mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@61715 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			364 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//=== llvm/Analysis/DominatorInternals.h - Dominator Calculation -*- C++ -*-==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
 | 
						|
#define LLVM_ANALYSIS_DOMINATOR_INTERNALS_H
 | 
						|
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// DominatorTree construction - This pass constructs immediate dominator
 | 
						|
// information for a flow-graph based on the algorithm described in this
 | 
						|
// document:
 | 
						|
//
 | 
						|
//   A Fast Algorithm for Finding Dominators in a Flowgraph
 | 
						|
//   T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
 | 
						|
//
 | 
						|
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
 | 
						|
// LINK, but it turns out that the theoretically slower O(n*log(n))
 | 
						|
// implementation is actually faster than the "efficient" algorithm (even for
 | 
						|
// large CFGs) because the constant overheads are substantially smaller.  The
 | 
						|
// lower-complexity version can be enabled with the following #define:
 | 
						|
//
 | 
						|
#define BALANCE_IDOM_TREE 0
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
template<class GraphT>
 | 
						|
unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
                 typename GraphT::NodeType* V, unsigned N) {
 | 
						|
  // This is more understandable as a recursive algorithm, but we can't use the
 | 
						|
  // recursive algorithm due to stack depth issues.  Keep it here for
 | 
						|
  // documentation purposes.
 | 
						|
#if 0
 | 
						|
  InfoRec &VInfo = DT.Info[DT.Roots[i]];
 | 
						|
  VInfo.DFSNum = VInfo.Semi = ++N;
 | 
						|
  VInfo.Label = V;
 | 
						|
 | 
						|
  Vertex.push_back(V);        // Vertex[n] = V;
 | 
						|
  //Info[V].Ancestor = 0;     // Ancestor[n] = 0
 | 
						|
  //Info[V].Child = 0;        // Child[v] = 0
 | 
						|
  VInfo.Size = 1;             // Size[v] = 1
 | 
						|
 | 
						|
  for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
 | 
						|
    InfoRec &SuccVInfo = DT.Info[*SI];
 | 
						|
    if (SuccVInfo.Semi == 0) {
 | 
						|
      SuccVInfo.Parent = V;
 | 
						|
      N = DTDFSPass(DT, *SI, N);
 | 
						|
    }
 | 
						|
  }
 | 
						|
#else
 | 
						|
  bool IsChilOfArtificialExit = (N != 0);
 | 
						|
 | 
						|
  std::vector<std::pair<typename GraphT::NodeType*,
 | 
						|
                        typename GraphT::ChildIteratorType> > Worklist;
 | 
						|
  Worklist.push_back(std::make_pair(V, GraphT::child_begin(V)));
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    typename GraphT::NodeType* BB = Worklist.back().first;
 | 
						|
    typename GraphT::ChildIteratorType NextSucc = Worklist.back().second;
 | 
						|
 | 
						|
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
 | 
						|
                                                                    DT.Info[BB];
 | 
						|
 | 
						|
    // First time we visited this BB?
 | 
						|
    if (NextSucc == GraphT::child_begin(BB)) {
 | 
						|
      BBInfo.DFSNum = BBInfo.Semi = ++N;
 | 
						|
      BBInfo.Label = BB;
 | 
						|
 | 
						|
      DT.Vertex.push_back(BB);       // Vertex[n] = V;
 | 
						|
      //BBInfo[V].Ancestor = 0;   // Ancestor[n] = 0
 | 
						|
      //BBInfo[V].Child = 0;      // Child[v] = 0
 | 
						|
      BBInfo.Size = 1;            // Size[v] = 1
 | 
						|
 | 
						|
      if (IsChilOfArtificialExit)
 | 
						|
        BBInfo.Parent = 1;
 | 
						|
 | 
						|
      IsChilOfArtificialExit = false;
 | 
						|
    }
 | 
						|
 | 
						|
    // store the DFS number of the current BB - the reference to BBInfo might
 | 
						|
    // get invalidated when processing the successors.
 | 
						|
    unsigned BBDFSNum = BBInfo.DFSNum;
 | 
						|
 | 
						|
    // If we are done with this block, remove it from the worklist.
 | 
						|
    if (NextSucc == GraphT::child_end(BB)) {
 | 
						|
      Worklist.pop_back();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Increment the successor number for the next time we get to it.
 | 
						|
    ++Worklist.back().second;
 | 
						|
    
 | 
						|
    // Visit the successor next, if it isn't already visited.
