mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 16:31:33 +00:00
bf811d602d
"When assembling to the ARM instruction set, the .N qualifier produces an assembler error and the .W qualifier has no effect." In the pre-matcher handler in the asm parser the ".w" (wide) qualifier when in ARM mode is now discarded. And an error message is now produced when the ".n" (narrow) qualifier is used in ARM mode. Test cases for these were added. rdar://14064574 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184224 91177308-0d34-0410-b5e6-96231b3b80d8
8256 lines
310 KiB
C++
8256 lines
310 KiB
C++
//===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/MC/MCTargetAsmParser.h"
|
|
#include "MCTargetDesc/ARMAddressingModes.h"
|
|
#include "MCTargetDesc/ARMBaseInfo.h"
|
|
#include "MCTargetDesc/ARMMCExpr.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCELFStreamer.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCParser/MCAsmLexer.h"
|
|
#include "llvm/MC/MCParser/MCAsmParser.h"
|
|
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/Support/ELF.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
class ARMOperand;
|
|
|
|
enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
|
|
|
|
class ARMAsmParser : public MCTargetAsmParser {
|
|
MCSubtargetInfo &STI;
|
|
MCAsmParser &Parser;
|
|
const MCRegisterInfo *MRI;
|
|
|
|
// Unwind directives state
|
|
SMLoc FnStartLoc;
|
|
SMLoc CantUnwindLoc;
|
|
SMLoc PersonalityLoc;
|
|
SMLoc HandlerDataLoc;
|
|
int FPReg;
|
|
void resetUnwindDirectiveParserState() {
|
|
FnStartLoc = SMLoc();
|
|
CantUnwindLoc = SMLoc();
|
|
PersonalityLoc = SMLoc();
|
|
HandlerDataLoc = SMLoc();
|
|
FPReg = -1;
|
|
}
|
|
|
|
// Map of register aliases registers via the .req directive.
|
|
StringMap<unsigned> RegisterReqs;
|
|
|
|
struct {
|
|
ARMCC::CondCodes Cond; // Condition for IT block.
|
|
unsigned Mask:4; // Condition mask for instructions.
|
|
// Starting at first 1 (from lsb).
|
|
// '1' condition as indicated in IT.
|
|
// '0' inverse of condition (else).
|
|
// Count of instructions in IT block is
|
|
// 4 - trailingzeroes(mask)
|
|
|
|
bool FirstCond; // Explicit flag for when we're parsing the
|
|
// First instruction in the IT block. It's
|
|
// implied in the mask, so needs special
|
|
// handling.
|
|
|
|
unsigned CurPosition; // Current position in parsing of IT
|
|
// block. In range [0,3]. Initialized
|
|
// according to count of instructions in block.
|
|
// ~0U if no active IT block.
|
|
} ITState;
|
|
bool inITBlock() { return ITState.CurPosition != ~0U;}
|
|
void forwardITPosition() {
|
|
if (!inITBlock()) return;
|
|
// Move to the next instruction in the IT block, if there is one. If not,
|
|
// mark the block as done.
|
|
unsigned TZ = countTrailingZeros(ITState.Mask);
|
|
if (++ITState.CurPosition == 5 - TZ)
|
|
ITState.CurPosition = ~0U; // Done with the IT block after this.
|
|
}
|
|
|
|
|
|
MCAsmParser &getParser() const { return Parser; }
|
|
MCAsmLexer &getLexer() const { return Parser.getLexer(); }
|
|
|
|
bool Warning(SMLoc L, const Twine &Msg,
|
|
ArrayRef<SMRange> Ranges = None) {
|
|
return Parser.Warning(L, Msg, Ranges);
|
|
}
|
|
bool Error(SMLoc L, const Twine &Msg,
|
|
ArrayRef<SMRange> Ranges = None) {
|
|
return Parser.Error(L, Msg, Ranges);
|
|
}
|
|
|
|
int tryParseRegister();
|
|
bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
|
|
bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
|
|
bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
|
|
unsigned &ShiftAmount);
|
|
bool parseDirectiveWord(unsigned Size, SMLoc L);
|
|
bool parseDirectiveThumb(SMLoc L);
|
|
bool parseDirectiveARM(SMLoc L);
|
|
bool parseDirectiveThumbFunc(SMLoc L);
|
|
bool parseDirectiveCode(SMLoc L);
|
|
bool parseDirectiveSyntax(SMLoc L);
|
|
bool parseDirectiveReq(StringRef Name, SMLoc L);
|
|
bool parseDirectiveUnreq(SMLoc L);
|
|
bool parseDirectiveArch(SMLoc L);
|
|
bool parseDirectiveEabiAttr(SMLoc L);
|
|
bool parseDirectiveFnStart(SMLoc L);
|
|
bool parseDirectiveFnEnd(SMLoc L);
|
|
bool parseDirectiveCantUnwind(SMLoc L);
|
|
bool parseDirectivePersonality(SMLoc L);
|
|
bool parseDirectiveHandlerData(SMLoc L);
|
|
bool parseDirectiveSetFP(SMLoc L);
|
|
bool parseDirectivePad(SMLoc L);
|
|
bool parseDirectiveRegSave(SMLoc L, bool IsVector);
|
|
|
|
StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
|
|
bool &CarrySetting, unsigned &ProcessorIMod,
|
|
StringRef &ITMask);
|
|
void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
|
|
bool &CanAcceptPredicationCode);
|
|
|
|
bool isThumb() const {
|
|
// FIXME: Can tablegen auto-generate this?
|
|
return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
|
|
}
|
|
bool isThumbOne() const {
|
|
return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
|
|
}
|
|
bool isThumbTwo() const {
|
|
return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
|
|
}
|
|
bool hasThumb() const {
|
|
return STI.getFeatureBits() & ARM::HasV4TOps;
|
|
}
|
|
bool hasV6Ops() const {
|
|
return STI.getFeatureBits() & ARM::HasV6Ops;
|
|
}
|
|
bool hasV7Ops() const {
|
|
return STI.getFeatureBits() & ARM::HasV7Ops;
|
|
}
|
|
bool hasARM() const {
|
|
return !(STI.getFeatureBits() & ARM::FeatureNoARM);
|
|
}
|
|
|
|
void SwitchMode() {
|
|
unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
|
|
setAvailableFeatures(FB);
|
|
}
|
|
bool isMClass() const {
|
|
return STI.getFeatureBits() & ARM::FeatureMClass;
|
|
}
|
|
|
|
/// @name Auto-generated Match Functions
|
|
/// {
|
|
|
|
#define GET_ASSEMBLER_HEADER
|
|
#include "ARMGenAsmMatcher.inc"
|
|
|
|
/// }
|
|
|
|
OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseCoprocNumOperand(
|
|
SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseCoprocRegOperand(
|
|
SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseCoprocOptionOperand(
|
|
SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseMemBarrierOptOperand(
|
|
SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseInstSyncBarrierOptOperand(
|
|
SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseProcIFlagsOperand(
|
|
SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseMSRMaskOperand(
|
|
SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
|
|
StringRef Op, int Low, int High);
|
|
OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
|
|
return parsePKHImm(O, "lsl", 0, 31);
|
|
}
|
|
OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
|
|
return parsePKHImm(O, "asr", 1, 32);
|
|
}
|
|
OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
|
|
OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
|
|
SMLoc &EndLoc);
|
|
|
|
// Asm Match Converter Methods
|
|
void cvtT2LdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtT2StrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtLdWriteBackRegAddrMode2(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtLdWriteBackRegAddrModeImm12(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtStWriteBackRegAddrModeImm12(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtStWriteBackRegAddrMode2(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtStWriteBackRegAddrMode3(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtLdExtTWriteBackImm(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtLdExtTWriteBackReg(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtStExtTWriteBackImm(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtStExtTWriteBackReg(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtLdrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtStrdPre(MCInst &Inst, const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtLdWriteBackRegAddrMode3(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtThumbMultiply(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtVLDwbFixed(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtVLDwbRegister(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtVSTwbFixed(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
void cvtVSTwbRegister(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &);
|
|
bool validateInstruction(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
|
|
bool processInstruction(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
|
|
bool shouldOmitCCOutOperand(StringRef Mnemonic,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
|
|
|
|
public:
|
|
enum ARMMatchResultTy {
|
|
Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
|
|
Match_RequiresNotITBlock,
|
|
Match_RequiresV6,
|
|
Match_RequiresThumb2,
|
|
#define GET_OPERAND_DIAGNOSTIC_TYPES
|
|
#include "ARMGenAsmMatcher.inc"
|
|
|
|
};
|
|
|
|
ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
|
|
: MCTargetAsmParser(), STI(_STI), Parser(_Parser), FPReg(-1) {
|
|
MCAsmParserExtension::Initialize(_Parser);
|
|
|
|
// Cache the MCRegisterInfo.
|
|
MRI = getContext().getRegisterInfo();
|
|
|
|
// Initialize the set of available features.
|
|
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
|
|
|
|
// Not in an ITBlock to start with.
|
|
ITState.CurPosition = ~0U;
|
|
|
|
// Set ELF header flags.
|
|
// FIXME: This should eventually end up somewhere else where more
|
|
// intelligent flag decisions can be made. For now we are just maintaining
|
|
// the statu/parseDirects quo for ARM and setting EF_ARM_EABI_VER5 as the default.
|
|
if (MCELFStreamer *MES = dyn_cast<MCELFStreamer>(&Parser.getStreamer()))
|
|
MES->getAssembler().setELFHeaderEFlags(ELF::EF_ARM_EABI_VER5);
|
|
}
|
|
|
|
// Implementation of the MCTargetAsmParser interface:
|
|
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
|
|
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
|
|
SMLoc NameLoc,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands);
|
|
bool ParseDirective(AsmToken DirectiveID);
|
|
|
|
unsigned validateTargetOperandClass(MCParsedAsmOperand *Op, unsigned Kind);
|
|
unsigned checkTargetMatchPredicate(MCInst &Inst);
|
|
|
|
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
|
|
MCStreamer &Out, unsigned &ErrorInfo,
|
|
bool MatchingInlineAsm);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
|
|
/// ARMOperand - Instances of this class represent a parsed ARM machine
|
|
/// operand.
|
|
class ARMOperand : public MCParsedAsmOperand {
|
|
enum KindTy {
|
|
k_CondCode,
|
|
k_CCOut,
|
|
k_ITCondMask,
|
|
k_CoprocNum,
|
|
k_CoprocReg,
|
|
k_CoprocOption,
|
|
k_Immediate,
|
|
k_MemBarrierOpt,
|
|
k_InstSyncBarrierOpt,
|
|
k_Memory,
|
|
k_PostIndexRegister,
|
|
k_MSRMask,
|
|
k_ProcIFlags,
|
|
k_VectorIndex,
|
|
k_Register,
|
|
k_RegisterList,
|
|
k_DPRRegisterList,
|
|
k_SPRRegisterList,
|
|
k_VectorList,
|
|
k_VectorListAllLanes,
|
|
k_VectorListIndexed,
|
|
k_ShiftedRegister,
|
|
k_ShiftedImmediate,
|
|
k_ShifterImmediate,
|
|
k_RotateImmediate,
|
|
k_BitfieldDescriptor,
|
|
k_Token
|
|
} Kind;
|
|
|
|
SMLoc StartLoc, EndLoc;
|
|
SmallVector<unsigned, 8> Registers;
|
|
|
|
struct CCOp {
|
|
ARMCC::CondCodes Val;
|
|
};
|
|
|
|
struct CopOp {
|
|
unsigned Val;
|
|
};
|
|
|
|
struct CoprocOptionOp {
|
|
unsigned Val;
|
|
};
|
|
|
|
struct ITMaskOp {
|
|
unsigned Mask:4;
|
|
};
|
|
|
|
struct MBOptOp {
|
|
ARM_MB::MemBOpt Val;
|
|
};
|
|
|
|
struct ISBOptOp {
|
|
ARM_ISB::InstSyncBOpt Val;
|
|
};
|
|
|
|
struct IFlagsOp {
|
|
ARM_PROC::IFlags Val;
|
|
};
|
|
|
|
struct MMaskOp {
|
|
unsigned Val;
|
|
};
|
|
|
|
struct TokOp {
|
|
const char *Data;
|
|
unsigned Length;
|
|
};
|
|
|
|
struct RegOp {
|
|
unsigned RegNum;
|
|
};
|
|
|
|
// A vector register list is a sequential list of 1 to 4 registers.
|
|
struct VectorListOp {
|
|
unsigned RegNum;
|
|
unsigned Count;
|
|
unsigned LaneIndex;
|
|
bool isDoubleSpaced;
|
|
};
|
|
|
|
struct VectorIndexOp {
|
|
unsigned Val;
|
|
};
|
|
|
|
struct ImmOp {
|
|
const MCExpr *Val;
|
|
};
|
|
|
|
/// Combined record for all forms of ARM address expressions.
|
|
struct MemoryOp {
|
|
unsigned BaseRegNum;
|
|
// Offset is in OffsetReg or OffsetImm. If both are zero, no offset
|
|
// was specified.
|
|
const MCConstantExpr *OffsetImm; // Offset immediate value
|
|
unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
|
|
ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
|
|
unsigned ShiftImm; // shift for OffsetReg.
|
|
unsigned Alignment; // 0 = no alignment specified
|
|
// n = alignment in bytes (2, 4, 8, 16, or 32)
|
|
unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
|
|
};
|
|
|
|
struct PostIdxRegOp {
|
|
unsigned RegNum;
|
|
bool isAdd;
|
|
ARM_AM::ShiftOpc ShiftTy;
|
|
unsigned ShiftImm;
|
|
};
|
|
|
|
struct ShifterImmOp {
|
|
bool isASR;
|
|
unsigned Imm;
|
|
};
|
|
|
|
struct RegShiftedRegOp {
|
|
ARM_AM::ShiftOpc ShiftTy;
|
|
unsigned SrcReg;
|
|
unsigned ShiftReg;
|
|
unsigned ShiftImm;
|
|
};
|
|
|
|
struct RegShiftedImmOp {
|
|
ARM_AM::ShiftOpc ShiftTy;
|
|
unsigned SrcReg;
|
|
unsigned ShiftImm;
|
|
};
|
|
|
|
struct RotImmOp {
|
|
unsigned Imm;
|
|
};
|
|
|
|
struct BitfieldOp {
|
|
unsigned LSB;
|
|
unsigned Width;
|
|
};
|
|
|
|
union {
|
|
struct CCOp CC;
|
|
struct CopOp Cop;
|
|
struct CoprocOptionOp CoprocOption;
|
|
struct MBOptOp MBOpt;
|
|
struct ISBOptOp ISBOpt;
|
|
struct ITMaskOp ITMask;
|
|
struct IFlagsOp IFlags;
|
|
struct MMaskOp MMask;
|
|
struct TokOp Tok;
|
|
struct RegOp Reg;
|
|
struct VectorListOp VectorList;
|
|
struct VectorIndexOp VectorIndex;
|
|
struct ImmOp Imm;
|
|
struct MemoryOp Memory;
|
|
struct PostIdxRegOp PostIdxReg;
|
|
struct ShifterImmOp ShifterImm;
|
|
struct RegShiftedRegOp RegShiftedReg;
|
|
struct RegShiftedImmOp RegShiftedImm;
|
|
struct RotImmOp RotImm;
|
|
struct BitfieldOp Bitfield;
|
|
};
|
|
|
|
ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
|
|
public:
|
|
ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
|
|
Kind = o.Kind;
|
|
StartLoc = o.StartLoc;
|
|
EndLoc = o.EndLoc;
|
|
switch (Kind) {
|
|
case k_CondCode:
|
|
CC = o.CC;
|
|
break;
|
|
case k_ITCondMask:
|
|
ITMask = o.ITMask;
|
|
break;
|
|
case k_Token:
|
|
Tok = o.Tok;
|
|
break;
|
|
case k_CCOut:
|
|
case k_Register:
|
|
Reg = o.Reg;
|
|
break;
|
|
case k_RegisterList:
|
|
case k_DPRRegisterList:
|
|
case k_SPRRegisterList:
|
|
Registers = o.Registers;
|
|
break;
|
|
case k_VectorList:
|
|
case k_VectorListAllLanes:
|
|
case k_VectorListIndexed:
|
|
VectorList = o.VectorList;
|
|
break;
|
|
case k_CoprocNum:
|
|
case k_CoprocReg:
|
|
Cop = o.Cop;
|
|
break;
|
|
case k_CoprocOption:
|
|
CoprocOption = o.CoprocOption;
|
|
break;
|
|
case k_Immediate:
|
|
Imm = o.Imm;
|
|
break;
|
|
case k_MemBarrierOpt:
|
|
MBOpt = o.MBOpt;
|
|
break;
|
|
case k_InstSyncBarrierOpt:
|
|
ISBOpt = o.ISBOpt;
|
|
case k_Memory:
|
|
Memory = o.Memory;
|
|
break;
|
|
case k_PostIndexRegister:
|
|
PostIdxReg = o.PostIdxReg;
|
|
break;
|
|
case k_MSRMask:
|
|
MMask = o.MMask;
|
|
break;
|
|
case k_ProcIFlags:
|
|
IFlags = o.IFlags;
|
|
break;
|
|
case k_ShifterImmediate:
|
|
ShifterImm = o.ShifterImm;
|
|
break;
|
|
case k_ShiftedRegister:
|
|
RegShiftedReg = o.RegShiftedReg;
|
|
break;
|
|
case k_ShiftedImmediate:
|
|
RegShiftedImm = o.RegShiftedImm;
|
|
break;
|
|
case k_RotateImmediate:
|
|
RotImm = o.RotImm;
|
|
break;
|
|
case k_BitfieldDescriptor:
|
|
Bitfield = o.Bitfield;
|
|
break;
|
|
case k_VectorIndex:
|
|
VectorIndex = o.VectorIndex;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// getStartLoc - Get the location of the first token of this operand.
|
|
SMLoc getStartLoc() const { return StartLoc; }
|
|
/// getEndLoc - Get the location of the last token of this operand.
|
|
SMLoc getEndLoc() const { return EndLoc; }
|
|
/// getLocRange - Get the range between the first and last token of this
|
|
/// operand.
|
|
SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
|
|
|
|
ARMCC::CondCodes getCondCode() const {
|
|
assert(Kind == k_CondCode && "Invalid access!");
|
|
return CC.Val;
|
|
}
|
|
|
|
unsigned getCoproc() const {
|
|
assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
|
|
return Cop.Val;
|
|
}
|
|
|
|
StringRef getToken() const {
|
|
assert(Kind == k_Token && "Invalid access!");
|
|
return StringRef(Tok.Data, Tok.Length);
|
|
}
|
|
|
|
unsigned getReg() const {
|
|
assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
|
|
return Reg.RegNum;
|
|
}
|
|
|
|
const SmallVectorImpl<unsigned> &getRegList() const {
|
|
assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
|
|
Kind == k_SPRRegisterList) && "Invalid access!");
|
|
return Registers;
|
|
}
|
|
|
|
const MCExpr *getImm() const {
|
|
assert(isImm() && "Invalid access!");
|
|
return Imm.Val;
|
|
}
|
|
|
|
unsigned getVectorIndex() const {
|
|
assert(Kind == k_VectorIndex && "Invalid access!");
|
|
return VectorIndex.Val;
|
|
}
|
|
|
|
ARM_MB::MemBOpt getMemBarrierOpt() const {
|
|
assert(Kind == k_MemBarrierOpt && "Invalid access!");
|
|
return MBOpt.Val;
|
|
}
|
|
|
|
ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
|
|
assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
|
|
return ISBOpt.Val;
|
|
}
|
|
|
|
ARM_PROC::IFlags getProcIFlags() const {
|
|
assert(Kind == k_ProcIFlags && "Invalid access!");
|
|
return IFlags.Val;
|
|
}
|
|
|
|
unsigned getMSRMask() const {
|
|
assert(Kind == k_MSRMask && "Invalid access!");
|
|
return MMask.Val;
|
|
}
|
|
|
|
bool isCoprocNum() const { return Kind == k_CoprocNum; }
|
|
bool isCoprocReg() const { return Kind == k_CoprocReg; }
|
|
bool isCoprocOption() const { return Kind == k_CoprocOption; }
|
|
bool isCondCode() const { return Kind == k_CondCode; }
|
|
bool isCCOut() const { return Kind == k_CCOut; }
|
|
bool isITMask() const { return Kind == k_ITCondMask; }
|
|
bool isITCondCode() const { return Kind == k_CondCode; }
|
|
bool isImm() const { return Kind == k_Immediate; }
|
|
bool isFPImm() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
|
|
return Val != -1;
|
|
}
|
|
bool isFBits16() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value <= 16;
|
|
}
|
|
bool isFBits32() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 1 && Value <= 32;
|
|
}
|
|
bool isImm8s4() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
|
|
}
|
|
bool isImm0_4() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 5;
|
|
}
|
|
bool isImm0_1020s4() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
|
|
}
|
|
bool isImm0_508s4() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
|
|
}
|
|
bool isImm0_508s4Neg() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = -CE->getValue();
|
|
// explicitly exclude zero. we want that to use the normal 0_508 version.
|
|
return ((Value & 3) == 0) && Value > 0 && Value <= 508;
|
|
}
|
|
bool isImm0_255() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 256;
|
|
}
|
|
bool isImm0_4095() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 4096;
|
|
}
|
|
bool isImm0_4095Neg() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = -CE->getValue();
|
|
return Value > 0 && Value < 4096;
|
|
}
|
|
bool isImm0_1() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 2;
|
|
}
|
|
bool isImm0_3() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 4;
|
|
}
|
|
bool isImm0_7() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 8;
|
|
}
|
|
bool isImm0_15() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 16;
|
|
}
|
|
bool isImm0_31() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 32;
|
|
}
|
|
bool isImm0_63() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 64;
|
|
}
|
|
bool isImm8() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value == 8;
|
|
}
|
|
bool isImm16() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value == 16;
|
|
}
|
|
bool isImm32() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value == 32;
|
|
}
|
|
bool isShrImm8() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value > 0 && Value <= 8;
|
|
}
|
|
bool isShrImm16() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value > 0 && Value <= 16;
|
|
}
|
|
bool isShrImm32() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value > 0 && Value <= 32;
|
|
}
|
|
bool isShrImm64() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value > 0 && Value <= 64;
|
|
}
|
|
bool isImm1_7() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value > 0 && Value < 8;
|
|
}
|
|
bool isImm1_15() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value > 0 && Value < 16;
|
|
}
|
|
bool isImm1_31() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value > 0 && Value < 32;
|
|
}
|
|
bool isImm1_16() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value > 0 && Value < 17;
|
|
}
|
|
bool isImm1_32() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value > 0 && Value < 33;
|
|
}
|
|
bool isImm0_32() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 33;
|
|
}
|
|
bool isImm0_65535() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 65536;
|
|
}
|
|
bool isImm0_65535Expr() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
// If it's not a constant expression, it'll generate a fixup and be
|
|
// handled later.
|
|
if (!CE) return true;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 65536;
|
|
}
|
|
bool isImm24bit() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value <= 0xffffff;
|
|
}
|
|
bool isImmThumbSR() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value > 0 && Value < 33;
|
|
}
|
|
bool isPKHLSLImm() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value >= 0 && Value < 32;
|
|
}
|
|
bool isPKHASRImm() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value > 0 && Value <= 32;
|
|
}
|
|
bool isAdrLabel() const {
|
|
// If we have an immediate that's not a constant, treat it as a label
|
|
// reference needing a fixup. If it is a constant, but it can't fit
|
|
// into shift immediate encoding, we reject it.
|
|
if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
|
|
else return (isARMSOImm() || isARMSOImmNeg());
|
|
}
|
|
bool isARMSOImm() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return ARM_AM::getSOImmVal(Value) != -1;
|
|
}
|
|
bool isARMSOImmNot() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return ARM_AM::getSOImmVal(~Value) != -1;
|
|
}
|
|
bool isARMSOImmNeg() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
// Only use this when not representable as a plain so_imm.
|
|
return ARM_AM::getSOImmVal(Value) == -1 &&
|
|
ARM_AM::getSOImmVal(-Value) != -1;
|
|
}
|
|
bool isT2SOImm() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return ARM_AM::getT2SOImmVal(Value) != -1;
|
|
}
|
|
bool isT2SOImmNot() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return ARM_AM::getT2SOImmVal(~Value) != -1;
|
|
}
|
|
bool isT2SOImmNeg() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
// Only use this when not representable as a plain so_imm.
|
|
return ARM_AM::getT2SOImmVal(Value) == -1 &&
|
|
ARM_AM::getT2SOImmVal(-Value) != -1;
|
|
}
|
|
bool isSetEndImm() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
return Value == 1 || Value == 0;
|
|
}
|
|
bool isReg() const { return Kind == k_Register; }
|
|
bool isRegList() const { return Kind == k_RegisterList; }
|
|
bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
|
|
bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
|
|
bool isToken() const { return Kind == k_Token; }
|
|
bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
|
|
bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
|
|
bool isMem() const { return Kind == k_Memory; }
|
|
bool isShifterImm() const { return Kind == k_ShifterImmediate; }
|
|
bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
|
|
bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
|
|
bool isRotImm() const { return Kind == k_RotateImmediate; }
|
|
bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
|
|
bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
|
|
bool isPostIdxReg() const {
|
|
return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
|
|
}
|
|
bool isMemNoOffset(bool alignOK = false) const {
|
|
if (!isMem())
|
|
return false;
|
|
// No offset of any kind.
|
|
return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
|
|
(alignOK || Memory.Alignment == 0);
|
|
}
|
|
bool isMemPCRelImm12() const {
|
|
if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
|
|
return false;
|
|
// Base register must be PC.
|
|
if (Memory.BaseRegNum != ARM::PC)
|
|
return false;
|
|
// Immediate offset in range [-4095, 4095].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
|
|
}
|
|
bool isAlignedMemory() const {
|
|
return isMemNoOffset(true);
|
|
}
|
|
bool isAddrMode2() const {
|
|
if (!isMem() || Memory.Alignment != 0) return false;
|
|
// Check for register offset.
|
|
if (Memory.OffsetRegNum) return true;
|
|
// Immediate offset in range [-4095, 4095].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return Val > -4096 && Val < 4096;
|
|
}
|
|
bool isAM2OffsetImm() const {
|
|
if (!isImm()) return false;
|
|
// Immediate offset in range [-4095, 4095].
