mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@220690 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			519 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			519 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- RegAllocPBQP.h ------------------------------------------*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the PBQPBuilder interface, for classes which build PBQP
 | 
						|
// instances to represent register allocation problems, and the RegAllocPBQP
 | 
						|
// interface.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_CODEGEN_REGALLOCPBQP_H
 | 
						|
#define LLVM_CODEGEN_REGALLOCPBQP_H
 | 
						|
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/PBQPRAConstraint.h"
 | 
						|
#include "llvm/CodeGen/PBQP/CostAllocator.h"
 | 
						|
#include "llvm/CodeGen/PBQP/ReductionRules.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
namespace PBQP {
 | 
						|
namespace RegAlloc {
 | 
						|
 | 
						|
/// @brief Spill option index.
 | 
						|
inline unsigned getSpillOptionIdx() { return 0; }
 | 
						|
 | 
						|
/// \brief Metadata to speed allocatability test.
 | 
						|
///
 | 
						|
/// Keeps track of the number of infinities in each row and column.
 | 
						|
class MatrixMetadata {
 | 
						|
private:
 | 
						|
  MatrixMetadata(const MatrixMetadata&);
 | 
						|
  void operator=(const MatrixMetadata&);
 | 
						|
public:
 | 
						|
  MatrixMetadata(const Matrix& M)
 | 
						|
    : WorstRow(0), WorstCol(0),
 | 
						|
      UnsafeRows(new bool[M.getRows() - 1]()),
 | 
						|
      UnsafeCols(new bool[M.getCols() - 1]()) {
 | 
						|
 | 
						|
    unsigned* ColCounts = new unsigned[M.getCols() - 1]();
 | 
						|
 | 
						|
    for (unsigned i = 1; i < M.getRows(); ++i) {
 | 
						|
      unsigned RowCount = 0;
 | 
						|
      for (unsigned j = 1; j < M.getCols(); ++j) {
 | 
						|
        if (M[i][j] == std::numeric_limits<PBQPNum>::infinity()) {
 | 
						|
          ++RowCount;
 | 
						|
          ++ColCounts[j - 1];
 | 
						|
          UnsafeRows[i - 1] = true;
 | 
						|
          UnsafeCols[j - 1] = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      WorstRow = std::max(WorstRow, RowCount);
 | 
						|
    }
 | 
						|
    unsigned WorstColCountForCurRow =
 | 
						|
      *std::max_element(ColCounts, ColCounts + M.getCols() - 1);
 | 
						|
    WorstCol = std::max(WorstCol, WorstColCountForCurRow);
 | 
						|
    delete[] ColCounts;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned getWorstRow() const { return WorstRow; }
 | 
						|
  unsigned getWorstCol() const { return WorstCol; }
 | 
						|
  const bool* getUnsafeRows() const { return UnsafeRows.get(); }
 | 
						|
  const bool* getUnsafeCols() const { return UnsafeCols.get(); }
 | 
						|
 | 
						|
private:
 | 
						|
  unsigned WorstRow, WorstCol;
 | 
						|
  std::unique_ptr<bool[]> UnsafeRows;
 | 
						|
  std::unique_ptr<bool[]> UnsafeCols;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Holds a vector of the allowed physical regs for a vreg.
