.exponent + semantics->precision
 | |
|                   - (calcSemantics.precision - excessPrecision));
 | |
|       calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
 | |
|                                                        decSig.partCount(),
 | |
|                                                        truncatedBits);
 | |
|       return normalize(rounding_mode, calcLostFraction);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
 | |
| {
 | |
|   decimalInfo D;
 | |
|   opStatus fs;
 | |
| 
 | |
|   /* Scan the text.  */
 | |
|   interpretDecimal(p, &D);
 | |
| 
 | |
|   /* Handle the quick cases.  First the case of no significant digits,
 | |
|      i.e. zero, and then exponents that are obviously too large or too
 | |
|      small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
 | |
|      definitely overflows if
 | |
| 
 | |
|            (exp - 1) * L >= maxExponent
 | |
| 
 | |
|      and definitely underflows to zero where
 | |
| 
 | |
|            (exp + 1) * L <= minExponent - precision
 | |
| 
 | |
|      With integer arithmetic the tightest bounds for L are
 | |
| 
 | |
|            93/28 < L < 196/59            [ numerator <= 256 ]
 | |
|            42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
 | |
|   */
 | |
| 
 | |
|   if (decDigitValue(*D.firstSigDigit) >= 10U) {
 | |
|     category = fcZero;
 | |
|     fs = opOK;
 | |
|   } else if ((D.normalizedExponent + 1) * 28738
 | |
|              <= 8651 * (semantics->minExponent - (int) semantics->precision)) {
 | |
|     /* Underflow to zero and round.  */
 | |
|     zeroSignificand();
 | |
|     fs = normalize(rounding_mode, lfLessThanHalf);
 | |
|   } else if ((D.normalizedExponent - 1) * 42039
 | |
|              >= 12655 * semantics->maxExponent) {
 | |
|     /* Overflow and round.  */
 | |
|     fs = handleOverflow(rounding_mode);
 | |
|   } else {
 | |
|     integerPart *decSignificand;
 | |
|     unsigned int partCount;
 | |
| 
 | |
|     /* A tight upper bound on number of bits required to hold an
 | |
|        N-digit decimal integer is N * 196 / 59.  Allocate enough space
 | |
|        to hold the full significand, and an extra part required by
 | |
|        tcMultiplyPart.  */
 | |
|     partCount = (D.lastSigDigit - D.firstSigDigit) + 1;
 | |
|     partCount = partCountForBits(1 + 196 * partCount / 59);
 | |
|     decSignificand = new integerPart[partCount + 1];
 | |
|     partCount = 0;
 | |
| 
 | |
|     /* Convert to binary efficiently - we do almost all multiplication
 | |
|        in an integerPart.  When this would overflow do we do a single
 | |
|        bignum multiplication, and then revert again to multiplication
 | |
|        in an integerPart.  */
 | |
|     do {
 | |
|       integerPart decValue, val, multiplier;
 | |
| 
 | |
|       val = 0;
 | |
|       multiplier = 1;
 | |
| 
 | |
|       do {
 | |
|         if (*p == '.')
 | |
|           p++;
 | |
| 
 | |
|         decValue = decDigitValue(*p++);
 | |
|         multiplier *= 10;
 | |
|         val = val * 10 + decValue;
 | |
|         /* The maximum number that can be multiplied by ten with any
 | |
|            digit added without overflowing an integerPart.  */
 | |
|       } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
 | |
| 
 | |
|       /* Multiply out the current part.  */
 | |
|       APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
 | |
|                             partCount, partCount + 1, false);
 | |
| 
 | |
|       /* If we used another part (likely but not guaranteed), increase
 | |
|          the count.  */
 | |
|       if (decSignificand[partCount])
 | |
|         partCount++;
 | |
|     } while (p <= D.lastSigDigit);
 | |
| 
 | |
|     category = fcNormal;
 | |
|     fs = roundSignificandWithExponent(decSignificand, partCount,
 | |
|                                       D.exponent, rounding_mode);
 | |
| 
 | |
|     delete [] decSignificand;
 | |
|   }
 | |
| 
 | |
|   return fs;
 | |
| }
 | |
| 
 | |
| APFloat::opStatus
 | |
| APFloat::convertFromString(const char *p, roundingMode rounding_mode)
 | |
| {
 | |
|   assertArithmeticOK(*semantics);
 | |
| 
 | |
|   /* Handle a leading minus sign.  */
 | |
|   if(*p == '-')
 | |
|     sign = 1, p++;
 | |
|   else
 | |
|     sign = 0;
 | |
| 
 | |
|   if(p[0] == '0' && (p[1] == 'x' || p[1] == 'X'))
 | |
|     return convertFromHexadecimalString(p + 2, rounding_mode);
 | |
|   else
 | |
|     return convertFromDecimalString(p, rounding_mode);
 | |
| }
 | |
| 
 | |
| /* Write out a hexadecimal representation of the floating point value
 | |
|    to DST, which must be of sufficient size, in the C99 form
 | |
|    [-]0xh.hhhhp[+-]d.  Return the number of characters written,
 | |
|    excluding the terminating NUL.
