mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@223693 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1722 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1722 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the interfaces that Hexagon uses to lower LLVM code
 | 
						|
// into a selection DAG.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "HexagonISelLowering.h"
 | 
						|
#include "HexagonMachineFunctionInfo.h"
 | 
						|
#include "HexagonSubtarget.h"
 | 
						|
#include "HexagonTargetMachine.h"
 | 
						|
#include "HexagonTargetObjectFile.h"
 | 
						|
#include "llvm/CodeGen/CallingConvLower.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/IR/CallingConv.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/InlineAsm.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "hexagon-lowering"
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden,
 | 
						|
               cl::desc("Control jump table emission on Hexagon target"));
 | 
						|
 | 
						|
namespace {
 | 
						|
class HexagonCCState : public CCState {
 | 
						|
  int NumNamedVarArgParams;
 | 
						|
 | 
						|
public:
 | 
						|
  HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
 | 
						|
                 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
 | 
						|
                 int NumNamedVarArgParams)
 | 
						|
      : CCState(CC, isVarArg, MF, locs, C),
 | 
						|
        NumNamedVarArgParams(NumNamedVarArgParams) {}
 | 
						|
 | 
						|
  int getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
// Implement calling convention for Hexagon.
 | 
						|
static bool
 | 
						|
CC_Hexagon(unsigned ValNo, MVT ValVT,
 | 
						|
           MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
           ISD::ArgFlagsTy ArgFlags, CCState &State);
 | 
						|
 | 
						|
static bool
 | 
						|
CC_Hexagon32(unsigned ValNo, MVT ValVT,
 | 
						|
             MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
             ISD::ArgFlagsTy ArgFlags, CCState &State);
 | 
						|
 | 
						|
static bool
 | 
						|
CC_Hexagon64(unsigned ValNo, MVT ValVT,
 | 
						|
             MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
             ISD::ArgFlagsTy ArgFlags, CCState &State);
 | 
						|
 | 
						|
static bool
 | 
						|
RetCC_Hexagon(unsigned ValNo, MVT ValVT,
 | 
						|
              MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
              ISD::ArgFlagsTy ArgFlags, CCState &State);
 | 
						|
 | 
						|
static bool
 | 
						|
RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
 | 
						|
                MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
                ISD::ArgFlagsTy ArgFlags, CCState &State);
 | 
						|
 | 
						|
static bool
 | 
						|
RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
 | 
						|
                MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
                ISD::ArgFlagsTy ArgFlags, CCState &State);
 | 
						|
 | 
						|
static bool
 | 
						|
CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
 | 
						|
            MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
            ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | 
						|
  HexagonCCState &HState = static_cast<HexagonCCState &>(State);
 | 
						|
 | 
						|
  // NumNamedVarArgParams can not be zero for a VarArg function.
 | 
						|
  assert((HState.getNumNamedVarArgParams() > 0) &&
 | 
						|
         "NumNamedVarArgParams is not bigger than zero.");
 | 
						|
 | 
						|
  if ((int)ValNo < HState.getNumNamedVarArgParams()) {
 | 
						|
    // Deal with named arguments.
 | 
						|
    return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
 | 
						|
  }
 | 
						|
 | 
						|
  // Deal with un-named arguments.
 | 
						|
  unsigned ofst;
 | 
						|
  if (ArgFlags.isByVal()) {
 | 
						|
    // If pass-by-value, the size allocated on stack is decided
 | 
						|
    // by ArgFlags.getByValSize(), not by the size of LocVT.
 | 
						|
    assert ((ArgFlags.getByValSize() > 8) &&
 | 
						|
            "ByValSize must be bigger than 8 bytes");
 | 
						|
    ofst = State.AllocateStack(ArgFlags.getByValSize(), 4);
 | 
						|
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
 | 
						|
    LocVT = MVT::i32;
 | 
						|
    ValVT = MVT::i32;
 | 
						|
    if (ArgFlags.isSExt())
 | 
						|
      LocInfo = CCValAssign::SExt;
 | 
						|
    else if (ArgFlags.isZExt())
 | 
						|
      LocInfo = CCValAssign::ZExt;
 | 
						|
    else
 | 
						|
      LocInfo = CCValAssign::AExt;
 | 
						|
  }
 | 
						|
  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
 | 
						|
    ofst = State.AllocateStack(4, 4);
 | 
						|
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
 | 
						|
    ofst = State.AllocateStack(8, 8);
 | 
						|
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  llvm_unreachable(nullptr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static bool
 | 
						|
CC_Hexagon (unsigned ValNo, MVT ValVT,
 | 
						|
            MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
            ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | 
						|
 | 
						|
  if (ArgFlags.isByVal()) {
 | 
						|
    // Passed on stack.
 | 
						|
    assert ((ArgFlags.getByValSize() > 8) &&
 | 
						|
            "ByValSize must be bigger than 8 bytes");
 | 
						|
    unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 4);
 | 
						|
    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
 | 
						|
    LocVT = MVT::i32;
 | 
						|
    ValVT = MVT::i32;
 | 
						|
    if (ArgFlags.isSExt())
 | 
						|
      LocInfo = CCValAssign::SExt;
 | 
						|
    else if (ArgFlags.isZExt())
 | 
						|
      LocInfo = CCValAssign::ZExt;
 | 
						|
    else
 | 
						|
      LocInfo = CCValAssign::AExt;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
 | 
						|
    if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
 | 
						|
    if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;  // CC didn't match.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
 | 
						|
                         MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
                         ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | 
						|
 | 
						|
  static const MCPhysReg RegList[] = {
 | 
						|
    Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
 | 
						|
    Hexagon::R5
 | 
						|
  };
 | 
						|
  if (unsigned Reg = State.AllocateReg(RegList, 6)) {
 | 
						|
    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Offset = State.AllocateStack(4, 4);
 | 
						|
  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
 | 
						|
                         MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
                         ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | 
						|
 | 
						|
  if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
 | 
						|
    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  static const MCPhysReg RegList1[] = {
 | 
						|
    Hexagon::D1, Hexagon::D2
 | 
						|
  };
 | 
						|
  static const MCPhysReg RegList2[] = {
 | 
						|
    Hexagon::R1, Hexagon::R3
 | 
						|
  };
 | 
						|
  if (unsigned Reg = State.AllocateReg(RegList1, RegList2, 2)) {
 | 
						|
    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
 | 
						|
  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
 | 
						|
                          MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | 
						|
 | 
						|
 | 
						|
  if (LocVT == MVT::i1 ||
 | 
						|
      LocVT == MVT::i8 ||
 | 
						|
      LocVT == MVT::i16) {
 | 
						|
    LocVT = MVT::i32;
 | 
						|
    ValVT = MVT::i32;
 | 
						|
    if (ArgFlags.isSExt())
 | 
						|
      LocInfo = CCValAssign::SExt;
 | 
						|
    else if (ArgFlags.isZExt())
 | 
						|
      LocInfo = CCValAssign::ZExt;
 | 
						|
    else
 | 
						|
      LocInfo = CCValAssign::AExt;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
 | 
						|
    if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
 | 
						|
    if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;  // CC didn't match.
 | 
						|
}
 | 
						|
 | 
						|
static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
 | 
						|
                            MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | 
						|
 | 
						|
  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
 | 
						|
    if (unsigned Reg = State.AllocateReg(Hexagon::R0)) {
 | 
						|
      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Offset = State.AllocateStack(4, 4);
 | 
						|
  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
 | 
						|
                            MVT LocVT, CCValAssign::LocInfo LocInfo,
 | 
						|
                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
 | 
						|
  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
 | 
						|
    if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
 | 
						|
      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Offset = State.AllocateStack(8, 8);
 | 
						|
  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
 | 
						|
const {
 | 
						|
  return SDValue();
 | 
						|
}
 | 
						|
 | 
						|
/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | 
						|
/// by "Src" to address "Dst" of size "Size".  Alignment information is
 | 
						|
/// specified by the specific parameter attribute. The copy will be passed as
 | 
						|
/// a byval function parameter.  Sometimes what we are copying is the end of a
 | 
						|
/// larger object, the part that does not fit in registers.
 | 
						|
static SDValue
 | 
						|
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
 | 
						|
                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
 | 
						|
                          SDLoc dl) {
 | 
						|
 | 
						|
  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
 | 
						|
  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
 | 
						|
                       /*isVolatile=*/false, /*AlwaysInline=*/false,
 | 
						|
                       MachinePointerInfo(), MachinePointerInfo());
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
 | 
						|
// passed by value, the function prototype is modified to return void and
 | 
						|
// the value is stored in memory pointed by a pointer passed by caller.