 | 
						|
class AllowedRegVector {
 | 
						|
  friend hash_code hash_value(const AllowedRegVector &);
 | 
						|
public:
 | 
						|
 | 
						|
  AllowedRegVector() : NumOpts(0), Opts(nullptr) {}
 | 
						|
 | 
						|
  AllowedRegVector(const std::vector<unsigned> &OptVec)
 | 
						|
    : NumOpts(OptVec.size()), Opts(new unsigned[NumOpts]) {
 | 
						|
    std::copy(OptVec.begin(), OptVec.end(), Opts.get());
 | 
						|
  }
 | 
						|
 | 
						|
  AllowedRegVector(const AllowedRegVector &Other)
 | 
						|
    : NumOpts(Other.NumOpts), Opts(new unsigned[NumOpts]) {
 | 
						|
    std::copy(Other.Opts.get(), Other.Opts.get() + NumOpts, Opts.get());
 | 
						|
  }
 | 
						|
 | 
						|
  AllowedRegVector(AllowedRegVector &&Other)
 | 
						|
    : NumOpts(std::move(Other.NumOpts)), Opts(std::move(Other.Opts)) {}
 | 
						|
 | 
						|
  AllowedRegVector& operator=(const AllowedRegVector &Other) {
 | 
						|
    NumOpts = Other.NumOpts;
 | 
						|
    Opts.reset(new unsigned[NumOpts]);
 | 
						|
    std::copy(Other.Opts.get(), Other.Opts.get() + NumOpts, Opts.get());
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  AllowedRegVector& operator=(AllowedRegVector &&Other) {
 | 
						|
    NumOpts = std::move(Other.NumOpts);
 | 
						|
    Opts = std::move(Other.Opts);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned size() const { return NumOpts; }
 | 
						|
  unsigned operator[](size_t I) const { return Opts[I]; }
 | 
						|
 | 
						|
  bool operator==(const AllowedRegVector &Other) const {
 | 
						|
    if (NumOpts != Other.NumOpts)
 | 
						|
      return false;
 | 
						|
    return std::equal(Opts.get(), Opts.get() + NumOpts, Other.Opts.get());
 | 
						|
  }
 | 
						|
 | 
						|
  bool operator!=(const AllowedRegVector &Other) const {
 | 
						|
    return !(*this == Other);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  unsigned NumOpts;
 | 
						|
  std::unique_ptr<unsigned[]> Opts;
 | 
						|
};
 | 
						|
 | 
						|
inline hash_code hash_value(const AllowedRegVector &OptRegs) {
 | 
						|
  unsigned *OStart = OptRegs.Opts.get();
 | 
						|
  unsigned *OEnd = OptRegs.Opts.get() + OptRegs.NumOpts;
 | 
						|
  return hash_combine(OptRegs.NumOpts,
 | 
						|
                      hash_combine_range(OStart, OEnd));
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Holds graph-level metadata relevent to PBQP RA problems.
 | 
						|
class GraphMetadata {
 | 
						|
private:
 | 
						|
  typedef ValuePool<AllowedRegVector> AllowedRegVecPool;
 | 
						|
public:
 | 
						|
 | 
						|
  typedef AllowedRegVecPool::PoolRef AllowedRegVecRef;
 | 
						|
 | 
						|
  GraphMetadata(MachineFunction &MF,
 | 
						|
                LiveIntervals &LIS,
 | 
						|
                MachineBlockFrequencyInfo &MBFI)
 | 
						|
    : MF(MF), LIS(LIS), MBFI(MBFI) {}
 | 
						|
 | 
						|
  MachineFunction &MF;
 | 
						|
  LiveIntervals &LIS;
 | 
						|
  MachineBlockFrequencyInfo &MBFI;
 | 
						|
 | 
						|
  void setNodeIdForVReg(unsigned VReg, GraphBase::NodeId NId) {
 | 
						|
    VRegToNodeId[VReg] = NId;
 | 
						|
  }
 | 
						|
 | 
						|
  GraphBase::NodeId getNodeIdForVReg(unsigned VReg) const {
 | 
						|
    auto VRegItr = VRegToNodeId.find(VReg);
 | 
						|
    if (VRegItr == VRegToNodeId.end())
 | 
						|
      return GraphBase::invalidNodeId();
 | 
						|
    return VRegItr->second;
 | 
						|
  }
 | 
						|
 | 
						|
  void eraseNodeIdForVReg(unsigned VReg) {
 | 
						|
    VRegToNodeId.erase(VReg);
 | 
						|
  }
 | 
						|
 | 
						|
  AllowedRegVecRef getAllowedRegs(AllowedRegVector Allowed) {
 | 
						|
    return AllowedRegVecs.getValue(std::move(Allowed));
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  DenseMap<unsigned, GraphBase::NodeId> VRegToNodeId;
 | 
						|
  AllowedRegVecPool AllowedRegVecs;
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Holds solver state and other metadata relevant to each PBQP RA node.
 | 
						|
class NodeMetadata {
 | 
						|
public:
 | 
						|
  typedef RegAlloc::AllowedRegVector AllowedRegVector;
 | 
						|
 | 
						|
  typedef enum { Unprocessed,
 | 
						|
                 OptimallyReducible,
 | 
						|
                 ConservativelyAllocatable,
 | 
						|
                 NotProvablyAllocatable } ReductionState;
 | 
						|
 | 
						|
  NodeMetadata()
 | 
						|
    : RS(Unprocessed), NumOpts(0), DeniedOpts(0), OptUnsafeEdges(nullptr),
 | 
						|
      VReg(0) {}
 | 
						|
 | 
						|
  // FIXME: Re-implementing default behavior to work around MSVC. Remove once
 | 
						|
  // MSVC synthesizes move constructors properly.