 | |
| 
 | |
|    If UPPERCASE, the output is in upper case, otherwise in lower case.
 | |
| 
 | |
|    HEXDIGITS digits appear altogether, rounding the value if
 | |
|    necessary.  If HEXDIGITS is 0, the minimal precision to display the
 | |
|    number precisely is used instead.  If nothing would appear after
 | |
|    the decimal point it is suppressed.
 | |
| 
 | |
|    The decimal exponent is always printed and has at least one digit.
 | |
|    Zero values display an exponent of zero.  Infinities and NaNs
 | |
|    appear as "infinity" or "nan" respectively.
 | |
| 
 | |
|    The above rules are as specified by C99.  There is ambiguity about
 | |
|    what the leading hexadecimal digit should be.  This implementation
 | |
|    uses whatever is necessary so that the exponent is displayed as
 | |
|    stored.  This implies the exponent will fall within the IEEE format
 | |
|    range, and the leading hexadecimal digit will be 0 (for denormals),
 | |
|    1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
 | |
|    any other digits zero).
 | |
| */
 | |
| unsigned int
 | |
| APFloat::convertToHexString(char *dst, unsigned int hexDigits,
 | |
|                             bool upperCase, roundingMode rounding_mode) const
 | |
| {
 | |
|   char *p;
 | |
| 
 | |
|   assertArithmeticOK(*semantics);
 | |
| 
 | |
|   p = dst;
 | |
|   if (sign)
 | |
|     *dst++ = '-';
 | |
| 
 | |
|   switch (category) {
 | |
|   case fcInfinity:
 | |
|     memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
 | |
|     dst += sizeof infinityL - 1;
 | |
|     break;
 | |
| 
 | |
|   case fcNaN:
 | |
|     memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
 | |
|     dst += sizeof NaNU - 1;
 | |
|     break;
 | |
| 
 | |
|   case fcZero:
 | |
|     *dst++ = '0';
 | |
|     *dst++ = upperCase ? 'X': 'x';
 | |
|     *dst++ = '0';
 | |
|     if (hexDigits > 1) {
 | |
|       *dst++ = '.';
 | |
|       memset (dst, '0', hexDigits - 1);
 | |
|       dst += hexDigits - 1;
 | |
|     }
 | |
|     *dst++ = upperCase ? 'P': 'p';
 | |
|     *dst++ = '0';
 | |
|     break;
 | |
| 
 | |
|   case fcNormal:
 | |
|     dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   *dst = 0;
 | |
| 
 | |
|   return dst - p;
 | |
| }
 | |
| 
 | |
| /* Does the hard work of outputting the correctly rounded hexadecimal
 | |
|    form of a normal floating point number with the specified number of
 | |
|    hexadecimal digits.  If HEXDIGITS is zero the minimum number of
 | |
|    digits necessary to print the value precisely is output.  */
 | |
| char *
 | |
| APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
 | |
|                                   bool upperCase,
 | |
|                                   roundingMode rounding_mode) const
 | |
| {
 | |
|   unsigned int count, valueBits, shift, partsCount, outputDigits;
 | |
|   const char *hexDigitChars;
 | |
|   const integerPart *significand;
 | |
|   char *p;
 | |
|   bool roundUp;
 | |
| 
 | |
|   *dst++ = '0';
 | |
|   *dst++ = upperCase ? 'X': 'x';
 | |
| 
 | |
|   roundUp = false;
 | |
|   hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
 | |
| 
 | |
|   significand = significandParts();
 | |
|   partsCount = partCount();
 | |
| 
 | |
|   /* +3 because the first digit only uses the single integer bit, so
 | |
|      we have 3 virtual zero most-significant-bits.  */
 | |
|   valueBits = semantics->precision + 3;
 | |
|   shift = integerPartWidth - valueBits % integerPartWidth;
 | |
| 
 | |
|   /* The natural number of digits required ignoring trailing
 | |
|      insignificant zeroes.  */
 | |
|   outputDigits = (valueBits - significandLSB () + 3) / 4;
 | |
| 
 | |
|   /* hexDigits of zero means use the required number for the
 | |
|      precision.  Otherwise, see if we are truncating.  If we are,
 | |
|      find out if we need to round away from zero.  */
 | |
|   if (hexDigits) {
 | |
|     if (hexDigits < outputDigits) {
 | |
|       /* We are dropping non-zero bits, so need to check how to round.