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerReturn(SDValue Chain,
 | 
						|
                                   CallingConv::ID CallConv, bool isVarArg,
 | 
						|
                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                                   const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
                                   SDLoc dl, SelectionDAG &DAG) const {
 | 
						|
 | 
						|
  // CCValAssign - represent the assignment of the return value to locations.
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
 | 
						|
  // CCState - Info about the registers and stack slot.
 | 
						|
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
 | 
						|
  // Analyze return values of ISD::RET
 | 
						|
  CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
 | 
						|
 | 
						|
  SDValue Flag;
 | 
						|
  SmallVector<SDValue, 4> RetOps(1, Chain);
 | 
						|
 | 
						|
  // Copy the result values into the output registers.
 | 
						|
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | 
						|
    CCValAssign &VA = RVLocs[i];
 | 
						|
 | 
						|
    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
 | 
						|
 | 
						|
    // Guarantee that all emitted copies are stuck together with flags.
 | 
						|
    Flag = Chain.getValue(1);
 | 
						|
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
 | 
						|
  }
 | 
						|
 | 
						|
  RetOps[0] = Chain;  // Update chain.
 | 
						|
 | 
						|
  // Add the flag if we have it.
 | 
						|
  if (Flag.getNode())
 | 
						|
    RetOps.push_back(Flag);
 | 
						|
 | 
						|
  return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// LowerCallResult - Lower the result values of an ISD::CALL into the
 | 
						|
/// appropriate copies out of appropriate physical registers.  This assumes that
 | 
						|
/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
 | 
						|
/// being lowered. Returns a SDNode with the same number of values as the
 | 
						|
/// ISD::CALL.
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
 | 
						|
                                       CallingConv::ID CallConv, bool isVarArg,
 | 
						|
                                       const
 | 
						|
                                       SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
                                       SDLoc dl, SelectionDAG &DAG,
 | 
						|
                                       SmallVectorImpl<SDValue> &InVals,
 | 
						|
                                       const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
                                       SDValue Callee) const {
 | 
						|
 | 
						|
  // Assign locations to each value returned by this call.
 | 
						|
  SmallVector<CCValAssign, 16> RVLocs;
 | 
						|
 | 
						|
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
 | 
						|
  CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
 | 
						|
 | 
						|
  // Copy all of the result registers out of their specified physreg.
 | 
						|
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | 
						|
    Chain = DAG.getCopyFromReg(Chain, dl,
 | 
						|
                               RVLocs[i].getLocReg(),
 | 
						|
                               RVLocs[i].getValVT(), InFlag).getValue(1);
 | 
						|
    InFlag = Chain.getValue(2);
 | 
						|
    InVals.push_back(Chain.getValue(0));
 | 
						|
  }
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerCall - Functions arguments are copied from virtual regs to
 | 
						|
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
 | 
						|
                                 SmallVectorImpl<SDValue> &InVals) const {
 | 
						|
  SelectionDAG &DAG                     = CLI.DAG;
 | 
						|
  SDLoc &dl                             = CLI.DL;
 | 
						|
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | 
						|
  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
 | 
						|
  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
 | 
						|
  SDValue Chain                         = CLI.Chain;
 | 
						|
  SDValue Callee                        = CLI.Callee;
 | 
						|
  bool &isTailCall                      = CLI.IsTailCall;
 | 
						|
  CallingConv::ID CallConv              = CLI.CallConv;
 | 
						|
  bool isVarArg                         = CLI.IsVarArg;
 | 
						|
 | 
						|
  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
 | 
						|
 | 
						|
  // Check for varargs.
 | 
						|
  int NumNamedVarArgParams = -1;
 | 
						|
  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee))
 | 
						|
  {
 | 
						|
    const Function* CalleeFn = nullptr;
 | 
						|
    Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, MVT::i32);
 | 
						|
    if ((CalleeFn = dyn_cast<Function>(GA->getGlobal())))
 | 
						|
    {
 | 
						|
      // If a function has zero args and is a vararg function, that's
 | 
						|
      // disallowed so it must be an undeclared function.  Do not assume
 | 
						|
      // varargs if the callee is undefined.
 | 
						|
      if (CalleeFn->isVarArg() &&
 | 
						|
          CalleeFn->getFunctionType()->getNumParams() != 0) {
 | 
						|
        NumNamedVarArgParams = CalleeFn->getFunctionType()->getNumParams();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Analyze operands of the call, assigning locations to each operand.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | 
						|
                        *DAG.getContext(), NumNamedVarArgParams);
 | 
						|
 | 
						|
  if (NumNamedVarArgParams > 0)
 | 
						|
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
 | 
						|
  else
 | 
						|
    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
 | 
						|
 | 
						|
 | 
						|
  if(isTailCall) {
 | 
						|
    bool StructAttrFlag =
 | 
						|
      DAG.getMachineFunction().getFunction()->hasStructRetAttr();
 | 
						|
    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
 | 
						|
                                                   isVarArg, IsStructRet,
 | 
						|
                                                   StructAttrFlag,
 | 
						|
                                                   Outs, OutVals, Ins, DAG);
 | 
						|
    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i){
 | 
						|
      CCValAssign &VA = ArgLocs[i];
 | 
						|
      if (VA.isMemLoc()) {
 | 
						|
        isTailCall = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (isTailCall) {
 | 
						|
      DEBUG(dbgs () << "Eligible for Tail Call\n");
 | 
						|
    } else {
 | 
						|
      DEBUG(dbgs () <<
 | 
						|
            "Argument must be passed on stack. Not eligible for Tail Call\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Get a count of how many bytes are to be pushed on the stack.
 | 
						|
  unsigned NumBytes = CCInfo.getNextStackOffset();
 | 
						|
  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
 | 
						|
  SmallVector<SDValue, 8> MemOpChains;
 | 
						|
 | 
						|
  const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
 | 
						|
      DAG.getSubtarget().getRegisterInfo());
 | 
						|
  SDValue StackPtr =
 | 
						|
      DAG.getCopyFromReg(Chain, dl, QRI->getStackRegister(), getPointerTy());
 | 
						|
 | 
						|
  // Walk the register/memloc assignments, inserting copies/loads.
 | 
						|
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
    SDValue Arg = OutVals[i];
 | 
						|
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | 
						|
 | 
						|
    // Promote the value if needed.
 | 
						|
    switch (VA.getLocInfo()) {
 | 
						|
      default:
 | 
						|
        // Loc info must be one of Full, SExt, ZExt, or AExt.
