mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	information and update all callers. No functional change. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@214781 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			344 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			344 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the pass that finds instructions that can be
 | 
						|
// re-written as LEA instructions in order to reduce pipeline delays.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "x86-fixup-LEAs"
 | 
						|
 | 
						|
STATISTIC(NumLEAs, "Number of LEA instructions created");
 | 
						|
 | 
						|
namespace {
 | 
						|
class FixupLEAPass : public MachineFunctionPass {
 | 
						|
  enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
 | 
						|
  static char ID;
 | 
						|
  /// \brief Loop over all of the instructions in the basic block
 | 
						|
  /// replacing applicable instructions with LEA instructions,
 | 
						|
  /// where appropriate.
 | 
						|
  bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
 | 
						|
 | 
						|
  const char *getPassName() const override { return "X86 LEA Fixup"; }
 | 
						|
 | 
						|
  /// \brief Given a machine register, look for the instruction
 | 
						|
  /// which writes it in the current basic block. If found,
 | 
						|
  /// try to replace it with an equivalent LEA instruction.
 | 
						|
  /// If replacement succeeds, then also process the the newly created
 | 
						|
  /// instruction.
 | 
						|
  void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
 | 
						|
                    MachineFunction::iterator MFI);
 | 
						|
 | 
						|
  /// \brief Given a memory access or LEA instruction
 | 
						|
  /// whose address mode uses a base and/or index register, look for
 | 
						|
  /// an opportunity to replace the instruction which sets the base or index
 | 
						|
  /// register with an equivalent LEA instruction.
 | 
						|
  void processInstruction(MachineBasicBlock::iterator &I,
 | 
						|
                          MachineFunction::iterator MFI);
 | 
						|
 | 
						|
  /// \brief Given a LEA instruction which is unprofitable
 | 
						|
  /// on Silvermont try to replace it with an equivalent ADD instruction
 | 
						|
  void processInstructionForSLM(MachineBasicBlock::iterator &I,
 | 
						|
                                MachineFunction::iterator MFI);
 | 
						|
 | 
						|
  /// \brief Determine if an instruction references a machine register
 | 
						|
  /// and, if so, whether it reads or writes the register.
 | 
						|
  RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
 | 
						|
 | 
						|
  /// \brief Step backwards through a basic block, looking
 | 
						|
  /// for an instruction which writes a register within
 | 
						|
  /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
 | 
						|
  MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
 | 
						|
                                              MachineBasicBlock::iterator &I,
 | 
						|
                                              MachineFunction::iterator MFI);
 | 
						|
 | 
						|
  /// \brief if an instruction can be converted to an
 | 
						|
  /// equivalent LEA, insert the new instruction into the basic block
 | 
						|
  /// and return a pointer to it. Otherwise, return zero.
 | 
						|
  MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
 | 
						|
                                   MachineBasicBlock::iterator &MBBI) const;
 | 
						|
 | 
						|
public:
 | 
						|
  FixupLEAPass() : MachineFunctionPass(ID) {}
 | 
						|
 | 
						|
  /// \brief Loop over all of the basic blocks,
 | 
						|
  /// replacing instructions by equivalent LEA instructions
 | 
						|
  /// if needed and when possible.
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
private:
 | 
						|
  MachineFunction *MF;
 | 
						|
  const TargetMachine *TM;
 | 
						|
  const X86InstrInfo *TII; // Machine instruction info.
 | 
						|
};
 | 
						|
char FixupLEAPass::ID = 0;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *
 | 
						|
FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
 | 
						|
                                 MachineBasicBlock::iterator &MBBI) const {
 | 
						|
  MachineInstr *MI = MBBI;
 | 
						|
  MachineInstr *NewMI;
 | 
						|
  switch (MI->getOpcode()) {
 | 
						|
  case X86::MOV32rr:
 | 
						|
  case X86::MOV64rr: {
 | 
						|
    const MachineOperand &Src = MI->getOperand(1);
 | 
						|
    const MachineOperand &Dest = MI->getOperand(0);
 | 
						|
    NewMI = BuildMI(*MF, MI->getDebugLoc(),
 | 
						|
                    TII->get(MI->getOpcode() == X86::MOV32rr ? X86::LEA32r
 | 
						|
                                                             : X86::LEA64r))
 | 
						|
                .addOperand(Dest)
 | 
						|
                .addOperand(Src)
 | 
						|
                .addImm(1)
 | 
						|
                .addReg(0)
 | 
						|
                .addImm(0)
 | 
						|
                .addReg(0);
 | 
						|
    MFI->insert(MBBI, NewMI); // Insert the new inst
 | 
						|
    return NewMI;
 | 
						|
  }
 | 
						|
  case X86::ADD64ri32:
 | 
						|
  case X86::ADD64ri8:
 | 
						|
  case X86::ADD64ri32_DB:
 | 
						|
  case X86::ADD64ri8_DB:
 | 
						|
  case X86::ADD32ri:
 | 
						|
  case X86::ADD32ri8:
 | 
						|
  case X86::ADD32ri_DB:
 | 
						|
  case X86::ADD32ri8_DB:
 | 
						|
  case X86::ADD16ri:
 | 
						|
  case X86::ADD16ri8:
 | 
						|
  case X86::ADD16ri_DB:
 | 
						|
  case X86::ADD16ri8_DB:
 | 
						|
    if (!MI->getOperand(2).isImm()) {
 | 
						|
      // convertToThreeAddress will call getImm()
 | 
						|
      // which requires isImm() to be true
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case X86::ADD16rr:
 | 
						|
  case X86::ADD16rr_DB:
 | 
						|
    if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
 | 
						|
      // if src1 != src2, then convertToThreeAddress will
 | 
						|
      // need to create a Virtual register, which we cannot do
 | 
						|
      // after register allocation.