 | 
						|
  NodeMetadata(const NodeMetadata &Other)
 | 
						|
    : RS(Other.RS), NumOpts(Other.NumOpts), DeniedOpts(Other.DeniedOpts),
 | 
						|
      OptUnsafeEdges(new unsigned[NumOpts]), VReg(Other.VReg),
 | 
						|
      AllowedRegs(Other.AllowedRegs) {
 | 
						|
    std::copy(&Other.OptUnsafeEdges[0], &Other.OptUnsafeEdges[NumOpts],
 | 
						|
              &OptUnsafeEdges[0]);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Re-implementing default behavior to work around MSVC. Remove once
 | 
						|
  // MSVC synthesizes move constructors properly.
 | 
						|
  NodeMetadata(NodeMetadata &&Other)
 | 
						|
    : RS(Other.RS), NumOpts(Other.NumOpts), DeniedOpts(Other.DeniedOpts),
 | 
						|
      OptUnsafeEdges(std::move(Other.OptUnsafeEdges)), VReg(Other.VReg),
 | 
						|
      AllowedRegs(std::move(Other.AllowedRegs)) {}
 | 
						|
 | 
						|
  // FIXME: Re-implementing default behavior to work around MSVC. Remove once
 | 
						|
  // MSVC synthesizes move constructors properly.
 | 
						|
  NodeMetadata& operator=(const NodeMetadata &Other) {
 | 
						|
    RS = Other.RS;
 | 
						|
    NumOpts = Other.NumOpts;
 | 
						|
    DeniedOpts = Other.DeniedOpts;
 | 
						|
    OptUnsafeEdges.reset(new unsigned[NumOpts]);
 | 
						|
    std::copy(Other.OptUnsafeEdges.get(), Other.OptUnsafeEdges.get() + NumOpts,
 | 
						|
              OptUnsafeEdges.get());
 | 
						|
    VReg = Other.VReg;
 | 
						|
    AllowedRegs = Other.AllowedRegs;
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Re-implementing default behavior to work around MSVC. Remove once
 | 
						|
  // MSVC synthesizes move constructors properly.
 | 
						|
  NodeMetadata& operator=(NodeMetadata &&Other) {
 | 
						|
    RS = Other.RS;
 | 
						|
    NumOpts = Other.NumOpts;
 | 
						|
    DeniedOpts = Other.DeniedOpts;
 | 
						|
    OptUnsafeEdges = std::move(Other.OptUnsafeEdges);
 | 
						|
    VReg = Other.VReg;
 | 
						|
    AllowedRegs = std::move(Other.AllowedRegs);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  void setVReg(unsigned VReg) { this->VReg = VReg; }
 | 
						|
  unsigned getVReg() const { return VReg; }
 | 
						|
 | 
						|
  void setAllowedRegs(GraphMetadata::AllowedRegVecRef AllowedRegs) {
 | 
						|
    this->AllowedRegs = std::move(AllowedRegs);
 | 
						|
  }
 | 
						|
  const AllowedRegVector& getAllowedRegs() const { return *AllowedRegs; }
 | 
						|
 | 
						|
  void setup(const Vector& Costs) {
 | 
						|
    NumOpts = Costs.getLength() - 1;
 | 
						|
    OptUnsafeEdges = std::unique_ptr<unsigned[]>(new unsigned[NumOpts]());
 | 
						|
  }
 | 
						|
 | 
						|
  ReductionState getReductionState() const { return RS; }
 | 
						|
  void setReductionState(ReductionState RS) { this->RS = RS; }
 | 
						|
 | 
						|
  void handleAddEdge(const MatrixMetadata& MD, bool Transpose) {
 | 
						|
    DeniedOpts += Transpose ? MD.getWorstCol() : MD.getWorstRow();
 | 
						|
    const bool* UnsafeOpts =
 | 
						|
      Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
 | 
						|
    for (unsigned i = 0; i < NumOpts; ++i)
 | 
						|
      OptUnsafeEdges[i] += UnsafeOpts[i];
 | 
						|
  }
 | 
						|
 | 
						|
  void handleRemoveEdge(const MatrixMetadata& MD, bool Transpose) {
 | 
						|
