mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	This is to be consistent with StringSet and ultimately with the standard library's associative container insert function. This lead to updating SmallSet::insert to return pair<iterator, bool>, and then to update SmallPtrSet::insert to return pair<iterator, bool>, and then to update all the existing users of those functions... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222334 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			346 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			346 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //=- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation --*- C++ -*-==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines classes mirroring those in llvm/Analysis/Dominators.h,
 | |
| // but for target-specific code rather than target-independent IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
 | |
| #define LLVM_CODEGEN_MACHINEDOMINATORS_H
 | |
| 
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/Support/GenericDomTree.h"
 | |
| #include "llvm/Support/GenericDomTreeConstruction.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| template<>
 | |
| inline void DominatorTreeBase<MachineBasicBlock>::addRoot(MachineBasicBlock* MBB) {
 | |
|   this->Roots.push_back(MBB);
 | |
| }
 | |
| 
 | |
| EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
 | |
| EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<MachineBasicBlock>);
 | |
| 
 | |
| typedef DomTreeNodeBase<MachineBasicBlock> MachineDomTreeNode;
 | |
| 
 | |
| //===-------------------------------------
 | |
| /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
 | |
| /// compute a normal dominator tree.
 | |
| ///
 | |
| class MachineDominatorTree : public MachineFunctionPass {
 | |
|   /// \brief Helper structure used to hold all the basic blocks
 | |
|   /// involved in the split of a critical edge.
 | |
|   struct CriticalEdge {
 | |
|     MachineBasicBlock *FromBB;
 | |
|     MachineBasicBlock *ToBB;
 | |
|     MachineBasicBlock *NewBB;
 | |
|     CriticalEdge(MachineBasicBlock *FromBB, MachineBasicBlock *ToBB,
 | |
|                  MachineBasicBlock *NewBB)
 | |
|         : FromBB(FromBB), ToBB(ToBB), NewBB(NewBB) {}
 | |
|   };
 | |
| 
 | |
|   /// \brief Pile up all the critical edges to be split.
 | |
|   /// The splitting of a critical edge is local and thus, it is possible
 | |
|   /// to apply several of those changes at the same time.
 | |
|   mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
 | |
|   /// \brief Remember all the basic blocks that are inserted during
 | |
|   /// edge splitting.
 | |
|   /// Invariant: NewBBs == all the basic blocks contained in the NewBB
 | |
|   /// field of all the elements of CriticalEdgesToSplit.
 | |
|   /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
 | |
|   /// such as BB == elt.NewBB.
 | |
|   mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
 | |
| 
 | |
|   /// \brief Apply all the recorded critical edges to the DT.
 | |
|   /// This updates the underlying DT information in a way that uses
 | |
|   /// the fast query path of DT as much as possible.
 | |
|   ///
 | |
|   /// \post CriticalEdgesToSplit.empty().
 | |
|   void applySplitCriticalEdges() const {
 | |
|     // Bail out early if there is nothing to do.
 | |
|     if (CriticalEdgesToSplit.empty())
 | |
|       return;
 | |
| 
 | |
|     // For each element in CriticalEdgesToSplit, remember whether or
 | |
|     // not element is the new immediate domminator of its successor.
 | |
|     // The mapping is done by index, i.e., the information for the ith
 | |
|     // element of CriticalEdgesToSplit is the ith element of IsNewIDom.
 | |
|     SmallVector<bool, 32> IsNewIDom;
 | |
|     IsNewIDom.resize(CriticalEdgesToSplit.size());
 | |
|     size_t Idx = 0;
 | |
| 
 | |
|     // Collect all the dominance properties info, before invalidating
 | |
|     // the underlying DT.
 | |
|     for (CriticalEdge &Edge : CriticalEdgesToSplit) {
 | |
|       // Update dominator information.
 | |
|       MachineBasicBlock *Succ = Edge.ToBB;
 | |
|       MachineDomTreeNode *SucccDTNode = DT->getNode(Succ);
 | |
| 
 | |
|       IsNewIDom[Idx] = true;
 | |
|       for (MachineBasicBlock *PredBB : Succ->predecessors()) {
 | |
|         if (PredBB == Edge.NewBB)
 | |
|           continue;
 | |
|         // If we are in this situation:
 | |
|         // FromBB1        FromBB2
 | |
|         //    +              +
 | |
|         //   + +            + +
 | |
|         //  +   +          +   +
 | |
|         // ...  Split1  Split2 ...
 | |
|         //           +   +
 | |
|         //            + +
 | |
|         //             +
 | |
|         //            Succ
 | |
|         // Instead of checking the domiance property with Split2, we
 | |
|         // check it with FromBB2 since Split2 is still unknown of the
 | |
|         // underlying DT structure.
 | |
|         if (NewBBs.count(PredBB)) {
 | |
|           assert(PredBB->pred_size() == 1 && "A basic block resulting from a "
 | |
|                                              "critical edge split has more "
 | |
|                                              "than one predecessor!");
 | |
|           PredBB = *PredBB->pred_begin();
 | |
|         }
 | |
|         if (!DT->dominates(SucccDTNode, DT->getNode(PredBB))) {
 | |
|           IsNewIDom[Idx] = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       ++Idx;
 | |
|     }
 | |
| 
 | |
|     // Now, update DT with the collected dominance properties info.