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return TII->convertToThreeAddress(MFI, MBBI, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
 | 
						|
 | 
						|
bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
 | 
						|
  MF = &Func;
 | 
						|
  TM = &Func.getTarget();
 | 
						|
  const X86Subtarget &ST = TM->getSubtarget<X86Subtarget>();
 | 
						|
  if (!ST.LEAusesAG() && !ST.slowLEA())
 | 
						|
    return false;
 | 
						|
 | 
						|
  TII =
 | 
						|
      static_cast<const X86InstrInfo *>(TM->getSubtargetImpl()->getInstrInfo());
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Start X86FixupLEAs\n";);
 | 
						|
  // Process all basic blocks.
 | 
						|
  for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
 | 
						|
    processBasicBlock(Func, I);
 | 
						|
  DEBUG(dbgs() << "End X86FixupLEAs\n";);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FixupLEAPass::RegUsageState
 | 
						|
FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
 | 
						|
  RegUsageState RegUsage = RU_NotUsed;
 | 
						|
  MachineInstr *MI = I;
 | 
						|
 | 
						|
  for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
 | 
						|
    MachineOperand &opnd = MI->getOperand(i);
 | 
						|
    if (opnd.isReg() && opnd.getReg() == p.getReg()) {
 | 
						|
      if (opnd.isDef())
 | 
						|
        return RU_Write;
 | 
						|
      RegUsage = RU_Read;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return RegUsage;
 | 
						|
}
 | 
						|
 | 
						|
/// getPreviousInstr - Given a reference to an instruction in a basic
 | 
						|
/// block, return a reference to the previous instruction in the block,
 | 
						|
/// wrapping around to the last instruction of the block if the block
 | 
						|
/// branches to itself.
 | 
						|
static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
 | 
						|
                                    MachineFunction::iterator MFI) {
 | 
						|
  if (I == MFI->begin()) {
 | 
						|
    if (MFI->isPredecessor(MFI)) {
 | 
						|
      I = --MFI->end();
 | 
						|
      return true;
 | 
						|
    } else
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  --I;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock::iterator
 | 
						|
FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
 | 
						|
                              MachineFunction::iterator MFI) {
 | 
						|
  int InstrDistance = 1;
 | 
						|
  MachineBasicBlock::iterator CurInst;
 | 
						|
  static const int INSTR_DISTANCE_THRESHOLD = 5;
 | 
						|
 | 
						|
  CurInst = I;
 | 
						|
  bool Found;
 | 
						|
  Found = getPreviousInstr(CurInst, MFI);
 | 
						|
  while (Found && I != CurInst) {
 | 
						|
    if (CurInst->isCall() || CurInst->isInlineAsm())
 | 
						|
      break;
 | 
						|
    if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
 | 
						|
      break; // too far back to make a difference
 | 
						|
    if (usesRegister(p, CurInst) == RU_Write) {
 | 
						|
      return CurInst;
 | 
						|
    }
 | 
						|
    InstrDistance += TII->getInstrLatency(
 | 
						|
        TM->getSubtargetImpl()->getInstrItineraryData(), CurInst);
 | 
						|
    Found = getPreviousInstr(CurInst, MFI);
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
 | 
						|
                                      MachineFunction::iterator MFI) {
 | 
						|
  // Process a load, store, or LEA instruction.