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Val = CE->getValue();
|
|
return (Val == INT32_MIN) || (Val > -4096 && Val < 4096);
|
|
}
|
|
bool isAddrMode3() const {
|
|
// If we have an immediate that's not a constant, treat it as a label
|
|
// reference needing a fixup. If it is a constant, it's something else
|
|
// and we reject it.
|
|
if (isImm() && !isa<MCConstantExpr>(getImm()))
|
|
return true;
|
|
if (!isMem() || Memory.Alignment != 0) return false;
|
|
// No shifts are legal for AM3.
|
|
if (Memory.ShiftType != ARM_AM::no_shift) return false;
|
|
// Check for register offset.
|
|
if (Memory.OffsetRegNum) return true;
|
|
// Immediate offset in range [-255, 255].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
// The #-0 offset is encoded as INT32_MIN, and we have to check
|
|
// for this too.
|
|
return (Val > -256 && Val < 256) || Val == INT32_MIN;
|
|
}
|
|
bool isAM3Offset() const {
|
|
if (Kind != k_Immediate && Kind != k_PostIndexRegister)
|
|
return false;
|
|
if (Kind == k_PostIndexRegister)
|
|
return PostIdxReg.ShiftTy == ARM_AM::no_shift;
|
|
// Immediate offset in range [-255, 255].
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Val = CE->getValue();
|
|
// Special case, #-0 is INT32_MIN.
|
|
return (Val > -256 && Val < 256) || Val == INT32_MIN;
|
|
}
|
|
bool isAddrMode5() const {
|
|
// If we have an immediate that's not a constant, treat it as a label
|
|
// reference needing a fixup. If it is a constant, it's something else
|
|
// and we reject it.
|
|
if (isImm() && !isa<MCConstantExpr>(getImm()))
|
|
return true;
|
|
if (!isMem() || Memory.Alignment != 0) return false;
|
|
// Check for register offset.
|
|
if (Memory.OffsetRegNum) return false;
|
|
// Immediate offset in range [-1020, 1020] and a multiple of 4.
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
|
|
Val == INT32_MIN;
|
|
}
|
|
bool isMemTBB() const {
|
|
if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
|
|
Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
bool isMemTBH() const {
|
|
if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
|
|
Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
|
|
Memory.Alignment != 0 )
|
|
return false;
|
|
return true;
|
|
}
|
|
bool isMemRegOffset() const {
|
|
if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
bool isT2MemRegOffset() const {
|
|
if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
|
|
Memory.Alignment != 0)
|
|
return false;
|
|
// Only lsl #{0, 1, 2, 3} allowed.
|
|
if (Memory.ShiftType == ARM_AM::no_shift)
|
|
return true;
|
|
if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
|
|
return false;
|
|
return true;
|
|
}
|
|
bool isMemThumbRR() const {
|
|
// Thumb reg+reg addressing is simple. Just two registers, a base and
|
|
// an offset. No shifts, negations or any other complicating factors.
|
|
if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
|
|
Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
|
|
return false;
|
|
return isARMLowRegister(Memory.BaseRegNum) &&
|
|
(!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
|
|
}
|
|
bool isMemThumbRIs4() const {
|
|
if (!isMem() || Memory.OffsetRegNum != 0 ||
|
|
!isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
|
|
return false;
|
|
// Immediate offset, multiple of 4 in range [0, 124].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return Val >= 0 && Val <= 124 && (Val % 4) == 0;
|
|
}
|
|
bool isMemThumbRIs2() const {
|
|
if (!isMem() || Memory.OffsetRegNum != 0 ||
|
|
!isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
|
|
return false;
|
|
// Immediate offset, multiple of 4 in range [0, 62].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return Val >= 0 && Val <= 62 && (Val % 2) == 0;
|
|
}
|
|
bool isMemThumbRIs1() const {
|
|
if (!isMem() || Memory.OffsetRegNum != 0 ||
|
|
!isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
|
|
return false;
|
|
// Immediate offset in range [0, 31].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return Val >= 0 && Val <= 31;
|
|
}
|
|
bool isMemThumbSPI() const {
|
|
if (!isMem() || Memory.OffsetRegNum != 0 ||
|
|
Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
|
|
return false;
|
|
// Immediate offset, multiple of 4 in range [0, 1020].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
|
|
}
|
|
bool isMemImm8s4Offset() const {
|
|
// If we have an immediate that's not a constant, treat it as a label
|
|
// reference needing a fixup. If it is a constant, it's something else
|
|
// and we reject it.
|
|
if (isImm() && !isa<MCConstantExpr>(getImm()))
|
|
return true;
|
|
if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
|
|
return false;
|
|
// Immediate offset a multiple of 4 in range [-1020, 1020].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
// Special case, #-0 is INT32_MIN.
|
|
return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
|
|
}
|
|
bool isMemImm0_1020s4Offset() const {
|
|
if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
|
|
return false;
|
|
// Immediate offset a multiple of 4 in range [0, 1020].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
|
|
}
|
|
bool isMemImm8Offset() const {
|
|
if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
|
|
return false;
|
|
// Base reg of PC isn't allowed for these encodings.
|
|
if (Memory.BaseRegNum == ARM::PC) return false;
|
|
// Immediate offset in range [-255, 255].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return (Val == INT32_MIN) || (Val > -256 && Val < 256);
|
|
}
|
|
bool isMemPosImm8Offset() const {
|
|
if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
|
|
return false;
|
|
// Immediate offset in range [0, 255].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return Val >= 0 && Val < 256;
|
|
}
|
|
bool isMemNegImm8Offset() const {
|
|
if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
|
|
return false;
|
|
// Base reg of PC isn't allowed for these encodings.
|
|
if (Memory.BaseRegNum == ARM::PC) return false;
|
|
// Immediate offset in range [-255, -1].
|
|
if (!Memory.OffsetImm) return false;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return (Val == INT32_MIN) || (Val > -256 && Val < 0);
|
|
}
|
|
bool isMemUImm12Offset() const {
|
|
if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
|
|
return false;
|
|
// Immediate offset in range [0, 4095].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return (Val >= 0 && Val < 4096);
|
|
}
|
|
bool isMemImm12Offset() const {
|
|
// If we have an immediate that's not a constant, treat it as a label
|
|
// reference needing a fixup. If it is a constant, it's something else
|
|
// and we reject it.
|
|
if (isImm() && !isa<MCConstantExpr>(getImm()))
|
|
return true;
|
|
|
|
if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
|
|
return false;
|
|
// Immediate offset in range [-4095, 4095].
|
|
if (!Memory.OffsetImm) return true;
|
|
int64_t Val = Memory.OffsetImm->getValue();
|
|
return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
|
|
}
|
|
bool isPostIdxImm8() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Val = CE->getValue();
|
|
return (Val > -256 && Val < 256) || (Val == INT32_MIN);
|
|
}
|
|
bool isPostIdxImm8s4() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
if (!CE) return false;
|
|
int64_t Val = CE->getValue();
|
|
return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
|
|
(Val == INT32_MIN);
|
|
}
|
|
|
|
bool isMSRMask() const { return Kind == k_MSRMask; }
|
|
bool isProcIFlags() const { return Kind == k_ProcIFlags; }
|
|
|
|
// NEON operands.
|
|
bool isSingleSpacedVectorList() const {
|
|
return Kind == k_VectorList && !VectorList.isDoubleSpaced;
|
|
}
|
|
bool isDoubleSpacedVectorList() const {
|
|
return Kind == k_VectorList && VectorList.isDoubleSpaced;
|
|
}
|
|
bool isVecListOneD() const {
|
|
if (!isSingleSpacedVectorList()) return false;
|
|
return VectorList.Count == 1;
|
|
}
|
|
|
|
bool isVecListDPair() const {
|
|
if (!isSingleSpacedVectorList()) return false;
|
|
return (ARMMCRegisterClasses[ARM::DPairRegClassID]
|
|
.contains(VectorList.RegNum));
|
|
}
|
|
|
|
bool isVecListThreeD() const {
|
|
if (!isSingleSpacedVectorList()) return false;
|
|
return VectorList.Count == 3;
|
|
}
|
|
|
|
bool isVecListFourD() const {
|
|
if (!isSingleSpacedVectorList()) return false;
|
|
return VectorList.Count == 4;
|
|
}
|
|
|
|
bool isVecListDPairSpaced() const {
|
|
if (isSingleSpacedVectorList()) return false;
|
|
return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
|
|
.contains(VectorList.RegNum));
|
|
}
|
|
|
|
bool isVecListThreeQ() const {
|
|
if (!isDoubleSpacedVectorList()) return false;
|
|
return VectorList.Count == 3;
|
|
}
|
|
|
|
bool isVecListFourQ() const {
|
|
if (!isDoubleSpacedVectorList()) return false;
|
|
return VectorList.Count == 4;
|
|
}
|
|
|
|
bool isSingleSpacedVectorAllLanes() const {
|
|
return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
|
|
}
|
|
bool isDoubleSpacedVectorAllLanes() const {
|
|
return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
|
|
}
|
|
bool isVecListOneDAllLanes() const {
|
|
if (!isSingleSpacedVectorAllLanes()) return false;
|
|
return VectorList.Count == 1;
|
|
}
|
|
|
|
bool isVecListDPairAllLanes() const {
|
|
if (!isSingleSpacedVectorAllLanes()) return false;
|
|
return (ARMMCRegisterClasses[ARM::DPairRegClassID]
|
|
.contains(VectorList.RegNum));
|
|
}
|
|
|
|
bool isVecListDPairSpacedAllLanes() const {
|
|
if (!isDoubleSpacedVectorAllLanes()) return false;
|
|
return VectorList.Count == 2;
|
|
}
|
|
|
|
bool isVecListThreeDAllLanes() const {
|
|
if (!isSingleSpacedVectorAllLanes()) return false;
|
|
return VectorList.Count == 3;
|
|
}
|
|
|
|
bool isVecListThreeQAllLanes() const {
|
|
if (!isDoubleSpacedVectorAllLanes()) return false;
|
|
return VectorList.Count == 3;
|
|
}
|
|
|
|
bool isVecListFourDAllLanes() const {
|
|
if (!isSingleSpacedVectorAllLanes()) return false;
|
|
return VectorList.Count == 4;
|
|
}
|
|
|
|
bool isVecListFourQAllLanes() const {
|
|
if (!isDoubleSpacedVectorAllLanes()) return false;
|
|
return VectorList.Count == 4;
|
|
}
|
|
|
|
bool isSingleSpacedVectorIndexed() const {
|
|
return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
|
|
}
|
|
bool isDoubleSpacedVectorIndexed() const {
|
|
return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
|
|
}
|
|
bool isVecListOneDByteIndexed() const {
|
|
if (!isSingleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
|
|
}
|
|
|
|
bool isVecListOneDHWordIndexed() const {
|
|
if (!isSingleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
|
|
}
|
|
|
|
bool isVecListOneDWordIndexed() const {
|
|
if (!isSingleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
|
|
}
|
|
|
|
bool isVecListTwoDByteIndexed() const {
|
|
if (!isSingleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
|
|
}
|
|
|
|
bool isVecListTwoDHWordIndexed() const {
|
|
if (!isSingleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
|
|
}
|
|
|
|
bool isVecListTwoQWordIndexed() const {
|
|
if (!isDoubleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
|
|
}
|
|
|
|
bool isVecListTwoQHWordIndexed() const {
|
|
if (!isDoubleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
|
|
}
|
|
|
|
bool isVecListTwoDWordIndexed() const {
|
|
if (!isSingleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
|
|
}
|
|
|
|
bool isVecListThreeDByteIndexed() const {
|
|
if (!isSingleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
|
|
}
|
|
|
|
bool isVecListThreeDHWordIndexed() const {
|
|
if (!isSingleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
|
|
}
|
|
|
|
bool isVecListThreeQWordIndexed() const {
|
|
if (!isDoubleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
|
|
}
|
|
|
|
bool isVecListThreeQHWordIndexed() const {
|
|
if (!isDoubleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
|
|
}
|
|
|
|
bool isVecListThreeDWordIndexed() const {
|
|
if (!isSingleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
|
|
}
|
|
|
|
bool isVecListFourDByteIndexed() const {
|
|
if (!isSingleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
|
|
}
|
|
|
|
bool isVecListFourDHWordIndexed() const {
|
|
if (!isSingleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
|
|
}
|
|
|
|
bool isVecListFourQWordIndexed() const {
|
|
if (!isDoubleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
|
|
}
|
|
|
|
bool isVecListFourQHWordIndexed() const {
|
|
if (!isDoubleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
|
|
}
|
|
|
|
bool isVecListFourDWordIndexed() const {
|
|
if (!isSingleSpacedVectorIndexed()) return false;
|
|
return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
|
|
}
|
|
|
|
bool isVectorIndex8() const {
|
|
if (Kind != k_VectorIndex) return false;
|
|
return VectorIndex.Val < 8;
|
|
}
|
|
bool isVectorIndex16() const {
|
|
if (Kind != k_VectorIndex) return false;
|
|
return VectorIndex.Val < 4;
|
|
}
|
|
bool isVectorIndex32() const {
|
|
if (Kind != k_VectorIndex) return false;
|
|
return VectorIndex.Val < 2;
|
|
}
|
|
|
|
bool isNEONi8splat() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
// Must be a constant.
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
// i8 value splatted across 8 bytes. The immediate is just the 8 byte
|
|
// value.
|
|
return Value >= 0 && Value < 256;
|
|
}
|
|
|
|
bool isNEONi16splat() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
// Must be a constant.
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
// i16 value in the range [0,255] or [0x0100, 0xff00]
|
|
return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
|
|
}
|
|
|
|
bool isNEONi32splat() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
// Must be a constant.
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
// i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
|
|
return (Value >= 0 && Value < 256) ||
|
|
(Value >= 0x0100 && Value <= 0xff00) ||
|
|
(Value >= 0x010000 && Value <= 0xff0000) ||
|
|
(Value >= 0x01000000 && Value <= 0xff000000);
|
|
}
|
|
|
|
bool isNEONi32vmov() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
// Must be a constant.
|
|
if (!CE) return false;
|
|
int64_t Value = CE->getValue();
|
|
// i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
|
|
// for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
|
|
return (Value >= 0 && Value < 256) ||
|
|
(Value >= 0x0100 && Value <= 0xff00) ||
|
|
(Value >= 0x010000 && Value <= 0xff0000) ||
|
|
(Value >= 0x01000000 && Value <= 0xff000000) ||
|
|
(Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
|
|
(Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
|
|
}
|
|
bool isNEONi32vmovNeg() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
// Must be a constant.
|
|
if (!CE) return false;
|
|
int64_t Value = ~CE->getValue();
|
|
// i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
|
|
// for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
|
|
return (Value >= 0 && Value < 256) ||
|
|
(Value >= 0x0100 && Value <= 0xff00) ||
|
|
(Value >= 0x010000 && Value <= 0xff0000) ||
|
|
(Value >= 0x01000000 && Value <= 0xff000000) ||
|
|
(Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
|
|
(Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
|
|
}
|
|
|
|
bool isNEONi64splat() const {
|
|
if (!isImm()) return false;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
// Must be a constant.
|
|
if (!CE) return false;
|
|
uint64_t Value = CE->getValue();
|
|
// i64 value with each byte being either 0 or 0xff.
|
|
for (unsigned i = 0; i < 8; ++i)
|
|
if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
|
|
return true;
|
|
}
|
|
|
|
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
|
|
// Add as immediates when possible. Null MCExpr = 0.
|
|
if (Expr == 0)
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
|
|
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
|
|
else
|
|
Inst.addOperand(MCOperand::CreateExpr(Expr));
|
|
}
|
|
|
|
void addCondCodeOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
|
|
unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
|
|
Inst.addOperand(MCOperand::CreateReg(RegNum));
|
|
}
|
|
|
|
void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(getCoproc()));
|
|
}
|
|
|
|
void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(getCoproc()));
|
|
}
|
|
|
|
void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
|
|
}
|
|
|
|
void addITMaskOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
|
|
}
|
|
|
|
void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
|
|
}
|
|
|
|
void addCCOutOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(getReg()));
|
|
}
|
|
|
|
void addRegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(getReg()));
|
|
}
|
|
|
|
void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 3 && "Invalid number of operands!");
|
|
assert(isRegShiftedReg() &&
|
|
"addRegShiftedRegOperands() on non RegShiftedReg!");
|
|
Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
|
|
Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
|
|
Inst.addOperand(MCOperand::CreateImm(
|
|
ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
|
|
}
|
|
|
|
void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
assert(isRegShiftedImm() &&
|
|
"addRegShiftedImmOperands() on non RegShiftedImm!");
|
|
Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
|
|
// Shift of #32 is encoded as 0 where permitted
|
|
unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
|
|
Inst.addOperand(MCOperand::CreateImm(
|
|
ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
|
|
}
|
|
|
|
void addShifterImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
|
|
ShifterImm.Imm));
|
|
}
|
|
|
|
void addRegListOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
const SmallVectorImpl<unsigned> &RegList = getRegList();
|
|
for (SmallVectorImpl<unsigned>::const_iterator
|
|
I = RegList.begin(), E = RegList.end(); I != E; ++I)
|
|
Inst.addOperand(MCOperand::CreateReg(*I));
|
|
}
|
|
|
|
void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
|
|
addRegListOperands(Inst, N);
|
|
}
|
|
|
|
void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
|
|
addRegListOperands(Inst, N);
|
|
}
|
|
|
|
void addRotImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// Encoded as val>>3. The printer handles display as 8, 16, 24.
|
|
Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
|
|
}
|
|
|
|
void addBitfieldOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// Munge the lsb/width into a bitfield mask.
|
|
unsigned lsb = Bitfield.LSB;
|
|
unsigned width = Bitfield.Width;
|
|
// Make a 32-bit mask w/ the referenced bits clear and all other bits set.
|
|
uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
|
|
(32 - (lsb + width)));
|
|
Inst.addOperand(MCOperand::CreateImm(Mask));
|
|
}
|
|
|
|
void addImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
addExpr(Inst, getImm());
|
|
}
|
|
|
|
void addFBits16Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
|
|
}
|
|
|
|
void addFBits32Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
|
|
}
|
|
|
|
void addFPImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addImm8s4Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// FIXME: We really want to scale the value here, but the LDRD/STRD
|
|
// instruction don't encode operands that way yet.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
|
|
}
|
|
|
|
void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The immediate is scaled by four in the encoding and is stored
|
|
// in the MCInst as such. Lop off the low two bits here.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
|
|
}
|
|
|
|
void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The immediate is scaled by four in the encoding and is stored
|
|
// in the MCInst as such. Lop off the low two bits here.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
|
|
}
|
|
|
|
void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The immediate is scaled by four in the encoding and is stored
|
|
// in the MCInst as such. Lop off the low two bits here.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
|
|
}
|
|
|
|
void addImm1_16Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The constant encodes as the immediate-1, and we store in the instruction
|
|
// the bits as encoded, so subtract off one here.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
|
|
}
|
|
|
|
void addImm1_32Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The constant encodes as the immediate-1, and we store in the instruction
|
|
// the bits as encoded, so subtract off one here.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
|
|
}
|
|
|
|
void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The constant encodes as the immediate, except for 32, which encodes as
|
|
// zero.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
unsigned Imm = CE->getValue();
|
|
Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
|
|
}
|
|
|
|
void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// An ASR value of 32 encodes as 0, so that's how we want to add it to
|
|
// the instruction as well.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
int Val = CE->getValue();
|
|
Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
|
|
}
|
|
|
|
void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The operand is actually a t2_so_imm, but we have its bitwise
|
|
// negation in the assembly source, so twiddle it here.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
|
|
}
|
|
|
|
void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The operand is actually a t2_so_imm, but we have its
|
|
// negation in the assembly source, so twiddle it here.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
|
|
}
|
|
|
|
void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The operand is actually an imm0_4095, but we have its
|
|
// negation in the assembly source, so twiddle it here.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
|
|
}
|
|
|
|
void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The operand is actually a so_imm, but we have its bitwise
|
|
// negation in the assembly source, so twiddle it here.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
|
|
}
|
|
|
|
void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The operand is actually a so_imm, but we have its
|
|
// negation in the assembly source, so twiddle it here.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
|
|
}
|
|
|
|
void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
|
|
}
|
|
|
|
void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt())));
|
|
}
|
|
|
|
void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
}
|
|
|
|
void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
int32_t Imm = Memory.OffsetImm->getValue();
|
|
// FIXME: Handle #-0
|
|
if (Imm == INT32_MIN) Imm = 0;
|
|
Inst.addOperand(MCOperand::CreateImm(Imm));
|
|
}
|
|
|
|
void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
assert(isImm() && "Not an immediate!");
|
|
|
|
// If we have an immediate that's not a constant, treat it as a label
|
|
// reference needing a fixup.
|
|
if (!isa<MCConstantExpr>(getImm())) {
|
|
Inst.addOperand(MCOperand::CreateExpr(getImm()));
|
|
return;
|
|
}
|
|
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
int Val = CE->getValue();
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
|
|
}
|
|
|
|
void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 3 && "Invalid number of operands!");
|
|
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
|
|
if (!Memory.OffsetRegNum) {
|
|
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
|
|
// Special case for #-0
|
|
if (Val == INT32_MIN) Val = 0;
|
|
if (Val < 0) Val = -Val;
|
|
Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
|
|
} else {
|
|
// For register offset, we encode the shift type and negation flag
|
|
// here.
|
|
Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
|
|
Memory.ShiftImm, Memory.ShiftType);
|
|
}
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
assert(CE && "non-constant AM2OffsetImm operand!");
|
|
int32_t Val = CE->getValue();
|
|
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
|
|
// Special case for #-0
|
|
if (Val == INT32_MIN) Val = 0;
|
|
if (Val < 0) Val = -Val;
|
|
Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
|
|
Inst.addOperand(MCOperand::CreateReg(0));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 3 && "Invalid number of operands!");
|
|
// If we have an immediate that's not a constant, treat it as a label
|
|
// reference needing a fixup. If it is a constant, it's something else
|
|
// and we reject it.
|
|
if (isImm()) {
|
|
Inst.addOperand(MCOperand::CreateExpr(getImm()));
|
|
Inst.addOperand(MCOperand::CreateReg(0));
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
return;
|
|
}
|
|
|
|
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
|
|
if (!Memory.OffsetRegNum) {
|
|
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
|
|
// Special case for #-0
|
|
if (Val == INT32_MIN) Val = 0;
|
|
if (Val < 0) Val = -Val;
|
|
Val = ARM_AM::getAM3Opc(AddSub, Val);
|
|
} else {
|
|
// For register offset, we encode the shift type and negation flag
|
|
// here.
|
|
Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
|
|
}
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
if (Kind == k_PostIndexRegister) {
|
|
int32_t Val =
|
|
ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
|
|
Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
return;
|
|
}
|
|
|
|
// Constant offset.
|
|
const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
|
|
int32_t Val = CE->getValue();
|
|
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
|
|
// Special case for #-0
|
|
if (Val == INT32_MIN) Val = 0;
|
|
if (Val < 0) Val = -Val;
|
|
Val = ARM_AM::getAM3Opc(AddSub, Val);
|
|
Inst.addOperand(MCOperand::CreateReg(0));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
// If we have an immediate that's not a constant, treat it as a label
|
|
// reference needing a fixup. If it is a constant, it's something else
|
|
// and we reject it.
|
|
if (isImm()) {
|
|
Inst.addOperand(MCOperand::CreateExpr(getImm()));
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
return;
|
|
}
|
|
|
|
// The lower two bits are always zero and as such are not encoded.
|
|
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
|
|
ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
|
|
// Special case for #-0
|
|
if (Val == INT32_MIN) Val = 0;
|
|
if (Val < 0) Val = -Val;
|
|
Val = ARM_AM::getAM5Opc(AddSub, Val);
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
// If we have an immediate that's not a constant, treat it as a label
|
|
// reference needing a fixup. If it is a constant, it's something else
|
|
// and we reject it.
|
|
if (isImm()) {
|
|
Inst.addOperand(MCOperand::CreateExpr(getImm()));
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
return;
|
|
}
|
|
|
|
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
// The lower two bits are always zero and as such are not encoded.
|
|
int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
|
|
addMemImm8OffsetOperands(Inst, N);
|
|
}
|
|
|
|
void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
|
|
addMemImm8OffsetOperands(Inst, N);
|
|
}
|
|
|
|
void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
// If this is an immediate, it's a label reference.
|
|
if (isImm()) {
|
|
addExpr(Inst, getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
return;
|
|
}
|
|
|
|
// Otherwise, it's a normal memory reg+offset.
|
|
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
// If this is an immediate, it's a label reference.
|
|
if (isImm()) {
|
|
addExpr(Inst, getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
return;
|
|
}
|
|
|
|
// Otherwise, it's a normal memory reg+offset.
|
|
int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addMemTBBOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
|
|
}
|
|
|
|
void addMemTBHOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
|
|
}
|
|
|
|
void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 3 && "Invalid number of operands!");
|
|
unsigned Val =
|
|
ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
|
|
Memory.ShiftImm, Memory.ShiftType);
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 3 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
|
|
}
|
|
|
|
void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
|
|
}
|
|
|
|
void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
|
|
Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(Val));
|
|
}
|
|
|
|
void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
assert(CE && "non-constant post-idx-imm8 operand!");
|
|
int Imm = CE->getValue();
|
|
bool isAdd = Imm >= 0;
|
|
if (Imm == INT32_MIN) Imm = 0;
|
|
Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
|
|
Inst.addOperand(MCOperand::CreateImm(Imm));
|
|
}
|
|
|
|
void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
assert(CE && "non-constant post-idx-imm8s4 operand!");
|
|
int Imm = CE->getValue();
|
|
bool isAdd = Imm >= 0;
|
|
if (Imm == INT32_MIN) Imm = 0;
|
|
// Immediate is scaled by 4.
|
|
Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
|
|
Inst.addOperand(MCOperand::CreateImm(Imm));
|
|
}
|
|
|
|
void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
|
|
}
|
|
|
|
void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
|
|
// The sign, shift type, and shift amount are encoded in a single operand
|
|
// using the AM2 encoding helpers.
|
|
ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
|
|
unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
|
|
PostIdxReg.ShiftTy);
|
|
Inst.addOperand(MCOperand::CreateImm(Imm));
|
|
}
|
|
|
|
void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
|
|
}
|
|
|
|
void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
|
|
}
|
|
|
|
void addVecListOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
|
|
}
|
|
|
|
void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
|
|
Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
|
|
}
|
|
|
|
void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
|
|
}
|
|
|
|
void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
|
|
}
|
|
|
|
void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
|
|
}
|
|
|
|
void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The immediate encodes the type of constant as well as the value.