    DeniedOpts -= Transpose ? MD.getWorstCol() : MD.getWorstRow();
 | 
						|
    const bool* UnsafeOpts =
 | 
						|
      Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
 | 
						|
    for (unsigned i = 0; i < NumOpts; ++i)
 | 
						|
      OptUnsafeEdges[i] -= UnsafeOpts[i];
 | 
						|
  }
 | 
						|
 | 
						|
  bool isConservativelyAllocatable() const {
 | 
						|
    return (DeniedOpts < NumOpts) ||
 | 
						|
      (std::find(&OptUnsafeEdges[0], &OptUnsafeEdges[NumOpts], 0) !=
 | 
						|
       &OptUnsafeEdges[NumOpts]);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  ReductionState RS;
 | 
						|
  unsigned NumOpts;
 | 
						|
  unsigned DeniedOpts;
 | 
						|
  std::unique_ptr<unsigned[]> OptUnsafeEdges;
 | 
						|
  unsigned VReg;
 | 
						|
  GraphMetadata::AllowedRegVecRef AllowedRegs;
 | 
						|
};
 | 
						|
 | 
						|
class RegAllocSolverImpl {
 | 
						|
private:
 | 
						|
  typedef MDMatrix<MatrixMetadata> RAMatrix;
 | 
						|
public:
 | 
						|
  typedef PBQP::Vector RawVector;
 | 
						|
  typedef PBQP::Matrix RawMatrix;
 | 
						|
  typedef PBQP::Vector Vector;
 | 
						|
  typedef RAMatrix     Matrix;
 | 
						|
  typedef PBQP::PoolCostAllocator<Vector, Matrix> CostAllocator;
 | 
						|
 | 
						|
  typedef GraphBase::NodeId NodeId;
 | 
						|
  typedef GraphBase::EdgeId EdgeId;
 | 
						|
 | 
						|
  typedef RegAlloc::NodeMetadata NodeMetadata;
 | 
						|
  struct EdgeMetadata { };
 | 
						|
  typedef RegAlloc::GraphMetadata GraphMetadata;
 | 
						|
 | 
						|
  typedef PBQP::Graph<RegAllocSolverImpl> Graph;
 | 
						|
 | 
						|
  RegAllocSolverImpl(Graph &G) : G(G) {}
 | 
						|
 | 
						|
  Solution solve() {
 | 
						|
    G.setSolver(*this);
 | 
						|
    Solution S;
 | 
						|
    setup();
 | 
						|
    S = backpropagate(G, reduce());
 | 
						|
    G.unsetSolver();
 | 
						|
    return S;
 | 
						|
  }
 | 
						|
 | 
						|
  void handleAddNode(NodeId NId) {
 | 
						|
    G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
 | 
						|
  }
 | 
						|
  void handleRemoveNode(NodeId NId) {}
 | 
						|
  void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
 | 
						|
 | 
						|
  void handleAddEdge(EdgeId EId) {
 | 
						|
    handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
 | 
						|
    handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
 | 
						|
  }
 | 
						|
 | 
						|
  void handleRemoveEdge(EdgeId EId) {
 | 
						|
    handleDisconnectEdge(EId, G.getEdgeNode1Id(EId));
 | 
						|
    handleDisconnectEdge(EId, G.getEdgeNode2Id(EId));
 | 
						|
  }
 | 
						|
 | 
						|
  void handleDisconnectEdge(EdgeId EId, NodeId NId) {
 | 
						|
    NodeMetadata& NMd = G.getNodeMetadata(NId);
 | 
						|
    const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
 | 
						|
    NMd.handleRemoveEdge(MMd, NId == G.getEdgeNode2Id(EId));
 | 
						|
    if (G.getNodeDegree(NId) == 3) {
 | 
						|
      // This node is becoming optimally reducible.
 | 
						|
      moveToOptimallyReducibleNodes(NId);
 | 
						|
    } else if (NMd.getReductionState() ==
 | 
						|
               NodeMetadata::NotProvablyAllocatable &&
 | 
						|
               NMd.isConservativelyAllocatable()) {
 | 
						|
      // This node just became conservatively allocatable.