 | 
						|
    typename GraphT::NodeType* Succ = *NextSucc;
 | 
						|
 | 
						|
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &SuccVInfo =
 | 
						|
                                                                  DT.Info[Succ];
 | 
						|
    if (SuccVInfo.Semi == 0) {
 | 
						|
      SuccVInfo.Parent = BBDFSNum;
 | 
						|
      Worklist.push_back(std::make_pair(Succ, GraphT::child_begin(Succ)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
    return N;
 | 
						|
}
 | 
						|
 | 
						|
template<class GraphT>
 | 
						|
void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
              typename GraphT::NodeType *VIn) {
 | 
						|
  std::vector<typename GraphT::NodeType*> Work;
 | 
						|
  SmallPtrSet<typename GraphT::NodeType*, 32> Visited;
 | 
						|
  typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInVAInfo =
 | 
						|
                                      DT.Info[DT.Vertex[DT.Info[VIn].Ancestor]];
 | 
						|
 | 
						|
  if (VInVAInfo.Ancestor != 0)
 | 
						|
    Work.push_back(VIn);
 | 
						|
  
 | 
						|
  while (!Work.empty()) {
 | 
						|
    typename GraphT::NodeType* V = Work.back();
 | 
						|
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
 | 
						|
                                                                     DT.Info[V];
 | 
						|
    typename GraphT::NodeType* VAncestor = DT.Vertex[VInfo.Ancestor];
 | 
						|
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VAInfo =
 | 
						|
                                                             DT.Info[VAncestor];
 | 
						|
 | 
						|
    // Process Ancestor first
 | 
						|
    if (Visited.insert(VAncestor) &&
 | 
						|
        VAInfo.Ancestor != 0) {
 | 
						|
      Work.push_back(VAncestor);
 | 
						|
      continue;
 | 
						|
    } 
 | 
						|
    Work.pop_back(); 
 | 
						|
 | 
						|
    // Update VInfo based on Ancestor info
 | 
						|
    if (VAInfo.Ancestor == 0)
 | 
						|
      continue;
 | 
						|
    typename GraphT::NodeType* VAncestorLabel = VAInfo.Label;
 | 
						|
    typename GraphT::NodeType* VLabel = VInfo.Label;
 | 
						|
    if (DT.Info[VAncestorLabel].Semi < DT.Info[VLabel].Semi)
 | 
						|
      VInfo.Label = VAncestorLabel;
 | 
						|
    VInfo.Ancestor = VAInfo.Ancestor;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template<class GraphT>
 | 
						|
typename GraphT::NodeType* Eval(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
                                typename GraphT::NodeType *V) {
 | 
						|
  typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &VInfo =
 | 
						|
                                                                     DT.Info[V];
 | 
						|
#if !BALANCE_IDOM_TREE
 | 
						|
  // Higher-complexity but faster implementation
 | 
						|
  if (VInfo.Ancestor == 0)
 | 
						|
    return V;
 | 
						|
  Compress<GraphT>(DT, V);
 | 
						|
  return VInfo.Label;
 | 
						|
#else
 | 
						|
  // Lower-complexity but slower implementation
 | 
						|
  if (VInfo.Ancestor == 0)
 | 
						|
    return VInfo.Label;
 | 
						|
  Compress<GraphT>(DT, V);
 | 
						|
  GraphT::NodeType* VLabel = VInfo.Label;
 | 
						|
 | 
						|
  GraphT::NodeType* VAncestorLabel = DT.Info[VInfo.Ancestor].Label;
 | 
						|
  if (DT.Info[VAncestorLabel].Semi >= DT.Info[VLabel].Semi)
 | 
						|
    return VLabel;
 | 
						|
  else
 | 
						|
    return VAncestorLabel;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
template<class GraphT>
 | 
						|
void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
          unsigned DFSNumV, typename GraphT::NodeType* W,
 | 
						|
        typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo) {
 | 
						|
#if !BALANCE_IDOM_TREE
 | 
						|
  // Higher-complexity but faster implementation
 | 
						|
  WInfo.Ancestor = DFSNumV;
 | 
						|
#else
 | 
						|
  // Lower-complexity but slower implementation
 | 
						|
  GraphT::NodeType* WLabel = WInfo.Label;
 | 
						|
  unsigned WLabelSemi = DT.Info[WLabel].Semi;
 | 
						|