|
|
// Mask in that this is an i8 splat.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
|
|
}
|
|
|
|
void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The immediate encodes the type of constant as well as the value.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
unsigned Value = CE->getValue();
|
|
if (Value >= 256)
|
|
Value = (Value >> 8) | 0xa00;
|
|
else
|
|
Value |= 0x800;
|
|
Inst.addOperand(MCOperand::CreateImm(Value));
|
|
}
|
|
|
|
void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The immediate encodes the type of constant as well as the value.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
unsigned Value = CE->getValue();
|
|
if (Value >= 256 && Value <= 0xff00)
|
|
Value = (Value >> 8) | 0x200;
|
|
else if (Value > 0xffff && Value <= 0xff0000)
|
|
Value = (Value >> 16) | 0x400;
|
|
else if (Value > 0xffffff)
|
|
Value = (Value >> 24) | 0x600;
|
|
Inst.addOperand(MCOperand::CreateImm(Value));
|
|
}
|
|
|
|
void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The immediate encodes the type of constant as well as the value.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
unsigned Value = CE->getValue();
|
|
if (Value >= 256 && Value <= 0xffff)
|
|
Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
|
|
else if (Value > 0xffff && Value <= 0xffffff)
|
|
Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
|
|
else if (Value > 0xffffff)
|
|
Value = (Value >> 24) | 0x600;
|
|
Inst.addOperand(MCOperand::CreateImm(Value));
|
|
}
|
|
|
|
void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The immediate encodes the type of constant as well as the value.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
unsigned Value = ~CE->getValue();
|
|
if (Value >= 256 && Value <= 0xffff)
|
|
Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
|
|
else if (Value > 0xffff && Value <= 0xffffff)
|
|
Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
|
|
else if (Value > 0xffffff)
|
|
Value = (Value >> 24) | 0x600;
|
|
Inst.addOperand(MCOperand::CreateImm(Value));
|
|
}
|
|
|
|
void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands!");
|
|
// The immediate encodes the type of constant as well as the value.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
|
|
uint64_t Value = CE->getValue();
|
|
unsigned Imm = 0;
|
|
for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
|
|
Imm |= (Value & 1) << i;
|
|
}
|
|
Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
|
|
}
|
|
|
|
virtual void print(raw_ostream &OS) const;
|
|
|
|
static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
|
|
ARMOperand *Op = new ARMOperand(k_ITCondMask);
|
|
Op->ITMask.Mask = Mask;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = S;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
|
|
ARMOperand *Op = new ARMOperand(k_CondCode);
|
|
Op->CC.Val = CC;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = S;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
|
|
ARMOperand *Op = new ARMOperand(k_CoprocNum);
|
|
Op->Cop.Val = CopVal;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = S;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
|
|
ARMOperand *Op = new ARMOperand(k_CoprocReg);
|
|
Op->Cop.Val = CopVal;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = S;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_CoprocOption);
|
|
Op->Cop.Val = Val;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
|
|
ARMOperand *Op = new ARMOperand(k_CCOut);
|
|
Op->Reg.RegNum = RegNum;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = S;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
|
|
ARMOperand *Op = new ARMOperand(k_Token);
|
|
Op->Tok.Data = Str.data();
|
|
Op->Tok.Length = Str.size();
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = S;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_Register);
|
|
Op->Reg.RegNum = RegNum;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
|
|
unsigned SrcReg,
|
|
unsigned ShiftReg,
|
|
unsigned ShiftImm,
|
|
SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
|
|
Op->RegShiftedReg.ShiftTy = ShTy;
|
|
Op->RegShiftedReg.SrcReg = SrcReg;
|
|
Op->RegShiftedReg.ShiftReg = ShiftReg;
|
|
Op->RegShiftedReg.ShiftImm = ShiftImm;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
|
|
unsigned SrcReg,
|
|
unsigned ShiftImm,
|
|
SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
|
|
Op->RegShiftedImm.ShiftTy = ShTy;
|
|
Op->RegShiftedImm.SrcReg = SrcReg;
|
|
Op->RegShiftedImm.ShiftImm = ShiftImm;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
|
|
SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
|
|
Op->ShifterImm.isASR = isASR;
|
|
Op->ShifterImm.Imm = Imm;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_RotateImmediate);
|
|
Op->RotImm.Imm = Imm;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
|
|
SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
|
|
Op->Bitfield.LSB = LSB;
|
|
Op->Bitfield.Width = Width;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *
|
|
CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
|
|
SMLoc StartLoc, SMLoc EndLoc) {
|
|
KindTy Kind = k_RegisterList;
|
|
|
|
if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().first))
|
|
Kind = k_DPRRegisterList;
|
|
else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
|
|
contains(Regs.front().first))
|
|
Kind = k_SPRRegisterList;
|
|
|
|
ARMOperand *Op = new ARMOperand(Kind);
|
|
for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
|
|
I = Regs.begin(), E = Regs.end(); I != E; ++I)
|
|
Op->Registers.push_back(I->first);
|
|
array_pod_sort(Op->Registers.begin(), Op->Registers.end());
|
|
Op->StartLoc = StartLoc;
|
|
Op->EndLoc = EndLoc;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
|
|
bool isDoubleSpaced, SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_VectorList);
|
|
Op->VectorList.RegNum = RegNum;
|
|
Op->VectorList.Count = Count;
|
|
Op->VectorList.isDoubleSpaced = isDoubleSpaced;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
|
|
bool isDoubleSpaced,
|
|
SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
|
|
Op->VectorList.RegNum = RegNum;
|
|
Op->VectorList.Count = Count;
|
|
Op->VectorList.isDoubleSpaced = isDoubleSpaced;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
|
|
unsigned Index,
|
|
bool isDoubleSpaced,
|
|
SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
|
|
Op->VectorList.RegNum = RegNum;
|
|
Op->VectorList.Count = Count;
|
|
Op->VectorList.LaneIndex = Index;
|
|
Op->VectorList.isDoubleSpaced = isDoubleSpaced;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
|
|
MCContext &Ctx) {
|
|
ARMOperand *Op = new ARMOperand(k_VectorIndex);
|
|
Op->VectorIndex.Val = Idx;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_Immediate);
|
|
Op->Imm.Val = Val;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateMem(unsigned BaseRegNum,
|
|
const MCConstantExpr *OffsetImm,
|
|
unsigned OffsetRegNum,
|
|
ARM_AM::ShiftOpc ShiftType,
|
|
unsigned ShiftImm,
|
|
unsigned Alignment,
|
|
bool isNegative,
|
|
SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_Memory);
|
|
Op->Memory.BaseRegNum = BaseRegNum;
|
|
Op->Memory.OffsetImm = OffsetImm;
|
|
Op->Memory.OffsetRegNum = OffsetRegNum;
|
|
Op->Memory.ShiftType = ShiftType;
|
|
Op->Memory.ShiftImm = ShiftImm;
|
|
Op->Memory.Alignment = Alignment;
|
|
Op->Memory.isNegative = isNegative;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
|
|
ARM_AM::ShiftOpc ShiftTy,
|
|
unsigned ShiftImm,
|
|
SMLoc S, SMLoc E) {
|
|
ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
|
|
Op->PostIdxReg.RegNum = RegNum;
|
|
Op->PostIdxReg.isAdd = isAdd;
|
|
Op->PostIdxReg.ShiftTy = ShiftTy;
|
|
Op->PostIdxReg.ShiftImm = ShiftImm;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = E;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
|
|
ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
|
|
Op->MBOpt.Val = Opt;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = S;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt,
|
|
SMLoc S) {
|
|
ARMOperand *Op = new ARMOperand(k_InstSyncBarrierOpt);
|
|
Op->ISBOpt.Val = Opt;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = S;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
|
|
ARMOperand *Op = new ARMOperand(k_ProcIFlags);
|
|
Op->IFlags.Val = IFlags;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = S;
|
|
return Op;
|
|
}
|
|
|
|
static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
|
|
ARMOperand *Op = new ARMOperand(k_MSRMask);
|
|
Op->MMask.Val = MMask;
|
|
Op->StartLoc = S;
|
|
Op->EndLoc = S;
|
|
return Op;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
void ARMOperand::print(raw_ostream &OS) const {
|
|
switch (Kind) {
|
|
case k_CondCode:
|
|
OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
|
|
break;
|
|
case k_CCOut:
|
|
OS << "<ccout " << getReg() << ">";
|
|
break;
|
|
case k_ITCondMask: {
|
|
static const char *const MaskStr[] = {
|
|
"()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
|
|
"(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
|
|
};
|
|
assert((ITMask.Mask & 0xf) == ITMask.Mask);
|
|
OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
|
|
break;
|
|
}
|
|
case k_CoprocNum:
|
|
OS << "<coprocessor number: " << getCoproc() << ">";
|
|
break;
|
|
case k_CoprocReg:
|
|
OS << "<coprocessor register: " << getCoproc() << ">";
|
|
break;
|
|
case k_CoprocOption:
|
|
OS << "<coprocessor option: " << CoprocOption.Val << ">";
|
|
break;
|
|
case k_MSRMask:
|
|
OS << "<mask: " << getMSRMask() << ">";
|
|
break;
|
|
case k_Immediate:
|
|
getImm()->print(OS);
|
|
break;
|
|
case k_MemBarrierOpt:
|
|
OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
|
|
break;
|
|
case k_InstSyncBarrierOpt:
|
|
OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
|
|
break;
|
|
case k_Memory:
|
|
OS << "<memory "
|
|
<< " base:" << Memory.BaseRegNum;
|
|
OS << ">";
|
|
break;
|
|
case k_PostIndexRegister:
|
|
OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
|
|
<< PostIdxReg.RegNum;
|
|
if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
|
|
OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
|
|
<< PostIdxReg.ShiftImm;
|
|
OS << ">";
|
|
break;
|
|
case k_ProcIFlags: {
|
|
OS << "<ARM_PROC::";
|
|
unsigned IFlags = getProcIFlags();
|
|
for (int i=2; i >= 0; --i)
|
|
if (IFlags & (1 << i))
|
|
OS << ARM_PROC::IFlagsToString(1 << i);
|
|
OS << ">";
|
|
break;
|
|
}
|
|
case k_Register:
|
|
OS << "<register " << getReg() << ">";
|
|
break;
|
|
case k_ShifterImmediate:
|
|
OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
|
|
<< " #" << ShifterImm.Imm << ">";
|
|
break;
|
|
case k_ShiftedRegister:
|
|
OS << "<so_reg_reg "
|
|
<< RegShiftedReg.SrcReg << " "
|
|
<< ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
|
|
<< " " << RegShiftedReg.ShiftReg << ">";
|
|
break;
|
|
case k_ShiftedImmediate:
|
|
OS << "<so_reg_imm "
|
|
<< RegShiftedImm.SrcReg << " "
|
|
<< ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
|
|
<< " #" << RegShiftedImm.ShiftImm << ">";
|
|
break;
|
|
case k_RotateImmediate:
|
|
OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
|
|
break;
|
|
case k_BitfieldDescriptor:
|
|
OS << "<bitfield " << "lsb: " << Bitfield.LSB
|
|
<< ", width: " << Bitfield.Width << ">";
|
|
break;
|
|
case k_RegisterList:
|
|
case k_DPRRegisterList:
|
|
case k_SPRRegisterList: {
|
|
OS << "<register_list ";
|
|
|
|
const SmallVectorImpl<unsigned> &RegList = getRegList();
|
|
for (SmallVectorImpl<unsigned>::const_iterator
|
|
I = RegList.begin(), E = RegList.end(); I != E; ) {
|
|
OS << *I;
|
|
if (++I < E) OS << ", ";
|
|
}
|
|
|
|
OS << ">";
|
|
break;
|
|
}
|
|
case k_VectorList:
|
|
OS << "<vector_list " << VectorList.Count << " * "
|
|
<< VectorList.RegNum << ">";
|
|
break;
|
|
case k_VectorListAllLanes:
|
|
OS << "<vector_list(all lanes) " << VectorList.Count << " * "
|
|
<< VectorList.RegNum << ">";
|
|
break;
|
|
case k_VectorListIndexed:
|
|
OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
|
|
<< VectorList.Count << " * " << VectorList.RegNum << ">";
|
|
break;
|
|
case k_Token:
|
|
OS << "'" << getToken() << "'";
|
|
break;
|
|
case k_VectorIndex:
|
|
OS << "<vectorindex " << getVectorIndex() << ">";
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// @name Auto-generated Match Functions
|
|
/// {
|
|
|
|
static unsigned MatchRegisterName(StringRef Name);
|
|
|
|
/// }
|
|
|
|
bool ARMAsmParser::ParseRegister(unsigned &RegNo,
|
|
SMLoc &StartLoc, SMLoc &EndLoc) {
|
|
StartLoc = Parser.getTok().getLoc();
|
|
EndLoc = Parser.getTok().getEndLoc();
|
|
RegNo = tryParseRegister();
|
|
|
|
return (RegNo == (unsigned)-1);
|
|
}
|
|
|
|
/// Try to parse a register name. The token must be an Identifier when called,
|
|
/// and if it is a register name the token is eaten and the register number is
|
|
/// returned. Otherwise return -1.
|
|
///
|
|
int ARMAsmParser::tryParseRegister() {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (Tok.isNot(AsmToken::Identifier)) return -1;
|
|
|
|
std::string lowerCase = Tok.getString().lower();
|
|
unsigned RegNum = MatchRegisterName(lowerCase);
|
|
if (!RegNum) {
|
|
RegNum = StringSwitch<unsigned>(lowerCase)
|
|
.Case("r13", ARM::SP)
|
|
.Case("r14", ARM::LR)
|
|
.Case("r15", ARM::PC)
|
|
.Case("ip", ARM::R12)
|
|
// Additional register name aliases for 'gas' compatibility.
|
|
.Case("a1", ARM::R0)
|
|
.Case("a2", ARM::R1)
|
|
.Case("a3", ARM::R2)
|
|
.Case("a4", ARM::R3)
|
|
.Case("v1", ARM::R4)
|
|
.Case("v2", ARM::R5)
|
|
.Case("v3", ARM::R6)
|
|
.Case("v4", ARM::R7)
|
|
.Case("v5", ARM::R8)
|
|
.Case("v6", ARM::R9)
|
|
.Case("v7", ARM::R10)
|
|
.Case("v8", ARM::R11)
|
|
.Case("sb", ARM::R9)
|
|
.Case("sl", ARM::R10)
|
|
.Case("fp", ARM::R11)
|
|
.Default(0);
|
|
}
|
|
if (!RegNum) {
|
|
// Check for aliases registered via .req. Canonicalize to lower case.
|
|
// That's more consistent since register names are case insensitive, and
|
|
// it's how the original entry was passed in from MC/MCParser/AsmParser.
|
|
StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
|
|
// If no match, return failure.
|
|
if (Entry == RegisterReqs.end())
|
|
return -1;
|
|
Parser.Lex(); // Eat identifier token.
|
|
return Entry->getValue();
|
|
}
|
|
|
|
Parser.Lex(); // Eat identifier token.
|
|
|
|
return RegNum;
|
|
}
|
|
|
|
// Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
|
|
// If a recoverable error occurs, return 1. If an irrecoverable error
|
|
// occurs, return -1. An irrecoverable error is one where tokens have been
|
|
// consumed in the process of trying to parse the shifter (i.e., when it is
|
|
// indeed a shifter operand, but malformed).
|
|
int ARMAsmParser::tryParseShiftRegister(
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
const AsmToken &Tok = Parser.getTok();
|
|
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
|
|
|
|
std::string lowerCase = Tok.getString().lower();
|
|
ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
|
|
.Case("asl", ARM_AM::lsl)
|
|
.Case("lsl", ARM_AM::lsl)
|
|
.Case("lsr", ARM_AM::lsr)
|
|
.Case("asr", ARM_AM::asr)
|
|
.Case("ror", ARM_AM::ror)
|
|
.Case("rrx", ARM_AM::rrx)
|
|
.Default(ARM_AM::no_shift);
|
|
|
|
if (ShiftTy == ARM_AM::no_shift)
|
|
return 1;
|
|
|
|
Parser.Lex(); // Eat the operator.
|
|
|
|
// The source register for the shift has already been added to the
|
|
// operand list, so we need to pop it off and combine it into the shifted
|
|
// register operand instead.
|
|
OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
|
|
if (!PrevOp->isReg())
|
|
return Error(PrevOp->getStartLoc(), "shift must be of a register");
|
|
int SrcReg = PrevOp->getReg();
|
|
|
|
SMLoc EndLoc;
|
|
int64_t Imm = 0;
|
|
int ShiftReg = 0;
|
|
if (ShiftTy == ARM_AM::rrx) {
|
|
// RRX Doesn't have an explicit shift amount. The encoder expects
|
|
// the shift register to be the same as the source register. Seems odd,
|
|
// but OK.
|
|
ShiftReg = SrcReg;
|
|
} else {
|
|
// Figure out if this is shifted by a constant or a register (for non-RRX).
|
|
if (Parser.getTok().is(AsmToken::Hash) ||
|
|
Parser.getTok().is(AsmToken::Dollar)) {
|
|
Parser.Lex(); // Eat hash.
|
|
SMLoc ImmLoc = Parser.getTok().getLoc();
|
|
const MCExpr *ShiftExpr = 0;
|
|
if (getParser().parseExpression(ShiftExpr, EndLoc)) {
|
|
Error(ImmLoc, "invalid immediate shift value");
|
|
return -1;
|
|
}
|
|
// The expression must be evaluatable as an immediate.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
|
|
if (!CE) {
|
|
Error(ImmLoc, "invalid immediate shift value");
|
|
return -1;
|
|
}
|
|
// Range check the immediate.
|
|
// lsl, ror: 0 <= imm <= 31
|
|
// lsr, asr: 0 <= imm <= 32
|
|
Imm = CE->getValue();
|
|
if (Imm < 0 ||
|
|
((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
|
|
((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
|
|
Error(ImmLoc, "immediate shift value out of range");
|
|
return -1;
|
|
}
|
|
// shift by zero is a nop. Always send it through as lsl.
|
|
// ('as' compatibility)
|
|
if (Imm == 0)
|
|
ShiftTy = ARM_AM::lsl;
|
|
} else if (Parser.getTok().is(AsmToken::Identifier)) {
|
|
SMLoc L = Parser.getTok().getLoc();
|
|
EndLoc = Parser.getTok().getEndLoc();
|
|
ShiftReg = tryParseRegister();
|
|
if (ShiftReg == -1) {
|
|
Error (L, "expected immediate or register in shift operand");
|
|
return -1;
|
|
}
|
|
} else {
|
|
Error (Parser.getTok().getLoc(),
|
|
"expected immediate or register in shift operand");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (ShiftReg && ShiftTy != ARM_AM::rrx)
|
|
Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
|
|
ShiftReg, Imm,
|
|
S, EndLoc));
|
|
else
|
|
Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
|
|
S, EndLoc));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// Try to parse a register name. The token must be an Identifier when called.
|
|
/// If it's a register, an AsmOperand is created. Another AsmOperand is created
|
|
/// if there is a "writeback". 'true' if it's not a register.
|
|
///
|
|
/// TODO this is likely to change to allow different register types and or to
|
|
/// parse for a specific register type.
|
|
bool ARMAsmParser::
|
|
tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
const AsmToken &RegTok = Parser.getTok();
|
|
int RegNo = tryParseRegister();
|
|
if (RegNo == -1)
|
|
return true;
|
|
|
|
Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
|
|
RegTok.getEndLoc()));
|
|
|
|
const AsmToken &ExclaimTok = Parser.getTok();
|
|
if (ExclaimTok.is(AsmToken::Exclaim)) {
|
|
Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
|
|
ExclaimTok.getLoc()));
|
|
Parser.Lex(); // Eat exclaim token
|
|
return false;
|
|
}
|
|
|
|
// Also check for an index operand. This is only legal for vector registers,
|
|
// but that'll get caught OK in operand matching, so we don't need to
|
|
// explicitly filter everything else out here.
|
|
if (Parser.getTok().is(AsmToken::LBrac)) {
|
|
SMLoc SIdx = Parser.getTok().getLoc();
|
|
Parser.Lex(); // Eat left bracket token.
|
|
|
|
const MCExpr *ImmVal;
|
|
if (getParser().parseExpression(ImmVal))
|
|
return true;
|
|
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
|
|
if (!MCE)
|
|
return TokError("immediate value expected for vector index");
|
|
|
|
if (Parser.getTok().isNot(AsmToken::RBrac))
|
|
return Error(Parser.getTok().getLoc(), "']' expected");
|
|
|
|
SMLoc E = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat right bracket token.
|
|
|
|
Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
|
|
SIdx, E,
|
|
getContext()));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// MatchCoprocessorOperandName - Try to parse an coprocessor related
|
|
/// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
|
|
/// "c5", ...
|
|
static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
|
|
// Use the same layout as the tablegen'erated register name matcher. Ugly,
|
|
// but efficient.
|
|
switch (Name.size()) {
|
|
default: return -1;
|
|
case 2:
|
|
if (Name[0] != CoprocOp)
|
|
return -1;
|
|
switch (Name[1]) {
|
|
default: return -1;
|
|
case '0': return 0;
|
|
case '1': return 1;
|
|
case '2': return 2;
|
|
case '3': return 3;
|
|
case '4': return 4;
|
|
case '5': return 5;
|
|
case '6': return 6;
|
|
case '7': return 7;
|
|
case '8': return 8;
|
|
case '9': return 9;
|
|
}
|
|
case 3:
|
|
if (Name[0] != CoprocOp || Name[1] != '1')
|
|
return -1;
|
|
switch (Name[2]) {
|
|
default: return -1;
|
|
case '0': return 10;
|
|
case '1': return 11;
|
|
case '2': return 12;
|
|
case '3': return 13;
|
|
case '4': return 14;
|
|
case '5': return 15;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// parseITCondCode - Try to parse a condition code for an IT instruction.
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (!Tok.is(AsmToken::Identifier))
|
|
return MatchOperand_NoMatch;
|
|
unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
|
|
.Case("eq", ARMCC::EQ)
|
|
.Case("ne", ARMCC::NE)
|
|
.Case("hs", ARMCC::HS)
|
|
.Case("cs", ARMCC::HS)
|
|
.Case("lo", ARMCC::LO)
|
|
.Case("cc", ARMCC::LO)
|
|
.Case("mi", ARMCC::MI)
|
|
.Case("pl", ARMCC::PL)
|
|
.Case("vs", ARMCC::VS)
|
|
.Case("vc", ARMCC::VC)
|
|
.Case("hi", ARMCC::HI)
|
|
.Case("ls", ARMCC::LS)
|
|
.Case("ge", ARMCC::GE)
|
|
.Case("lt", ARMCC::LT)
|
|
.Case("gt", ARMCC::GT)
|
|
.Case("le", ARMCC::LE)
|
|
.Case("al", ARMCC::AL)
|
|
.Default(~0U);
|
|
if (CC == ~0U)
|
|
return MatchOperand_NoMatch;
|
|
Parser.Lex(); // Eat the token.
|
|
|
|
Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
|
|
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
/// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
|
|
/// token must be an Identifier when called, and if it is a coprocessor
|
|
/// number, the token is eaten and the operand is added to the operand list.
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (Tok.isNot(AsmToken::Identifier))
|
|
return MatchOperand_NoMatch;
|
|
|
|
int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
|
|
if (Num == -1)
|
|
return MatchOperand_NoMatch;
|
|
|
|
Parser.Lex(); // Eat identifier token.
|
|
Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
/// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
|
|
/// token must be an Identifier when called, and if it is a coprocessor
|
|
/// number, the token is eaten and the operand is added to the operand list.