 | 
						|
        llvm_unreachable("Unknown loc info!");
 | 
						|
      case CCValAssign::Full:
 | 
						|
        break;
 | 
						|
      case CCValAssign::SExt:
 | 
						|
        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
        break;
 | 
						|
      case CCValAssign::ZExt:
 | 
						|
        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
        break;
 | 
						|
      case CCValAssign::AExt:
 | 
						|
        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (VA.isMemLoc()) {
 | 
						|
      unsigned LocMemOffset = VA.getLocMemOffset();
 | 
						|
      SDValue PtrOff = DAG.getConstant(LocMemOffset, StackPtr.getValueType());
 | 
						|
      PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
 | 
						|
 | 
						|
      if (Flags.isByVal()) {
 | 
						|
        // The argument is a struct passed by value. According to LLVM, "Arg"
 | 
						|
        // is is pointer.
 | 
						|
        MemOpChains.push_back(CreateCopyOfByValArgument(Arg, PtrOff, Chain,
 | 
						|
                                                        Flags, DAG, dl));
 | 
						|
      } else {
 | 
						|
        // The argument is not passed by value. "Arg" is a buildin type. It is
 | 
						|
        // not a pointer.
 | 
						|
        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
 | 
						|
                                           MachinePointerInfo(),false, false,
 | 
						|
                                           0));
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Arguments that can be passed on register must be kept at RegsToPass
 | 
						|
    // vector.
 | 
						|
    if (VA.isRegLoc()) {
 | 
						|
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transform all store nodes into one single node because all store
 | 
						|
  // nodes are independent of each other.
 | 
						|
  if (!MemOpChains.empty()) {
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isTailCall)
 | 
						|
    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes,
 | 
						|
                                                        getPointerTy(), true),
 | 
						|
                                 dl);
 | 
						|
 | 
						|
  // Build a sequence of copy-to-reg nodes chained together with token
 | 
						|
  // chain and flag operands which copy the outgoing args into registers.
 | 
						|
  // The InFlag in necessary since all emitted instructions must be
 | 
						|
  // stuck together.
 | 
						|
  SDValue InFlag;
 | 
						|
  if (!isTailCall) {
 | 
						|
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | 
						|
                               RegsToPass[i].second, InFlag);
 | 
						|
      InFlag = Chain.getValue(1);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For tail calls lower the arguments to the 'real' stack slot.
 | 
						|
  if (isTailCall) {
 | 
						|
    // Force all the incoming stack arguments to be loaded from the stack
 | 
						|
    // before any new outgoing arguments are stored to the stack, because the
 | 
						|
    // outgoing stack slots may alias the incoming argument stack slots, and
 | 
						|
    // the alias isn't otherwise explicit. This is slightly more conservative
 | 
						|
    // than necessary, because it means that each store effectively depends
 | 
						|
    // on every argument instead of just those arguments it would clobber.
 | 
						|
    //
 | 
						|
    // Do not flag preceding copytoreg stuff together with the following stuff.
 | 
						|
    InFlag = SDValue();
 | 
						|
    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | 
						|
                               RegsToPass[i].second, InFlag);
 | 
						|
      InFlag = Chain.getValue(1);
 | 
						|
    }
 | 
						|
    InFlag =SDValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | 
						|
  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | 
						|
  // node so that legalize doesn't hack it.
 | 
						|
  if (flag_aligned_memcpy) {
 | 
						|
    const char *MemcpyName =
 | 
						|
      "__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes";
 | 
						|
    Callee =
 | 
						|
      DAG.getTargetExternalSymbol(MemcpyName, getPointerTy());
 | 
						|
    flag_aligned_memcpy = false;
 | 
						|
  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | 
						|
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy());
 | 
						|
  } else if (ExternalSymbolSDNode *S =
 | 
						|
             dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | 
						|
    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
 | 
						|
  }
 | 
						|
 | 
						|
  // Returns a chain & a flag for retval copy to use.
 | 
						|
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  Ops.push_back(Chain);
 | 
						|
  Ops.push_back(Callee);
 | 
						|
 | 
						|
  // Add argument registers to the end of the list so that they are
 | 
						|
  // known live into the call.
 | 
						|
  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | 
						|
    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | 
						|
                                  RegsToPass[i].second.getValueType()));
 | 
						|
  }
 | 
						|
 | 
						|
  if (InFlag.getNode()) {
 | 
						|
    Ops.push_back(InFlag);
 | 
						|
  }
 | 
						|
 | 
						|
  if (isTailCall)
 | 
						|
    return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
 | 
						|
 | 
						|
  Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
 | 
						|
  InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  // Create the CALLSEQ_END node.
 | 
						|
  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | 
						|
                             DAG.getIntPtrConstant(0, true), InFlag, dl);
 | 
						|
  InFlag = Chain.getValue(1);
 | 
						|
 | 
						|
  // Handle result values, copying them out of physregs into vregs that we
 | 
						|
  // return.
 | 
						|
  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
 | 
						|
                         InVals, OutVals, Callee);
 | 
						|
}
 | 
						|
 | 
						|
static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
 | 
						|
                                   bool isSEXTLoad, SDValue &Base,
 | 
						|
                                   SDValue &Offset, bool &isInc,
 | 
						|
                                   SelectionDAG &DAG) {
 | 
						|
  if (Ptr->getOpcode() != ISD::ADD)
 | 
						|
  return false;
 | 
						|
 | 
						|
  if (VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
 | 
						|
    isInc = (Ptr->getOpcode() == ISD::ADD);
 | 
						|
    Base = Ptr->getOperand(0);
 | 
						|
    Offset = Ptr->getOperand(1);
 | 
						|
    // Ensure that Offset is a constant.
 | 
						|
    return (isa<ConstantSDNode>(Offset));
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// TODO: Put this function along with the other isS* functions in
 | 
						|
// HexagonISelDAGToDAG.cpp into a common file. Or better still, use the
 | 
						|
// functions defined in HexagonOperands.td.
 | 
						|
static bool Is_PostInc_S4_Offset(SDNode * S, int ShiftAmount) {
 | 
						|
  ConstantSDNode *N = cast<ConstantSDNode>(S);
 | 
						|
 | 
						|
  // immS4 predicate - True if the immediate fits in a 4-bit sign extended.
 | 
						|
  // field.
 | 
						|
  int64_t v = (int64_t)N->getSExtValue();
 | 
						|
  int64_t m = 0;
 | 
						|
  if (ShiftAmount > 0) {
 | 
						|
    m = v % ShiftAmount;
 | 
						|
    v = v >> ShiftAmount;
 | 
						|
  }
 | 
						|
  return (v <= 7) && (v >= -8) && (m == 0);
 | 
						|
}
 | 
						|
 | 
						|
/// getPostIndexedAddressParts - returns true by value, base pointer and
 | 
						|
/// offset pointer and addressing mode by reference if this node can be
 | 
						|
/// combined with a load / store to form a post-indexed load / store.
 | 
						|
bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
 | 
						|
                                                       SDValue &Base,
 | 
						|
                                                       SDValue &Offset,
 | 
						|
                                                       ISD::MemIndexedMode &AM,
 | 
						|
                                                       SelectionDAG &DAG) const
 | 
						|
{
 | 
						|
  EVT VT;
 | 
						|
  SDValue Ptr;
 | 
						|
  bool isSEXTLoad = false;
 | 
						|
 | 
						|
  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | 
						|
    VT  = LD->getMemoryVT();
 | 
						|
    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
 | 
						|
  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | 
						|
    VT  = ST->getMemoryVT();
 | 
						|
    if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isInc = false;
 | 
						|
  bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
 | 
						|
                                        isInc, DAG);
 | 
						|
  // ShiftAmount = number of left-shifted bits in the Hexagon instruction.