 | |
|          "bits" is the number of dropped bits.  */
 | |
|       unsigned int bits;
 | |
|       lostFraction fraction;
 | |
| 
 | |
|       bits = valueBits - hexDigits * 4;
 | |
|       fraction = lostFractionThroughTruncation (significand, partsCount, bits);
 | |
|       roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
 | |
|     }
 | |
|     outputDigits = hexDigits;
 | |
|   }
 | |
| 
 | |
|   /* Write the digits consecutively, and start writing in the location
 | |
|      of the hexadecimal point.  We move the most significant digit
 | |
|      left and add the hexadecimal point later.  */
 | |
|   p = ++dst;
 | |
| 
 | |
|   count = (valueBits + integerPartWidth - 1) / integerPartWidth;
 | |
| 
 | |
|   while (outputDigits && count) {
 | |
|     integerPart part;
 | |
| 
 | |
|     /* Put the most significant integerPartWidth bits in "part".  */
 | |
|     if (--count == partsCount)
 | |
|       part = 0;  /* An imaginary higher zero part.  */
 | |
|     else
 | |
|       part = significand[count] << shift;
 | |
| 
 | |
|     if (count && shift)
 | |
|       part |= significand[count - 1] >> (integerPartWidth - shift);
 | |
| 
 | |
|     /* Convert as much of "part" to hexdigits as we can.  */
 | |
|     unsigned int curDigits = integerPartWidth / 4;
 | |
| 
 | |
|     if (curDigits > outputDigits)
 | |
|       curDigits = outputDigits;
 | |
|     dst += partAsHex (dst, part, curDigits, hexDigitChars);
 | |
|     outputDigits -= curDigits;
 | |
|   }
 | |
| 
 | |
|   if (roundUp) {
 | |
|     char *q = dst;
 | |
| 
 | |
|     /* Note that hexDigitChars has a trailing '0'.  */
 | |
|     do {
 | |
|       q--;
 | |
|       *q = hexDigitChars[hexDigitValue (*q) + 1];
 | |
|     } while (*q == '0');
 | |
|     assert (q >= p);
 | |
|   } else {
 | |
|     /* Add trailing zeroes.  */
 | |
|     memset (dst, '0', outputDigits);
 | |
|     dst += outputDigits;
 | |
|   }
 | |
| 
 | |
|   /* Move the most significant digit to before the point, and if there
 | |
|      is something after the decimal point add it.  This must come
 | |
|      after rounding above.  */
 | |
|   p[-1] = p[0];
 | |
|   if (dst -1 == p)
 | |
|     dst--;
 | |
|   else
 | |
|     p[0] = '.';
 | |
| 
 | |
|   /* Finally output the exponent.  */
 | |
|   *dst++ = upperCase ? 'P': 'p';
 | |
| 
 | |
|   return writeSignedDecimal (dst, exponent);
 | |
| }
 | |
| 
 | |
| // For good performance it is desirable for different APFloats
 | |
| // to produce different integers.