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (Tok.isNot(AsmToken::Identifier))
|
|
return MatchOperand_NoMatch;
|
|
|
|
int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
|
|
if (Reg == -1)
|
|
return MatchOperand_NoMatch;
|
|
|
|
Parser.Lex(); // Eat identifier token.
|
|
Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
/// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
|
|
/// coproc_option : '{' imm0_255 '}'
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
|
|
// If this isn't a '{', this isn't a coprocessor immediate operand.
|
|
if (Parser.getTok().isNot(AsmToken::LCurly))
|
|
return MatchOperand_NoMatch;
|
|
Parser.Lex(); // Eat the '{'
|
|
|
|
const MCExpr *Expr;
|
|
SMLoc Loc = Parser.getTok().getLoc();
|
|
if (getParser().parseExpression(Expr)) {
|
|
Error(Loc, "illegal expression");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
|
|
if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
|
|
Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
int Val = CE->getValue();
|
|
|
|
// Check for and consume the closing '}'
|
|
if (Parser.getTok().isNot(AsmToken::RCurly))
|
|
return MatchOperand_ParseFail;
|
|
SMLoc E = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat the '}'
|
|
|
|
Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
// For register list parsing, we need to map from raw GPR register numbering
|
|
// to the enumeration values. The enumeration values aren't sorted by
|
|
// register number due to our using "sp", "lr" and "pc" as canonical names.
|
|
static unsigned getNextRegister(unsigned Reg) {
|
|
// If this is a GPR, we need to do it manually, otherwise we can rely
|
|
// on the sort ordering of the enumeration since the other reg-classes
|
|
// are sane.
|
|
if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
|
|
return Reg + 1;
|
|
switch(Reg) {
|
|
default: llvm_unreachable("Invalid GPR number!");
|
|
case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
|
|
case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
|
|
case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
|
|
case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
|
|
case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
|
|
case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
|
|
case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
|
|
case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
|
|
}
|
|
}
|
|
|
|
// Return the low-subreg of a given Q register.
|
|
static unsigned getDRegFromQReg(unsigned QReg) {
|
|
switch (QReg) {
|
|
default: llvm_unreachable("expected a Q register!");
|
|
case ARM::Q0: return ARM::D0;
|
|
case ARM::Q1: return ARM::D2;
|
|
case ARM::Q2: return ARM::D4;
|
|
case ARM::Q3: return ARM::D6;
|
|
case ARM::Q4: return ARM::D8;
|
|
case ARM::Q5: return ARM::D10;
|
|
case ARM::Q6: return ARM::D12;
|
|
case ARM::Q7: return ARM::D14;
|
|
case ARM::Q8: return ARM::D16;
|
|
case ARM::Q9: return ARM::D18;
|
|
case ARM::Q10: return ARM::D20;
|
|
case ARM::Q11: return ARM::D22;
|
|
case ARM::Q12: return ARM::D24;
|
|
case ARM::Q13: return ARM::D26;
|
|
case ARM::Q14: return ARM::D28;
|
|
case ARM::Q15: return ARM::D30;
|
|
}
|
|
}
|
|
|
|
/// Parse a register list.
|
|
bool ARMAsmParser::
|
|
parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
assert(Parser.getTok().is(AsmToken::LCurly) &&
|
|
"Token is not a Left Curly Brace");
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
Parser.Lex(); // Eat '{' token.
|
|
SMLoc RegLoc = Parser.getTok().getLoc();
|
|
|
|
// Check the first register in the list to see what register class
|
|
// this is a list of.
|
|
int Reg = tryParseRegister();
|
|
if (Reg == -1)
|
|
return Error(RegLoc, "register expected");
|
|
|
|
// The reglist instructions have at most 16 registers, so reserve
|
|
// space for that many.
|
|
SmallVector<std::pair<unsigned, SMLoc>, 16> Registers;
|
|
|
|
// Allow Q regs and just interpret them as the two D sub-registers.
|
|
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
|
|
Reg = getDRegFromQReg(Reg);
|
|
Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
|
|
++Reg;
|
|
}
|
|
const MCRegisterClass *RC;
|
|
if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
|
|
RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
|
|
else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
|
|
RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
|
|
else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
|
|
RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
|
|
else
|
|
return Error(RegLoc, "invalid register in register list");
|
|
|
|
// Store the register.
|
|
Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
|
|
|
|
// This starts immediately after the first register token in the list,
|
|
// so we can see either a comma or a minus (range separator) as a legal
|
|
// next token.
|
|
while (Parser.getTok().is(AsmToken::Comma) ||
|
|
Parser.getTok().is(AsmToken::Minus)) {
|
|
if (Parser.getTok().is(AsmToken::Minus)) {
|
|
Parser.Lex(); // Eat the minus.
|
|
SMLoc AfterMinusLoc = Parser.getTok().getLoc();
|
|
int EndReg = tryParseRegister();
|
|
if (EndReg == -1)
|
|
return Error(AfterMinusLoc, "register expected");
|
|
// Allow Q regs and just interpret them as the two D sub-registers.
|
|
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
|
|
EndReg = getDRegFromQReg(EndReg) + 1;
|
|
// If the register is the same as the start reg, there's nothing
|
|
// more to do.
|
|
if (Reg == EndReg)
|
|
continue;
|
|
// The register must be in the same register class as the first.
|
|
if (!RC->contains(EndReg))
|
|
return Error(AfterMinusLoc, "invalid register in register list");
|
|
// Ranges must go from low to high.
|
|
if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
|
|
return Error(AfterMinusLoc, "bad range in register list");
|
|
|
|
// Add all the registers in the range to the register list.
|
|
while (Reg != EndReg) {
|
|
Reg = getNextRegister(Reg);
|
|
Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
|
|
}
|
|
continue;
|
|
}
|
|
Parser.Lex(); // Eat the comma.
|
|
RegLoc = Parser.getTok().getLoc();
|
|
int OldReg = Reg;
|
|
const AsmToken RegTok = Parser.getTok();
|
|
Reg = tryParseRegister();
|
|
if (Reg == -1)
|
|
return Error(RegLoc, "register expected");
|
|
// Allow Q regs and just interpret them as the two D sub-registers.
|
|
bool isQReg = false;
|
|
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
|
|
Reg = getDRegFromQReg(Reg);
|
|
isQReg = true;
|
|
}
|
|
// The register must be in the same register class as the first.
|
|
if (!RC->contains(Reg))
|
|
return Error(RegLoc, "invalid register in register list");
|
|
// List must be monotonically increasing.
|
|
if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
|
|
if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
|
|
Warning(RegLoc, "register list not in ascending order");
|
|
else
|
|
return Error(RegLoc, "register list not in ascending order");
|
|
}
|
|
if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
|
|
Warning(RegLoc, "duplicated register (" + RegTok.getString() +
|
|
") in register list");
|
|
continue;
|
|
}
|
|
// VFP register lists must also be contiguous.
|
|
// It's OK to use the enumeration values directly here rather, as the
|
|
// VFP register classes have the enum sorted properly.
|
|
if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
|
|
Reg != OldReg + 1)
|
|
return Error(RegLoc, "non-contiguous register range");
|
|
Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
|
|
if (isQReg)
|
|
Registers.push_back(std::pair<unsigned, SMLoc>(++Reg, RegLoc));
|
|
}
|
|
|
|
if (Parser.getTok().isNot(AsmToken::RCurly))
|
|
return Error(Parser.getTok().getLoc(), "'}' expected");
|
|
SMLoc E = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat '}' token.
|
|
|
|
// Push the register list operand.
|
|
Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
|
|
|
|
// The ARM system instruction variants for LDM/STM have a '^' token here.
|
|
if (Parser.getTok().is(AsmToken::Caret)) {
|
|
Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
|
|
Parser.Lex(); // Eat '^' token.
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Helper function to parse the lane index for vector lists.
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
|
|
Index = 0; // Always return a defined index value.
|
|
if (Parser.getTok().is(AsmToken::LBrac)) {
|
|
Parser.Lex(); // Eat the '['.
|
|
if (Parser.getTok().is(AsmToken::RBrac)) {
|
|
// "Dn[]" is the 'all lanes' syntax.
|
|
LaneKind = AllLanes;
|
|
EndLoc = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat the ']'.
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
// There's an optional '#' token here. Normally there wouldn't be, but
|
|
// inline assemble puts one in, and it's friendly to accept that.
|
|
if (Parser.getTok().is(AsmToken::Hash))
|
|
Parser.Lex(); // Eat '#' or '$'.
|
|
|
|
const MCExpr *LaneIndex;
|
|
SMLoc Loc = Parser.getTok().getLoc();
|
|
if (getParser().parseExpression(LaneIndex)) {
|
|
Error(Loc, "illegal expression");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
|
|
if (!CE) {
|
|
Error(Loc, "lane index must be empty or an integer");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
if (Parser.getTok().isNot(AsmToken::RBrac)) {
|
|
Error(Parser.getTok().getLoc(), "']' expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
EndLoc = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat the ']'.
|
|
int64_t Val = CE->getValue();
|
|
|
|
// FIXME: Make this range check context sensitive for .8, .16, .32.
|
|
if (Val < 0 || Val > 7) {
|
|
Error(Parser.getTok().getLoc(), "lane index out of range");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Index = Val;
|
|
LaneKind = IndexedLane;
|
|
return MatchOperand_Success;
|
|
}
|
|
LaneKind = NoLanes;
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
// parse a vector register list
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
VectorLaneTy LaneKind;
|
|
unsigned LaneIndex;
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
// As an extension (to match gas), support a plain D register or Q register
|
|
// (without encosing curly braces) as a single or double entry list,
|
|
// respectively.
|
|
if (Parser.getTok().is(AsmToken::Identifier)) {
|
|
SMLoc E = Parser.getTok().getEndLoc();
|
|
int Reg = tryParseRegister();
|
|
if (Reg == -1)
|
|
return MatchOperand_NoMatch;
|
|
if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
|
|
OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
|
|
if (Res != MatchOperand_Success)
|
|
return Res;
|
|
switch (LaneKind) {
|
|
case NoLanes:
|
|
Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
|
|
break;
|
|
case AllLanes:
|
|
Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
|
|
S, E));
|
|
break;
|
|
case IndexedLane:
|
|
Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
|
|
LaneIndex,
|
|
false, S, E));
|
|
break;
|
|
}
|
|
return MatchOperand_Success;
|
|
}
|
|
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
|
|
Reg = getDRegFromQReg(Reg);
|
|
OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
|
|
if (Res != MatchOperand_Success)
|
|
return Res;
|
|
switch (LaneKind) {
|
|
case NoLanes:
|
|
Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
|
|
&ARMMCRegisterClasses[ARM::DPairRegClassID]);
|
|
Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
|
|
break;
|
|
case AllLanes:
|
|
Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
|
|
&ARMMCRegisterClasses[ARM::DPairRegClassID]);
|
|
Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
|
|
S, E));
|
|
break;
|
|
case IndexedLane:
|
|
Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
|
|
LaneIndex,
|
|
false, S, E));
|
|
break;
|
|
}
|
|
return MatchOperand_Success;
|
|
}
|
|
Error(S, "vector register expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
if (Parser.getTok().isNot(AsmToken::LCurly))
|
|
return MatchOperand_NoMatch;
|
|
|
|
Parser.Lex(); // Eat '{' token.
|
|
SMLoc RegLoc = Parser.getTok().getLoc();
|
|
|
|
int Reg = tryParseRegister();
|
|
if (Reg == -1) {
|
|
Error(RegLoc, "register expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
unsigned Count = 1;
|
|
int Spacing = 0;
|
|
unsigned FirstReg = Reg;
|
|
// The list is of D registers, but we also allow Q regs and just interpret
|
|
// them as the two D sub-registers.
|
|
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
|
|
FirstReg = Reg = getDRegFromQReg(Reg);
|
|
Spacing = 1; // double-spacing requires explicit D registers, otherwise
|
|
// it's ambiguous with four-register single spaced.
|
|
++Reg;
|
|
++Count;
|
|
}
|
|
|
|
SMLoc E;
|
|
if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
|
|
return MatchOperand_ParseFail;
|
|
|
|
while (Parser.getTok().is(AsmToken::Comma) ||
|
|
Parser.getTok().is(AsmToken::Minus)) {
|
|
if (Parser.getTok().is(AsmToken::Minus)) {
|
|
if (!Spacing)
|
|
Spacing = 1; // Register range implies a single spaced list.
|
|
else if (Spacing == 2) {
|
|
Error(Parser.getTok().getLoc(),
|
|
"sequential registers in double spaced list");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Parser.Lex(); // Eat the minus.
|
|
SMLoc AfterMinusLoc = Parser.getTok().getLoc();
|
|
int EndReg = tryParseRegister();
|
|
if (EndReg == -1) {
|
|
Error(AfterMinusLoc, "register expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
// Allow Q regs and just interpret them as the two D sub-registers.
|
|
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
|
|
EndReg = getDRegFromQReg(EndReg) + 1;
|
|
// If the register is the same as the start reg, there's nothing
|
|
// more to do.
|
|
if (Reg == EndReg)
|
|
continue;
|
|
// The register must be in the same register class as the first.
|
|
if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
|
|
Error(AfterMinusLoc, "invalid register in register list");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
// Ranges must go from low to high.
|
|
if (Reg > EndReg) {
|
|
Error(AfterMinusLoc, "bad range in register list");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
// Parse the lane specifier if present.
|
|
VectorLaneTy NextLaneKind;
|
|
unsigned NextLaneIndex;
|
|
if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
|
|
MatchOperand_Success)
|
|
return MatchOperand_ParseFail;
|
|
if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
|
|
Error(AfterMinusLoc, "mismatched lane index in register list");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
// Add all the registers in the range to the register list.
|
|
Count += EndReg - Reg;
|
|
Reg = EndReg;
|
|
continue;
|
|
}
|
|
Parser.Lex(); // Eat the comma.
|
|
RegLoc = Parser.getTok().getLoc();
|
|
int OldReg = Reg;
|
|
Reg = tryParseRegister();
|
|
if (Reg == -1) {
|
|
Error(RegLoc, "register expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
// vector register lists must be contiguous.
|
|
// It's OK to use the enumeration values directly here rather, as the
|
|
// VFP register classes have the enum sorted properly.
|
|
//
|
|
// The list is of D registers, but we also allow Q regs and just interpret
|
|
// them as the two D sub-registers.
|
|
if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
|
|
if (!Spacing)
|
|
Spacing = 1; // Register range implies a single spaced list.
|
|
else if (Spacing == 2) {
|
|
Error(RegLoc,
|
|
"invalid register in double-spaced list (must be 'D' register')");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Reg = getDRegFromQReg(Reg);
|
|
if (Reg != OldReg + 1) {
|
|
Error(RegLoc, "non-contiguous register range");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
++Reg;
|
|
Count += 2;
|
|
// Parse the lane specifier if present.
|
|
VectorLaneTy NextLaneKind;
|
|
unsigned NextLaneIndex;
|
|
SMLoc LaneLoc = Parser.getTok().getLoc();
|
|
if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
|
|
MatchOperand_Success)
|
|
return MatchOperand_ParseFail;
|
|
if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
|
|
Error(LaneLoc, "mismatched lane index in register list");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
continue;
|
|
}
|
|
// Normal D register.
|
|
// Figure out the register spacing (single or double) of the list if
|
|
// we don't know it already.
|
|
if (!Spacing)
|
|
Spacing = 1 + (Reg == OldReg + 2);
|
|
|
|
// Just check that it's contiguous and keep going.
|
|
if (Reg != OldReg + Spacing) {
|
|
Error(RegLoc, "non-contiguous register range");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
++Count;
|
|
// Parse the lane specifier if present.
|
|
VectorLaneTy NextLaneKind;
|
|
unsigned NextLaneIndex;
|
|
SMLoc EndLoc = Parser.getTok().getLoc();
|
|
if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
|
|
return MatchOperand_ParseFail;
|
|
if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
|
|
Error(EndLoc, "mismatched lane index in register list");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
}
|
|
|
|
if (Parser.getTok().isNot(AsmToken::RCurly)) {
|
|
Error(Parser.getTok().getLoc(), "'}' expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
E = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat '}' token.
|
|
|
|
switch (LaneKind) {
|
|
case NoLanes:
|
|
// Two-register operands have been converted to the
|
|
// composite register classes.
|
|
if (Count == 2) {
|
|
const MCRegisterClass *RC = (Spacing == 1) ?
|
|
&ARMMCRegisterClasses[ARM::DPairRegClassID] :
|
|
&ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
|
|
FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
|
|
}
|
|
|
|
Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
|
|
(Spacing == 2), S, E));
|
|
break;
|
|
case AllLanes:
|
|
// Two-register operands have been converted to the
|
|
// composite register classes.
|
|
if (Count == 2) {
|
|
const MCRegisterClass *RC = (Spacing == 1) ?
|
|
&ARMMCRegisterClasses[ARM::DPairRegClassID] :
|
|
&ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
|
|
FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
|
|
}
|
|
Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
|
|
(Spacing == 2),
|
|
S, E));
|
|
break;
|
|
case IndexedLane:
|
|
Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
|
|
LaneIndex,
|
|
(Spacing == 2),
|
|
S, E));
|
|
break;
|
|
}
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
/// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
const AsmToken &Tok = Parser.getTok();
|
|
unsigned Opt;
|
|
|
|
if (Tok.is(AsmToken::Identifier)) {
|
|
StringRef OptStr = Tok.getString();
|
|
|
|
Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
|
|
.Case("sy", ARM_MB::SY)
|
|
.Case("st", ARM_MB::ST)
|
|
.Case("sh", ARM_MB::ISH)
|
|
.Case("ish", ARM_MB::ISH)
|
|
.Case("shst", ARM_MB::ISHST)
|
|
.Case("ishst", ARM_MB::ISHST)
|
|
.Case("nsh", ARM_MB::NSH)
|
|
.Case("un", ARM_MB::NSH)
|
|
.Case("nshst", ARM_MB::NSHST)
|
|
.Case("unst", ARM_MB::NSHST)
|
|
.Case("osh", ARM_MB::OSH)
|
|
.Case("oshst", ARM_MB::OSHST)
|
|
.Default(~0U);
|
|
|
|
if (Opt == ~0U)
|
|
return MatchOperand_NoMatch;
|
|
|
|
Parser.Lex(); // Eat identifier token.
|
|
} else if (Tok.is(AsmToken::Hash) ||
|
|
Tok.is(AsmToken::Dollar) ||
|
|
Tok.is(AsmToken::Integer)) {
|
|
if (Parser.getTok().isNot(AsmToken::Integer))
|
|
Parser.Lex(); // Eat '#' or '$'.
|
|
SMLoc Loc = Parser.getTok().getLoc();
|
|
|
|
const MCExpr *MemBarrierID;
|
|
if (getParser().parseExpression(MemBarrierID)) {
|
|
Error(Loc, "illegal expression");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
|
|
if (!CE) {
|
|
Error(Loc, "constant expression expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
int Val = CE->getValue();
|
|
if (Val & ~0xf) {
|
|
Error(Loc, "immediate value out of range");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
Opt = ARM_MB::RESERVED_0 + Val;
|
|
} else
|
|
return MatchOperand_ParseFail;
|
|
|
|
Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
/// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseInstSyncBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
const AsmToken &Tok = Parser.getTok();
|
|
unsigned Opt;
|
|
|
|
if (Tok.is(AsmToken::Identifier)) {
|
|
StringRef OptStr = Tok.getString();
|
|
|
|
if (OptStr.lower() == "sy")
|
|
Opt = ARM_ISB::SY;
|
|
else
|
|
return MatchOperand_NoMatch;
|
|
|
|
Parser.Lex(); // Eat identifier token.
|
|
} else if (Tok.is(AsmToken::Hash) ||
|
|
Tok.is(AsmToken::Dollar) ||
|
|
Tok.is(AsmToken::Integer)) {
|
|
if (Parser.getTok().isNot(AsmToken::Integer))
|
|
Parser.Lex(); // Eat '#' or '$'.
|
|
SMLoc Loc = Parser.getTok().getLoc();
|
|
|
|
const MCExpr *ISBarrierID;
|
|
if (getParser().parseExpression(ISBarrierID)) {
|
|
Error(Loc, "illegal expression");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
|
|
if (!CE) {
|
|
Error(Loc, "constant expression expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
int Val = CE->getValue();
|
|
if (Val & ~0xf) {
|
|
Error(Loc, "immediate value out of range");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
Opt = ARM_ISB::RESERVED_0 + Val;
|
|
} else
|
|
return MatchOperand_ParseFail;
|
|
|
|
Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
|
|
(ARM_ISB::InstSyncBOpt)Opt, S));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
|
|
/// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (!Tok.is(AsmToken::Identifier))
|
|
return MatchOperand_NoMatch;
|
|
StringRef IFlagsStr = Tok.getString();
|
|
|
|
// An iflags string of "none" is interpreted to mean that none of the AIF
|
|
// bits are set. Not a terribly useful instruction, but a valid encoding.
|
|
unsigned IFlags = 0;
|
|
if (IFlagsStr != "none") {
|
|
for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
|
|
unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
|
|
.Case("a", ARM_PROC::A)
|
|
.Case("i", ARM_PROC::I)
|
|
.Case("f", ARM_PROC::F)
|
|
.Default(~0U);
|
|
|
|
// If some specific iflag is already set, it means that some letter is
|
|
// present more than once, this is not acceptable.
|
|
if (Flag == ~0U || (IFlags & Flag))
|
|
return MatchOperand_NoMatch;
|
|
|
|
IFlags |= Flag;
|
|
}
|
|
}
|
|
|
|
Parser.Lex(); // Eat identifier token.
|
|
Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
/// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (!Tok.is(AsmToken::Identifier))
|
|
return MatchOperand_NoMatch;
|
|
StringRef Mask = Tok.getString();
|
|
|
|
if (isMClass()) {
|
|
// See ARMv6-M 10.1.1
|
|
std::string Name = Mask.lower();
|
|
unsigned FlagsVal = StringSwitch<unsigned>(Name)
|
|
// Note: in the documentation:
|
|
// ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
|
|
// for MSR APSR_nzcvq.
|
|
// but we do make it an alias here. This is so to get the "mask encoding"
|
|
// bits correct on MSR APSR writes.
|
|
//
|
|
// FIXME: Note the 0xc00 "mask encoding" bits version of the registers
|
|
// should really only be allowed when writing a special register. Note
|
|
// they get dropped in the MRS instruction reading a special register as
|
|
// the SYSm field is only 8 bits.
|
|
//
|
|
// FIXME: the _g and _nzcvqg versions are only allowed if the processor
|
|
// includes the DSP extension but that is not checked.
|
|
.Case("apsr", 0x800)
|
|
.Case("apsr_nzcvq", 0x800)
|
|
.Case("apsr_g", 0x400)
|
|
.Case("apsr_nzcvqg", 0xc00)
|
|
.Case("iapsr", 0x801)
|
|
.Case("iapsr_nzcvq", 0x801)
|
|
.Case("iapsr_g", 0x401)
|
|
.Case("iapsr_nzcvqg", 0xc01)
|
|
.Case("eapsr", 0x802)
|
|
.Case("eapsr_nzcvq", 0x802)
|
|
.Case("eapsr_g", 0x402)
|
|
.Case("eapsr_nzcvqg", 0xc02)
|
|
.Case("xpsr", 0x803)
|
|
.Case("xpsr_nzcvq", 0x803)
|
|
.Case("xpsr_g", 0x403)
|
|
.Case("xpsr_nzcvqg", 0xc03)
|
|
.Case("ipsr", 0x805)
|
|
.Case("epsr", 0x806)
|
|
.Case("iepsr", 0x807)
|
|
.Case("msp", 0x808)
|
|
.Case("psp", 0x809)
|
|
.Case("primask", 0x810)
|
|
.Case("basepri", 0x811)
|
|
.Case("basepri_max", 0x812)
|
|
.Case("faultmask", 0x813)
|
|
.Case("control", 0x814)
|
|
.Default(~0U);
|
|
|
|
if (FlagsVal == ~0U)
|
|
return MatchOperand_NoMatch;
|
|
|
|
if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
|
|
// basepri, basepri_max and faultmask only valid for V7m.
|
|
return MatchOperand_NoMatch;
|
|
|
|
Parser.Lex(); // Eat identifier token.
|
|
Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
// Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
|
|
size_t Start = 0, Next = Mask.find('_');
|
|
StringRef Flags = "";
|
|
std::string SpecReg = Mask.slice(Start, Next).lower();
|
|
if (Next != StringRef::npos)
|
|
Flags = Mask.slice(Next+1, Mask.size());
|
|
|
|
// FlagsVal contains the complete mask:
|
|
// 3-0: Mask
|
|
// 4: Special Reg (cpsr, apsr => 0; spsr => 1)
|
|
unsigned FlagsVal = 0;
|
|
|
|
if (SpecReg == "apsr") {
|
|
FlagsVal = StringSwitch<unsigned>(Flags)
|
|
.Case("nzcvq", 0x8) // same as CPSR_f
|
|
.Case("g", 0x4) // same as CPSR_s
|
|
.Case("nzcvqg", 0xc) // same as CPSR_fs
|
|
.Default(~0U);
|
|
|
|
if (FlagsVal == ~0U) {
|
|
if (!Flags.empty())
|
|
return MatchOperand_NoMatch;
|
|
else
|
|
FlagsVal = 8; // No flag
|
|
}
|
|
} else if (SpecReg == "cpsr" || SpecReg == "spsr") {
|
|
// cpsr_all is an alias for cpsr_fc, as is plain cpsr.
|
|
if (Flags == "all" || Flags == "")
|
|
Flags = "fc";
|
|
for (int i = 0, e = Flags.size(); i != e; ++i) {
|
|
unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
|
|
.Case("c", 1)
|
|
.Case("x", 2)
|
|
.Case("s", 4)
|
|
.Case("f", 8)
|
|
.Default(~0U);
|
|
|
|
// If some specific flag is already set, it means that some letter is
|
|
// present more than once, this is not acceptable.
|
|
if (FlagsVal == ~0U || (FlagsVal & Flag))
|
|
return MatchOperand_NoMatch;
|
|
FlagsVal |= Flag;
|
|
}
|
|
} else // No match for special register.
|
|
return MatchOperand_NoMatch;
|
|
|
|
// Special register without flags is NOT equivalent to "fc" flags.
|
|
// NOTE: This is a divergence from gas' behavior. Uncommenting the following
|
|
// two lines would enable gas compatibility at the expense of breaking
|
|
// round-tripping.
|
|
//
|
|
// if (!FlagsVal)
|
|
// FlagsVal = 0x9;
|
|
|
|
// Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
|
|
if (SpecReg == "spsr")
|
|
FlagsVal |= 16;
|
|
|
|
Parser.Lex(); // Eat identifier token.
|
|
Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
|
|
int Low, int High) {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (Tok.isNot(AsmToken::Identifier)) {
|
|
Error(Parser.getTok().getLoc(), Op + " operand expected.");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
StringRef ShiftName = Tok.getString();
|
|
std::string LowerOp = Op.lower();
|
|
std::string UpperOp = Op.upper();
|
|
if (ShiftName != LowerOp && ShiftName != UpperOp) {
|
|
Error(Parser.getTok().getLoc(), Op + " operand expected.");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Parser.Lex(); // Eat shift type token.
|
|
|
|
// There must be a '#' and a shift amount.
|
|
if (Parser.getTok().isNot(AsmToken::Hash) &&
|
|
Parser.getTok().isNot(AsmToken::Dollar)) {
|
|
Error(Parser.getTok().getLoc(), "'#' expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Parser.Lex(); // Eat hash token.
|
|
|
|
const MCExpr *ShiftAmount;
|
|
SMLoc Loc = Parser.getTok().getLoc();
|
|
SMLoc EndLoc;
|
|
if (getParser().parseExpression(ShiftAmount, EndLoc)) {
|
|
Error(Loc, "illegal expression");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
|
|
if (!CE) {
|
|
Error(Loc, "constant expression expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
int Val = CE->getValue();
|
|
if (Val < Low || Val > High) {
|
|
Error(Loc, "immediate value out of range");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
|
|
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
SMLoc S = Tok.getLoc();
|
|
if (Tok.isNot(AsmToken::Identifier)) {
|
|
Error(S, "'be' or 'le' operand expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
int Val = StringSwitch<int>(Tok.getString().lower())
|
|
.Case("be", 1)
|
|
.Case("le", 0)
|
|
.Default(-1);
|
|
Parser.Lex(); // Eat the token.
|
|
|
|
if (Val == -1) {
|
|
Error(S, "'be' or 'le' operand expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
|
|
getContext()),
|
|
S, Tok.getEndLoc()));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
/// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
|
|
/// instructions. Legal values are:
|
|
/// lsl #n 'n' in [0,31]
|
|
/// asr #n 'n' in [1,32]
|
|
/// n == 32 encoded as n == 0.