 | 
						|
  int ShiftAmount = VT.getSizeInBits() / 16;
 | 
						|
  if (isLegal && Is_PostInc_S4_Offset(Offset.getNode(), ShiftAmount)) {
 | 
						|
    AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op,
 | 
						|
                                              SelectionDAG &DAG) const {
 | 
						|
  SDNode *Node = Op.getNode();
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  HexagonMachineFunctionInfo *FuncInfo =
 | 
						|
    MF.getInfo<HexagonMachineFunctionInfo>();
 | 
						|
  switch (Node->getOpcode()) {
 | 
						|
    case ISD::INLINEASM: {
 | 
						|
      unsigned NumOps = Node->getNumOperands();
 | 
						|
      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
 | 
						|
        --NumOps;  // Ignore the flag operand.
 | 
						|
 | 
						|
      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
 | 
						|
        if (FuncInfo->hasClobberLR())
 | 
						|
          break;
 | 
						|
        unsigned Flags =
 | 
						|
          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
 | 
						|
        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
 | 
						|
        ++i;  // Skip the ID value.
 | 
						|
 | 
						|
        switch (InlineAsm::getKind(Flags)) {
 | 
						|
        default: llvm_unreachable("Bad flags!");
 | 
						|
          case InlineAsm::Kind_RegDef:
 | 
						|
          case InlineAsm::Kind_RegUse:
 | 
						|
          case InlineAsm::Kind_Imm:
 | 
						|
          case InlineAsm::Kind_Clobber:
 | 
						|
          case InlineAsm::Kind_Mem: {
 | 
						|
            for (; NumVals; --NumVals, ++i) {}
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          case InlineAsm::Kind_RegDefEarlyClobber: {
 | 
						|
            for (; NumVals; --NumVals, ++i) {
 | 
						|
              unsigned Reg =
 | 
						|
                cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | 
						|
 | 
						|
              // Check it to be lr
 | 
						|
              const HexagonRegisterInfo *QRI =
 | 
						|
                  static_cast<const HexagonRegisterInfo *>(
 | 
						|
                      DAG.getSubtarget().getRegisterInfo());
 | 
						|
              if (Reg == QRI->getRARegister()) {
 | 
						|
                FuncInfo->setHasClobberLR(true);
 | 
						|
                break;
 | 
						|
              }
 | 
						|
            }
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } // Node->getOpcode
 | 
						|
  return Op;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//
 | 
						|
// Taken from the XCore backend.
 | 
						|
//
 | 
						|
SDValue HexagonTargetLowering::
 | 
						|
LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
 | 
						|
{
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Table = Op.getOperand(1);
 | 
						|
  SDValue Index = Op.getOperand(2);
 | 
						|
  SDLoc dl(Op);
 | 
						|
  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
 | 
						|
  unsigned JTI = JT->getIndex();
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
 | 
						|
  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
 | 
						|
 | 
						|
  // Mark all jump table targets as address taken.
 | 
						|
  const std::vector<MachineJumpTableEntry> &JTE = MJTI->getJumpTables();
 | 
						|
  const std::vector<MachineBasicBlock*> &JTBBs = JTE[JTI].MBBs;
 | 
						|
  for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
 | 
						|
    MachineBasicBlock *MBB = JTBBs[i];
 | 
						|
    MBB->setHasAddressTaken();
 | 
						|
    // This line is needed to set the hasAddressTaken flag on the BasicBlock
 | 
						|
    // object.
 | 
						|
    BlockAddress::get(const_cast<BasicBlock *>(MBB->getBasicBlock()));
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue JumpTableBase = DAG.getNode(HexagonISD::WrapperJT, dl,
 | 
						|
                                      getPointerTy(), TargetJT);
 | 
						|
  SDValue ShiftIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
 | 
						|
                                   DAG.getConstant(2, MVT::i32));
 | 
						|
  SDValue JTAddress = DAG.getNode(ISD::ADD, dl, MVT::i32, JumpTableBase,
 | 
						|
                                  ShiftIndex);
 | 
						|
  SDValue LoadTarget = DAG.getLoad(MVT::i32, dl, Chain, JTAddress,
 | 
						|
                                   MachinePointerInfo(), false, false, false,
 | 
						|
                                   0);
 | 
						|
  return DAG.getNode(HexagonISD::BR_JT, dl, MVT::Other, Chain, LoadTarget);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | 
						|
                                               SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain = Op.getOperand(0);
 | 
						|
  SDValue Size = Op.getOperand(1);
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  unsigned SPReg = getStackPointerRegisterToSaveRestore();
 | 
						|
 | 
						|
  // Get a reference to the stack pointer.
 | 
						|
  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32);
 | 
						|
 | 
						|
  // Subtract the dynamic size from the actual stack size to
 | 
						|
  // obtain the new stack size.
 | 
						|
  SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
 | 
						|
 | 
						|
  //
 | 
						|
  // For Hexagon, the outgoing memory arguments area should be on top of the
 | 
						|
  // alloca area on the stack i.e., the outgoing memory arguments should be
 | 
						|
  // at a lower address than the alloca area. Move the alloca area down the
 | 
						|
  // stack by adding back the space reserved for outgoing arguments to SP
 | 
						|
  // here.
 | 
						|
  //
 | 
						|
  // We do not know what the size of the outgoing args is at this point.
 | 
						|
  // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
 | 
						|
  // stack pointer. We patch this instruction with the correct, known
 | 
						|
  // offset in emitPrologue().
 | 
						|
  //
 | 
						|
  // Use a placeholder immediate (zero) for now. This will be patched up
 | 
						|
  // by emitPrologue().
 | 
						|
  SDValue ArgAdjust = DAG.getNode(HexagonISD::ADJDYNALLOC, dl,
 | 
						|
                                  MVT::i32,
 | 
						|
                                  Sub,
 | 
						|
                                  DAG.getConstant(0, MVT::i32));
 | 
						|
 | 
						|
  // The Sub result contains the new stack start address, so it
 | 
						|
  // must be placed in the stack pointer register.
 | 
						|
  const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
 | 
						|
      DAG.getSubtarget().getRegisterInfo());
 | 
						|
  SDValue CopyChain = DAG.getCopyToReg(Chain, dl, QRI->getStackRegister(), Sub);
 | 
						|
 | 
						|
  SDValue Ops[2] = { ArgAdjust, CopyChain };
 | 
						|
  return DAG.getMergeValues(Ops, dl);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerFormalArguments(SDValue Chain,
 | 
						|
                                            CallingConv::ID CallConv,
 | 
						|
                                            bool isVarArg,
 | 
						|
                                            const
 | 
						|
                                            SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
                                            SDLoc dl, SelectionDAG &DAG,
 | 
						|
                                            SmallVectorImpl<SDValue> &InVals)
 | 
						|
const {
 | 
						|
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | 
						|
  HexagonMachineFunctionInfo *FuncInfo =
 | 
						|
    MF.getInfo<HexagonMachineFunctionInfo>();
 | 
						|
 | 
						|
 | 
						|
  // Assign locations to all of the incoming arguments.
 | 
						|
  SmallVector<CCValAssign, 16> ArgLocs;
 | 
						|
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
 | 
						|
                 *DAG.getContext());
 | 
						|
 | 
						|
  CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
 | 
						|
 | 
						|
  // For LLVM, in the case when returning a struct by value (>8byte),
 | 
						|
  // the first argument is a pointer that points to the location on caller's
 | 
						|
  // stack where the return value will be stored. For Hexagon, the location on
 | 
						|
  // caller's stack is passed only when the struct size is smaller than (and
 | 
						|
  // equal to) 8 bytes. If not, no address will be passed into callee and
 | 
						|
  // callee return the result direclty through R0/R1.