  GraphT::NodeType* S = W;
 | 
						|
  InfoRec *SInfo = &DT.Info[S];
 | 
						|
 | 
						|
  GraphT::NodeType* SChild = SInfo->Child;
 | 
						|
  InfoRec *SChildInfo = &DT.Info[SChild];
 | 
						|
 | 
						|
  while (WLabelSemi < DT.Info[SChildInfo->Label].Semi) {
 | 
						|
    GraphT::NodeType* SChildChild = SChildInfo->Child;
 | 
						|
    if (SInfo->Size+DT.Info[SChildChild].Size >= 2*SChildInfo->Size) {
 | 
						|
      SChildInfo->Ancestor = S;
 | 
						|
      SInfo->Child = SChild = SChildChild;
 | 
						|
      SChildInfo = &DT.Info[SChild];
 | 
						|
    } else {
 | 
						|
      SChildInfo->Size = SInfo->Size;
 | 
						|
      S = SInfo->Ancestor = SChild;
 | 
						|
      SInfo = SChildInfo;
 | 
						|
      SChild = SChildChild;
 | 
						|
      SChildInfo = &DT.Info[SChild];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DominatorTreeBase::InfoRec &VInfo = DT.Info[V];
 | 
						|
  SInfo->Label = WLabel;
 | 
						|
 | 
						|
  assert(V != W && "The optimization here will not work in this case!");
 | 
						|
  unsigned WSize = WInfo.Size;
 | 
						|
  unsigned VSize = (VInfo.Size += WSize);
 | 
						|
 | 
						|
  if (VSize < 2*WSize)
 | 
						|
    std::swap(S, VInfo.Child);
 | 
						|
 | 
						|
  while (S) {
 | 
						|
    SInfo = &DT.Info[S];
 | 
						|
    SInfo->Ancestor = V;
 | 
						|
    S = SInfo->Child;
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
template<class FuncT, class NodeT>
 | 
						|
void Calculate(DominatorTreeBase<typename GraphTraits<NodeT>::NodeType>& DT,
 | 
						|
               FuncT& F) {
 | 
						|
  typedef GraphTraits<NodeT> GraphT;
 | 
						|
 | 
						|
  unsigned N = 0;
 | 
						|
  bool MultipleRoots = (DT.Roots.size() > 1);
 | 
						|
  if (MultipleRoots) {
 | 
						|
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &BBInfo =
 | 
						|
        DT.Info[NULL];
 | 
						|
    BBInfo.DFSNum = BBInfo.Semi = ++N;
 | 
						|
    BBInfo.Label = NULL;
 | 
						|
 | 
						|
    DT.Vertex.push_back(NULL);       // Vertex[n] = V;
 | 
						|
      //BBInfo[V].Ancestor = 0;   // Ancestor[n] = 0
 | 
						|
      //BBInfo[V].Child = 0;      // Child[v] = 0
 | 
						|
    BBInfo.Size = 1;            // Size[v] = 1
 | 
						|
  }
 | 
						|
 | 
						|
  // Step #1: Number blocks in depth-first order and initialize variables used
 | 
						|
  // in later stages of the algorithm.
 | 
						|
  for (unsigned i = 0, e = static_cast<unsigned>(DT.Roots.size());
 | 
						|
       i != e; ++i)
 | 
						|
    N = DFSPass<GraphT>(DT, DT.Roots[i], N);
 | 
						|
 | 
						|
  // it might be that some blocks did not get a DFS number (e.g., blocks of 
 | 
						|
  // infinite loops). In these cases an artificial exit node is required.
 | 
						|
  MultipleRoots |= (DT.isPostDominator() && N != F.size());
 | 
						|
 | 
						|
  for (unsigned i = N; i >= 2; --i) {
 | 
						|
    typename GraphT::NodeType* W = DT.Vertex[i];
 | 
						|
    typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo =
 | 
						|
                                                                     DT.Info[W];
 | 
						|
 | 
						|
    // Step #2: Calculate the semidominators of all vertices
 | 
						|
    bool HasChildOutsideDFS = false;
 | 
						|
 | 
						|
    // initialize the semi dominator to point to the parent node
 | 
						|
    WInfo.Semi = WInfo.Parent;
 | 
						|
    for (typename GraphTraits<Inverse<NodeT> >::ChildIteratorType CI =
 | 
						|
         GraphTraits<Inverse<NodeT> >::child_begin(W),
 | 
						|
         E = GraphTraits<Inverse<NodeT> >::child_end(W); CI != E; ++CI) {
 | 
						|
      if (DT.Info.count(*CI)) {  // Only if this predecessor is reachable!
 | 
						|
        unsigned SemiU = DT.Info[Eval<GraphT>(DT, *CI)].Semi;
 | 
						|
        if (SemiU < WInfo.Semi)
 | 
						|
          WInfo.Semi = SemiU;
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        // if the child has no DFS number it is not post-dominated by any exit, 
 | 
						|
        // and so is the current block.