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
SMLoc S = Tok.getLoc();
|
|
if (Tok.isNot(AsmToken::Identifier)) {
|
|
Error(S, "shift operator 'asr' or 'lsl' expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
StringRef ShiftName = Tok.getString();
|
|
bool isASR;
|
|
if (ShiftName == "lsl" || ShiftName == "LSL")
|
|
isASR = false;
|
|
else if (ShiftName == "asr" || ShiftName == "ASR")
|
|
isASR = true;
|
|
else {
|
|
Error(S, "shift operator 'asr' or 'lsl' expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Parser.Lex(); // Eat the operator.
|
|
|
|
// A '#' and a shift amount.
|
|
if (Parser.getTok().isNot(AsmToken::Hash) &&
|
|
Parser.getTok().isNot(AsmToken::Dollar)) {
|
|
Error(Parser.getTok().getLoc(), "'#' expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Parser.Lex(); // Eat hash token.
|
|
SMLoc ExLoc = Parser.getTok().getLoc();
|
|
|
|
const MCExpr *ShiftAmount;
|
|
SMLoc EndLoc;
|
|
if (getParser().parseExpression(ShiftAmount, EndLoc)) {
|
|
Error(ExLoc, "malformed shift expression");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
|
|
if (!CE) {
|
|
Error(ExLoc, "shift amount must be an immediate");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
int64_t Val = CE->getValue();
|
|
if (isASR) {
|
|
// Shift amount must be in [1,32]
|
|
if (Val < 1 || Val > 32) {
|
|
Error(ExLoc, "'asr' shift amount must be in range [1,32]");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
// asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
|
|
if (isThumb() && Val == 32) {
|
|
Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
if (Val == 32) Val = 0;
|
|
} else {
|
|
// Shift amount must be in [1,32]
|
|
if (Val < 0 || Val > 31) {
|
|
Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
}
|
|
|
|
Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
|
|
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
/// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
|
|
/// of instructions. Legal values are:
|
|
/// ror #n 'n' in {0, 8, 16, 24}
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
SMLoc S = Tok.getLoc();
|
|
if (Tok.isNot(AsmToken::Identifier))
|
|
return MatchOperand_NoMatch;
|
|
StringRef ShiftName = Tok.getString();
|
|
if (ShiftName != "ror" && ShiftName != "ROR")
|
|
return MatchOperand_NoMatch;
|
|
Parser.Lex(); // Eat the operator.
|
|
|
|
// A '#' and a rotate amount.
|
|
if (Parser.getTok().isNot(AsmToken::Hash) &&
|
|
Parser.getTok().isNot(AsmToken::Dollar)) {
|
|
Error(Parser.getTok().getLoc(), "'#' expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Parser.Lex(); // Eat hash token.
|
|
SMLoc ExLoc = Parser.getTok().getLoc();
|
|
|
|
const MCExpr *ShiftAmount;
|
|
SMLoc EndLoc;
|
|
if (getParser().parseExpression(ShiftAmount, EndLoc)) {
|
|
Error(ExLoc, "malformed rotate expression");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
|
|
if (!CE) {
|
|
Error(ExLoc, "rotate amount must be an immediate");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
int64_t Val = CE->getValue();
|
|
// Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
|
|
// normally, zero is represented in asm by omitting the rotate operand
|
|
// entirely.
|
|
if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
|
|
Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
|
|
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
// The bitfield descriptor is really two operands, the LSB and the width.
|
|
if (Parser.getTok().isNot(AsmToken::Hash) &&
|
|
Parser.getTok().isNot(AsmToken::Dollar)) {
|
|
Error(Parser.getTok().getLoc(), "'#' expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Parser.Lex(); // Eat hash token.
|
|
|
|
const MCExpr *LSBExpr;
|
|
SMLoc E = Parser.getTok().getLoc();
|
|
if (getParser().parseExpression(LSBExpr)) {
|
|
Error(E, "malformed immediate expression");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
|
|
if (!CE) {
|
|
Error(E, "'lsb' operand must be an immediate");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
int64_t LSB = CE->getValue();
|
|
// The LSB must be in the range [0,31]
|
|
if (LSB < 0 || LSB > 31) {
|
|
Error(E, "'lsb' operand must be in the range [0,31]");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
E = Parser.getTok().getLoc();
|
|
|
|
// Expect another immediate operand.
|
|
if (Parser.getTok().isNot(AsmToken::Comma)) {
|
|
Error(Parser.getTok().getLoc(), "too few operands");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Parser.Lex(); // Eat hash token.
|
|
if (Parser.getTok().isNot(AsmToken::Hash) &&
|
|
Parser.getTok().isNot(AsmToken::Dollar)) {
|
|
Error(Parser.getTok().getLoc(), "'#' expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Parser.Lex(); // Eat hash token.
|
|
|
|
const MCExpr *WidthExpr;
|
|
SMLoc EndLoc;
|
|
if (getParser().parseExpression(WidthExpr, EndLoc)) {
|
|
Error(E, "malformed immediate expression");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
CE = dyn_cast<MCConstantExpr>(WidthExpr);
|
|
if (!CE) {
|
|
Error(E, "'width' operand must be an immediate");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
int64_t Width = CE->getValue();
|
|
// The LSB must be in the range [1,32-lsb]
|
|
if (Width < 1 || Width > 32 - LSB) {
|
|
Error(E, "'width' operand must be in the range [1,32-lsb]");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
|
|
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Check for a post-index addressing register operand. Specifically:
|
|
// postidx_reg := '+' register {, shift}
|
|
// | '-' register {, shift}
|
|
// | register {, shift}
|
|
|
|
// This method must return MatchOperand_NoMatch without consuming any tokens
|
|
// in the case where there is no match, as other alternatives take other
|
|
// parse methods.
|
|
AsmToken Tok = Parser.getTok();
|
|
SMLoc S = Tok.getLoc();
|
|
bool haveEaten = false;
|
|
bool isAdd = true;
|
|
if (Tok.is(AsmToken::Plus)) {
|
|
Parser.Lex(); // Eat the '+' token.
|
|
haveEaten = true;
|
|
} else if (Tok.is(AsmToken::Minus)) {
|
|
Parser.Lex(); // Eat the '-' token.
|
|
isAdd = false;
|
|
haveEaten = true;
|
|
}
|
|
|
|
SMLoc E = Parser.getTok().getEndLoc();
|
|
int Reg = tryParseRegister();
|
|
if (Reg == -1) {
|
|
if (!haveEaten)
|
|
return MatchOperand_NoMatch;
|
|
Error(Parser.getTok().getLoc(), "register expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
|
|
unsigned ShiftImm = 0;
|
|
if (Parser.getTok().is(AsmToken::Comma)) {
|
|
Parser.Lex(); // Eat the ','.
|
|
if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
|
|
return MatchOperand_ParseFail;
|
|
|
|
// FIXME: Only approximates end...may include intervening whitespace.
|
|
E = Parser.getTok().getLoc();
|
|
}
|
|
|
|
Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
|
|
ShiftImm, S, E));
|
|
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Check for a post-index addressing register operand. Specifically:
|
|
// am3offset := '+' register
|
|
// | '-' register
|
|
// | register
|
|
// | # imm
|
|
// | # + imm
|
|
// | # - imm
|
|
|
|
// This method must return MatchOperand_NoMatch without consuming any tokens
|
|
// in the case where there is no match, as other alternatives take other
|
|
// parse methods.
|
|
AsmToken Tok = Parser.getTok();
|
|
SMLoc S = Tok.getLoc();
|
|
|
|
// Do immediates first, as we always parse those if we have a '#'.
|
|
if (Parser.getTok().is(AsmToken::Hash) ||
|
|
Parser.getTok().is(AsmToken::Dollar)) {
|
|
Parser.Lex(); // Eat '#' or '$'.
|
|
// Explicitly look for a '-', as we need to encode negative zero
|
|
// differently.
|
|
bool isNegative = Parser.getTok().is(AsmToken::Minus);
|
|
const MCExpr *Offset;
|
|
SMLoc E;
|
|
if (getParser().parseExpression(Offset, E))
|
|
return MatchOperand_ParseFail;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
|
|
if (!CE) {
|
|
Error(S, "constant expression expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
// Negative zero is encoded as the flag value INT32_MIN.
|
|
int32_t Val = CE->getValue();
|
|
if (isNegative && Val == 0)
|
|
Val = INT32_MIN;
|
|
|
|
Operands.push_back(
|
|
ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
|
|
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
|
|
bool haveEaten = false;
|
|
bool isAdd = true;
|
|
if (Tok.is(AsmToken::Plus)) {
|
|
Parser.Lex(); // Eat the '+' token.
|
|
haveEaten = true;
|
|
} else if (Tok.is(AsmToken::Minus)) {
|
|
Parser.Lex(); // Eat the '-' token.
|
|
isAdd = false;
|
|
haveEaten = true;
|
|
}
|
|
|
|
Tok = Parser.getTok();
|
|
int Reg = tryParseRegister();
|
|
if (Reg == -1) {
|
|
if (!haveEaten)
|
|
return MatchOperand_NoMatch;
|
|
Error(Tok.getLoc(), "register expected");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
|
|
0, S, Tok.getEndLoc()));
|
|
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
/// cvtT2LdrdPre - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtT2LdrdPre(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Rt, Rt2
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateReg(0));
|
|
// addr
|
|
((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
|
|
// pred
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtT2StrdPre - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtT2StrdPre(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateReg(0));
|
|
// Rt, Rt2
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
|
|
// addr
|
|
((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
|
|
// pred
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtLdWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
|
|
((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtStWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtLdWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtLdWriteBackRegAddrMode2(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
|
|
((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtLdWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtLdWriteBackRegAddrModeImm12(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
|
|
((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
|
|
/// cvtStWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtStWriteBackRegAddrModeImm12(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtStWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtStWriteBackRegAddrMode2(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtStWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtStWriteBackRegAddrMode3(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtLdExtTWriteBackImm - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtLdExtTWriteBackImm(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Rt
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
// addr
|
|
((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
|
|
// offset
|
|
((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
|
|
// pred
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtLdExtTWriteBackReg - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtLdExtTWriteBackReg(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Rt
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
// addr
|
|
((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
|
|
// offset
|
|
((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
|
|
// pred
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtStExtTWriteBackImm - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtStExtTWriteBackImm(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
// Rt
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
// addr
|
|
((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
|
|
// offset
|
|
((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
|
|
// pred
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtStExtTWriteBackReg - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtStExtTWriteBackReg(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
// Rt
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
// addr
|
|
((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
|
|
// offset
|
|
((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
|
|
// pred
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtLdrdPre - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtLdrdPre(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Rt, Rt2
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
// addr
|
|
((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
|
|
// pred
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtStrdPre - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtStrdPre(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
// Rt, Rt2
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
|
|
// addr
|
|
((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
|
|
// pred
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtLdWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtLdWriteBackRegAddrMode3(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// cvtThumbMultiply - Convert parsed operands to MCInst.
|
|
/// Needed here because the Asm Gen Matcher can't handle properly tied operands
|
|
/// when they refer multiple MIOperands inside a single one.
|
|
void ARMAsmParser::
|
|
cvtThumbMultiply(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
|
|
((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
|
|
// If we have a three-operand form, make sure to set Rn to be the operand
|
|
// that isn't the same as Rd.
|
|
unsigned RegOp = 4;
|
|
if (Operands.size() == 6 &&
|
|
((ARMOperand*)Operands[4])->getReg() ==
|
|
((ARMOperand*)Operands[3])->getReg())
|
|
RegOp = 5;
|
|
((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
|
|
Inst.addOperand(Inst.getOperand(0));
|
|
((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
void ARMAsmParser::
|
|
cvtVLDwbFixed(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Vd
|
|
((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
// Vn
|
|
((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
|
|
// pred
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
void ARMAsmParser::
|
|
cvtVLDwbRegister(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Vd
|
|
((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
// Vn
|
|
((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
|
|
// Vm
|
|
((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
|
|
// pred
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
void ARMAsmParser::
|
|
cvtVSTwbFixed(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
// Vn
|
|
((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
|
|
// Vt
|
|
((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
|
|
// pred
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
void ARMAsmParser::
|
|
cvtVSTwbRegister(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Create a writeback register dummy placeholder.
|
|
Inst.addOperand(MCOperand::CreateImm(0));
|
|
// Vn
|
|
((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
|
|
// Vm
|
|
((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
|
|
// Vt
|
|
((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
|
|
// pred
|
|
((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
|
|
}
|
|
|
|
/// Parse an ARM memory expression, return false if successful else return true
|
|
/// or an error. The first token must be a '[' when called.
|
|
bool ARMAsmParser::
|
|
parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
SMLoc S, E;
|
|
assert(Parser.getTok().is(AsmToken::LBrac) &&
|
|
"Token is not a Left Bracket");
|
|
S = Parser.getTok().getLoc();
|
|
Parser.Lex(); // Eat left bracket token.
|
|
|
|
const AsmToken &BaseRegTok = Parser.getTok();
|
|
int BaseRegNum = tryParseRegister();
|
|
if (BaseRegNum == -1)
|
|
return Error(BaseRegTok.getLoc(), "register expected");
|
|
|
|
// The next token must either be a comma, a colon or a closing bracket.
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
|
|
!Tok.is(AsmToken::RBrac))
|
|
return Error(Tok.getLoc(), "malformed memory operand");
|
|
|
|
if (Tok.is(AsmToken::RBrac)) {
|
|
E = Tok.getEndLoc();
|
|
Parser.Lex(); // Eat right bracket token.
|
|
|
|
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
|
|
0, 0, false, S, E));
|
|
|
|
// If there's a pre-indexing writeback marker, '!', just add it as a token
|
|
// operand. It's rather odd, but syntactically valid.
|
|
if (Parser.getTok().is(AsmToken::Exclaim)) {
|
|
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
|
|
Parser.Lex(); // Eat the '!'.
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
|
|
"Lost colon or comma in memory operand?!");
|
|
if (Tok.is(AsmToken::Comma)) {
|
|
Parser.Lex(); // Eat the comma.
|
|
}
|
|
|
|
// If we have a ':', it's an alignment specifier.
|
|
if (Parser.getTok().is(AsmToken::Colon)) {
|
|
Parser.Lex(); // Eat the ':'.
|
|
E = Parser.getTok().getLoc();
|
|
|
|
const MCExpr *Expr;
|
|
if (getParser().parseExpression(Expr))
|
|
return true;
|
|
|
|
// The expression has to be a constant. Memory references with relocations
|
|
// don't come through here, as they use the <label> forms of the relevant
|
|
// instructions.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
|
|
if (!CE)
|
|
return Error (E, "constant expression expected");
|
|
|
|
unsigned Align = 0;
|
|
switch (CE->getValue()) {
|
|
default:
|
|
return Error(E,
|
|
"alignment specifier must be 16, 32, 64, 128, or 256 bits");
|
|
case 16: Align = 2; break;
|
|
case 32: Align = 4; break;
|
|
case 64: Align = 8; break;
|
|
case 128: Align = 16; break;
|
|
case 256: Align = 32; break;
|
|
}
|
|
|
|
// Now we should have the closing ']'
|
|
if (Parser.getTok().isNot(AsmToken::RBrac))
|
|
return Error(Parser.getTok().getLoc(), "']' expected");
|
|
E = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat right bracket token.
|
|
|
|
// Don't worry about range checking the value here. That's handled by
|
|
// the is*() predicates.
|
|
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
|
|
ARM_AM::no_shift, 0, Align,
|
|
false, S, E));
|
|
|
|
// If there's a pre-indexing writeback marker, '!', just add it as a token
|
|
// operand.
|
|
if (Parser.getTok().is(AsmToken::Exclaim)) {
|
|
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
|
|
Parser.Lex(); // Eat the '!'.
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// If we have a '#', it's an immediate offset, else assume it's a register
|
|
// offset. Be friendly and also accept a plain integer (without a leading
|
|
// hash) for gas compatibility.
|
|
if (Parser.getTok().is(AsmToken::Hash) ||
|
|
Parser.getTok().is(AsmToken::Dollar) ||
|
|
Parser.getTok().is(AsmToken::Integer)) {
|
|
if (Parser.getTok().isNot(AsmToken::Integer))
|
|
Parser.Lex(); // Eat '#' or '$'.
|
|
E = Parser.getTok().getLoc();
|
|
|
|
bool isNegative = getParser().getTok().is(AsmToken::Minus);
|
|
const MCExpr *Offset;
|
|
if (getParser().parseExpression(Offset))
|
|
return true;
|
|
|
|
// The expression has to be a constant. Memory references with relocations
|
|
// don't come through here, as they use the <label> forms of the relevant
|
|
// instructions.
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
|
|
if (!CE)
|
|
return Error (E, "constant expression expected");
|
|
|
|
// If the constant was #-0, represent it as INT32_MIN.
|
|
int32_t Val = CE->getValue();
|
|
if (isNegative && Val == 0)
|
|
CE = MCConstantExpr::Create(INT32_MIN, getContext());
|
|
|
|
// Now we should have the closing ']'
|
|
if (Parser.getTok().isNot(AsmToken::RBrac))
|
|
return Error(Parser.getTok().getLoc(), "']' expected");
|
|
E = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat right bracket token.
|
|
|
|
// Don't worry about range checking the value here. That's handled by
|
|
// the is*() predicates.
|
|
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
|
|
ARM_AM::no_shift, 0, 0,
|
|
false, S, E));
|
|
|
|
// If there's a pre-indexing writeback marker, '!', just add it as a token
|
|
// operand.
|
|
if (Parser.getTok().is(AsmToken::Exclaim)) {
|
|
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
|
|
Parser.Lex(); // Eat the '!'.
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// The register offset is optionally preceded by a '+' or '-'
|
|
bool isNegative = false;
|
|
if (Parser.getTok().is(AsmToken::Minus)) {
|
|
isNegative = true;
|
|
Parser.Lex(); // Eat the '-'.
|
|
} else if (Parser.getTok().is(AsmToken::Plus)) {
|
|
// Nothing to do.
|
|
Parser.Lex(); // Eat the '+'.
|
|
}
|
|
|
|
E = Parser.getTok().getLoc();
|
|
int OffsetRegNum = tryParseRegister();
|
|
if (OffsetRegNum == -1)
|
|
return Error(E, "register expected");
|
|
|
|
// If there's a shift operator, handle it.
|
|
ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
|
|
unsigned ShiftImm = 0;
|
|
if (Parser.getTok().is(AsmToken::Comma)) {
|
|
Parser.Lex(); // Eat the ','.
|
|
if (parseMemRegOffsetShift(ShiftType, ShiftImm))
|
|
return true;
|
|
}
|
|
|
|
// Now we should have the closing ']'
|
|
if (Parser.getTok().isNot(AsmToken::RBrac))
|
|
return Error(Parser.getTok().getLoc(), "']' expected");
|
|
E = Parser.getTok().getEndLoc();
|
|
Parser.Lex(); // Eat right bracket token.
|
|
|
|
Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
|
|
ShiftType, ShiftImm, 0, isNegative,
|
|
S, E));
|
|
|
|
// If there's a pre-indexing writeback marker, '!', just add it as a token
|
|
// operand.
|
|
if (Parser.getTok().is(AsmToken::Exclaim)) {
|
|
Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
|
|
Parser.Lex(); // Eat the '!'.
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// parseMemRegOffsetShift - one of these two:
|
|
/// ( lsl | lsr | asr | ror ) , # shift_amount
|
|
/// rrx
|
|
/// return true if it parses a shift otherwise it returns false.
|
|
bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
|
|
unsigned &Amount) {
|
|
SMLoc Loc = Parser.getTok().getLoc();
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (Tok.isNot(AsmToken::Identifier))
|
|
return true;
|
|
StringRef ShiftName = Tok.getString();
|
|
if (ShiftName == "lsl" || ShiftName == "LSL" ||
|
|
ShiftName == "asl" || ShiftName == "ASL")
|
|
St = ARM_AM::lsl;
|
|
else if (ShiftName == "lsr" || ShiftName == "LSR")
|
|
St = ARM_AM::lsr;
|
|
else if (ShiftName == "asr" || ShiftName == "ASR")
|
|
St = ARM_AM::asr;
|
|
else if (ShiftName == "ror" || ShiftName == "ROR")
|
|
St = ARM_AM::ror;
|
|
else if (ShiftName == "rrx" || ShiftName == "RRX")
|
|
St = ARM_AM::rrx;
|
|
else
|
|
return Error(Loc, "illegal shift operator");
|
|
Parser.Lex(); // Eat shift type token.
|
|
|
|
// rrx stands alone.
|
|
Amount = 0;
|
|
if (St != ARM_AM::rrx) {
|
|
Loc = Parser.getTok().getLoc();
|
|
// A '#' and a shift amount.
|
|
const AsmToken &HashTok = Parser.getTok();
|
|
if (HashTok.isNot(AsmToken::Hash) &&
|
|
HashTok.isNot(AsmToken::Dollar))
|
|
return Error(HashTok.getLoc(), "'#' expected");
|
|
Parser.Lex(); // Eat hash token.
|
|
|
|
const MCExpr *Expr;
|
|
if (getParser().parseExpression(Expr))
|
|
return true;
|
|
// Range check the immediate.
|
|
// lsl, ror: 0 <= imm <= 31
|
|
// lsr, asr: 0 <= imm <= 32
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
|
|
if (!CE)
|
|
return Error(Loc, "shift amount must be an immediate");
|
|
int64_t Imm = CE->getValue();
|
|
if (Imm < 0 ||
|
|
((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
|
|
((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
|
|
return Error(Loc, "immediate shift value out of range");
|
|
// If <ShiftTy> #0, turn it into a no_shift.
|
|
if (Imm == 0)
|
|
St = ARM_AM::lsl;
|
|
// For consistency, treat lsr #32 and asr #32 as having immediate value 0.
|
|
if (Imm == 32)
|
|
Imm = 0;
|
|
Amount = Imm;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// parseFPImm - A floating point immediate expression operand.
|
|
ARMAsmParser::OperandMatchResultTy ARMAsmParser::
|
|
parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Anything that can accept a floating point constant as an operand
|
|
// needs to go through here, as the regular parseExpression is
|
|
// integer only.
|
|
//
|
|
// This routine still creates a generic Immediate operand, containing
|
|
// a bitcast of the 64-bit floating point value. The various operands
|
|
// that accept floats can check whether the value is valid for them
|
|
// via the standard is*() predicates.
|
|
|
|
SMLoc S = Parser.getTok().getLoc();
|
|
|
|
if (Parser.getTok().isNot(AsmToken::Hash) &&
|
|
Parser.getTok().isNot(AsmToken::Dollar))
|
|
return MatchOperand_NoMatch;
|
|
|
|
// Disambiguate the VMOV forms that can accept an FP immediate.
|
|
// vmov.f32 <sreg>, #imm
|
|
// vmov.f64 <dreg>, #imm
|
|
// vmov.f32 <dreg>, #imm @ vector f32x2
|
|
// vmov.f32 <qreg>, #imm @ vector f32x4
|
|
//
|
|
// There are also the NEON VMOV instructions which expect an
|
|
// integer constant. Make sure we don't try to parse an FPImm
|
|
// for these:
|
|
// vmov.i{8|16|32|64} <dreg|qreg>, #imm
|
|
ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
|
|
if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
|
|
TyOp->getToken() != ".f64"))
|
|
return MatchOperand_NoMatch;
|
|
|
|
Parser.Lex(); // Eat '#' or '$'.
|
|
|
|
// Handle negation, as that still comes through as a separate token.
|
|
bool isNegative = false;
|
|
if (Parser.getTok().is(AsmToken::Minus)) {
|
|
isNegative = true;
|
|
Parser.Lex();
|
|
}
|
|
const AsmToken &Tok = Parser.getTok();
|
|
SMLoc Loc = Tok.getLoc();
|
|
if (Tok.is(AsmToken::Real)) {
|
|
APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
|
|
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
|
|
// If we had a '-' in front, toggle the sign bit.
|
|
IntVal ^= (uint64_t)isNegative << 31;
|
|
Parser.Lex(); // Eat the token.
|
|
Operands.push_back(ARMOperand::CreateImm(
|
|
MCConstantExpr::Create(IntVal, getContext()),
|
|
S, Parser.getTok().getLoc()));
|
|
return MatchOperand_Success;
|
|
}
|
|
// Also handle plain integers. Instructions which allow floating point
|
|
// immediates also allow a raw encoded 8-bit value.
|
|
if (Tok.is(AsmToken::Integer)) {
|
|
int64_t Val = Tok.getIntVal();
|
|
Parser.Lex(); // Eat the token.
|
|
if (Val > 255 || Val < 0) {
|
|
Error(Loc, "encoded floating point value out of range");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
double RealVal = ARM_AM::getFPImmFloat(Val);
|
|
Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue();
|
|
Operands.push_back(ARMOperand::CreateImm(
|
|
MCConstantExpr::Create(Val, getContext()), S,
|
|
Parser.getTok().getLoc()));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
Error(Loc, "invalid floating point immediate");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
/// Parse a arm instruction operand. For now this parses the operand regardless
|
|
/// of the mnemonic.
|
|
bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
|
|
StringRef Mnemonic) {
|
|
SMLoc S, E;
|
|
|
|
// Check if the current operand has a custom associated parser, if so, try to
|
|
// custom parse the operand, or fallback to the general approach.
|
|
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
|
|
if (ResTy == MatchOperand_Success)
|
|
return false;
|
|
// If there wasn't a custom match, try the generic matcher below. Otherwise,
|
|
// there was a match, but an error occurred, in which case, just return that
|
|
// the operand parsing failed.
|
|
if (ResTy == MatchOperand_ParseFail)
|
|
return true;
|
|
|
|
switch (getLexer().getKind()) {
|
|
default:
|
|
Error(Parser.getTok().getLoc(), "unexpected token in operand");
|
|
return true;
|
|
case AsmToken::Identifier: {
|
|
// If we've seen a branch mnemonic, the next operand must be a label. This
|
|
// is true even if the label is a register name. So "br r1" means branch to
|
|
// label "r1".
|
|
bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
|
|
if (!ExpectLabel) {
|
|
if (!tryParseRegisterWithWriteBack(Operands))
|
|
return false;
|
|
int Res = tryParseShiftRegister(Operands);
|
|
if (Res == 0) // success
|
|
return false;
|
|
else if (Res == -1) // irrecoverable error
|
|
return true;
|
|
// If this is VMRS, check for the apsr_nzcv operand.
|
|
if (Mnemonic == "vmrs" &&
|
|
Parser.getTok().getString().equals_lower("apsr_nzcv")) {
|
|
S = Parser.getTok().getLoc();
|
|
Parser.Lex();
|
|
Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Fall though for the Identifier case that is not a register or a
|
|
// special name.
|
|
}
|
|
case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
|
|
case AsmToken::Integer: // things like 1f and 2b as a branch targets
|
|
case AsmToken::String: // quoted label names.
|
|
case AsmToken::Dot: { // . as a branch target
|
|
// This was not a register so parse other operands that start with an
|
|
// identifier (like labels) as expressions and create them as immediates.
|
|
const MCExpr *IdVal;
|
|
S = Parser.getTok().getLoc();
|
|
if (getParser().parseExpression(IdVal))
|
|
return true;
|
|
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
|
|
return false;
|
|
}
|
|
case AsmToken::LBrac:
|
|
return parseMemory(Operands);
|
|
case AsmToken::LCurly:
|
|
return parseRegisterList(Operands);
|
|
case AsmToken::Dollar:
|
|
case AsmToken::Hash: {
|
|
// #42 -> immediate.
|
|
S = Parser.getTok().getLoc();
|
|
Parser.Lex();
|
|
|
|
if (Parser.getTok().isNot(AsmToken::Colon)) {
|
|
bool isNegative = Parser.getTok().is(AsmToken::Minus);
|
|
const MCExpr *ImmVal;
|
|
if (getParser().parseExpression(ImmVal))
|
|
return true;
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
|
|
if (CE) {
|
|
int32_t Val = CE->getValue();
|
|
if (isNegative && Val == 0)
|
|
ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
|
|
}
|
|
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
|
|
|
|
// There can be a trailing '!' on operands that we want as a separate
|
|
// '!' Token operand. Handle that here. For example, the compatibilty
|
|
// alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
|
|
if (Parser.getTok().is(AsmToken::Exclaim)) {
|
|
Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
|
|
Parser.getTok().getLoc()));
|
|
Parser.Lex(); // Eat exclaim token
|
|
}
|
|
return false;
|
|
}
|
|
// w/ a ':' after the '#', it's just like a plain ':'.