 | |
| uint32_t
 | |
| APFloat::getHashValue() const
 | |
| {
 | |
|   if (category==fcZero) return sign<<8 | semantics->precision ;
 | |
|   else if (category==fcInfinity) return sign<<9 | semantics->precision;
 | |
|   else if (category==fcNaN) return 1<<10 | semantics->precision;
 | |
|   else {
 | |
|     uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
 | |
|     const integerPart* p = significandParts();
 | |
|     for (int i=partCount(); i>0; i--, p++)
 | |
|       hash ^= ((uint32_t)*p) ^ (*p)>>32;
 | |
|     return hash;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Conversion from APFloat to/from host float/double.  It may eventually be
 | |
| // possible to eliminate these and have everybody deal with APFloats, but that
 | |
| // will take a while.  This approach will not easily extend to long double.
 | |
| // Current implementation requires integerPartWidth==64, which is correct at
 | |
| // the moment but could be made more general.
 | |
| 
 | |
| // Denormals have exponent minExponent in APFloat, but minExponent-1 in
 | |
| // the actual IEEE respresentations.  We compensate for that here.
 | |
| 
 | |
| APInt
 | |
| APFloat::convertF80LongDoubleAPFloatToAPInt() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics* const)&x87DoubleExtended);
 | |
|   assert (partCount()==2);
 | |
| 
 | |
|   uint64_t myexponent, mysignificand;
 | |
| 
 | |
|   if (category==fcNormal) {
 | |
|     myexponent = exponent+16383; //bias
 | |
|     mysignificand = significandParts()[0];
 | |
|     if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
 | |
|       myexponent = 0;   // denormal
 | |
|   } else if (category==fcZero) {
 | |
|     myexponent = 0;
 | |
|     mysignificand = 0;
 | |
|   } else if (category==fcInfinity) {
 | |
|     myexponent = 0x7fff;
 | |
|     mysignificand = 0x8000000000000000ULL;
 | |
|   } else {
 | |
|     assert(category == fcNaN && "Unknown category");
 | |
|     myexponent = 0x7fff;
 | |
|     mysignificand = significandParts()[0];
 | |
|   }
 | |
| 
 | |
|   uint64_t words[2];
 | |
|   words[0] =  (((uint64_t)sign & 1) << 63) |
 | |
|               ((myexponent & 0x7fff) <<  48) |
 | |
|               ((mysignificand >>16) & 0xffffffffffffLL);
 | |
|   words[1] = mysignificand & 0xffff;
 | |
|   return APInt(80, 2, words);
 | |
| }
 | |
| 
 | |
| APInt
 | |
| APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics* const)&PPCDoubleDouble);
 | |
|   assert (partCount()==2);
 | |
| 
 | |
|   uint64_t myexponent, mysignificand, myexponent2, mysignificand2;
 | |
| 
 | |
|   if (category==fcNormal) {
 | |
|     myexponent = exponent + 1023; //bias
 | |
|     myexponent2 = exponent2 + 1023;
 | |
|     mysignificand = significandParts()[0];
 | |
|     mysignificand2 = significandParts()[1];
 | |
|     if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
 | |
|       myexponent = 0;   // denormal
 | |
|     if (myexponent2==1 && !(mysignificand2 & 0x10000000000000LL))
 | |
|       myexponent2 = 0;   // denormal
 | |
|   } else if (category==fcZero) {
 | |
|     myexponent = 0;
 | |
|     mysignificand = 0;
 | |
|     myexponent2 = 0;
 | |
|     mysignificand2 = 0;
 | |
|   } else if (category==fcInfinity) {
 | |
|     myexponent = 0x7ff;
 | |
|     myexponent2 = 0;
 | |
|     mysignificand = 0;
 | |
|     mysignificand2 = 0;
 | |
|   } else {
 | |
|     assert(category == fcNaN && "Unknown category");
 | |
|     myexponent = 0x7ff;
 | |
|     mysignificand = significandParts()[0];
 | |
|     myexponent2 = exponent2;
 | |
|     mysignificand2 = significandParts()[1];
 | |
|   }
 | |
| 
 | |
|   uint64_t words[2];
 | |
|   words[0] =  (((uint64_t)sign & 1) << 63) |
 | |
|               ((myexponent & 0x7ff) <<  52) |
 | |