 | 
						|
        HasChildOutsideDFS = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // if some child has no DFS number it is not post-dominated by any exit, 
 | 
						|
    // and so is the current block.
 | 
						|
    if (DT.isPostDominator() && HasChildOutsideDFS)
 | 
						|
      WInfo.Semi = 0;
 | 
						|
 | 
						|
    DT.Info[DT.Vertex[WInfo.Semi]].Bucket.push_back(W);
 | 
						|
 | 
						|
    typename GraphT::NodeType* WParent = DT.Vertex[WInfo.Parent];
 | 
						|
    Link<GraphT>(DT, WInfo.Parent, W, WInfo);
 | 
						|
 | 
						|
    // Step #3: Implicitly define the immediate dominator of vertices
 | 
						|
    std::vector<typename GraphT::NodeType*> &WParentBucket =
 | 
						|
                                                        DT.Info[WParent].Bucket;
 | 
						|
    while (!WParentBucket.empty()) {
 | 
						|
      typename GraphT::NodeType* V = WParentBucket.back();
 | 
						|
      WParentBucket.pop_back();
 | 
						|
      typename GraphT::NodeType* U = Eval<GraphT>(DT, V);
 | 
						|
      DT.IDoms[V] = DT.Info[U].Semi < DT.Info[V].Semi ? U : WParent;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Step #4: Explicitly define the immediate dominator of each vertex
 | 
						|
  for (unsigned i = 2; i <= N; ++i) {
 | 
						|
    typename GraphT::NodeType* W = DT.Vertex[i];
 | 
						|
    typename GraphT::NodeType*& WIDom = DT.IDoms[W];
 | 
						|
    if (WIDom != DT.Vertex[DT.Info[W].Semi])
 | 
						|
      WIDom = DT.IDoms[WIDom];
 | 
						|
  }
 | 
						|
 | 
						|
  if (DT.Roots.empty()) return;
 | 
						|
 | 
						|
  // Add a node for the root.  This node might be the actual root, if there is
 | 
						|
  // one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
 | 
						|
  // which postdominates all real exits if there are multiple exit blocks, or
 | 
						|
  // an infinite loop.
 | 
						|
  typename GraphT::NodeType* Root = !MultipleRoots ? DT.Roots[0] : 0;
 | 
						|
 | 
						|
  DT.DomTreeNodes[Root] = DT.RootNode =
 | 
						|
                        new DomTreeNodeBase<typename GraphT::NodeType>(Root, 0);
 | 
						|
 | 
						|
  // Loop over all of the reachable blocks in the function...
 | 
						|
  for (unsigned i = 2; i <= N; ++i) {
 | 
						|
    typename GraphT::NodeType* W = DT.Vertex[i];
 | 
						|
 | 
						|
    DomTreeNodeBase<typename GraphT::NodeType> *BBNode = DT.DomTreeNodes[W];
 | 
						|
    if (BBNode) continue;  // Haven't calculated this node yet?
 | 
						|
 | 
						|
    typename GraphT::NodeType* ImmDom = DT.getIDom(W);
 | 
						|
 | 
						|
    assert(ImmDom || DT.DomTreeNodes[NULL]);
 | 
						|
 | 
						|
    // Get or calculate the node for the immediate dominator
 | 
						|
    DomTreeNodeBase<typename GraphT::NodeType> *IDomNode =
 | 
						|
                                                     DT.getNodeForBlock(ImmDom);
 | 
						|
 | 
						|
    // Add a new tree node for this BasicBlock, and link it as a child of
 | 
						|
    // IDomNode
 | 
						|
    DomTreeNodeBase<typename GraphT::NodeType> *C =
 | 
						|
                    new DomTreeNodeBase<typename GraphT::NodeType>(W, IDomNode);
 | 
						|
    DT.DomTreeNodes[W] = IDomNode->addChild(C);
 | 
						|
  }
 | 
						|
 | 
						|
  // Free temporary memory used to construct idom's
 | 
						|
  DT.IDoms.clear();
 | 
						|
  DT.Info.clear();
 | 
						|
  std::vector<typename GraphT::NodeType*>().swap(DT.Vertex);
 | 
						|
  
 | 
						|
  // FIXME: This does not work on PostDomTrees.  It seems likely that this is
 | 
						|
  // due to an error in the algorithm for post-dominators.  This really should
 | 
						|
  // be investigated and fixed at some point.
 | 
						|
  // DT.updateDFSNumbers();
 | 
						|
 | 
						|
  // Start out with the DFS numbers being invalid.  Let them be computed if
 | 
						|
  // demanded.
 | 
						|
  DT.DFSInfoValid = false;
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |