mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This requires a number of steps. 1) Move value_use_iterator into the Value class as an implementation detail 2) Change it to actually be a *Use* iterator rather than a *User* iterator. 3) Add an adaptor which is a User iterator that always looks through the Use to the User. 4) Wrap these in Value::use_iterator and Value::user_iterator typedefs. 5) Add the range adaptors as Value::uses() and Value::users(). 6) Update *all* of the callers to correctly distinguish between whether they wanted a use_iterator (and to explicitly dig out the User when needed), or a user_iterator which makes the Use itself totally opaque. Because #6 requires churning essentially everything that walked the Use-Def chains, I went ahead and added all of the range adaptors and switched them to range-based loops where appropriate. Also because the renaming requires at least churning every line of code, it didn't make any sense to split these up into multiple commits -- all of which would touch all of the same lies of code. The result is still not quite optimal. The Value::use_iterator is a nice regular iterator, but Value::user_iterator is an iterator over User*s rather than over the User objects themselves. As a consequence, it fits a bit awkwardly into the range-based world and it has the weird extra-dereferencing 'operator->' that so many of our iterators have. I think this could be fixed by providing something which transforms a range of T&s into a range of T*s, but that *can* be separated into another patch, and it isn't yet 100% clear whether this is the right move. However, this change gets us most of the benefit and cleans up a substantial amount of code around Use and User. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@203364 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			347 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			347 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements an abstract sparse conditional propagation algorithm,
 | |
| // modeled after SCCP, but with a customizable lattice function.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "sparseprop"
 | |
| #include "llvm/Analysis/SparsePropagation.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                  AbstractLatticeFunction Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| AbstractLatticeFunction::~AbstractLatticeFunction() {}
 | |
| 
 | |
| /// PrintValue - Render the specified lattice value to the specified stream.
 | |
| void AbstractLatticeFunction::PrintValue(LatticeVal V, raw_ostream &OS) {
 | |
|   if (V == UndefVal)
 | |
|     OS << "undefined";
 | |
|   else if (V == OverdefinedVal)
 | |
|     OS << "overdefined";
 | |
|   else if (V == UntrackedVal)
 | |
|     OS << "untracked";
 | |
|   else
 | |
|     OS << "unknown lattice value";
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          SparseSolver Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// getOrInitValueState - Return the LatticeVal object that corresponds to the
 | |
| /// value, initializing the value's state if it hasn't been entered into the
 | |
| /// map yet.   This function is necessary because not all values should start
 | |
| /// out in the underdefined state... Arguments should be overdefined, and
 | |
| /// constants should be marked as constants.
 | |
| ///
 | |
| SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) {
 | |
|   DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V);
 | |
|   if (I != ValueState.end()) return I->second;  // Common case, in the map
 | |
|   
 | |
|   LatticeVal LV;
 | |
|   if (LatticeFunc->IsUntrackedValue(V))
 | |
|     return LatticeFunc->getUntrackedVal();
 | |
|   else if (Constant *C = dyn_cast<Constant>(V))
 | |
|     LV = LatticeFunc->ComputeConstant(C);
 | |
|   else if (Argument *A = dyn_cast<Argument>(V))
 | |
|     LV = LatticeFunc->ComputeArgument(A);
 | |
|   else if (!isa<Instruction>(V))
 | |
|     // All other non-instructions are overdefined.
 | |
|     LV = LatticeFunc->getOverdefinedVal();
 | |
|   else
 | |
|     // All instructions are underdefined by default.
 | |
|     LV = LatticeFunc->getUndefVal();
 | |
|   
 | |
|   // If this value is untracked, don't add it to the map.
 | |
|   if (LV == LatticeFunc->getUntrackedVal())
 | |
|     return LV;
 | |
|   return ValueState[V] = LV;
 | |
| }
 | |
| 
 | |
| /// UpdateState - When the state for some instruction is potentially updated,
 | |
| /// this function notices and adds I to the worklist if needed.
 | |
| void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) {
 | |
|   DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst);
 | |
|   if (I != ValueState.end() && I->second == V)
 | |
|     return;  // No change.
 | |
|   
 | |
|   // An update.  Visit uses of I.
 | |
|   ValueState[&Inst] = V;
 | |
|   InstWorkList.push_back(&Inst);
 | |
| }
 | |
| 
 | |
| /// MarkBlockExecutable - This method can be used by clients to mark all of
 | |
| /// the blocks that are known to be intrinsically live in the processed unit.
 | |
| void SparseSolver::MarkBlockExecutable(BasicBlock *BB) {
 | |
|   DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
 | |
|   BBExecutable.insert(BB);   // Basic block is executable!
 | |
|   BBWorkList.push_back(BB);  // Add the block to the work list!