|               (mysignificand & 0xfffffffffffffLL);
 | |
|   words[1] =  (((uint64_t)sign2 & 1) << 63) |
 | |
|               ((myexponent2 & 0x7ff) <<  52) |
 | |
|               (mysignificand2 & 0xfffffffffffffLL);
 | |
|   return APInt(128, 2, words);
 | |
| }
 | |
| 
 | |
| APInt
 | |
| APFloat::convertDoubleAPFloatToAPInt() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
 | |
|   assert (partCount()==1);
 | |
| 
 | |
|   uint64_t myexponent, mysignificand;
 | |
| 
 | |
|   if (category==fcNormal) {
 | |
|     myexponent = exponent+1023; //bias
 | |
|     mysignificand = *significandParts();
 | |
|     if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
 | |
|       myexponent = 0;   // denormal
 | |
|   } else if (category==fcZero) {
 | |
|     myexponent = 0;
 | |
|     mysignificand = 0;
 | |
|   } else if (category==fcInfinity) {
 | |
|     myexponent = 0x7ff;
 | |
|     mysignificand = 0;
 | |
|   } else {
 | |
|     assert(category == fcNaN && "Unknown category!");
 | |
|     myexponent = 0x7ff;
 | |
|     mysignificand = *significandParts();
 | |
|   }
 | |
| 
 | |
|   return APInt(64, (((((uint64_t)sign & 1) << 63) |
 | |
|                      ((myexponent & 0x7ff) <<  52) |
 | |
|                      (mysignificand & 0xfffffffffffffLL))));
 | |
| }
 | |
| 
 | |
| APInt
 | |
| APFloat::convertFloatAPFloatToAPInt() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
 | |
|   assert (partCount()==1);
 | |
| 
 | |
|   uint32_t myexponent, mysignificand;
 | |
| 
 | |
|   if (category==fcNormal) {
 | |
|     myexponent = exponent+127; //bias
 | |
|     mysignificand = *significandParts();
 | |
|     if (myexponent == 1 && !(mysignificand & 0x800000))
 | |
|       myexponent = 0;   // denormal
 | |
|   } else if (category==fcZero) {
 | |
|     myexponent = 0;
 | |
|     mysignificand = 0;
 | |
|   } else if (category==fcInfinity) {
 | |
|     myexponent = 0xff;
 | |
|     mysignificand = 0;
 | |
|   } else {
 | |
|     assert(category == fcNaN && "Unknown category!");
 | |
|     myexponent = 0xff;
 | |
|     mysignificand = *significandParts();
 | |
|   }
 | |
| 
 | |
|   return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
 | |
|                     (mysignificand & 0x7fffff)));
 | |
| }
 | |
| 
 | |
| // This function creates an APInt that is just a bit map of the floating
 | |
| // point constant as it would appear in memory.  It is not a conversion,
 | |
| // and treating the result as a normal integer is unlikely to be useful.
 | |
| 
 | |
| APInt
 | |
| APFloat::convertToAPInt() const
 | |
| {
 | |
|   if (semantics == (const llvm::fltSemantics* const)&IEEEsingle)
 | |
|     return convertFloatAPFloatToAPInt();
 | |
|   
 | |
|   if (semantics == (const llvm::fltSemantics* const)&IEEEdouble)
 | |
|     return convertDoubleAPFloatToAPInt();
 | |
| 
 | |
|   if (semantics == (const llvm::fltSemantics* const)&PPCDoubleDouble)
 | |
|     return convertPPCDoubleDoubleAPFloatToAPInt();
 | |
| 
 | |
|   assert(semantics == (const llvm::fltSemantics* const)&x87DoubleExtended &&
 | |
|          "unknown format!");
 | |
|   return convertF80LongDoubleAPFloatToAPInt();
 | |
| }
 | |
| 
 | |
| float
 | |
| APFloat::convertToFloat() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics* const)&IEEEsingle);
 | |
|   APInt api = convertToAPInt();
 | |
|   return api.bitsToFloat();
 | |
| }
 | |
| 
 | |
| double
 | |
| APFloat::convertToDouble() const
 | |
| {
 | |
|   assert(semantics == (const llvm::fltSemantics* const)&IEEEdouble);
 | |
|   APInt api = convertToAPInt();
 | |
|   return api.bitsToDouble();
 | |
| }
 | |
| 
 | |
| /// Integer bit is explicit in this format.  Current Intel book does not
 | |
| /// define meaning of:
 | |
| ///  exponent = all 1's, integer bit not set.