 | 
						|
      moveToConservativelyAllocatableNodes(NId);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void handleReconnectEdge(EdgeId EId, NodeId NId) {
 | 
						|
    NodeMetadata& NMd = G.getNodeMetadata(NId);
 | 
						|
    const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
 | 
						|
    NMd.handleAddEdge(MMd, NId == G.getEdgeNode2Id(EId));
 | 
						|
  }
 | 
						|
 | 
						|
  void handleSetEdgeCosts(EdgeId EId, const Matrix& NewCosts) {
 | 
						|
    handleRemoveEdge(EId);
 | 
						|
 | 
						|
    NodeId N1Id = G.getEdgeNode1Id(EId);
 | 
						|
    NodeId N2Id = G.getEdgeNode2Id(EId);
 | 
						|
    NodeMetadata& N1Md = G.getNodeMetadata(N1Id);
 | 
						|
    NodeMetadata& N2Md = G.getNodeMetadata(N2Id);
 | 
						|
    const MatrixMetadata& MMd = NewCosts.getMetadata();
 | 
						|
    N1Md.handleAddEdge(MMd, N1Id != G.getEdgeNode1Id(EId));
 | 
						|
    N2Md.handleAddEdge(MMd, N2Id != G.getEdgeNode1Id(EId));
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
 | 
						|
  void removeFromCurrentSet(NodeId NId) {
 | 
						|
    switch (G.getNodeMetadata(NId).getReductionState()) {
 | 
						|
    case NodeMetadata::Unprocessed: break;
 | 
						|
    case NodeMetadata::OptimallyReducible:
 | 
						|
      assert(OptimallyReducibleNodes.find(NId) !=
 | 
						|
             OptimallyReducibleNodes.end() &&
 | 
						|
             "Node not in optimally reducible set.");
 | 
						|
      OptimallyReducibleNodes.erase(NId);
 | 
						|
      break;
 | 
						|
    case NodeMetadata::ConservativelyAllocatable:
 | 
						|
      assert(ConservativelyAllocatableNodes.find(NId) !=
 | 
						|
             ConservativelyAllocatableNodes.end() &&
 | 
						|
             "Node not in conservatively allocatable set.");
 | 
						|
      ConservativelyAllocatableNodes.erase(NId);
 | 
						|
      break;
 | 
						|
    case NodeMetadata::NotProvablyAllocatable:
 | 
						|
      assert(NotProvablyAllocatableNodes.find(NId) !=
 | 
						|
             NotProvablyAllocatableNodes.end() &&
 | 
						|
             "Node not in not-provably-allocatable set.");
 | 
						|
      NotProvablyAllocatableNodes.erase(NId);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void moveToOptimallyReducibleNodes(NodeId NId) {
 | 
						|
    removeFromCurrentSet(NId);
 | 
						|
    OptimallyReducibleNodes.insert(NId);
 | 
						|
    G.getNodeMetadata(NId).setReductionState(
 | 
						|
      NodeMetadata::OptimallyReducible);
 | 
						|
  }
 | 
						|
 | 
						|
  void moveToConservativelyAllocatableNodes(NodeId NId) {
 | 
						|
    removeFromCurrentSet(NId);
 | 
						|
    ConservativelyAllocatableNodes.insert(NId);
 | 
						|
    G.getNodeMetadata(NId).setReductionState(
 | 
						|
      NodeMetadata::ConservativelyAllocatable);
 | 
						|
  }
 | 
						|
 | 
						|
  void moveToNotProvablyAllocatableNodes(NodeId NId) {
 | 
						|
    removeFromCurrentSet(NId);
 | 
						|
    NotProvablyAllocatableNodes.insert(NId);
 | 
						|
    G.getNodeMetadata(NId).setReductionState(
 | 
						|
      NodeMetadata::NotProvablyAllocatable);
 | 
						|
  }
 | 
						|
 | 
						|
  void setup() {
 | 
						|
    // Set up worklists.
 | 
						|
    for (auto NId : G.nodeIds()) {
 | 
						|
      if (G.getNodeDegree(NId) < 3)
 | 
						|
        moveToOptimallyReducibleNodes(NId);
 | 
						|
      else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
 | 
						|
        moveToConservativelyAllocatableNodes(NId);
 | 
						|
      else
 | 
						|
        moveToNotProvablyAllocatableNodes(NId);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute a reduction order for the graph by iteratively applying PBQP
 | 
						|
  // reduction rules. Locally optimal rules are applied whenever possible (R0,
 | 
						|
  // R1, R2). If no locally-optimal rules apply then any conservatively
 | 
						|
  // allocatable node is reduced. Finally, if no conservatively allocatable
 | 
						|
  // node exists then the node with the lowest spill-cost:degree ratio is
 | 
						|
  // selected.
 | 
						|
  std::vector<GraphBase::NodeId> reduce() {
 | 
						|
    assert(!G.empty() && "Cannot reduce empty graph.");
 | 
						|
 | 
						|
    typedef GraphBase::NodeId NodeId;
 | 
						|
    std::vector<NodeId> NodeStack;
 | 
						|
 | 
						|
    // Consume worklists.