 | |
| }
 | |
| 
 | |
| /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
 | |
| /// work list if it is not already executable...
 | |
| void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
 | |
|   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
 | |
|     return;  // This edge is already known to be executable!
 | |
|   
 | |
|   DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
 | |
|         << " -> " << Dest->getName() << "\n");
 | |
| 
 | |
|   if (BBExecutable.count(Dest)) {
 | |
|     // The destination is already executable, but we just made an edge
 | |
|     // feasible that wasn't before.  Revisit the PHI nodes in the block
 | |
|     // because they have potentially new operands.
 | |
|     for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
 | |
|       visitPHINode(*cast<PHINode>(I));
 | |
|     
 | |
|   } else {
 | |
|     MarkBlockExecutable(Dest);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getFeasibleSuccessors - Return a vector of booleans to indicate which
 | |
| /// successors are reachable from a given terminator instruction.
 | |
| void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI,
 | |
|                                          SmallVectorImpl<bool> &Succs,
 | |
|                                          bool AggressiveUndef) {
 | |
|   Succs.resize(TI.getNumSuccessors());
 | |
|   if (TI.getNumSuccessors() == 0) return;
 | |
|   
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
 | |
|     if (BI->isUnconditional()) {
 | |
|       Succs[0] = true;
 | |
|       return;
 | |
|     }
 | |
|     
 | |
|     LatticeVal BCValue;
 | |
|     if (AggressiveUndef)
 | |
|       BCValue = getOrInitValueState(BI->getCondition());
 | |
|     else
 | |
|       BCValue = getLatticeState(BI->getCondition());
 | |
|     
 | |
|     if (BCValue == LatticeFunc->getOverdefinedVal() ||
 | |
|         BCValue == LatticeFunc->getUntrackedVal()) {
 | |
|       // Overdefined condition variables can branch either way.
 | |
|       Succs[0] = Succs[1] = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If undefined, neither is feasible yet.
 | |
|     if (BCValue == LatticeFunc->getUndefVal())
 | |
|       return;
 | |
| 
 | |
|     Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
 | |
|     if (C == 0 || !isa<ConstantInt>(C)) {
 | |
|       // Non-constant values can go either way.
 | |
|       Succs[0] = Succs[1] = true;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Constant condition variables mean the branch can only go a single way
 | |
|     Succs[C->isNullValue()] = true;
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (isa<InvokeInst>(TI)) {
 | |
|     // Invoke instructions successors are always executable.
 | |
|     // TODO: Could ask the lattice function if the value can throw.
 | |
|     Succs[0] = Succs[1] = true;
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   if (isa<IndirectBrInst>(TI)) {
 | |
|     Succs.assign(Succs.size(), true);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   SwitchInst &SI = cast<SwitchInst>(TI);
 | |
|   LatticeVal SCValue;
 | |
|   if (AggressiveUndef)
 | |
|     SCValue = getOrInitValueState(SI.getCondition());
 | |
|   else
 | |
|     SCValue = getLatticeState(SI.getCondition());
 | |
|   
 | |
|   if (SCValue == LatticeFunc->getOverdefinedVal() ||
 | |
|       SCValue == LatticeFunc->getUntrackedVal()) {
 | |
|     // All destinations are executable!
 | |
|     Succs.assign(TI.getNumSuccessors(), true);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // If undefined, neither is feasible yet.
 | |
|   if (SCValue == LatticeFunc->getUndefVal())
 | |
|     return;
 | |
|   
 | |
|   Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
 | |
|   if (C == 0 || !isa<ConstantInt>(C)) {
 | |
|     // All destinations are executable!
 | |
|     Succs.assign(TI.getNumSuccessors(), true);
 | |
|     return;
 | |
|   }
 | |
|   SwitchInst::CaseIt Case = SI.findCaseValue(cast<ConstantInt>(C));
 | |
|   Succs[Case.getSuccessorIndex()] = true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isEdgeFeasible - Return true if the control flow edge from the 'From'
 | |
| /// basic block to the 'To' basic block is currently feasible...
 | |
| bool SparseSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To,
 | |
|                                   bool AggressiveUndef) {
 | |
|   SmallVector<bool, 16> SuccFeasible;
 | |
|   TerminatorInst *TI = From->getTerminator();
 | |
|   getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
 | |
|   
 | |
|   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | |
|     if (TI->getSuccessor(i) == To && SuccFeasible[i])
 | |
|       return true;
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void SparseSolver::visitTerminatorInst(TerminatorInst &TI) {
 | |
|   SmallVector<bool, 16> SuccFeasible;
 | |
|   getFeasibleSuccessors(TI, SuccFeasible, true);
 | |
|   
 | |
|   BasicBlock *BB = TI.getParent();
 | |
|   
 | |
|   // Mark all feasible successors executable...