 | 
						|
 | 
						|
  SmallVector<SDValue, 4> MemOps;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | 
						|
    CCValAssign &VA = ArgLocs[i];
 | 
						|
    ISD::ArgFlagsTy Flags = Ins[i].Flags;
 | 
						|
    unsigned ObjSize;
 | 
						|
    unsigned StackLocation;
 | 
						|
    int FI;
 | 
						|
 | 
						|
    if (   (VA.isRegLoc() && !Flags.isByVal())
 | 
						|
        || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
 | 
						|
      // Arguments passed in registers
 | 
						|
      // 1. int, long long, ptr args that get allocated in register.
 | 
						|
      // 2. Large struct that gets an register to put its address in.
 | 
						|
      EVT RegVT = VA.getLocVT();
 | 
						|
      if (RegVT == MVT::i8 || RegVT == MVT::i16 ||
 | 
						|
          RegVT == MVT::i32 || RegVT == MVT::f32) {
 | 
						|
        unsigned VReg =
 | 
						|
          RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass);
 | 
						|
        RegInfo.addLiveIn(VA.getLocReg(), VReg);
 | 
						|
        InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
 | 
						|
      } else if (RegVT == MVT::i64) {
 | 
						|
        unsigned VReg =
 | 
						|
          RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
 | 
						|
        RegInfo.addLiveIn(VA.getLocReg(), VReg);
 | 
						|
        InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
 | 
						|
      } else {
 | 
						|
        assert (0);
 | 
						|
      }
 | 
						|
    } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
 | 
						|
      assert (0 && "ByValSize must be bigger than 8 bytes");
 | 
						|
    } else {
 | 
						|
      // Sanity check.
 | 
						|
      assert(VA.isMemLoc());
 | 
						|
 | 
						|
      if (Flags.isByVal()) {
 | 
						|
        // If it's a byval parameter, then we need to compute the
 | 
						|
        // "real" size, not the size of the pointer.
 | 
						|
        ObjSize = Flags.getByValSize();
 | 
						|
      } else {
 | 
						|
        ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
 | 
						|
      }
 | 
						|
 | 
						|
      StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
 | 
						|
      // Create the frame index object for this incoming parameter...
 | 
						|
      FI = MFI->CreateFixedObject(ObjSize, StackLocation, true);
 | 
						|
 | 
						|
      // Create the SelectionDAG nodes cordl, responding to a load
 | 
						|
      // from this parameter.
 | 
						|
      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
 | 
						|
 | 
						|
      if (Flags.isByVal()) {
 | 
						|
        // If it's a pass-by-value aggregate, then do not dereference the stack
 | 
						|
        // location. Instead, we should generate a reference to the stack
 | 
						|
        // location.
 | 
						|
        InVals.push_back(FIN);
 | 
						|
      } else {
 | 
						|
        InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
 | 
						|
                                     MachinePointerInfo(), false, false,
 | 
						|
                                     false, 0));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MemOps.empty())
 | 
						|
    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
 | 
						|
 | 
						|
  if (isVarArg) {
 | 
						|
    // This will point to the next argument passed via stack.
 | 
						|
    int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize,
 | 
						|
                                            HEXAGON_LRFP_SIZE +
 | 
						|
                                            CCInfo.getNextStackOffset(),
 | 
						|
                                            true);
 | 
						|
    FuncInfo->setVarArgsFrameIndex(FrameIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  return Chain;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  // VASTART stores the address of the VarArgsFrameIndex slot into the
 | 
						|
  // memory location argument.
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
 | 
						|
  SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
 | 
						|
  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | 
						|
  return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr,
 | 
						|
                      Op.getOperand(1), MachinePointerInfo(SV), false,
 | 
						|
                      false, 0);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  EVT ValTy = Op.getValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | 
						|
  SDValue Res;
 | 
						|
  if (CP->isMachineConstantPoolEntry())
 | 
						|
    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), ValTy,
 | 
						|
                                    CP->getAlignment());
 | 
						|
  else
 | 
						|
    Res = DAG.getTargetConstantPool(CP->getConstVal(), ValTy,
 | 
						|
                                    CP->getAlignment());
 | 
						|
  return DAG.getNode(HexagonISD::CONST32, dl, ValTy, Res);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  MachineFrameInfo *MFI = MF.getFrameInfo();
 | 
						|
  MFI->setReturnAddressIsTaken(true);
 | 
						|
 | 
						|
  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | 
						|
    return SDValue();
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  if (Depth) {
 | 
						|
    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
 | 
						|
    SDValue Offset = DAG.getConstant(4, MVT::i32);
 | 
						|
    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
 | 
						|
                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
 | 
						|
                       MachinePointerInfo(), false, false, false, 0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Return LR, which contains the return address. Mark it an implicit live-in.
 | 
						|
  unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
 | 
						|
  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  const HexagonRegisterInfo *TRI = static_cast<const HexagonRegisterInfo *>(
 | 
						|
      DAG.getSubtarget().getRegisterInfo());
 | 
						|
  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						|
  MFI->setFrameAddressIsTaken(true);
 | 
						|
 | 
						|
  EVT VT = Op.getValueType();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | 
						|
  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
 | 
						|
                                         TRI->getFrameRegister(), VT);
 | 
						|
  while (Depth--)
 | 
						|
    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
 | 
						|
                            MachinePointerInfo(),
 | 
						|
                            false, false, false, 0);
 | 
						|
  return FrameAddr;
 | 
						|
}
 | 
						|
 | 
						|
SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op,
 | 
						|
                                                 SelectionDAG& DAG) const {
 | 
						|
  SDLoc dl(Op);
 | 
						|
  return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op,
 | 
						|
                                                  SelectionDAG &DAG) const {
 | 
						|
  SDValue Result;
 | 
						|
  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
 | 
						|
  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
 | 
						|
  SDLoc dl(Op);
 | 
						|
  Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
 | 
						|
 | 
						|
  const HexagonTargetObjectFile &TLOF =
 | 
						|
      static_cast<const HexagonTargetObjectFile &>(getObjFileLowering());
 | 
						|
  if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
 | 
						|
    return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), Result);
 | 
						|
  }
 | 
						|
 | 
						|
  return DAG.getNode(HexagonISD::CONST32, dl, getPointerTy(), Result);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | 
						|
  SDValue BA_SD =  DAG.getTargetBlockAddress(BA, MVT::i32);
 | 
						|
  SDLoc dl(Op);
 | 
						|
  return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), BA_SD);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TargetLowering Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &targetmachine)
 | 
						|
    : TargetLowering(targetmachine),
 | 
						|
      TM(targetmachine) {
 | 
						|
 | 
						|
  const HexagonSubtarget &Subtarget = TM.getSubtarget<HexagonSubtarget>();
 | 
						|
 | 
						|
  // Set up the register classes.