 | 
						|
    while (true) {
 | 
						|
      if (!OptimallyReducibleNodes.empty()) {
 | 
						|
        NodeSet::iterator NItr = OptimallyReducibleNodes.begin();
 | 
						|
        NodeId NId = *NItr;
 | 
						|
        OptimallyReducibleNodes.erase(NItr);
 | 
						|
        NodeStack.push_back(NId);
 | 
						|
        switch (G.getNodeDegree(NId)) {
 | 
						|
        case 0:
 | 
						|
          break;
 | 
						|
        case 1:
 | 
						|
          applyR1(G, NId);
 | 
						|
          break;
 | 
						|
        case 2:
 | 
						|
          applyR2(G, NId);
 | 
						|
          break;
 | 
						|
        default: llvm_unreachable("Not an optimally reducible node.");
 | 
						|
        }
 | 
						|
      } else if (!ConservativelyAllocatableNodes.empty()) {
 | 
						|
        // Conservatively allocatable nodes will never spill. For now just
 | 
						|
        // take the first node in the set and push it on the stack. When we
 | 
						|
        // start optimizing more heavily for register preferencing, it may
 | 
						|
        // would be better to push nodes with lower 'expected' or worst-case
 | 
						|
        // register costs first (since early nodes are the most
 | 
						|
        // constrained).
 | 
						|
        NodeSet::iterator NItr = ConservativelyAllocatableNodes.begin();
 | 
						|
        NodeId NId = *NItr;
 | 
						|
        ConservativelyAllocatableNodes.erase(NItr);
 | 
						|
        NodeStack.push_back(NId);
 | 
						|
        G.disconnectAllNeighborsFromNode(NId);
 | 
						|
 | 
						|
      } else if (!NotProvablyAllocatableNodes.empty()) {
 | 
						|
        NodeSet::iterator NItr =
 | 
						|
          std::min_element(NotProvablyAllocatableNodes.begin(),
 | 
						|
                           NotProvablyAllocatableNodes.end(),
 | 
						|
                           SpillCostComparator(G));
 | 
						|
        NodeId NId = *NItr;
 | 
						|
        NotProvablyAllocatableNodes.erase(NItr);
 | 
						|
        NodeStack.push_back(NId);
 | 
						|
        G.disconnectAllNeighborsFromNode(NId);
 | 
						|
      } else
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    return NodeStack;
 | 
						|
  }
 | 
						|
 | 
						|
  class SpillCostComparator {
 | 
						|
  public:
 | 
						|
    SpillCostComparator(const Graph& G) : G(G) {}
 | 
						|
    bool operator()(NodeId N1Id, NodeId N2Id) {
 | 
						|
      PBQPNum N1SC = G.getNodeCosts(N1Id)[0] / G.getNodeDegree(N1Id);
 | 
						|
      PBQPNum N2SC = G.getNodeCosts(N2Id)[0] / G.getNodeDegree(N2Id);
 | 
						|
      return N1SC < N2SC;
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    const Graph& G;
 | 
						|
  };
 | 
						|
 | 
						|
  Graph& G;
 | 
						|
  typedef std::set<NodeId> NodeSet;
 | 
						|
  NodeSet OptimallyReducibleNodes;
 | 
						|
  NodeSet ConservativelyAllocatableNodes;
 | 
						|
  NodeSet NotProvablyAllocatableNodes;
 | 
						|
};
 | 
						|
 | 
						|
class PBQPRAGraph : public PBQP::Graph<RegAllocSolverImpl> {
 | 
						|
private:
 | 
						|
  typedef PBQP::Graph<RegAllocSolverImpl> BaseT;
 | 
						|
public:
 | 
						|
  PBQPRAGraph(GraphMetadata Metadata) : BaseT(Metadata) {}
 | 
						|
};
 | 
						|
 | 
						|
inline Solution solve(PBQPRAGraph& G) {
 | 
						|
  if (G.empty())
 | 
						|
    return Solution();
 | 
						|
  RegAllocSolverImpl RegAllocSolver(G);
 | 
						|
  return RegAllocSolver.solve();
 | 
						|
}
 | 
						|
 | 
						|
} // namespace RegAlloc
 | 
						|
} // namespace PBQP
 | 
						|
 | 
						|
/// @brief Create a PBQP register allocator instance.
 | 
						|
FunctionPass *
 | 
						|
createPBQPRegisterAllocator(char *customPassID = nullptr);
 | 
						|
 | 
						|
} // namespace llvm
 | 
						|
 | 
						|
#endif /* LLVM_CODEGEN_REGALLOCPBQP_H */
 |