 | |
| ///  exponent = 0, integer bit set. (formerly "psuedodenormals")
 | |
| ///  exponent!=0 nor all 1's, integer bit not set. (formerly "unnormals")
 | |
| void
 | |
| APFloat::initFromF80LongDoubleAPInt(const APInt &api)
 | |
| {
 | |
|   assert(api.getBitWidth()==80);
 | |
|   uint64_t i1 = api.getRawData()[0];
 | |
|   uint64_t i2 = api.getRawData()[1];
 | |
|   uint64_t myexponent = (i1 >> 48) & 0x7fff;
 | |
|   uint64_t mysignificand = ((i1 << 16) &  0xffffffffffff0000ULL) |
 | |
|                           (i2 & 0xffff);
 | |
| 
 | |
|   initialize(&APFloat::x87DoubleExtended);
 | |
|   assert(partCount()==2);
 | |
| 
 | |
|   sign = i1>>63;
 | |
|   if (myexponent==0 && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcZero;
 | |
|   } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcInfinity;
 | |
|   } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
 | |
|     // exponent meaningless
 | |
|     category = fcNaN;
 | |
|     significandParts()[0] = mysignificand;
 | |
|     significandParts()[1] = 0;
 | |
|   } else {
 | |
|     category = fcNormal;
 | |
|     exponent = myexponent - 16383;
 | |
|     significandParts()[0] = mysignificand;
 | |
|     significandParts()[1] = 0;
 | |
|     if (myexponent==0)          // denormal
 | |
|       exponent = -16382;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
 | |
| {
 | |
|   assert(api.getBitWidth()==128);
 | |
|   uint64_t i1 = api.getRawData()[0];
 | |
|   uint64_t i2 = api.getRawData()[1];
 | |
|   uint64_t myexponent = (i1 >> 52) & 0x7ff;
 | |
|   uint64_t mysignificand = i1 & 0xfffffffffffffLL;
 | |
|   uint64_t myexponent2 = (i2 >> 52) & 0x7ff;
 | |
|   uint64_t mysignificand2 = i2 & 0xfffffffffffffLL;
 | |
| 
 | |
|   initialize(&APFloat::PPCDoubleDouble);
 | |
|   assert(partCount()==2);
 | |
| 
 | |
|   sign = i1>>63;
 | |
|   sign2 = i2>>63;
 | |
|   if (myexponent==0 && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     // exponent2 and significand2 are required to be 0; we don't check
 | |
|     category = fcZero;
 | |
|   } else if (myexponent==0x7ff && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     // exponent2 and significand2 are required to be 0; we don't check
 | |
|     category = fcInfinity;
 | |
|   } else if (myexponent==0x7ff && mysignificand!=0) {
 | |
|     // exponent meaningless.  So is the whole second word, but keep it 
 | |
|     // for determinism.
 | |
|     category = fcNaN;
 | |
|     exponent2 = myexponent2;
 | |
|     significandParts()[0] = mysignificand;
 | |
|     significandParts()[1] = mysignificand2;
 | |
|   } else {
 | |
|     category = fcNormal;
 | |
|     // Note there is no category2; the second word is treated as if it is
 | |
|     // fcNormal, although it might be something else considered by itself.