 | 
						|
  addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
 | 
						|
  addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
 | 
						|
 | 
						|
  if (Subtarget.hasV5TOps()) {
 | 
						|
    addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
 | 
						|
    addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
 | 
						|
  }
 | 
						|
 | 
						|
  addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
 | 
						|
 | 
						|
  computeRegisterProperties();
 | 
						|
 | 
						|
  // Align loop entry
 | 
						|
  setPrefLoopAlignment(4);
 | 
						|
 | 
						|
  // Limits for inline expansion of memcpy/memmove
 | 
						|
  MaxStoresPerMemcpy = 6;
 | 
						|
  MaxStoresPerMemmove = 6;
 | 
						|
 | 
						|
  //
 | 
						|
  // Library calls for unsupported operations
 | 
						|
  //
 | 
						|
 | 
						|
  setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
 | 
						|
  setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
 | 
						|
 | 
						|
  setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
 | 
						|
  setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
 | 
						|
 | 
						|
  setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
 | 
						|
  setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
 | 
						|
 | 
						|
  setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
 | 
						|
  setOperationAction(ISD::SDIV, MVT::i32, Expand);
 | 
						|
  setLibcallName(RTLIB::SREM_I32, "__hexagon_umodsi3");
 | 
						|
  setOperationAction(ISD::SREM, MVT::i32, Expand);
 | 
						|
 | 
						|
  setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
 | 
						|
  setOperationAction(ISD::SDIV, MVT::i64, Expand);
 | 
						|
  setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
 | 
						|
  setOperationAction(ISD::SREM, MVT::i64, Expand);
 | 
						|
 | 
						|
  setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
 | 
						|
  setOperationAction(ISD::UDIV, MVT::i32, Expand);
 | 
						|
 | 
						|
  setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
 | 
						|
  setOperationAction(ISD::UDIV, MVT::i64, Expand);
 | 
						|
 | 
						|
  setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
 | 
						|
  setOperationAction(ISD::UREM, MVT::i32, Expand);
 | 
						|
 | 
						|
  setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
 | 
						|
  setOperationAction(ISD::UREM, MVT::i64, Expand);
 | 
						|
 | 
						|
  setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
 | 
						|
  setOperationAction(ISD::FDIV, MVT::f32, Expand);
 | 
						|
 | 
						|
  setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
 | 
						|
  setOperationAction(ISD::FDIV, MVT::f64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FSIN, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FSIN, MVT::f64, Expand);
 | 
						|
 | 
						|
  if (Subtarget.hasV5TOps()) {
 | 
						|
    // Hexagon V5 Support.
 | 
						|
    setOperationAction(ISD::FADD, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::FADD, MVT::f64, Legal);
 | 
						|
    setOperationAction(ISD::FP_EXTEND, MVT::f32, Legal);
 | 
						|
    setCondCodeAction(ISD::SETOEQ, MVT::f32, Legal);
 | 
						|
    setCondCodeAction(ISD::SETOEQ, MVT::f64, Legal);
 | 
						|
    setCondCodeAction(ISD::SETUEQ, MVT::f32, Legal);
 | 
						|
    setCondCodeAction(ISD::SETUEQ, MVT::f64, Legal);
 | 
						|
 | 
						|
    setCondCodeAction(ISD::SETOGE, MVT::f32, Legal);
 | 
						|
    setCondCodeAction(ISD::SETOGE, MVT::f64, Legal);
 | 
						|
    setCondCodeAction(ISD::SETUGE, MVT::f32, Legal);
 | 
						|
    setCondCodeAction(ISD::SETUGE, MVT::f64, Legal);
 | 
						|
 | 
						|
    setCondCodeAction(ISD::SETOGT, MVT::f32, Legal);
 | 
						|
    setCondCodeAction(ISD::SETOGT, MVT::f64, Legal);
 | 
						|
    setCondCodeAction(ISD::SETUGT, MVT::f32, Legal);
 | 
						|
    setCondCodeAction(ISD::SETUGT, MVT::f64, Legal);
 | 
						|
 | 
						|
    setCondCodeAction(ISD::SETOLE, MVT::f32, Legal);
 | 
						|
    setCondCodeAction(ISD::SETOLE, MVT::f64, Legal);
 | 
						|
    setCondCodeAction(ISD::SETOLT, MVT::f32, Legal);
 | 
						|
    setCondCodeAction(ISD::SETOLT, MVT::f64, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal);
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal);
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal);
 | 
						|
 | 
						|
    setOperationAction(ISD::FABS, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::FABS, MVT::f64, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::FNEG, MVT::f32, Legal);
 | 
						|
    setOperationAction(ISD::FNEG, MVT::f64, Expand);
 | 
						|
  } else {
 | 
						|
 | 
						|
    // Expand fp<->uint.
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
 | 
						|
    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
 | 
						|
    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
 | 
						|
 | 
						|
    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
 | 
						|
    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
 | 
						|
 | 
						|
    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
 | 
						|
    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
 | 
						|
 | 
						|
    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
 | 
						|
    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
 | 
						|
 | 
						|
    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
 | 
						|
    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
 | 
						|
 | 
						|
    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
 | 
						|
    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
 | 
						|
 | 
						|
    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
 | 
						|
    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
 | 
						|
 | 
						|
    setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
 | 
						|
    setOperationAction(ISD::FADD, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
 | 
						|
    setOperationAction(ISD::FADD, MVT::f32, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
 | 
						|
    setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
 | 
						|
    setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
 | 
						|
    setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
 | 
						|
    setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
 | 
						|
    setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
 | 
						|
    setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
 | 
						|
    setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
 | 
						|
    setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
 | 
						|
    setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
 | 
						|
    setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
 | 
						|
    setCondCodeAction(ISD::SETOLT, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
 | 
						|
    setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
 | 
						|
    setOperationAction(ISD::FMUL, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
 | 
						|
    setOperationAction(ISD::MUL, MVT::f32, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
 | 
						|
    setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
 | 
						|
 | 
						|
    setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
 | 
						|
    setOperationAction(ISD::SUB, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
 | 
						|
    setOperationAction(ISD::SUB, MVT::f32, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
 | 
						|
    setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
 | 
						|
    setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
 | 
						|
    setCondCodeAction(ISD::SETO, MVT::f64, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
 | 
						|
    setCondCodeAction(ISD::SETO, MVT::f32, Expand);
 | 
						|
 | 
						|
    setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
 | 
						|
    setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
 | 
						|
 | 
						|
    setOperationAction(ISD::FABS, MVT::f32, Expand);
 | 
						|
    setOperationAction(ISD::FABS, MVT::f64, Expand);
 | 
						|
    setOperationAction(ISD::FNEG, MVT::f32, Expand);
 | 
						|
    setOperationAction(ISD::FNEG, MVT::f64, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
 | 
						|
  setOperationAction(ISD::SREM, MVT::i32, Expand);
 | 
						|
 | 
						|
  setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
 | 
						|
  setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
 | 
						|
  setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
 | 
						|
  setIndexedLoadAction(ISD::POST_INC, MVT::i64, Legal);
 | 
						|
 | 
						|
  setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
 | 
						|
  setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
 | 
						|
  setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
 | 
						|
  setIndexedStoreAction(ISD::POST_INC, MVT::i64, Legal);
 | 
						|
 | 
						|
  setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | 
						|
 | 
						|
  // Turn FP extload into load/fextend.
 | 
						|
  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
 | 
						|
  // Hexagon has a i1 sign extending load.
 | 
						|
  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
 | 
						|
  // Turn FP truncstore into trunc + store.
 | 
						|
  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | 
						|
 | 
						|
  // Custom legalize GlobalAddress nodes into CONST32.
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
 | 
						|
  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
 | 
						|
  // Truncate action?
 | 
						|
  setOperationAction(ISD::TRUNCATE, MVT::i64, Expand);
 | 
						|
 | 
						|
  // Hexagon doesn't have sext_inreg, replace them with shl/sra.
 | 
						|
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | 
						|
 | 
						|
  // Hexagon has no REM or DIVREM operations.
 | 
						|
  setOperationAction(ISD::UREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SREM, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::BSWAP, MVT::i64, Expand);
 | 
						|
 | 
						|
  // Lower SELECT_CC to SETCC and SELECT.