 | |
|     Idx = 0;
 | |
|     for (CriticalEdge &Edge : CriticalEdgesToSplit) {
 | |
|       // We know FromBB dominates NewBB.
 | |
|       MachineDomTreeNode *NewDTNode = DT->addNewBlock(Edge.NewBB, Edge.FromBB);
 | |
|       MachineDomTreeNode *SucccDTNode = DT->getNode(Edge.ToBB);
 | |
| 
 | |
|       // If all the other predecessors of "Succ" are dominated by "Succ" itself
 | |
|       // then the new block is the new immediate dominator of "Succ". Otherwise,
 | |
|       // the new block doesn't dominate anything.
 | |
|       if (IsNewIDom[Idx])
 | |
|         DT->changeImmediateDominator(SucccDTNode, NewDTNode);
 | |
|       ++Idx;
 | |
|     }
 | |
|     NewBBs.clear();
 | |
|     CriticalEdgesToSplit.clear();
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   static char ID; // Pass ID, replacement for typeid
 | |
|   DominatorTreeBase<MachineBasicBlock>* DT;
 | |
| 
 | |
|   MachineDominatorTree();
 | |
| 
 | |
|   ~MachineDominatorTree();
 | |
| 
 | |
|   DominatorTreeBase<MachineBasicBlock> &getBase() {
 | |
|     applySplitCriticalEdges();
 | |
|     return *DT;
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
| 
 | |
|   /// getRoots -  Return the root blocks of the current CFG.  This may include
 | |
|   /// multiple blocks if we are computing post dominators.  For forward
 | |
|   /// dominators, this will always be a single block (the entry node).
 | |
|   ///
 | |
|   inline const std::vector<MachineBasicBlock*> &getRoots() const {
 | |
|     applySplitCriticalEdges();
 | |
|     return DT->getRoots();
 | |
|   }
 | |
| 
 | |
|   inline MachineBasicBlock *getRoot() const {
 | |
|     applySplitCriticalEdges();
 | |
|     return DT->getRoot();
 | |
|   }
 | |
| 
 | |
|   inline MachineDomTreeNode *getRootNode() const {
 | |
|     applySplitCriticalEdges();
 | |
|     return DT->getRootNode();
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &F) override;
 | |
| 
 | |
|   inline bool dominates(const MachineDomTreeNode* A,
 | |
|                         const MachineDomTreeNode* B) const {
 | |
|     applySplitCriticalEdges();
 | |
|     return DT->dominates(A, B);
 | |
|   }
 | |
| 
 | |
|   inline bool dominates(const MachineBasicBlock* A,
 | |
|                         const MachineBasicBlock* B) const {
 | |
|     applySplitCriticalEdges();
 | |
|     return DT->dominates(A, B);
 | |
|   }
 | |
| 
 | |
|   // dominates - Return true if A dominates B. This performs the
 | |
|   // special checks necessary if A and B are in the same basic block.
 | |
|   bool dominates(const MachineInstr *A, const MachineInstr *B) const {
 | |
|     applySplitCriticalEdges();
 | |
|     const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
 | |
|     if (BBA != BBB) return DT->dominates(BBA, BBB);
 | |
| 
 | |
|     // Loop through the basic block until we find A or B.
 | |
|     MachineBasicBlock::const_iterator I = BBA->begin();
 | |
|     for (; &*I != A && &*I != B; ++I)
 | |
|       /*empty*/ ;
 | |
| 
 | |
|     //if(!DT.IsPostDominators) {
 | |
|       // A dominates B if it is found first in the basic block.
 | |
|       return &*I == A;
 | |
|     //} else {
 | |
|     //  // A post-dominates B if B is found first in the basic block.
 | |
|     //  return &*I == B;
 | |
|     //}
 | |
|   }
 | |
| 
 | |
|   inline bool properlyDominates(const MachineDomTreeNode* A,
 | |
|                                 const MachineDomTreeNode* B) const {
 | |
|     applySplitCriticalEdges();
 | |
|     return DT->properlyDominates(A, B);
 | |
|   }
 | |
| 
 | |
|   inline bool properlyDominates(const MachineBasicBlock* A,
 | |
|                                 const MachineBasicBlock* B) const {
 | |
|     applySplitCriticalEdges();
 | |
|     return DT->properlyDominates(A, B);
 | |
|   }
 | |
| 
 | |
|   /// findNearestCommonDominator - Find nearest common dominator basic block
 | |
|   /// for basic block A and B. If there is no such block then return NULL.
 | |
|   inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
 | |
|                                                        MachineBasicBlock *B) {
 | |
|     applySplitCriticalEdges();
 | |
|     return DT->findNearestCommonDominator(A, B);
 | |
|   }
 | |
| 
 | |
|   inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
 | |
|     applySplitCriticalEdges();
 | |
|     return DT->getNode(BB);
 | |
|   }
 | |
| 
 | |
|   /// getNode - return the (Post)DominatorTree node for the specified basic
 | |
|   /// block.  This is the same as using operator[] on this class.