 | 
						|
  MachineInstr *MI = I;
 | 
						|
  int opcode = MI->getOpcode();
 | 
						|
  const MCInstrDesc &Desc = MI->getDesc();
 | 
						|
  int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
 | 
						|
  if (AddrOffset >= 0) {
 | 
						|
    AddrOffset += X86II::getOperandBias(Desc);
 | 
						|
    MachineOperand &p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
 | 
						|
    if (p.isReg() && p.getReg() != X86::ESP) {
 | 
						|
      seekLEAFixup(p, I, MFI);
 | 
						|
    }
 | 
						|
    MachineOperand &q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
 | 
						|
    if (q.isReg() && q.getReg() != X86::ESP) {
 | 
						|
      seekLEAFixup(q, I, MFI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void FixupLEAPass::seekLEAFixup(MachineOperand &p,
 | 
						|
                                MachineBasicBlock::iterator &I,
 | 
						|
                                MachineFunction::iterator MFI) {
 | 
						|
  MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
 | 
						|
  if (MBI) {
 | 
						|
    MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
 | 
						|
    if (NewMI) {
 | 
						|
      ++NumLEAs;
 | 
						|
      DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
 | 
						|
      // now to replace with an equivalent LEA...
 | 
						|
      DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
 | 
						|
      MFI->erase(MBI);
 | 
						|
      MachineBasicBlock::iterator J =
 | 
						|
          static_cast<MachineBasicBlock::iterator>(NewMI);
 | 
						|
      processInstruction(J, MFI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
 | 
						|
                                            MachineFunction::iterator MFI) {
 | 
						|
  MachineInstr *MI = I;
 | 
						|
  const int opcode = MI->getOpcode();
 | 
						|
  if (opcode != X86::LEA16r && opcode != X86::LEA32r && opcode != X86::LEA64r &&
 | 
						|
      opcode != X86::LEA64_32r)
 | 
						|
    return;
 | 
						|
  if (MI->getOperand(5).getReg() != 0 || !MI->getOperand(4).isImm() ||
 | 
						|
      !TII->isSafeToClobberEFLAGS(*MFI, I))
 | 
						|
    return;
 | 
						|
  const unsigned DstR = MI->getOperand(0).getReg();
 | 
						|
  const unsigned SrcR1 = MI->getOperand(1).getReg();
 | 
						|
  const unsigned SrcR2 = MI->getOperand(3).getReg();
 | 
						|
  if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
 | 
						|
    return;
 | 
						|
  if (MI->getOperand(2).getImm() > 1)
 | 
						|
    return;
 | 
						|
  int addrr_opcode, addri_opcode;
 | 
						|
  switch (opcode) {
 | 
						|
  case X86::LEA16r:
 | 
						|
    addrr_opcode = X86::ADD16rr;
 | 
						|
    addri_opcode = X86::ADD16ri;
 | 
						|
    break;
 | 
						|
  case X86::LEA32r:
 | 
						|
    addrr_opcode = X86::ADD32rr;
 | 
						|
    addri_opcode = X86::ADD32ri;
 | 
						|
    break;
 | 
						|
  case X86::LEA64_32r:
 | 
						|
  case X86::LEA64r:
 | 
						|
    addrr_opcode = X86::ADD64rr;
 | 
						|
    addri_opcode = X86::ADD64ri32;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    assert(false && "Unexpected LEA instruction");
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
 | 
						|
  DEBUG(dbgs() << "FixLEA: Replaced by: ";);
 | 
						|
  MachineInstr *NewMI = nullptr;
 | 
						|
  const MachineOperand &Dst = MI->getOperand(0);
 | 
						|
  // Make ADD instruction for two registers writing to LEA's destination
 | 
						|
  if (SrcR1 != 0 && SrcR2 != 0) {
 | 
						|
    const MachineOperand &Src1 = MI->getOperand(SrcR1 == DstR ? 1 : 3);
 | 
						|
    const MachineOperand &Src2 = MI->getOperand(SrcR1 == DstR ? 3 : 1);
 | 
						|
    NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addrr_opcode))
 | 
						|
                .addOperand(Dst)
 | 
						|
                .addOperand(Src1)
 | 
						|
                .addOperand(Src2);
 | 
						|
    MFI->insert(I, NewMI);
 | 
						|
    DEBUG(NewMI->dump(););
 | 
						|
  }
 | 
						|
  // Make ADD instruction for immediate
 | 
						|
  if (MI->getOperand(4).getImm() != 0) {
 | 
						|
    const MachineOperand &SrcR = MI->getOperand(SrcR1 == DstR ? 1 : 3);
 | 
						|
    NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addri_opcode))
 | 
						|
                .addOperand(Dst)
 | 
						|
                .addOperand(SrcR)
 | 
						|
                .addImm(MI->getOperand(4).getImm());
 | 
						|
    MFI->insert(I, NewMI);
 | 
						|
    DEBUG(NewMI->dump(););
 | 
						|
  }
 | 
						|
  if (NewMI) {
 | 
						|
    MFI->erase(I);
 | 
						|
    I = static_cast<MachineBasicBlock::iterator>(NewMI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
 | 
						|
                                     MachineFunction::iterator MFI) {
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
 | 
						|
    if (TM->getSubtarget<X86Subtarget>().isSLM())
 | 
						|
      processInstructionForSLM(I, MFI);
 | 
						|
    else
 | 
						|
      processInstruction(I, MFI);
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 |