|
|
// FALLTHROUGH
|
|
}
|
|
case AsmToken::Colon: {
|
|
// ":lower16:" and ":upper16:" expression prefixes
|
|
// FIXME: Check it's an expression prefix,
|
|
// e.g. (FOO - :lower16:BAR) isn't legal.
|
|
ARMMCExpr::VariantKind RefKind;
|
|
if (parsePrefix(RefKind))
|
|
return true;
|
|
|
|
const MCExpr *SubExprVal;
|
|
if (getParser().parseExpression(SubExprVal))
|
|
return true;
|
|
|
|
const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
|
|
getContext());
|
|
E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
|
|
// :lower16: and :upper16:.
|
|
bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
|
|
RefKind = ARMMCExpr::VK_ARM_None;
|
|
|
|
// :lower16: and :upper16: modifiers
|
|
assert(getLexer().is(AsmToken::Colon) && "expected a :");
|
|
Parser.Lex(); // Eat ':'
|
|
|
|
if (getLexer().isNot(AsmToken::Identifier)) {
|
|
Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
|
|
return true;
|
|
}
|
|
|
|
StringRef IDVal = Parser.getTok().getIdentifier();
|
|
if (IDVal == "lower16") {
|
|
RefKind = ARMMCExpr::VK_ARM_LO16;
|
|
} else if (IDVal == "upper16") {
|
|
RefKind = ARMMCExpr::VK_ARM_HI16;
|
|
} else {
|
|
Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
|
|
return true;
|
|
}
|
|
Parser.Lex();
|
|
|
|
if (getLexer().isNot(AsmToken::Colon)) {
|
|
Error(Parser.getTok().getLoc(), "unexpected token after prefix");
|
|
return true;
|
|
}
|
|
Parser.Lex(); // Eat the last ':'
|
|
return false;
|
|
}
|
|
|
|
/// \brief Given a mnemonic, split out possible predication code and carry
|
|
/// setting letters to form a canonical mnemonic and flags.
|
|
//
|
|
// FIXME: Would be nice to autogen this.
|
|
// FIXME: This is a bit of a maze of special cases.
|
|
StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
|
|
unsigned &PredicationCode,
|
|
bool &CarrySetting,
|
|
unsigned &ProcessorIMod,
|
|
StringRef &ITMask) {
|
|
PredicationCode = ARMCC::AL;
|
|
CarrySetting = false;
|
|
ProcessorIMod = 0;
|
|
|
|
// Ignore some mnemonics we know aren't predicated forms.
|
|
//
|
|
// FIXME: Would be nice to autogen this.
|
|
if ((Mnemonic == "movs" && isThumb()) ||
|
|
Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
|
|
Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
|
|
Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
|
|
Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
|
|
Mnemonic == "vaclt" || Mnemonic == "vacle" ||
|
|
Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
|
|
Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
|
|
Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
|
|
Mnemonic == "fmuls")
|
|
return Mnemonic;
|
|
|
|
// First, split out any predication code. Ignore mnemonics we know aren't
|
|
// predicated but do have a carry-set and so weren't caught above.
|
|
if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
|
|
Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
|
|
Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
|
|
Mnemonic != "sbcs" && Mnemonic != "rscs") {
|
|
unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
|
|
.Case("eq", ARMCC::EQ)
|
|
.Case("ne", ARMCC::NE)
|
|
.Case("hs", ARMCC::HS)
|
|
.Case("cs", ARMCC::HS)
|
|
.Case("lo", ARMCC::LO)
|
|
.Case("cc", ARMCC::LO)
|
|
.Case("mi", ARMCC::MI)
|
|
.Case("pl", ARMCC::PL)
|
|
.Case("vs", ARMCC::VS)
|
|
.Case("vc", ARMCC::VC)
|
|
.Case("hi", ARMCC::HI)
|
|
.Case("ls", ARMCC::LS)
|
|
.Case("ge", ARMCC::GE)
|
|
.Case("lt", ARMCC::LT)
|
|
.Case("gt", ARMCC::GT)
|
|
.Case("le", ARMCC::LE)
|
|
.Case("al", ARMCC::AL)
|
|
.Default(~0U);
|
|
if (CC != ~0U) {
|
|
Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
|
|
PredicationCode = CC;
|
|
}
|
|
}
|
|
|
|
// Next, determine if we have a carry setting bit. We explicitly ignore all
|
|
// the instructions we know end in 's'.
|
|
if (Mnemonic.endswith("s") &&
|
|
!(Mnemonic == "cps" || Mnemonic == "mls" ||
|
|
Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
|
|
Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
|
|
Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
|
|
Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
|
|
Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
|
|
Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
|
|
Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
|
|
Mnemonic == "vfms" || Mnemonic == "vfnms" ||
|
|
(Mnemonic == "movs" && isThumb()))) {
|
|
Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
|
|
CarrySetting = true;
|
|
}
|
|
|
|
// The "cps" instruction can have a interrupt mode operand which is glued into
|
|
// the mnemonic. Check if this is the case, split it and parse the imod op
|
|
if (Mnemonic.startswith("cps")) {
|
|
// Split out any imod code.
|
|
unsigned IMod =
|
|
StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
|
|
.Case("ie", ARM_PROC::IE)
|
|
.Case("id", ARM_PROC::ID)
|
|
.Default(~0U);
|
|
if (IMod != ~0U) {
|
|
Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
|
|
ProcessorIMod = IMod;
|
|
}
|
|
}
|
|
|
|
// The "it" instruction has the condition mask on the end of the mnemonic.
|
|
if (Mnemonic.startswith("it")) {
|
|
ITMask = Mnemonic.slice(2, Mnemonic.size());
|
|
Mnemonic = Mnemonic.slice(0, 2);
|
|
}
|
|
|
|
return Mnemonic;
|
|
}
|
|
|
|
/// \brief Given a canonical mnemonic, determine if the instruction ever allows
|
|
/// inclusion of carry set or predication code operands.
|
|
//
|
|
// FIXME: It would be nice to autogen this.
|
|
void ARMAsmParser::
|
|
getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
|
|
bool &CanAcceptPredicationCode) {
|
|
if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
|
|
Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
|
|
Mnemonic == "add" || Mnemonic == "adc" ||
|
|
Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
|
|
Mnemonic == "orr" || Mnemonic == "mvn" ||
|
|
Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
|
|
Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
|
|
Mnemonic == "vfm" || Mnemonic == "vfnm" ||
|
|
(!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
|
|
Mnemonic == "mla" || Mnemonic == "smlal" ||
|
|
Mnemonic == "umlal" || Mnemonic == "umull"))) {
|
|
CanAcceptCarrySet = true;
|
|
} else
|
|
CanAcceptCarrySet = false;
|
|
|
|
if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
|
|
Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
|
|
Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
|
|
Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
|
|
Mnemonic == "dsb" || Mnemonic == "isb" || Mnemonic == "setend" ||
|
|
(Mnemonic == "clrex" && !isThumb()) ||
|
|
(Mnemonic == "nop" && isThumbOne()) ||
|
|
((Mnemonic == "pld" || Mnemonic == "pli" || Mnemonic == "pldw" ||
|
|
Mnemonic == "ldc2" || Mnemonic == "ldc2l" ||
|
|
Mnemonic == "stc2" || Mnemonic == "stc2l") && !isThumb()) ||
|
|
((Mnemonic.startswith("rfe") || Mnemonic.startswith("srs")) &&
|
|
!isThumb()) ||
|
|
Mnemonic.startswith("cps") || (Mnemonic == "movs" && isThumbOne())) {
|
|
CanAcceptPredicationCode = false;
|
|
} else
|
|
CanAcceptPredicationCode = true;
|
|
|
|
if (isThumb()) {
|
|
if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
|
|
Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
|
|
CanAcceptPredicationCode = false;
|
|
}
|
|
}
|
|
|
|
bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// FIXME: This is all horribly hacky. We really need a better way to deal
|
|
// with optional operands like this in the matcher table.
|
|
|
|
// The 'mov' mnemonic is special. One variant has a cc_out operand, while
|
|
// another does not. Specifically, the MOVW instruction does not. So we
|
|
// special case it here and remove the defaulted (non-setting) cc_out
|
|
// operand if that's the instruction we're trying to match.
|
|
//
|
|
// We do this as post-processing of the explicit operands rather than just
|
|
// conditionally adding the cc_out in the first place because we need
|
|
// to check the type of the parsed immediate operand.
|
|
if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
|
|
!static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
|
|
static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
|
|
static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
|
|
return true;
|
|
|
|
// Register-register 'add' for thumb does not have a cc_out operand
|
|
// when there are only two register operands.
|
|
if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
|
|
static_cast<ARMOperand*>(Operands[3])->isReg() &&
|
|
static_cast<ARMOperand*>(Operands[4])->isReg() &&
|
|
static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
|
|
return true;
|
|
// Register-register 'add' for thumb does not have a cc_out operand
|
|
// when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
|
|
// have to check the immediate range here since Thumb2 has a variant
|
|
// that can handle a different range and has a cc_out operand.
|
|
if (((isThumb() && Mnemonic == "add") ||
|
|
(isThumbTwo() && Mnemonic == "sub")) &&
|
|
Operands.size() == 6 &&
|
|
static_cast<ARMOperand*>(Operands[3])->isReg() &&
|
|
static_cast<ARMOperand*>(Operands[4])->isReg() &&
|
|
static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
|
|
static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
|
|
((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
|
|
static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
|
|
return true;
|
|
// For Thumb2, add/sub immediate does not have a cc_out operand for the
|
|
// imm0_4095 variant. That's the least-preferred variant when
|
|
// selecting via the generic "add" mnemonic, so to know that we
|
|
// should remove the cc_out operand, we have to explicitly check that
|
|
// it's not one of the other variants. Ugh.
|
|
if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
|
|
Operands.size() == 6 &&
|
|
static_cast<ARMOperand*>(Operands[3])->isReg() &&
|
|
static_cast<ARMOperand*>(Operands[4])->isReg() &&
|
|
static_cast<ARMOperand*>(Operands[5])->isImm()) {
|
|
// Nest conditions rather than one big 'if' statement for readability.
|
|
//
|
|
// If either register is a high reg, it's either one of the SP
|
|
// variants (handled above) or a 32-bit encoding, so we just
|
|
// check against T3. If the second register is the PC, this is an
|
|
// alternate form of ADR, which uses encoding T4, so check for that too.
|
|
if ((!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
|
|
!isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg())) &&
|
|
static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
|
|
static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
|
|
return false;
|
|
// If both registers are low, we're in an IT block, and the immediate is
|
|
// in range, we should use encoding T1 instead, which has a cc_out.
|
|
if (inITBlock() &&
|
|
isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
|
|
isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
|
|
static_cast<ARMOperand*>(Operands[5])->isImm0_7())
|
|
return false;
|
|
|
|
// Otherwise, we use encoding T4, which does not have a cc_out
|
|
// operand.
|
|
return true;
|
|
}
|
|
|
|
// The thumb2 multiply instruction doesn't have a CCOut register, so
|
|
// if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
|
|
// use the 16-bit encoding or not.
|
|
if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
|
|
static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
|
|
static_cast<ARMOperand*>(Operands[3])->isReg() &&
|
|
static_cast<ARMOperand*>(Operands[4])->isReg() &&
|
|
static_cast<ARMOperand*>(Operands[5])->isReg() &&
|
|
// If the registers aren't low regs, the destination reg isn't the
|
|
// same as one of the source regs, or the cc_out operand is zero
|
|
// outside of an IT block, we have to use the 32-bit encoding, so
|
|
// remove the cc_out operand.
|
|
(!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
|
|
!isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
|
|
!isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
|
|
!inITBlock() ||
|
|
(static_cast<ARMOperand*>(Operands[3])->getReg() !=
|
|
static_cast<ARMOperand*>(Operands[5])->getReg() &&
|
|
static_cast<ARMOperand*>(Operands[3])->getReg() !=
|
|
static_cast<ARMOperand*>(Operands[4])->getReg())))
|
|
return true;
|
|
|
|
// Also check the 'mul' syntax variant that doesn't specify an explicit
|
|
// destination register.
|
|
if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
|
|
static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
|
|
static_cast<ARMOperand*>(Operands[3])->isReg() &&
|
|
static_cast<ARMOperand*>(Operands[4])->isReg() &&
|
|
// If the registers aren't low regs or the cc_out operand is zero
|
|
// outside of an IT block, we have to use the 32-bit encoding, so
|
|
// remove the cc_out operand.
|
|
(!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
|
|
!isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
|
|
!inITBlock()))
|
|
return true;
|
|
|
|
|
|
|
|
// Register-register 'add/sub' for thumb does not have a cc_out operand
|
|
// when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
|
|
// the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
|
|
// right, this will result in better diagnostics (which operand is off)
|
|
// anyway.
|
|
if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
|
|
(Operands.size() == 5 || Operands.size() == 6) &&
|
|
static_cast<ARMOperand*>(Operands[3])->isReg() &&
|
|
static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
|
|
static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
|
|
(static_cast<ARMOperand*>(Operands[4])->isImm() ||
|
|
(Operands.size() == 6 &&
|
|
static_cast<ARMOperand*>(Operands[5])->isImm())))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isDataTypeToken(StringRef Tok) {
|
|
return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
|
|
Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
|
|
Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
|
|
Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
|
|
Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
|
|
Tok == ".f" || Tok == ".d";
|
|
}
|
|
|
|
// FIXME: This bit should probably be handled via an explicit match class
|
|
// in the .td files that matches the suffix instead of having it be
|
|
// a literal string token the way it is now.
|
|
static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
|
|
return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
|
|
}
|
|
static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features,
|
|
unsigned VariantID);
|
|
/// Parse an arm instruction mnemonic followed by its operands.
|
|
bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
|
|
SMLoc NameLoc,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
// Apply mnemonic aliases before doing anything else, as the destination
|
|
// mnemnonic may include suffices and we want to handle them normally.
|
|
// The generic tblgen'erated code does this later, at the start of
|
|
// MatchInstructionImpl(), but that's too late for aliases that include
|
|
// any sort of suffix.
|
|
unsigned AvailableFeatures = getAvailableFeatures();
|
|
unsigned AssemblerDialect = getParser().getAssemblerDialect();
|
|
applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
|
|
|
|
// First check for the ARM-specific .req directive.
|
|
if (Parser.getTok().is(AsmToken::Identifier) &&
|
|
Parser.getTok().getIdentifier() == ".req") {
|
|
parseDirectiveReq(Name, NameLoc);
|
|
// We always return 'error' for this, as we're done with this
|
|
// statement and don't need to match the 'instruction."
|
|
return true;
|
|
}
|
|
|
|
// Create the leading tokens for the mnemonic, split by '.' characters.
|
|
size_t Start = 0, Next = Name.find('.');
|
|
StringRef Mnemonic = Name.slice(Start, Next);
|
|
|
|
// Split out the predication code and carry setting flag from the mnemonic.
|
|
unsigned PredicationCode;
|
|
unsigned ProcessorIMod;
|
|
bool CarrySetting;
|
|
StringRef ITMask;
|
|
Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
|
|
ProcessorIMod, ITMask);
|
|
|
|
// In Thumb1, only the branch (B) instruction can be predicated.
|
|
if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
|
|
Parser.eatToEndOfStatement();
|
|
return Error(NameLoc, "conditional execution not supported in Thumb1");
|
|
}
|
|
|
|
Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
|
|
|
|
// Handle the IT instruction ITMask. Convert it to a bitmask. This
|
|
// is the mask as it will be for the IT encoding if the conditional
|
|
// encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
|
|
// where the conditional bit0 is zero, the instruction post-processing
|
|
// will adjust the mask accordingly.
|
|
if (Mnemonic == "it") {
|
|
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
|
|
if (ITMask.size() > 3) {
|
|
Parser.eatToEndOfStatement();
|
|
return Error(Loc, "too many conditions on IT instruction");
|
|
}
|
|
unsigned Mask = 8;
|
|
for (unsigned i = ITMask.size(); i != 0; --i) {
|
|
char pos = ITMask[i - 1];
|
|
if (pos != 't' && pos != 'e') {
|
|
Parser.eatToEndOfStatement();
|
|
return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
|
|
}
|
|
Mask >>= 1;
|
|
if (ITMask[i - 1] == 't')
|
|
Mask |= 8;
|
|
}
|
|
Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
|
|
}
|
|
|
|
// FIXME: This is all a pretty gross hack. We should automatically handle
|
|
// optional operands like this via tblgen.
|
|
|
|
// Next, add the CCOut and ConditionCode operands, if needed.
|
|
//
|
|
// For mnemonics which can ever incorporate a carry setting bit or predication
|
|
// code, our matching model involves us always generating CCOut and
|
|
// ConditionCode operands to match the mnemonic "as written" and then we let
|
|
// the matcher deal with finding the right instruction or generating an
|
|
// appropriate error.
|
|
bool CanAcceptCarrySet, CanAcceptPredicationCode;
|
|
getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode);
|
|
|
|
// If we had a carry-set on an instruction that can't do that, issue an
|
|
// error.
|
|
if (!CanAcceptCarrySet && CarrySetting) {
|
|
Parser.eatToEndOfStatement();
|
|
return Error(NameLoc, "instruction '" + Mnemonic +
|
|
"' can not set flags, but 's' suffix specified");
|
|
}
|
|
// If we had a predication code on an instruction that can't do that, issue an
|
|
// error.
|
|
if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
|
|
Parser.eatToEndOfStatement();
|
|
return Error(NameLoc, "instruction '" + Mnemonic +
|
|
"' is not predicable, but condition code specified");
|
|
}
|
|
|
|
// Add the carry setting operand, if necessary.
|
|
if (CanAcceptCarrySet) {
|
|
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
|
|
Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
|
|
Loc));
|
|
}
|
|
|
|
// Add the predication code operand, if necessary.
|
|
if (CanAcceptPredicationCode) {
|
|
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
|
|
CarrySetting);
|
|
Operands.push_back(ARMOperand::CreateCondCode(
|
|
ARMCC::CondCodes(PredicationCode), Loc));
|
|
}
|
|
|
|
// Add the processor imod operand, if necessary.
|
|
if (ProcessorIMod) {
|
|
Operands.push_back(ARMOperand::CreateImm(
|
|
MCConstantExpr::Create(ProcessorIMod, getContext()),
|
|
NameLoc, NameLoc));
|
|
}
|
|
|
|
// Add the remaining tokens in the mnemonic.
|
|
while (Next != StringRef::npos) {
|
|
Start = Next;
|
|
Next = Name.find('.', Start + 1);
|
|
StringRef ExtraToken = Name.slice(Start, Next);
|
|
|
|
// Some NEON instructions have an optional datatype suffix that is
|
|
// completely ignored. Check for that.
|
|
if (isDataTypeToken(ExtraToken) &&
|
|
doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
|
|
continue;
|
|
|
|
// For for ARM mode generate an error if the .n qualifier is used.
|
|
if (ExtraToken == ".n" && !isThumb()) {
|
|
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
|
|
return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
|
|
"arm mode");
|
|
}
|
|
|
|
// The .n qualifier is always discarded as that is what the tables
|
|
// and matcher expect. In ARM mode the .w qualifier has no effect,
|
|
// so discard it to avoid errors that can be caused by the matcher.
|
|
if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
|
|
SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
|
|
Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
|
|
}
|
|
}
|
|
|
|
// Read the remaining operands.
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
// Read the first operand.
|
|
if (parseOperand(Operands, Mnemonic)) {
|
|
Parser.eatToEndOfStatement();
|
|
return true;
|
|
}
|
|
|
|
while (getLexer().is(AsmToken::Comma)) {
|
|
Parser.Lex(); // Eat the comma.
|
|
|
|
// Parse and remember the operand.
|
|
if (parseOperand(Operands, Mnemonic)) {
|
|
Parser.eatToEndOfStatement();
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
SMLoc Loc = getLexer().getLoc();
|
|
Parser.eatToEndOfStatement();
|
|
return Error(Loc, "unexpected token in argument list");
|
|
}
|
|
|
|
Parser.Lex(); // Consume the EndOfStatement
|
|
|
|
// Some instructions, mostly Thumb, have forms for the same mnemonic that
|
|
// do and don't have a cc_out optional-def operand. With some spot-checks
|
|
// of the operand list, we can figure out which variant we're trying to
|
|
// parse and adjust accordingly before actually matching. We shouldn't ever
|
|
// try to remove a cc_out operand that was explicitly set on the the
|
|
// mnemonic, of course (CarrySetting == true). Reason number #317 the
|
|
// table driven matcher doesn't fit well with the ARM instruction set.
|
|
if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
|
|
ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
|
|
Operands.erase(Operands.begin() + 1);
|
|
delete Op;
|
|
}
|
|
|
|
// ARM mode 'blx' need special handling, as the register operand version
|
|
// is predicable, but the label operand version is not. So, we can't rely
|
|
// on the Mnemonic based checking to correctly figure out when to put
|
|
// a k_CondCode operand in the list. If we're trying to match the label
|
|
// version, remove the k_CondCode operand here.
|
|
if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
|
|
static_cast<ARMOperand*>(Operands[2])->isImm()) {
|
|
ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
|
|
Operands.erase(Operands.begin() + 1);
|
|
delete Op;
|
|
}
|
|
|
|
// Adjust operands of ldrexd/strexd to MCK_GPRPair.
|
|
// ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
|
|
// a single GPRPair reg operand is used in the .td file to replace the two
|
|
// GPRs. However, when parsing from asm, the two GRPs cannot be automatically
|
|
// expressed as a GPRPair, so we have to manually merge them.
|
|
// FIXME: We would really like to be able to tablegen'erate this.
|
|
if (!isThumb() && Operands.size() > 4 &&
|
|
(Mnemonic == "ldrexd" || Mnemonic == "strexd")) {
|
|
bool isLoad = (Mnemonic == "ldrexd");
|
|
unsigned Idx = isLoad ? 2 : 3;
|
|
ARMOperand* Op1 = static_cast<ARMOperand*>(Operands[Idx]);
|
|
ARMOperand* Op2 = static_cast<ARMOperand*>(Operands[Idx+1]);
|
|
|
|
const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
|
|
// Adjust only if Op1 and Op2 are GPRs.
|
|
if (Op1->isReg() && Op2->isReg() && MRC.contains(Op1->getReg()) &&
|
|
MRC.contains(Op2->getReg())) {
|
|
unsigned Reg1 = Op1->getReg();
|
|
unsigned Reg2 = Op2->getReg();
|
|
unsigned Rt = MRI->getEncodingValue(Reg1);
|
|
unsigned Rt2 = MRI->getEncodingValue(Reg2);
|
|
|
|
// Rt2 must be Rt + 1 and Rt must be even.
|
|
if (Rt + 1 != Rt2 || (Rt & 1)) {
|
|
Error(Op2->getStartLoc(), isLoad ?
|
|
"destination operands must be sequential" :
|
|
"source operands must be sequential");
|
|
return true;
|
|
}
|
|
unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
|
|
&(MRI->getRegClass(ARM::GPRPairRegClassID)));
|
|
Operands.erase(Operands.begin() + Idx, Operands.begin() + Idx + 2);
|
|
Operands.insert(Operands.begin() + Idx, ARMOperand::CreateReg(
|
|
NewReg, Op1->getStartLoc(), Op2->getEndLoc()));
|
|
delete Op1;
|
|
delete Op2;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Validate context-sensitive operand constraints.
|
|
|
|
// return 'true' if register list contains non-low GPR registers,
|
|
// 'false' otherwise. If Reg is in the register list or is HiReg, set
|
|
// 'containsReg' to true.
|
|
static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
|
|
unsigned HiReg, bool &containsReg) {
|
|
containsReg = false;
|
|
for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
|
|
unsigned OpReg = Inst.getOperand(i).getReg();
|
|
if (OpReg == Reg)
|
|
containsReg = true;
|
|
// Anything other than a low register isn't legal here.
|
|
if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check if the specified regisgter is in the register list of the inst,
|
|
// starting at the indicated operand number.
|
|
static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
|
|
for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
|
|
unsigned OpReg = Inst.getOperand(i).getReg();
|
|
if (OpReg == Reg)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// FIXME: We would really prefer to have MCInstrInfo (the wrapper around
|
|
// the ARMInsts array) instead. Getting that here requires awkward
|
|
// API changes, though. Better way?
|
|
namespace llvm {
|
|
extern const MCInstrDesc ARMInsts[];
|
|
}
|
|
static const MCInstrDesc &getInstDesc(unsigned Opcode) {
|
|
return ARMInsts[Opcode];
|
|
}
|
|
|
|
// FIXME: We would really like to be able to tablegen'erate this.
|
|
bool ARMAsmParser::
|
|
validateInstruction(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
|
|
SMLoc Loc = Operands[0]->getStartLoc();
|
|
// Check the IT block state first.
|
|
// NOTE: BKPT instruction has the interesting property of being
|
|
// allowed in IT blocks, but not being predicable. It just always
|
|
// executes.
|
|
if (inITBlock() && Inst.getOpcode() != ARM::tBKPT &&
|
|
Inst.getOpcode() != ARM::BKPT) {
|
|
unsigned bit = 1;
|
|
if (ITState.FirstCond)
|
|
ITState.FirstCond = false;
|
|
else
|
|
bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
|
|
// The instruction must be predicable.
|
|
if (!MCID.isPredicable())
|
|
return Error(Loc, "instructions in IT block must be predicable");
|
|
unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
|
|
unsigned ITCond = bit ? ITState.Cond :
|
|
ARMCC::getOppositeCondition(ITState.Cond);
|
|
if (Cond != ITCond) {
|
|
// Find the condition code Operand to get its SMLoc information.
|
|
SMLoc CondLoc;
|
|
for (unsigned i = 1; i < Operands.size(); ++i)
|
|
if (static_cast<ARMOperand*>(Operands[i])->isCondCode())
|
|
CondLoc = Operands[i]->getStartLoc();
|
|
return Error(CondLoc, "incorrect condition in IT block; got '" +
|
|
StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
|
|
"', but expected '" +
|
|
ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
|
|
}
|
|
// Check for non-'al' condition codes outside of the IT block.
|
|
} else if (isThumbTwo() && MCID.isPredicable() &&
|
|
Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
|
|
ARMCC::AL && Inst.getOpcode() != ARM::tB &&
|
|
Inst.getOpcode() != ARM::t2B)
|
|
return Error(Loc, "predicated instructions must be in IT block");
|
|
|
|
switch (Inst.getOpcode()) {
|
|
case ARM::LDRD:
|
|
case ARM::LDRD_PRE:
|
|
case ARM::LDRD_POST: {
|
|
// Rt2 must be Rt + 1.