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
 | 
						|
 | 
						|
  if (Subtarget.hasV5TOps()) {
 | 
						|
 | 
						|
    // We need to make the operation type of SELECT node to be Custom,
 | 
						|
    // such that we don't go into the infinite loop of
 | 
						|
    // select ->  setcc -> select_cc -> select loop.
 | 
						|
    setOperationAction(ISD::SELECT, MVT::f32, Custom);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::f64, Custom);
 | 
						|
 | 
						|
    setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
 | 
						|
    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
 | 
						|
 | 
						|
  } else {
 | 
						|
 | 
						|
    // Hexagon has no select or setcc: expand to SELECT_CC.
 | 
						|
    setOperationAction(ISD::SELECT, MVT::f32, Expand);
 | 
						|
    setOperationAction(ISD::SELECT, MVT::f64, Expand);
 | 
						|
  }
 | 
						|
 | 
						|
  if (EmitJumpTables) {
 | 
						|
    setOperationAction(ISD::BR_JT, MVT::Other, Custom);
 | 
						|
  } else {
 | 
						|
    setOperationAction(ISD::BR_JT, MVT::Other, Expand);
 | 
						|
  }
 | 
						|
  // Increase jump tables cutover to 5, was 4.
 | 
						|
  setMinimumJumpTableEntries(5);
 | 
						|
 | 
						|
  setOperationAction(ISD::BR_CC, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::BR_CC, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::BR_CC, MVT::i1, Expand);
 | 
						|
  setOperationAction(ISD::BR_CC, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::BR_CC, MVT::i64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
 | 
						|
 | 
						|
  setOperationAction(ISD::FSIN, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FCOS, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FREM, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FSIN, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FCOS, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FREM, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
 | 
						|
 | 
						|
  // In V4, we have double word add/sub with carry. The problem with
 | 
						|
  // modelling this instruction is that it produces 2 results - Rdd and Px.
 | 
						|
  // To model update of Px, we will have to use Defs[p0..p3] which will
 | 
						|
  // cause any predicate live range to spill. So, we pretend we dont't
 | 
						|
  // have these instructions.
 | 
						|
  setOperationAction(ISD::ADDE, MVT::i8, Expand);
 | 
						|
  setOperationAction(ISD::ADDE, MVT::i16, Expand);
 | 
						|
  setOperationAction(ISD::ADDE, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::ADDE, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::SUBE, MVT::i8, Expand);
 | 
						|
  setOperationAction(ISD::SUBE, MVT::i16, Expand);
 | 
						|
  setOperationAction(ISD::SUBE, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SUBE, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::ADDC, MVT::i8, Expand);
 | 
						|
  setOperationAction(ISD::ADDC, MVT::i16, Expand);
 | 
						|
  setOperationAction(ISD::ADDC, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::ADDC, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::SUBC, MVT::i8, Expand);
 | 
						|
  setOperationAction(ISD::SUBC, MVT::i16, Expand);
 | 
						|
  setOperationAction(ISD::SUBC, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SUBC, MVT::i64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::CTPOP, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::CTTZ, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::CTTZ, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::CTLZ, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::CTLZ, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::ROTL, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::ROTR, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::BSWAP, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | 
						|
  setOperationAction(ISD::FPOW, MVT::f64, Expand);
 | 
						|
  setOperationAction(ISD::FPOW, MVT::f32, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | 
						|
  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
 | 
						|
  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
 | 
						|
 | 
						|
  if (Subtarget.isSubtargetV2()) {
 | 
						|
    setExceptionPointerRegister(Hexagon::R20);
 | 
						|
    setExceptionSelectorRegister(Hexagon::R21);
 | 
						|
  } else {
 | 
						|
    setExceptionPointerRegister(Hexagon::R0);
 | 
						|
    setExceptionSelectorRegister(Hexagon::R1);
 | 
						|
  }
 | 
						|
 | 
						|
  // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
 | 
						|
  setOperationAction(ISD::VASTART, MVT::Other, Custom);
 | 
						|
 | 
						|
  // Use the default implementation.
 | 
						|
  setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::VAEND, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
 | 
						|
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
 | 
						|
 | 
						|
  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
 | 
						|
  setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
 | 
						|
 | 
						|
  setMinFunctionAlignment(2);
 | 
						|
 | 
						|
  // Needed for DYNAMIC_STACKALLOC expansion.
 | 
						|
  const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(
 | 
						|
      TM.getSubtargetImpl()->getRegisterInfo());
 | 
						|
  setStackPointerRegisterToSaveRestore(QRI->getStackRegister());
 | 
						|
  setSchedulingPreference(Sched::VLIW);
 | 
						|
}
 | 
						|
 | 
						|
const char*
 | 
						|
HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | 
						|
  switch (Opcode) {
 | 
						|
    default: return nullptr;
 | 
						|
    case HexagonISD::CONST32:     return "HexagonISD::CONST32";
 | 
						|
    case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
 | 
						|
    case HexagonISD::CONST32_Int_Real: return "HexagonISD::CONST32_Int_Real";
 | 
						|
    case HexagonISD::ADJDYNALLOC: return "HexagonISD::ADJDYNALLOC";
 | 
						|
    case HexagonISD::CMPICC:      return "HexagonISD::CMPICC";
 | 
						|
    case HexagonISD::CMPFCC:      return "HexagonISD::CMPFCC";
 | 
						|
    case HexagonISD::BRICC:       return "HexagonISD::BRICC";
 | 
						|
    case HexagonISD::BRFCC:       return "HexagonISD::BRFCC";
 | 
						|
    case HexagonISD::SELECT_ICC:  return "HexagonISD::SELECT_ICC";
 | 
						|
    case HexagonISD::SELECT_FCC:  return "HexagonISD::SELECT_FCC";
 | 
						|
    case HexagonISD::Hi:          return "HexagonISD::Hi";
 | 
						|
    case HexagonISD::Lo:          return "HexagonISD::Lo";
 | 
						|
    case HexagonISD::FTOI:        return "HexagonISD::FTOI";
 | 
						|
    case HexagonISD::ITOF:        return "HexagonISD::ITOF";
 | 
						|
    case HexagonISD::CALL:        return "HexagonISD::CALL";
 | 
						|
    case HexagonISD::RET_FLAG:    return "HexagonISD::RET_FLAG";
 | 
						|
    case HexagonISD::BR_JT:       return "HexagonISD::BR_JT";
 | 
						|
    case HexagonISD::TC_RETURN:   return "HexagonISD::TC_RETURN";
 | 
						|
  case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | 
						|
  EVT MTy1 = EVT::getEVT(Ty1);
 | 
						|
  EVT MTy2 = EVT::getEVT(Ty2);
 | 
						|
  if (!MTy1.isSimple() || !MTy2.isSimple()) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return ((MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32));
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
 | 
						|
  if (!VT1.isSimple() || !VT2.isSimple()) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return ((VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32));
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
 | 
						|
  // Assuming the caller does not have either a signext or zeroext modifier, and
 | 
						|
  // only one value is accepted, any reasonable truncation is allowed.
 | 
						|
  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: in principle up to 64-bit could be made safe, but it would be very
 | 
						|
  // fragile at the moment: any support for multiple value returns would be
 | 
						|
  // liable to disallow tail calls involving i64 -> iN truncation in many cases.