 | |
|   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
 | |
|     if (SuccFeasible[i])
 | |
|       markEdgeExecutable(BB, TI.getSuccessor(i));
 | |
| }
 | |
| 
 | |
| void SparseSolver::visitPHINode(PHINode &PN) {
 | |
|   // The lattice function may store more information on a PHINode than could be
 | |
|   // computed from its incoming values.  For example, SSI form stores its sigma
 | |
|   // functions as PHINodes with a single incoming value.
 | |
|   if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
 | |
|     LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this);
 | |
|     if (IV != LatticeFunc->getUntrackedVal())
 | |
|       UpdateState(PN, IV);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   LatticeVal PNIV = getOrInitValueState(&PN);
 | |
|   LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
 | |
|   
 | |
|   // If this value is already overdefined (common) just return.
 | |
|   if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
 | |
|     return;  // Quick exit
 | |
|   
 | |
|   // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
 | |
|   // and slow us down a lot.  Just mark them overdefined.
 | |
|   if (PN.getNumIncomingValues() > 64) {
 | |
|     UpdateState(PN, Overdefined);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // Look at all of the executable operands of the PHI node.  If any of them
 | |
|   // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
 | |
|   // transfer function to give us the merge of the incoming values.
 | |
|   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     // If the edge is not yet known to be feasible, it doesn't impact the PHI.
 | |
|     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
 | |
|       continue;
 | |
|     
 | |
|     // Merge in this value.
 | |
|     LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i));
 | |
|     if (OpVal != PNIV)
 | |
|       PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
 | |
|     
 | |
|     if (PNIV == Overdefined)
 | |
|       break;  // Rest of input values don't matter.
 | |
|   }
 | |
| 
 | |
|   // Update the PHI with the compute value, which is the merge of the inputs.
 | |
|   UpdateState(PN, PNIV);
 | |
| }
 | |
| 
 | |
| 
 | |
| void SparseSolver::visitInst(Instruction &I) {
 | |
|   // PHIs are handled by the propagation logic, they are never passed into the
 | |
|   // transfer functions.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(&I))
 | |
|     return visitPHINode(*PN);
 | |
|   
 | |
|   // Otherwise, ask the transfer function what the result is.  If this is
 | |
|   // something that we care about, remember it.
 | |
|   LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this);
 | |
|   if (IV != LatticeFunc->getUntrackedVal())
 | |
|     UpdateState(I, IV);
 | |
|   
 | |
|   if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
 | |
|     visitTerminatorInst(*TI);
 | |
| }
 | |
| 
 | |
| void SparseSolver::Solve(Function &F) {
 | |
|   MarkBlockExecutable(&F.getEntryBlock());
 | |
|   
 | |
|   // Process the work lists until they are empty!
 | |
|   while (!BBWorkList.empty() || !InstWorkList.empty()) {
 | |
|     // Process the instruction work list.
 | |
|     while (!InstWorkList.empty()) {
 | |
|       Instruction *I = InstWorkList.back();
 | |
|       InstWorkList.pop_back();
 | |
| 
 | |
|       DEBUG(dbgs() << "\nPopped off I-WL: " << *I << "\n");
 | |
| 
 | |
|       // "I" got into the work list because it made a transition.  See if any
 | |
|       // users are both live and in need of updating.
 | |
|       for (User *U : I->users()) {
 | |
|         Instruction *UI = cast<Instruction>(U);
 | |
|         if (BBExecutable.count(UI->getParent()))   // Inst is executable?
 | |
|           visitInst(*UI);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Process the basic block work list.
 | |
|     while (!BBWorkList.empty()) {
 | |
|       BasicBlock *BB = BBWorkList.back();
 | |
|       BBWorkList.pop_back();
 | |
| 
 | |
|       DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
 | |
| 
 | |
|       // Notify all instructions in this basic block that they are newly
 | |
|       // executable.
 | |
|       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|         visitInst(*I);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SparseSolver::Print(Function &F, raw_ostream &OS) const {
 | |
|   OS << "\nFUNCTION: " << F.getName() << "\n";
 | |
|   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
 | |
|     if (!BBExecutable.count(BB))
 | |
|       OS << "INFEASIBLE: ";
 | |
|     OS << "\t";
 | |
|     if (BB->hasName())
 | |
|       OS << BB->getName() << ":\n";
 | |
|     else
 | |
|       OS << "; anon bb\n";
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|       LatticeFunc->PrintValue(getLatticeState(I), OS);
 | |
|       OS << *I << "\n";
 | |
|     }
 | |
|     
 | |
|     OS << "\n";
 | |
|   }
 | |
| }
 | |
| 
 |