|
|
unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
|
|
unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
|
|
if (Rt2 != Rt + 1)
|
|
return Error(Operands[3]->getStartLoc(),
|
|
"destination operands must be sequential");
|
|
return false;
|
|
}
|
|
case ARM::STRD: {
|
|
// Rt2 must be Rt + 1.
|
|
unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
|
|
unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
|
|
if (Rt2 != Rt + 1)
|
|
return Error(Operands[3]->getStartLoc(),
|
|
"source operands must be sequential");
|
|
return false;
|
|
}
|
|
case ARM::STRD_PRE:
|
|
case ARM::STRD_POST: {
|
|
// Rt2 must be Rt + 1.
|
|
unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
|
|
unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
|
|
if (Rt2 != Rt + 1)
|
|
return Error(Operands[3]->getStartLoc(),
|
|
"source operands must be sequential");
|
|
return false;
|
|
}
|
|
case ARM::SBFX:
|
|
case ARM::UBFX: {
|
|
// width must be in range [1, 32-lsb]
|
|
unsigned lsb = Inst.getOperand(2).getImm();
|
|
unsigned widthm1 = Inst.getOperand(3).getImm();
|
|
if (widthm1 >= 32 - lsb)
|
|
return Error(Operands[5]->getStartLoc(),
|
|
"bitfield width must be in range [1,32-lsb]");
|
|
return false;
|
|
}
|
|
case ARM::tLDMIA: {
|
|
// If we're parsing Thumb2, the .w variant is available and handles
|
|
// most cases that are normally illegal for a Thumb1 LDM
|
|
// instruction. We'll make the transformation in processInstruction()
|
|
// if necessary.
|
|
//
|
|
// Thumb LDM instructions are writeback iff the base register is not
|
|
// in the register list.
|
|
unsigned Rn = Inst.getOperand(0).getReg();
|
|
bool hasWritebackToken =
|
|
(static_cast<ARMOperand*>(Operands[3])->isToken() &&
|
|
static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
|
|
bool listContainsBase;
|
|
if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo())
|
|
return Error(Operands[3 + hasWritebackToken]->getStartLoc(),
|
|
"registers must be in range r0-r7");
|
|
// If we should have writeback, then there should be a '!' token.
|
|
if (!listContainsBase && !hasWritebackToken && !isThumbTwo())
|
|
return Error(Operands[2]->getStartLoc(),
|
|
"writeback operator '!' expected");
|
|
// If we should not have writeback, there must not be a '!'. This is
|
|
// true even for the 32-bit wide encodings.
|
|
if (listContainsBase && hasWritebackToken)
|
|
return Error(Operands[3]->getStartLoc(),
|
|
"writeback operator '!' not allowed when base register "
|
|
"in register list");
|
|
|
|
break;
|
|
}
|
|
case ARM::t2LDMIA_UPD: {
|
|
if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
|
|
return Error(Operands[4]->getStartLoc(),
|
|
"writeback operator '!' not allowed when base register "
|
|
"in register list");
|
|
break;
|
|
}
|
|
case ARM::tMUL: {
|
|
// The second source operand must be the same register as the destination
|
|
// operand.
|
|
//
|
|
// In this case, we must directly check the parsed operands because the
|
|
// cvtThumbMultiply() function is written in such a way that it guarantees
|
|
// this first statement is always true for the new Inst. Essentially, the
|
|
// destination is unconditionally copied into the second source operand
|
|
// without checking to see if it matches what we actually parsed.
|
|
if (Operands.size() == 6 &&
|
|
(((ARMOperand*)Operands[3])->getReg() !=
|
|
((ARMOperand*)Operands[5])->getReg()) &&
|
|
(((ARMOperand*)Operands[3])->getReg() !=
|
|
((ARMOperand*)Operands[4])->getReg())) {
|
|
return Error(Operands[3]->getStartLoc(),
|
|
"destination register must match source register");
|
|
}
|
|
break;
|
|
}
|
|
// Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
|
|
// so only issue a diagnostic for thumb1. The instructions will be
|
|
// switched to the t2 encodings in processInstruction() if necessary.
|
|
case ARM::tPOP: {
|
|
bool listContainsBase;
|
|
if (checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase) &&
|
|
!isThumbTwo())
|
|
return Error(Operands[2]->getStartLoc(),
|
|
"registers must be in range r0-r7 or pc");
|
|
break;
|
|
}
|
|
case ARM::tPUSH: {
|
|
bool listContainsBase;
|
|
if (checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase) &&
|
|
!isThumbTwo())
|
|
return Error(Operands[2]->getStartLoc(),
|
|
"registers must be in range r0-r7 or lr");
|
|
break;
|
|
}
|
|
case ARM::tSTMIA_UPD: {
|
|
bool listContainsBase;
|
|
if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase) && !isThumbTwo())
|
|
return Error(Operands[4]->getStartLoc(),
|
|
"registers must be in range r0-r7");
|
|
break;
|
|
}
|
|
case ARM::tADDrSP: {
|
|
// If the non-SP source operand and the destination operand are not the
|
|
// same, we need thumb2 (for the wide encoding), or we have an error.
|
|
if (!isThumbTwo() &&
|
|
Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
|
|
return Error(Operands[4]->getStartLoc(),
|
|
"source register must be the same as destination");
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
|
|
switch(Opc) {
|
|
default: llvm_unreachable("unexpected opcode!");
|
|
// VST1LN
|
|
case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
|
|
case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
|
|
case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
|
|
case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
|
|
case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
|
|
case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
|
|
case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8;
|
|
case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
|
|
case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
|
|
|
|
// VST2LN
|
|
case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
|
|
case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
|
|
case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
|
|
case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
|
|
case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
|
|
|
|
case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
|
|
case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
|
|
case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
|
|
case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
|
|
case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
|
|
|
|
case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8;
|
|
case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
|
|
case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
|
|
case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
|
|
case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
|
|
|
|
// VST3LN
|
|
case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
|
|
case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
|
|
case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
|
|
case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
|
|
case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
|
|
case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
|
|
case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
|
|
case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
|
|
case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
|
|
case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
|
|
case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8;
|
|
case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
|
|
case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
|
|
case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
|
|
case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
|
|
|
|
// VST3
|
|
case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
|
|
case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
|
|
case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
|
|
case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
|
|
case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
|
|
case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
|
|
case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
|
|
case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
|
|
case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
|
|
case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
|
|
case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
|
|
case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
|
|
case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8;
|
|
case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
|
|
case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
|
|
case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8;
|
|
case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
|
|
case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
|
|
|
|
// VST4LN
|
|
case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
|
|
case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
|
|
case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
|
|
case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
|
|
case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
|
|
case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
|
|
case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
|
|
case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
|
|
case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
|
|
case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
|
|
case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8;
|
|
case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
|
|
case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
|
|
case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
|
|
case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
|
|
|
|
// VST4
|
|
case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
|
|
case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
|
|
case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
|
|
case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
|
|
case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
|
|
case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
|
|
case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
|
|
case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
|
|
case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
|
|
case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
|
|
case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
|
|
case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
|
|
case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8;
|
|
case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
|
|
case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
|
|
case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8;
|
|
case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
|
|
case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
|
|
}
|
|
}
|
|
|
|
static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
|
|
switch(Opc) {
|
|
default: llvm_unreachable("unexpected opcode!");
|
|
// VLD1LN
|
|
case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
|
|
case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
|
|
case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
|
|
case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
|
|
case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
|
|
case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
|
|
case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8;
|
|
case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
|
|
case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
|
|
|
|
// VLD2LN
|
|
case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
|
|
case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
|
|
case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
|
|
case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
|
|
case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
|
|
case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
|
|
case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
|
|
case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
|
|
case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
|
|
case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
|
|
case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8;
|
|
case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
|
|
case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
|
|
case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
|
|
case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
|
|
|
|
// VLD3DUP
|
|
case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
|
|
case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
|
|
case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
|
|
case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
|
|
case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
|
|
case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
|
|
case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
|
|
case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
|
|
case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
|
|
case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
|
|
case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
|
|
case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
|
|
case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8;
|
|
case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
|
|
case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
|
|
case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
|
|
case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
|
|
case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
|
|
|
|
// VLD3LN
|
|
case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
|
|
case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
|
|
case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
|
|
case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
|
|
case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
|
|
case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
|
|
case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
|
|
case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
|
|
case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
|
|
case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
|
|
case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8;
|
|
case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
|
|
case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
|
|
case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
|
|
case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
|
|
|
|
// VLD3
|
|
case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
|
|
case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
|
|
case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
|
|
case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
|
|
case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
|
|
case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
|
|
case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
|
|
case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
|
|
case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
|
|
case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
|
|
case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
|
|
case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
|
|
case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8;
|
|
case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
|
|
case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
|
|
case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8;
|
|
case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
|
|
case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
|
|
|
|
// VLD4LN
|
|
case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
|
|
case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
|
|
case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
|
|
case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD;
|
|
case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
|
|
case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
|
|
case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
|
|
case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
|
|
case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
|
|
case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
|
|
case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8;
|
|
case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
|
|
case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
|
|
case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
|
|
case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
|
|
|
|
// VLD4DUP
|
|
case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
|
|
case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
|
|
case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
|
|
case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
|
|
case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
|
|
case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
|
|
case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
|
|
case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
|
|
case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
|
|
case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
|
|
case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
|
|
case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
|
|
case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8;
|
|
case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
|
|
case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
|
|
case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
|
|
case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
|
|
case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
|
|
|
|
// VLD4
|
|
case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
|
|
case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
|
|
case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
|
|
case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
|
|
case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
|
|
case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
|
|
case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
|
|
case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
|
|
case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
|
|
case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
|
|
case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
|
|
case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
|
|
case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8;
|
|
case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
|
|
case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
|
|
case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8;
|
|
case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
|
|
case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
|
|
}
|
|
}
|
|
|
|
bool ARMAsmParser::
|
|
processInstruction(MCInst &Inst,
|
|
const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
|
|
switch (Inst.getOpcode()) {
|
|
// Alias for alternate form of 'ADR Rd, #imm' instruction.
|
|
case ARM::ADDri: {
|
|
if (Inst.getOperand(1).getReg() != ARM::PC ||
|
|
Inst.getOperand(5).getReg() != 0)
|
|
return false;
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(ARM::ADR);
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(2));
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
// Aliases for alternate PC+imm syntax of LDR instructions.
|
|
case ARM::t2LDRpcrel:
|
|
// Select the narrow version if the immediate will fit.
|
|
if (Inst.getOperand(1).getImm() > 0 &&
|
|
Inst.getOperand(1).getImm() <= 0xff &&
|
|
!(static_cast<ARMOperand*>(Operands[2])->isToken() &&
|
|
static_cast<ARMOperand*>(Operands[2])->getToken() == ".w"))
|
|
Inst.setOpcode(ARM::tLDRpci);
|
|
else
|
|
Inst.setOpcode(ARM::t2LDRpci);
|
|
return true;
|
|
case ARM::t2LDRBpcrel:
|
|
Inst.setOpcode(ARM::t2LDRBpci);
|
|
return true;
|
|
case ARM::t2LDRHpcrel:
|
|
Inst.setOpcode(ARM::t2LDRHpci);
|
|
return true;
|
|
case ARM::t2LDRSBpcrel:
|
|
Inst.setOpcode(ARM::t2LDRSBpci);
|
|
return true;
|
|
case ARM::t2LDRSHpcrel:
|
|
Inst.setOpcode(ARM::t2LDRSHpci);
|
|
return true;
|
|
// Handle NEON VST complex aliases.
|
|
case ARM::VST1LNdWB_register_Asm_8:
|
|
case ARM::VST1LNdWB_register_Asm_16:
|
|
case ARM::VST1LNdWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(4)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(6));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST2LNdWB_register_Asm_8:
|
|
case ARM::VST2LNdWB_register_Asm_16:
|
|
case ARM::VST2LNdWB_register_Asm_32:
|
|
case ARM::VST2LNqWB_register_Asm_16:
|
|
case ARM::VST2LNqWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(4)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(6));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST3LNdWB_register_Asm_8:
|
|
case ARM::VST3LNdWB_register_Asm_16:
|
|
case ARM::VST3LNdWB_register_Asm_32:
|
|
case ARM::VST3LNqWB_register_Asm_16:
|
|
case ARM::VST3LNqWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(4)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(6));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST4LNdWB_register_Asm_8:
|
|
case ARM::VST4LNdWB_register_Asm_16:
|
|
case ARM::VST4LNdWB_register_Asm_32:
|
|
case ARM::VST4LNqWB_register_Asm_16:
|
|
case ARM::VST4LNqWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(4)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(6));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST1LNdWB_fixed_Asm_8:
|
|
case ARM::VST1LNdWB_fixed_Asm_16:
|
|
case ARM::VST1LNdWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST2LNdWB_fixed_Asm_8:
|
|
case ARM::VST2LNdWB_fixed_Asm_16:
|
|
case ARM::VST2LNdWB_fixed_Asm_32:
|
|
case ARM::VST2LNqWB_fixed_Asm_16:
|
|
case ARM::VST2LNqWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST3LNdWB_fixed_Asm_8:
|
|
case ARM::VST3LNdWB_fixed_Asm_16:
|
|
case ARM::VST3LNdWB_fixed_Asm_32:
|
|
case ARM::VST3LNqWB_fixed_Asm_16:
|
|
case ARM::VST3LNqWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST4LNdWB_fixed_Asm_8:
|
|
case ARM::VST4LNdWB_fixed_Asm_16:
|
|
case ARM::VST4LNdWB_fixed_Asm_32:
|
|
case ARM::VST4LNqWB_fixed_Asm_16:
|
|
case ARM::VST4LNqWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST1LNdAsm_8:
|
|
case ARM::VST1LNdAsm_16:
|
|
case ARM::VST1LNdAsm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST2LNdAsm_8:
|
|
case ARM::VST2LNdAsm_16:
|
|
case ARM::VST2LNdAsm_32:
|
|
case ARM::VST2LNqAsm_16:
|
|
case ARM::VST2LNqAsm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST3LNdAsm_8:
|
|
case ARM::VST3LNdAsm_16:
|
|
case ARM::VST3LNdAsm_32:
|
|
case ARM::VST3LNqAsm_16:
|
|
case ARM::VST3LNqAsm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST4LNdAsm_8:
|
|
case ARM::VST4LNdAsm_16:
|
|
case ARM::VST4LNdAsm_32:
|
|
case ARM::VST4LNqAsm_16:
|
|
case ARM::VST4LNqAsm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
// Handle NEON VLD complex aliases.
|
|
case ARM::VLD1LNdWB_register_Asm_8:
|
|
case ARM::VLD1LNdWB_register_Asm_16:
|
|
case ARM::VLD1LNdWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(4)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(6));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD2LNdWB_register_Asm_8:
|
|
case ARM::VLD2LNdWB_register_Asm_16:
|
|
case ARM::VLD2LNdWB_register_Asm_32:
|
|
case ARM::VLD2LNqWB_register_Asm_16:
|
|
case ARM::VLD2LNqWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(4)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(6));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD3LNdWB_register_Asm_8:
|
|
case ARM::VLD3LNdWB_register_Asm_16:
|
|
case ARM::VLD3LNdWB_register_Asm_32:
|
|
case ARM::VLD3LNqWB_register_Asm_16:
|
|
case ARM::VLD3LNqWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(4)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(6));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD4LNdWB_register_Asm_8:
|
|
case ARM::VLD4LNdWB_register_Asm_16:
|
|
case ARM::VLD4LNdWB_register_Asm_32:
|
|
case ARM::VLD4LNqWB_register_Asm_16:
|
|
case ARM::VLD4LNqWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(4)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(5)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(6));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD1LNdWB_fixed_Asm_8:
|
|
case ARM::VLD1LNdWB_fixed_Asm_16:
|
|
case ARM::VLD1LNdWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD2LNdWB_fixed_Asm_8:
|
|
case ARM::VLD2LNdWB_fixed_Asm_16:
|
|
case ARM::VLD2LNdWB_fixed_Asm_32:
|
|
case ARM::VLD2LNqWB_fixed_Asm_16:
|
|
case ARM::VLD2LNqWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD3LNdWB_fixed_Asm_8:
|
|
case ARM::VLD3LNdWB_fixed_Asm_16:
|
|
case ARM::VLD3LNdWB_fixed_Asm_32:
|
|
case ARM::VLD3LNqWB_fixed_Asm_16:
|
|
case ARM::VLD3LNqWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD4LNdWB_fixed_Asm_8:
|
|
case ARM::VLD4LNdWB_fixed_Asm_16:
|
|
case ARM::VLD4LNdWB_fixed_Asm_32:
|
|
case ARM::VLD4LNqWB_fixed_Asm_16:
|
|
case ARM::VLD4LNqWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD1LNdAsm_8:
|
|
case ARM::VLD1LNdAsm_16:
|
|
case ARM::VLD1LNdAsm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD2LNdAsm_8:
|
|
case ARM::VLD2LNdAsm_16:
|
|
case ARM::VLD2LNdAsm_32:
|
|
case ARM::VLD2LNqAsm_16:
|
|
case ARM::VLD2LNqAsm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD3LNdAsm_8:
|
|
case ARM::VLD3LNdAsm_16:
|
|
case ARM::VLD3LNdAsm_32:
|
|
case ARM::VLD3LNqAsm_16:
|
|
case ARM::VLD3LNqAsm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD4LNdAsm_8:
|
|
case ARM::VLD4LNdAsm_16:
|
|
case ARM::VLD4LNdAsm_32:
|
|
case ARM::VLD4LNqAsm_16:
|
|
case ARM::VLD4LNqAsm_32: {
|
|
MCInst TmpInst;
|
|
// Shuffle the operands around so the lane index operand is in the
|
|
// right place.
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(3)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // lane
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
// VLD3DUP single 3-element structure to all lanes instructions.
|
|
case ARM::VLD3DUPdAsm_8:
|
|
case ARM::VLD3DUPdAsm_16:
|
|
case ARM::VLD3DUPdAsm_32:
|
|
case ARM::VLD3DUPqAsm_8:
|
|
case ARM::VLD3DUPqAsm_16:
|
|
case ARM::VLD3DUPqAsm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD3DUPdWB_fixed_Asm_8:
|
|
case ARM::VLD3DUPdWB_fixed_Asm_16:
|
|
case ARM::VLD3DUPdWB_fixed_Asm_32:
|
|
case ARM::VLD3DUPqWB_fixed_Asm_8:
|
|
case ARM::VLD3DUPqWB_fixed_Asm_16:
|
|
case ARM::VLD3DUPqWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD3DUPdWB_register_Asm_8:
|
|
case ARM::VLD3DUPdWB_register_Asm_16:
|
|
case ARM::VLD3DUPdWB_register_Asm_32:
|
|
case ARM::VLD3DUPqWB_register_Asm_8:
|
|
case ARM::VLD3DUPqWB_register_Asm_16:
|
|
case ARM::VLD3DUPqWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(3)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
// VLD3 multiple 3-element structure instructions.
|
|
case ARM::VLD3dAsm_8:
|
|
case ARM::VLD3dAsm_16:
|
|
case ARM::VLD3dAsm_32:
|
|
case ARM::VLD3qAsm_8:
|
|
case ARM::VLD3qAsm_16:
|
|
case ARM::VLD3qAsm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD3dWB_fixed_Asm_8:
|
|
case ARM::VLD3dWB_fixed_Asm_16:
|
|
case ARM::VLD3dWB_fixed_Asm_32:
|
|
case ARM::VLD3qWB_fixed_Asm_8:
|
|
case ARM::VLD3qWB_fixed_Asm_16:
|
|
case ARM::VLD3qWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD3dWB_register_Asm_8:
|
|
case ARM::VLD3dWB_register_Asm_16:
|
|
case ARM::VLD3dWB_register_Asm_32:
|
|
case ARM::VLD3qWB_register_Asm_8:
|
|
case ARM::VLD3qWB_register_Asm_16:
|
|
case ARM::VLD3qWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(3)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
// VLD4DUP single 3-element structure to all lanes instructions.
|
|
case ARM::VLD4DUPdAsm_8:
|
|
case ARM::VLD4DUPdAsm_16:
|
|
case ARM::VLD4DUPdAsm_32:
|
|
case ARM::VLD4DUPqAsm_8:
|
|
case ARM::VLD4DUPqAsm_16:
|
|
case ARM::VLD4DUPqAsm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD4DUPdWB_fixed_Asm_8:
|
|
case ARM::VLD4DUPdWB_fixed_Asm_16:
|
|
case ARM::VLD4DUPdWB_fixed_Asm_32:
|
|
case ARM::VLD4DUPqWB_fixed_Asm_8:
|
|
case ARM::VLD4DUPqWB_fixed_Asm_16:
|
|
case ARM::VLD4DUPqWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD4DUPdWB_register_Asm_8:
|
|
case ARM::VLD4DUPdWB_register_Asm_16:
|
|
case ARM::VLD4DUPdWB_register_Asm_32:
|
|
case ARM::VLD4DUPqWB_register_Asm_8:
|
|
case ARM::VLD4DUPqWB_register_Asm_16:
|
|
case ARM::VLD4DUPqWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(3)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
// VLD4 multiple 4-element structure instructions.
|
|
case ARM::VLD4dAsm_8:
|
|
case ARM::VLD4dAsm_16:
|
|
case ARM::VLD4dAsm_32:
|
|
case ARM::VLD4qAsm_8:
|
|
case ARM::VLD4qAsm_16:
|
|
case ARM::VLD4qAsm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD4dWB_fixed_Asm_8:
|
|
case ARM::VLD4dWB_fixed_Asm_16:
|
|
case ARM::VLD4dWB_fixed_Asm_32:
|
|
case ARM::VLD4qWB_fixed_Asm_8:
|
|
case ARM::VLD4qWB_fixed_Asm_16:
|
|
case ARM::VLD4qWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VLD4dWB_register_Asm_8:
|
|
case ARM::VLD4dWB_register_Asm_16:
|
|
case ARM::VLD4dWB_register_Asm_32:
|
|
case ARM::VLD4qWB_register_Asm_8:
|
|
case ARM::VLD4qWB_register_Asm_16:
|
|
case ARM::VLD4qWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(3)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
// VST3 multiple 3-element structure instructions.
|
|
case ARM::VST3dAsm_8:
|
|
case ARM::VST3dAsm_16:
|
|
case ARM::VST3dAsm_32:
|
|
case ARM::VST3qAsm_8:
|
|
case ARM::VST3qAsm_16:
|
|
case ARM::VST3qAsm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST3dWB_fixed_Asm_8:
|
|
case ARM::VST3dWB_fixed_Asm_16:
|
|
case ARM::VST3dWB_fixed_Asm_32:
|
|
case ARM::VST3qWB_fixed_Asm_8:
|
|
case ARM::VST3qWB_fixed_Asm_16:
|
|
case ARM::VST3qWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST3dWB_register_Asm_8:
|
|
case ARM::VST3dWB_register_Asm_16:
|
|
case ARM::VST3dWB_register_Asm_32:
|
|
case ARM::VST3qWB_register_Asm_8:
|
|
case ARM::VST3qWB_register_Asm_16:
|
|
case ARM::VST3qWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(3)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
// VST4 multiple 3-element structure instructions.
|
|
case ARM::VST4dAsm_8:
|
|
case ARM::VST4dAsm_16:
|
|
case ARM::VST4dAsm_32:
|
|
case ARM::VST4qAsm_8:
|
|
case ARM::VST4qAsm_16:
|
|
case ARM::VST4qAsm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST4dWB_fixed_Asm_8:
|
|
case ARM::VST4dWB_fixed_Asm_16:
|
|
case ARM::VST4dWB_fixed_Asm_32:
|
|
case ARM::VST4qWB_fixed_Asm_8:
|
|
case ARM::VST4qWB_fixed_Asm_16:
|
|
case ARM::VST4qWB_fixed_Asm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
case ARM::VST4dWB_register_Asm_8:
|
|
case ARM::VST4dWB_register_Asm_16:
|
|
case ARM::VST4dWB_register_Asm_32:
|
|
case ARM::VST4qWB_register_Asm_8:
|
|
case ARM::VST4qWB_register_Asm_16:
|
|
case ARM::VST4qWB_register_Asm_32: {
|
|
MCInst TmpInst;
|
|
unsigned Spacing;
|
|
TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // alignment
|
|
TmpInst.addOperand(Inst.getOperand(3)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Vd
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 2));
|
|
TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
|
|
Spacing * 3));
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
|
|
// Handle encoding choice for the shift-immediate instructions.
|
|
case ARM::t2LSLri:
|
|
case ARM::t2LSRri:
|
|
case ARM::t2ASRri: {
|
|
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
|
|
Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
|
|
Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
|
|
!(static_cast<ARMOperand*>(Operands[3])->isToken() &&
|
|
static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
|
|
unsigned NewOpc;
|
|
switch (Inst.getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode");
|
|
case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
|
|
case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
|
|
case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
|
|
}
|
|
// The Thumb1 operands aren't in the same order. Awesome, eh?