 | 
						|
  return Ty1->getPrimitiveSizeInBits() <= 32;
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  SDValue Chain     = Op.getOperand(0);
 | 
						|
  SDValue Offset    = Op.getOperand(1);
 | 
						|
  SDValue Handler   = Op.getOperand(2);
 | 
						|
  SDLoc dl(Op);
 | 
						|
 | 
						|
  // Mark function as containing a call to EH_RETURN.
 | 
						|
  HexagonMachineFunctionInfo *FuncInfo =
 | 
						|
    DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
 | 
						|
  FuncInfo->setHasEHReturn();
 | 
						|
 | 
						|
  unsigned OffsetReg = Hexagon::R28;
 | 
						|
 | 
						|
  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(),
 | 
						|
                                  DAG.getRegister(Hexagon::R30, getPointerTy()),
 | 
						|
                                  DAG.getIntPtrConstant(4));
 | 
						|
  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
 | 
						|
                       false, false, 0);
 | 
						|
  Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
 | 
						|
 | 
						|
  // Not needed we already use it as explict input to EH_RETURN.
 | 
						|
  // MF.getRegInfo().addLiveOut(OffsetReg);
 | 
						|
 | 
						|
  return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
    default: llvm_unreachable("Should not custom lower this!");
 | 
						|
    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | 
						|
    case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
 | 
						|
      // Frame & Return address.  Currently unimplemented.
 | 
						|
    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
 | 
						|
    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
 | 
						|
    case ISD::GlobalTLSAddress:
 | 
						|
                          llvm_unreachable("TLS not implemented for Hexagon.");
 | 
						|
    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
 | 
						|
    case ISD::GlobalAddress:      return LowerGLOBALADDRESS(Op, DAG);
 | 
						|
    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
 | 
						|
    case ISD::VASTART:            return LowerVASTART(Op, DAG);
 | 
						|
    case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
 | 
						|
 | 
						|
    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
 | 
						|
    case ISD::SELECT:             return Op;
 | 
						|
    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | 
						|
    case ISD::INLINEASM:          return LowerINLINEASM(Op, DAG);
 | 
						|
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                           Hexagon Scheduler Hooks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
MachineBasicBlock *
 | 
						|
HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | 
						|
                                                   MachineBasicBlock *BB)
 | 
						|
const {
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
    case Hexagon::ADJDYNALLOC: {
 | 
						|
      MachineFunction *MF = BB->getParent();
 | 
						|
      HexagonMachineFunctionInfo *FuncInfo =
 | 
						|
        MF->getInfo<HexagonMachineFunctionInfo>();
 | 
						|
      FuncInfo->addAllocaAdjustInst(MI);
 | 
						|
      return BB;
 | 
						|
    }
 | 
						|
    default: llvm_unreachable("Unexpected instr type to insert");
 | 
						|
  } // switch
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Inline Assembly Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
std::pair<unsigned, const TargetRegisterClass*>
 | 
						|
HexagonTargetLowering::getRegForInlineAsmConstraint(const
 | 
						|
                                                    std::string &Constraint,
 | 
						|
                                                    MVT VT) const {
 | 
						|
  if (Constraint.size() == 1) {
 | 
						|
    switch (Constraint[0]) {
 | 
						|
    case 'r':   // R0-R31
 | 
						|
       switch (VT.SimpleTy) {
 | 
						|
       default:
 | 
						|
         llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
 | 
						|
       case MVT::i32:
 | 
						|
       case MVT::i16:
 | 
						|
       case MVT::i8:
 | 
						|
       case MVT::f32:
 | 
						|
         return std::make_pair(0U, &Hexagon::IntRegsRegClass);
 | 
						|
       case MVT::i64:
 | 
						|
       case MVT::f64:
 | 
						|
         return std::make_pair(0U, &Hexagon::DoubleRegsRegClass);
 | 
						|
      }
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unknown asm register class");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | 
						|
}
 | 
						|
 | 
						|
/// isFPImmLegal - Returns true if the target can instruction select the
 | 
						|
/// specified FP immediate natively. If false, the legalizer will
 | 
						|
/// materialize the FP immediate as a load from a constant pool.
 | 
						|
bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | 
						|
  return TM.getSubtarget<HexagonSubtarget>().hasV5TOps();
 | 
						|
}
 | 
						|
 | 
						|
/// isLegalAddressingMode - Return true if the addressing mode represented by
 | 
						|
/// AM is legal for this target, for a load/store of the specified type.
 | 
						|
bool HexagonTargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | 
						|
                                                  Type *Ty) const {
 | 
						|
  // Allows a signed-extended 11-bit immediate field.
 | 
						|
  if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // No global is ever allowed as a base.
 | 
						|
  if (AM.BaseGV) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  int Scale = AM.Scale;
 | 
						|
  if (Scale < 0) Scale = -Scale;
 | 
						|
  switch (Scale) {
 | 
						|
  case 0:  // No scale reg, "r+i", "r", or just "i".
 | 
						|
    break;
 | 
						|
  default: // No scaled addressing mode.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isLegalICmpImmediate - Return true if the specified immediate is legal
 | 
						|
/// icmp immediate, that is the target has icmp instructions which can compare
 | 
						|
/// a register against the immediate without having to materialize the
 | 
						|
/// immediate into a register.
 | 
						|
bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | 
						|
  return Imm >= -512 && Imm <= 511;
 | 
						|
}
 | 
						|
 | 
						|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | 
						|
/// for tail call optimization. Targets which want to do tail call
 | 
						|
/// optimization should implement this function.
 | 
						|
bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
 | 
						|
                                 SDValue Callee,
 | 
						|
                                 CallingConv::ID CalleeCC,
 | 
						|
                                 bool isVarArg,
 | 
						|
                                 bool isCalleeStructRet,
 | 
						|
                                 bool isCallerStructRet,
 | 
						|
                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
 | 
						|
                                 const SmallVectorImpl<SDValue> &OutVals,
 | 
						|
                                 const SmallVectorImpl<ISD::InputArg> &Ins,
 | 
						|
                                 SelectionDAG& DAG) const {
 | 
						|
  const Function *CallerF = DAG.getMachineFunction().getFunction();
 | 
						|
  CallingConv::ID CallerCC = CallerF->getCallingConv();
 | 
						|
  bool CCMatch = CallerCC == CalleeCC;
 | 
						|
 | 
						|
  // ***************************************************************************
 | 
						|
  //  Look for obvious safe cases to perform tail call optimization that do not
 | 
						|
  //  require ABI changes.
 | 
						|
  // ***************************************************************************
 | 
						|
 | 
						|
  // If this is a tail call via a function pointer, then don't do it!
 | 
						|
  if (!(dyn_cast<GlobalAddressSDNode>(Callee))
 | 
						|
      && !(dyn_cast<ExternalSymbolSDNode>(Callee))) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Do not optimize if the calling conventions do not match.
 | 
						|
  if (!CCMatch)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not tail call optimize vararg calls.
 | 
						|
  if (isVarArg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Also avoid tail call optimization if either caller or callee uses struct
 | 
						|
  // return semantics.
 | 
						|
  if (isCalleeStructRet || isCallerStructRet)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // In addition to the cases above, we also disable Tail Call Optimization if
 | 
						|
  // the calling convention code that at least one outgoing argument needs to
 | 
						|
  // go on the stack. We cannot check that here because at this point that
 | 
						|
  // information is not available.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Return true when the given node fits in a positive half word.
 | 
						|
bool llvm::isPositiveHalfWord(SDNode *N) {
 | 
						|
  ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
 | 
						|
  if (CN && CN->getSExtValue() > 0 && isInt<16>(CN->getSExtValue()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  switch (N->getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case ISD::SIGN_EXTEND_INREG:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 |