 | |
|     exponent = myexponent - 1023;
 | |
|     exponent2 = myexponent2 - 1023;
 | |
|     significandParts()[0] = mysignificand;
 | |
|     significandParts()[1] = mysignificand2;
 | |
|     if (myexponent==0)          // denormal
 | |
|       exponent = -1022;
 | |
|     else
 | |
|       significandParts()[0] |= 0x10000000000000LL;  // integer bit
 | |
|     if (myexponent2==0) 
 | |
|       exponent2 = -1022;
 | |
|     else
 | |
|       significandParts()[1] |= 0x10000000000000LL;  // integer bit
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::initFromDoubleAPInt(const APInt &api)
 | |
| {
 | |
|   assert(api.getBitWidth()==64);
 | |
|   uint64_t i = *api.getRawData();
 | |
|   uint64_t myexponent = (i >> 52) & 0x7ff;
 | |
|   uint64_t mysignificand = i & 0xfffffffffffffLL;
 | |
| 
 | |
|   initialize(&APFloat::IEEEdouble);
 | |
|   assert(partCount()==1);
 | |
| 
 | |
|   sign = i>>63;
 | |
|   if (myexponent==0 && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcZero;
 | |
|   } else if (myexponent==0x7ff && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcInfinity;
 | |
|   } else if (myexponent==0x7ff && mysignificand!=0) {
 | |
|     // exponent meaningless
 | |
|     category = fcNaN;
 | |
|     *significandParts() = mysignificand;
 | |
|   } else {
 | |
|     category = fcNormal;
 | |
|     exponent = myexponent - 1023;
 | |
|     *significandParts() = mysignificand;
 | |
|     if (myexponent==0)          // denormal
 | |
|       exponent = -1022;
 | |
|     else
 | |
|       *significandParts() |= 0x10000000000000LL;  // integer bit
 | |
|   }
 | |
| }
 | |
| 
 | |
| void
 | |
| APFloat::initFromFloatAPInt(const APInt & api)
 | |
| {
 | |
|   assert(api.getBitWidth()==32);
 | |
|   uint32_t i = (uint32_t)*api.getRawData();
 | |
|   uint32_t myexponent = (i >> 23) & 0xff;
 | |
|   uint32_t mysignificand = i & 0x7fffff;
 | |
| 
 | |
|   initialize(&APFloat::IEEEsingle);
 | |
|   assert(partCount()==1);
 | |
| 
 | |
|   sign = i >> 31;
 | |
|   if (myexponent==0 && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcZero;
 | |
|   } else if (myexponent==0xff && mysignificand==0) {
 | |
|     // exponent, significand meaningless
 | |
|     category = fcInfinity;
 | |
|   } else if (myexponent==0xff && mysignificand!=0) {
 | |
|     // sign, exponent, significand meaningless
 | |
|     category = fcNaN;
 | |
|     *significandParts() = mysignificand;
 | |
|   } else {
 | |
|     category = fcNormal;
 | |
|     exponent = myexponent - 127;  //bias
 | |
|     *significandParts() = mysignificand;
 | |
|     if (myexponent==0)    // denormal
 | |
|       exponent = -126;
 | |
|     else
 | |
|       *significandParts() |= 0x800000; // integer bit
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Treat api as containing the bits of a floating point number.  Currently
 | |
| /// we infer the floating point type from the size of the APInt.  The
 | |
| /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
 | |
| /// when the size is anything else).
 | |
| void
 | |
| APFloat::initFromAPInt(const APInt& api, bool isIEEE)
 | |
| {
 | |
|   if (api.getBitWidth() == 32)
 | |
|     return initFromFloatAPInt(api);
 | |
|   else if (api.getBitWidth()==64)
 | |
|     return initFromDoubleAPInt(api);
 | |
|   else if (api.getBitWidth()==80)
 | |
|     return initFromF80LongDoubleAPInt(api);
 | |
|   else if (api.getBitWidth()==128 && !isIEEE)
 | |
|     return initFromPPCDoubleDoubleAPInt(api);
 | |
|   else
 | |
|     assert(0);
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(const APInt& api, bool isIEEE)
 | |
| {
 | |
|   initFromAPInt(api, isIEEE);
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(float f)
 | |
| {
 | |
|   APInt api = APInt(32, 0);
 | |
|   initFromAPInt(api.floatToBits(f));
 | |
| }
 | |
| 
 | |
| APFloat::APFloat(double d)
 | |
| {
 | |
|   APInt api = APInt(64, 0);
 | |
|   initFromAPInt(api.doubleToBits(d));
 | |
| }
 |