 | |
|   ///
 | |
|   inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
 | |
|     applySplitCriticalEdges();
 | |
|     return DT->getNode(BB);
 | |
|   }
 | |
| 
 | |
|   /// addNewBlock - Add a new node to the dominator tree information.  This
 | |
|   /// creates a new node as a child of DomBB dominator node,linking it into
 | |
|   /// the children list of the immediate dominator.
 | |
|   inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
 | |
|                                          MachineBasicBlock *DomBB) {
 | |
|     applySplitCriticalEdges();
 | |
|     return DT->addNewBlock(BB, DomBB);
 | |
|   }
 | |
| 
 | |
|   /// changeImmediateDominator - This method is used to update the dominator
 | |
|   /// tree information when a node's immediate dominator changes.
 | |
|   ///
 | |
|   inline void changeImmediateDominator(MachineBasicBlock *N,
 | |
|                                        MachineBasicBlock* NewIDom) {
 | |
|     applySplitCriticalEdges();
 | |
|     DT->changeImmediateDominator(N, NewIDom);
 | |
|   }
 | |
| 
 | |
|   inline void changeImmediateDominator(MachineDomTreeNode *N,
 | |
|                                        MachineDomTreeNode* NewIDom) {
 | |
|     applySplitCriticalEdges();
 | |
|     DT->changeImmediateDominator(N, NewIDom);
 | |
|   }
 | |
| 
 | |
|   /// eraseNode - Removes a node from  the dominator tree. Block must not
 | |
|   /// dominate any other blocks. Removes node from its immediate dominator's
 | |
|   /// children list. Deletes dominator node associated with basic block BB.
 | |
|   inline void eraseNode(MachineBasicBlock *BB) {
 | |
|     applySplitCriticalEdges();
 | |
|     DT->eraseNode(BB);
 | |
|   }
 | |
| 
 | |
|   /// splitBlock - BB is split and now it has one successor. Update dominator
 | |
|   /// tree to reflect this change.
 | |
|   inline void splitBlock(MachineBasicBlock* NewBB) {
 | |
|     applySplitCriticalEdges();
 | |
|     DT->splitBlock(NewBB);
 | |
|   }
 | |
| 
 | |
|   /// isReachableFromEntry - Return true if A is dominated by the entry
 | |
|   /// block of the function containing it.
 | |
|   bool isReachableFromEntry(const MachineBasicBlock *A) {
 | |
|     applySplitCriticalEdges();
 | |
|     return DT->isReachableFromEntry(A);
 | |
|   }
 | |
| 
 | |
|   void releaseMemory() override;
 | |
| 
 | |
|   void print(raw_ostream &OS, const Module*) const override;
 | |
| 
 | |
|   /// \brief Record that the critical edge (FromBB, ToBB) has been
 | |
|   /// split with NewBB.
 | |
|   /// This is best to use this method instead of directly update the
 | |
|   /// underlying information, because this helps mitigating the
 | |
|   /// number of time the DT information is invalidated.
 | |
|   ///
 | |
|   /// \note Do not use this method with regular edges.
 | |
|   ///
 | |
|   /// \note To benefit from the compile time improvement incurred by this
 | |
|   /// method, the users of this method have to limit the queries to the DT
 | |
|   /// interface between two edges splitting. In other words, they have to
 | |
|   /// pack the splitting of critical edges as much as possible.
 | |
|   void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
 | |
|                               MachineBasicBlock *ToBB,
 | |
|                               MachineBasicBlock *NewBB) {
 | |
|     bool Inserted = NewBBs.insert(NewBB).second;
 | |
|     (void)Inserted;
 | |
|     assert(Inserted &&
 | |
|            "A basic block inserted via edge splitting cannot appear twice");
 | |
|     CriticalEdgesToSplit.push_back(CriticalEdge(FromBB, ToBB, NewBB));
 | |
|   }
 | |
| };
 | |
| 
 | |
| //===-------------------------------------
 | |
| /// DominatorTree GraphTraits specialization so the DominatorTree can be
 | |
| /// iterable by generic graph iterators.
 | |
| ///
 | |
| 
 | |
| template<class T> struct GraphTraits;
 | |
| 
 | |
| template <> struct GraphTraits<MachineDomTreeNode *> {
 | |
|   typedef MachineDomTreeNode NodeType;
 | |
|   typedef NodeType::iterator  ChildIteratorType;
 | |
| 
 | |
|   static NodeType *getEntryNode(NodeType *N) {
 | |
|     return N;
 | |
|   }
 | |
|   static inline ChildIteratorType child_begin(NodeType* N) {
 | |
|     return N->begin();
 | |
|   }
 | |
|   static inline ChildIteratorType child_end(NodeType* N) {
 | |
|     return N->end();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <> struct GraphTraits<MachineDominatorTree*>
 | |
|   : public GraphTraits<MachineDomTreeNode *> {
 | |
|   static NodeType *getEntryNode(MachineDominatorTree *DT) {
 | |
|     return DT->getRootNode();
 | |
|   }
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 |