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(NewOpc);
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
TmpInst.addOperand(Inst.getOperand(1));
|
|
TmpInst.addOperand(Inst.getOperand(2));
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Handle the Thumb2 mode MOV complex aliases.
|
|
case ARM::t2MOVsr:
|
|
case ARM::t2MOVSsr: {
|
|
// Which instruction to expand to depends on the CCOut operand and
|
|
// whether we're in an IT block if the register operands are low
|
|
// registers.
|
|
bool isNarrow = false;
|
|
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
|
|
isARMLowRegister(Inst.getOperand(1).getReg()) &&
|
|
isARMLowRegister(Inst.getOperand(2).getReg()) &&
|
|
Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
|
|
inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
|
|
isNarrow = true;
|
|
MCInst TmpInst;
|
|
unsigned newOpc;
|
|
switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
|
|
default: llvm_unreachable("unexpected opcode!");
|
|
case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
|
|
case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
|
|
case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
|
|
case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break;
|
|
}
|
|
TmpInst.setOpcode(newOpc);
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Rd
|
|
if (isNarrow)
|
|
TmpInst.addOperand(MCOperand::CreateReg(
|
|
Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rm
|
|
TmpInst.addOperand(Inst.getOperand(4)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
if (!isNarrow)
|
|
TmpInst.addOperand(MCOperand::CreateReg(
|
|
Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
case ARM::t2MOVsi:
|
|
case ARM::t2MOVSsi: {
|
|
// Which instruction to expand to depends on the CCOut operand and
|
|
// whether we're in an IT block if the register operands are low
|
|
// registers.
|
|
bool isNarrow = false;
|
|
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
|
|
isARMLowRegister(Inst.getOperand(1).getReg()) &&
|
|
inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
|
|
isNarrow = true;
|
|
MCInst TmpInst;
|
|
unsigned newOpc;
|
|
switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
|
|
default: llvm_unreachable("unexpected opcode!");
|
|
case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
|
|
case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
|
|
case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
|
|
case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
|
|
case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
|
|
}
|
|
unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
|
|
if (Amount == 32) Amount = 0;
|
|
TmpInst.setOpcode(newOpc);
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Rd
|
|
if (isNarrow)
|
|
TmpInst.addOperand(MCOperand::CreateReg(
|
|
Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
if (newOpc != ARM::t2RRX)
|
|
TmpInst.addOperand(MCOperand::CreateImm(Amount));
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
if (!isNarrow)
|
|
TmpInst.addOperand(MCOperand::CreateReg(
|
|
Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
// Handle the ARM mode MOV complex aliases.
|
|
case ARM::ASRr:
|
|
case ARM::LSRr:
|
|
case ARM::LSLr:
|
|
case ARM::RORr: {
|
|
ARM_AM::ShiftOpc ShiftTy;
|
|
switch(Inst.getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode!");
|
|
case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
|
|
case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
|
|
case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
|
|
case ARM::RORr: ShiftTy = ARM_AM::ror; break;
|
|
}
|
|
unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(ARM::MOVsr);
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Rd
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(Inst.getOperand(2)); // Rm
|
|
TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
TmpInst.addOperand(Inst.getOperand(5)); // cc_out
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
case ARM::ASRi:
|
|
case ARM::LSRi:
|
|
case ARM::LSLi:
|
|
case ARM::RORi: {
|
|
ARM_AM::ShiftOpc ShiftTy;
|
|
switch(Inst.getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode!");
|
|
case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
|
|
case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
|
|
case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
|
|
case ARM::RORi: ShiftTy = ARM_AM::ror; break;
|
|
}
|
|
// A shift by zero is a plain MOVr, not a MOVsi.
|
|
unsigned Amt = Inst.getOperand(2).getImm();
|
|
unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
|
|
// A shift by 32 should be encoded as 0 when permitted
|
|
if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
|
|
Amt = 0;
|
|
unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(Opc);
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Rd
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
if (Opc == ARM::MOVsi)
|
|
TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
|
|
TmpInst.addOperand(Inst.getOperand(3)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
TmpInst.addOperand(Inst.getOperand(5)); // cc_out
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
case ARM::RRXi: {
|
|
unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(ARM::MOVsi);
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Rd
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
|
|
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
TmpInst.addOperand(Inst.getOperand(4)); // cc_out
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
case ARM::t2LDMIA_UPD: {
|
|
// If this is a load of a single register, then we should use
|
|
// a post-indexed LDR instruction instead, per the ARM ARM.
|
|
if (Inst.getNumOperands() != 5)
|
|
return false;
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(ARM::t2LDR_POST);
|
|
TmpInst.addOperand(Inst.getOperand(4)); // Rt
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(MCOperand::CreateImm(4));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
case ARM::t2STMDB_UPD: {
|
|
// If this is a store of a single register, then we should use
|
|
// a pre-indexed STR instruction instead, per the ARM ARM.
|
|
if (Inst.getNumOperands() != 5)
|
|
return false;
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(ARM::t2STR_PRE);
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(4)); // Rt
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(MCOperand::CreateImm(-4));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
case ARM::LDMIA_UPD:
|
|
// If this is a load of a single register via a 'pop', then we should use
|
|
// a post-indexed LDR instruction instead, per the ARM ARM.
|
|
if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
|
|
Inst.getNumOperands() == 5) {
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(ARM::LDR_POST_IMM);
|
|
TmpInst.addOperand(Inst.getOperand(4)); // Rt
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(1)); // Rn
|
|
TmpInst.addOperand(MCOperand::CreateReg(0)); // am2offset
|
|
TmpInst.addOperand(MCOperand::CreateImm(4));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
break;
|
|
case ARM::STMDB_UPD:
|
|
// If this is a store of a single register via a 'push', then we should use
|
|
// a pre-indexed STR instruction instead, per the ARM ARM.
|
|
if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
|
|
Inst.getNumOperands() == 5) {
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(ARM::STR_PRE_IMM);
|
|
TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
|
|
TmpInst.addOperand(Inst.getOperand(4)); // Rt
|
|
TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
|
|
TmpInst.addOperand(MCOperand::CreateImm(-4));
|
|
TmpInst.addOperand(Inst.getOperand(2)); // CondCode
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
Inst = TmpInst;
|
|
}
|
|
break;
|
|
case ARM::t2ADDri12:
|
|
// If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
|
|
// mnemonic was used (not "addw"), encoding T3 is preferred.
|
|
if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
|
|
ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
|
|
break;
|
|
Inst.setOpcode(ARM::t2ADDri);
|
|
Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
|
|
break;
|
|
case ARM::t2SUBri12:
|
|
// If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
|
|
// mnemonic was used (not "subw"), encoding T3 is preferred.
|
|
if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
|
|
ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
|
|
break;
|
|
Inst.setOpcode(ARM::t2SUBri);
|
|
Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
|
|
break;
|
|
case ARM::tADDi8:
|
|
// If the immediate is in the range 0-7, we want tADDi3 iff Rd was
|
|
// explicitly specified. From the ARM ARM: "Encoding T1 is preferred
|
|
// to encoding T2 if <Rd> is specified and encoding T2 is preferred
|
|
// to encoding T1 if <Rd> is omitted."
|
|
if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
|
|
Inst.setOpcode(ARM::tADDi3);
|
|
return true;
|
|
}
|
|
break;
|
|
case ARM::tSUBi8:
|
|
// If the immediate is in the range 0-7, we want tADDi3 iff Rd was
|
|
// explicitly specified. From the ARM ARM: "Encoding T1 is preferred
|
|
// to encoding T2 if <Rd> is specified and encoding T2 is preferred
|
|
// to encoding T1 if <Rd> is omitted."
|
|
if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
|
|
Inst.setOpcode(ARM::tSUBi3);
|
|
return true;
|
|
}
|
|
break;
|
|
case ARM::t2ADDri:
|
|
case ARM::t2SUBri: {
|
|
// If the destination and first source operand are the same, and
|
|
// the flags are compatible with the current IT status, use encoding T2
|
|
// instead of T3. For compatibility with the system 'as'. Make sure the
|
|
// wide encoding wasn't explicit.
|
|
if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
|
|
!isARMLowRegister(Inst.getOperand(0).getReg()) ||
|
|
(unsigned)Inst.getOperand(2).getImm() > 255 ||
|
|
((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
|
|
(inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
|
|
(static_cast<ARMOperand*>(Operands[3])->isToken() &&
|
|
static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
|
|
break;
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
|
|
ARM::tADDi8 : ARM::tSUBi8);
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(2));
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
case ARM::t2ADDrr: {
|
|
// If the destination and first source operand are the same, and
|
|
// there's no setting of the flags, use encoding T2 instead of T3.
|
|
// Note that this is only for ADD, not SUB. This mirrors the system
|
|
// 'as' behaviour. Make sure the wide encoding wasn't explicit.
|
|
if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
|
|
Inst.getOperand(5).getReg() != 0 ||
|
|
(static_cast<ARMOperand*>(Operands[3])->isToken() &&
|
|
static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
|
|
break;
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(ARM::tADDhirr);
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(2));
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
case ARM::tADDrSP: {
|
|
// If the non-SP source operand and the destination operand are not the
|
|
// same, we need to use the 32-bit encoding if it's available.
|
|
if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
|
|
Inst.setOpcode(ARM::t2ADDrr);
|
|
Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case ARM::tB:
|
|
// A Thumb conditional branch outside of an IT block is a tBcc.
|
|
if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
|
|
Inst.setOpcode(ARM::tBcc);
|
|
return true;
|
|
}
|
|
break;
|
|
case ARM::t2B:
|
|
// A Thumb2 conditional branch outside of an IT block is a t2Bcc.
|
|
if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
|
|
Inst.setOpcode(ARM::t2Bcc);
|
|
return true;
|
|
}
|
|
break;
|
|
case ARM::t2Bcc:
|
|
// If the conditional is AL or we're in an IT block, we really want t2B.
|
|
if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
|
|
Inst.setOpcode(ARM::t2B);
|
|
return true;
|
|
}
|
|
break;
|
|
case ARM::tBcc:
|
|
// If the conditional is AL, we really want tB.
|
|
if (Inst.getOperand(1).getImm() == ARMCC::AL) {
|
|
Inst.setOpcode(ARM::tB);
|
|
return true;
|
|
}
|
|
break;
|
|
case ARM::tLDMIA: {
|
|
// If the register list contains any high registers, or if the writeback
|
|
// doesn't match what tLDMIA can do, we need to use the 32-bit encoding
|
|
// instead if we're in Thumb2. Otherwise, this should have generated
|
|
// an error in validateInstruction().
|
|
unsigned Rn = Inst.getOperand(0).getReg();
|
|
bool hasWritebackToken =
|
|
(static_cast<ARMOperand*>(Operands[3])->isToken() &&
|
|
static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
|
|
bool listContainsBase;
|
|
if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
|
|
(!listContainsBase && !hasWritebackToken) ||
|
|
(listContainsBase && hasWritebackToken)) {
|
|
// 16-bit encoding isn't sufficient. Switch to the 32-bit version.
|
|
assert (isThumbTwo());
|
|
Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
|
|
// If we're switching to the updating version, we need to insert
|
|
// the writeback tied operand.
|
|
if (hasWritebackToken)
|
|
Inst.insert(Inst.begin(),
|
|
MCOperand::CreateReg(Inst.getOperand(0).getReg()));
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case ARM::tSTMIA_UPD: {
|
|
// If the register list contains any high registers, we need to use
|
|
// the 32-bit encoding instead if we're in Thumb2. Otherwise, this
|
|
// should have generated an error in validateInstruction().
|
|
unsigned Rn = Inst.getOperand(0).getReg();
|
|
bool listContainsBase;
|
|
if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
|
|
// 16-bit encoding isn't sufficient. Switch to the 32-bit version.
|
|
assert (isThumbTwo());
|
|
Inst.setOpcode(ARM::t2STMIA_UPD);
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case ARM::tPOP: {
|
|
bool listContainsBase;
|
|
// If the register list contains any high registers, we need to use
|
|
// the 32-bit encoding instead if we're in Thumb2. Otherwise, this
|
|
// should have generated an error in validateInstruction().
|
|
if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
|
|
return false;
|
|
assert (isThumbTwo());
|
|
Inst.setOpcode(ARM::t2LDMIA_UPD);
|
|
// Add the base register and writeback operands.
|
|
Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
|
|
Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
|
|
return true;
|
|
}
|
|
case ARM::tPUSH: {
|
|
bool listContainsBase;
|
|
if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
|
|
return false;
|
|
assert (isThumbTwo());
|
|
Inst.setOpcode(ARM::t2STMDB_UPD);
|
|
// Add the base register and writeback operands.
|
|
Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
|
|
Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
|
|
return true;
|
|
}
|
|
case ARM::t2MOVi: {
|
|
// If we can use the 16-bit encoding and the user didn't explicitly
|
|
// request the 32-bit variant, transform it here.
|
|
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
|
|
(unsigned)Inst.getOperand(1).getImm() <= 255 &&
|
|
((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
|
|
Inst.getOperand(4).getReg() == ARM::CPSR) ||
|
|
(inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
|
|
(!static_cast<ARMOperand*>(Operands[2])->isToken() ||
|
|
static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
|
|
// The operands aren't in the same order for tMOVi8...
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(ARM::tMOVi8);
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
TmpInst.addOperand(Inst.getOperand(1));
|
|
TmpInst.addOperand(Inst.getOperand(2));
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case ARM::t2MOVr: {
|
|
// If we can use the 16-bit encoding and the user didn't explicitly
|
|
// request the 32-bit variant, transform it here.
|
|
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
|
|
isARMLowRegister(Inst.getOperand(1).getReg()) &&
|
|
Inst.getOperand(2).getImm() == ARMCC::AL &&
|
|
Inst.getOperand(4).getReg() == ARM::CPSR &&
|
|
(!static_cast<ARMOperand*>(Operands[2])->isToken() ||
|
|
static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
|
|
// The operands aren't the same for tMOV[S]r... (no cc_out)
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(1));
|
|
TmpInst.addOperand(Inst.getOperand(2));
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case ARM::t2SXTH:
|
|
case ARM::t2SXTB:
|
|
case ARM::t2UXTH:
|
|
case ARM::t2UXTB: {
|
|
// If we can use the 16-bit encoding and the user didn't explicitly
|
|
// request the 32-bit variant, transform it here.
|
|
if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
|
|
isARMLowRegister(Inst.getOperand(1).getReg()) &&
|
|
Inst.getOperand(2).getImm() == 0 &&
|
|
(!static_cast<ARMOperand*>(Operands[2])->isToken() ||
|
|
static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
|
|
unsigned NewOpc;
|
|
switch (Inst.getOpcode()) {
|
|
default: llvm_unreachable("Illegal opcode!");
|
|
case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
|
|
case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
|
|
case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
|
|
case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
|
|
}
|
|
// The operands aren't the same for thumb1 (no rotate operand).
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(NewOpc);
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(1));
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case ARM::MOVsi: {
|
|
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
|
|
// rrx shifts and asr/lsr of #32 is encoded as 0
|
|
if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
|
|
return false;
|
|
if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
|
|
// Shifting by zero is accepted as a vanilla 'MOVr'
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(ARM::MOVr);
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(1));
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case ARM::ANDrsi:
|
|
case ARM::ORRrsi:
|
|
case ARM::EORrsi:
|
|
case ARM::BICrsi:
|
|
case ARM::SUBrsi:
|
|
case ARM::ADDrsi: {
|
|
unsigned newOpc;
|
|
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
|
|
if (SOpc == ARM_AM::rrx) return false;
|
|
switch (Inst.getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode!");
|
|
case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
|
|
case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
|
|
case ARM::EORrsi: newOpc = ARM::EORrr; break;
|
|
case ARM::BICrsi: newOpc = ARM::BICrr; break;
|
|
case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
|
|
case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
|
|
}
|
|
// If the shift is by zero, use the non-shifted instruction definition.
|
|
// The exception is for right shifts, where 0 == 32
|
|
if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
|
|
!(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(newOpc);
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(1));
|
|
TmpInst.addOperand(Inst.getOperand(2));
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
TmpInst.addOperand(Inst.getOperand(6));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case ARM::ITasm:
|
|
case ARM::t2IT: {
|
|
// The mask bits for all but the first condition are represented as
|
|
// the low bit of the condition code value implies 't'. We currently
|
|
// always have 1 implies 't', so XOR toggle the bits if the low bit
|
|
// of the condition code is zero.
|
|
MCOperand &MO = Inst.getOperand(1);
|
|
unsigned Mask = MO.getImm();
|
|
unsigned OrigMask = Mask;
|
|
unsigned TZ = countTrailingZeros(Mask);
|
|
if ((Inst.getOperand(0).getImm() & 1) == 0) {
|
|
assert(Mask && TZ <= 3 && "illegal IT mask value!");
|
|
Mask ^= (0xE << TZ) & 0xF;
|
|
}
|
|
MO.setImm(Mask);
|
|
|
|
// Set up the IT block state according to the IT instruction we just
|
|
// matched.
|
|
assert(!inITBlock() && "nested IT blocks?!");
|
|
ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
|
|
ITState.Mask = OrigMask; // Use the original mask, not the updated one.
|
|
ITState.CurPosition = 0;
|
|
ITState.FirstCond = true;
|
|
break;
|
|
}
|
|
case ARM::t2LSLrr:
|
|
case ARM::t2LSRrr:
|
|
case ARM::t2ASRrr:
|
|
case ARM::t2SBCrr:
|
|
case ARM::t2RORrr:
|
|
case ARM::t2BICrr:
|
|
{
|
|
// Assemblers should use the narrow encodings of these instructions when permissible.
|
|
if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
|
|
isARMLowRegister(Inst.getOperand(2).getReg())) &&
|
|
Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
|
|
((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
|
|
(inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
|
|
(!static_cast<ARMOperand*>(Operands[3])->isToken() ||
|
|
!static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
|
|
unsigned NewOpc;
|
|
switch (Inst.getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode");
|
|
case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
|
|
case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
|
|
case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
|
|
case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
|
|
case ARM::t2RORrr: NewOpc = ARM::tROR; break;
|
|
case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
|
|
}
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(NewOpc);
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
TmpInst.addOperand(Inst.getOperand(1));
|
|
TmpInst.addOperand(Inst.getOperand(2));
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case ARM::t2ANDrr:
|
|
case ARM::t2EORrr:
|
|
case ARM::t2ADCrr:
|
|
case ARM::t2ORRrr:
|
|
{
|
|
// Assemblers should use the narrow encodings of these instructions when permissible.
|
|
// These instructions are special in that they are commutable, so shorter encodings
|
|
// are available more often.
|
|
if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
|
|
isARMLowRegister(Inst.getOperand(2).getReg())) &&
|
|
(Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
|
|
Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
|
|
((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
|
|
(inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
|
|
(!static_cast<ARMOperand*>(Operands[3])->isToken() ||
|
|
!static_cast<ARMOperand*>(Operands[3])->getToken().equals_lower(".w"))) {
|
|
unsigned NewOpc;
|
|
switch (Inst.getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode");
|
|
case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
|
|
case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
|
|
case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
|
|
case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
|
|
}
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(NewOpc);
|
|
TmpInst.addOperand(Inst.getOperand(0));
|
|
TmpInst.addOperand(Inst.getOperand(5));
|
|
if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
|
|
TmpInst.addOperand(Inst.getOperand(1));
|
|
TmpInst.addOperand(Inst.getOperand(2));
|
|
} else {
|
|
TmpInst.addOperand(Inst.getOperand(2));
|
|
TmpInst.addOperand(Inst.getOperand(1));
|
|
}
|
|
TmpInst.addOperand(Inst.getOperand(3));
|
|
TmpInst.addOperand(Inst.getOperand(4));
|
|
Inst = TmpInst;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
|
|
// 16-bit thumb arithmetic instructions either require or preclude the 'S'
|
|
// suffix depending on whether they're in an IT block or not.
|
|
unsigned Opc = Inst.getOpcode();
|
|
const MCInstrDesc &MCID = getInstDesc(Opc);
|
|
if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
|
|
assert(MCID.hasOptionalDef() &&
|
|
"optionally flag setting instruction missing optional def operand");
|
|
assert(MCID.NumOperands == Inst.getNumOperands() &&
|
|
"operand count mismatch!");
|
|
// Find the optional-def operand (cc_out).
|
|
unsigned OpNo;
|
|
for (OpNo = 0;
|
|
!MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
|
|
++OpNo)
|
|
;
|
|
// If we're parsing Thumb1, reject it completely.
|
|
if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
|
|
return Match_MnemonicFail;
|
|
// If we're parsing Thumb2, which form is legal depends on whether we're
|
|
// in an IT block.
|
|
if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
|
|
!inITBlock())
|
|
return Match_RequiresITBlock;
|
|
if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
|
|
inITBlock())
|
|
return Match_RequiresNotITBlock;
|
|
}
|
|
// Some high-register supporting Thumb1 encodings only allow both registers
|
|
// to be from r0-r7 when in Thumb2.
|
|
else if (Opc == ARM::tADDhirr && isThumbOne() &&
|
|
isARMLowRegister(Inst.getOperand(1).getReg()) &&
|
|
isARMLowRegister(Inst.getOperand(2).getReg()))
|
|
return Match_RequiresThumb2;
|
|
// Others only require ARMv6 or later.
|
|
else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
|
|
isARMLowRegister(Inst.getOperand(0).getReg()) &&
|
|
isARMLowRegister(Inst.getOperand(1).getReg()))
|
|
return Match_RequiresV6;
|
|
return Match_Success;
|
|
}
|
|
|
|
static const char *getSubtargetFeatureName(unsigned Val);
|
|
bool ARMAsmParser::
|
|
MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
SmallVectorImpl<MCParsedAsmOperand*> &Operands,
|
|
MCStreamer &Out, unsigned &ErrorInfo,
|
|
bool MatchingInlineAsm) {
|
|
MCInst Inst;
|
|
unsigned MatchResult;
|
|
|
|
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
|
|
MatchingInlineAsm);
|
|
switch (MatchResult) {
|
|
default: break;
|
|
case Match_Success:
|
|
// Context sensitive operand constraints aren't handled by the matcher,
|
|
// so check them here.
|
|
if (validateInstruction(Inst, Operands)) {
|
|
// Still progress the IT block, otherwise one wrong condition causes
|
|
// nasty cascading errors.
|
|
forwardITPosition();
|
|
return true;
|
|
}
|
|
|
|
// Some instructions need post-processing to, for example, tweak which
|
|
// encoding is selected. Loop on it while changes happen so the
|
|
// individual transformations can chain off each other. E.g.,
|
|
// tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
|
|
while (processInstruction(Inst, Operands))
|
|
;
|
|
|
|
// Only move forward at the very end so that everything in validate
|
|
// and process gets a consistent answer about whether we're in an IT
|
|
// block.
|
|
forwardITPosition();
|
|
|
|
// ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
|
|
// doesn't actually encode.
|
|
if (Inst.getOpcode() == ARM::ITasm)
|
|
return false;
|
|
|
|
Inst.setLoc(IDLoc);
|
|
Out.EmitInstruction(Inst);
|
|
return false;
|
|
case Match_MissingFeature: {
|
|
assert(ErrorInfo && "Unknown missing feature!");
|
|
// Special case the error message for the very common case where only
|
|
// a single subtarget feature is missing (Thumb vs. ARM, e.g.).
|
|
std::string Msg = "instruction requires:";
|
|
unsigned Mask = 1;
|
|
for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
|
|
if (ErrorInfo & Mask) {
|
|
Msg += " ";
|
|
Msg += getSubtargetFeatureName(ErrorInfo & Mask);
|
|
}
|
|
Mask <<= 1;
|
|
}
|
|
return Error(IDLoc, Msg);
|
|
}
|
|
case Match_InvalidOperand: {
|
|
SMLoc ErrorLoc = IDLoc;
|
|
if (ErrorInfo != ~0U) {
|
|
if (ErrorInfo >= Operands.size())
|
|
return Error(IDLoc, "too few operands for instruction");
|
|
|
|
ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
|
|
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
|
|
}
|
|
|
|
return Error(ErrorLoc, "invalid operand for instruction");
|
|
}
|
|
case Match_MnemonicFail:
|
|
return Error(IDLoc, "invalid instruction",
|
|
((ARMOperand*)Operands[0])->getLocRange());
|
|
case Match_RequiresNotITBlock:
|
|
return Error(IDLoc, "flag setting instruction only valid outside IT block");
|
|
case Match_RequiresITBlock:
|
|
return Error(IDLoc, "instruction only valid inside IT block");
|
|
case Match_RequiresV6:
|
|
return Error(IDLoc, "instruction variant requires ARMv6 or later");
|
|
case Match_RequiresThumb2:
|
|
return Error(IDLoc, "instruction variant requires Thumb2");
|
|
case Match_ImmRange0_4: {
|
|
SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
|
|
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
|
|
return Error(ErrorLoc, "immediate operand must be in the range [0,4]");
|
|
}
|
|
case Match_ImmRange0_15: {
|
|
SMLoc ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
|
|
if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
|
|
return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Implement any new match types added!");
|
|
}
|
|
|
|
/// parseDirective parses the arm specific directives
|
|
bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
|
|
StringRef IDVal = DirectiveID.getIdentifier();
|
|
if (IDVal == ".word")
|
|
return parseDirectiveWord(4, DirectiveID.getLoc());
|
|
else if (IDVal == ".thumb")
|
|
return parseDirectiveThumb(DirectiveID.getLoc());
|
|
else if (IDVal == ".arm")
|
|
return parseDirectiveARM(DirectiveID.getLoc());
|
|
else if (IDVal == ".thumb_func")
|
|
return parseDirectiveThumbFunc(DirectiveID.getLoc());
|
|
else if (IDVal == ".code")
|
|
return parseDirectiveCode(DirectiveID.getLoc());
|
|
else if (IDVal == ".syntax")
|
|
return parseDirectiveSyntax(DirectiveID.getLoc());
|
|
else if (IDVal == ".unreq")
|
|
return parseDirectiveUnreq(DirectiveID.getLoc());
|
|
else if (IDVal == ".arch")
|
|
return parseDirectiveArch(DirectiveID.getLoc());
|
|
else if (IDVal == ".eabi_attribute")
|
|
return parseDirectiveEabiAttr(DirectiveID.getLoc());
|
|
else if (IDVal == ".fnstart")
|
|
return parseDirectiveFnStart(DirectiveID.getLoc());
|
|
else if (IDVal == ".fnend")
|
|
return parseDirectiveFnEnd(DirectiveID.getLoc());
|
|
else if (IDVal == ".cantunwind")
|
|
return parseDirectiveCantUnwind(DirectiveID.getLoc());
|
|
else if (IDVal == ".personality")
|
|
return parseDirectivePersonality(DirectiveID.getLoc());
|
|
else if (IDVal == ".handlerdata")
|
|
return parseDirectiveHandlerData(DirectiveID.getLoc());
|
|
else if (IDVal == ".setfp")
|
|
return parseDirectiveSetFP(DirectiveID.getLoc());
|
|
else if (IDVal == ".pad")
|
|
return parseDirectivePad(DirectiveID.getLoc());
|
|
else if (IDVal == ".save")
|
|
return parseDirectiveRegSave(DirectiveID.getLoc(), false);
|
|
else if (IDVal == ".vsave")
|
|
return parseDirectiveRegSave(DirectiveID.getLoc(), true);
|
|
return true;
|
|
}
|
|
|
|
/// parseDirectiveWord
|
|
/// ::= .word [ expression (, expression)* ]
|
|
bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
for (;;) {
|
|
const MCExpr *Value;
|
|
if (getParser().parseExpression(Value))
|
|
return true;
|
|
|
|
getParser().getStreamer().EmitValue(Value, Size);
|
|
|
|
if (getLexer().is(AsmToken::EndOfStatement))
|
|
break;
|
|
|
|
// FIXME: Improve diagnostic.
|
|
if (getLexer().isNot(AsmToken::Comma))
|
|
return Error(L, "unexpected token in directive");
|
|
Parser.Lex();
|
|
}
|
|
}
|
|
|
|
Parser.Lex();
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveThumb
|
|
/// ::= .thumb
|
|
bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
|
|
if (getLexer().isNot(AsmToken::EndOfStatement))
|
|
return Error(L, "unexpected token in directive");
|
|
Parser.Lex();
|
|
|
|
if (!hasThumb())
|
|
return Error(L, "target does not support Thumb mode");
|
|
|
|
if (!isThumb())
|
|
SwitchMode();
|
|
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveARM
|
|
/// ::= .arm
|
|
bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
|
|
if (getLexer().isNot(AsmToken::EndOfStatement))
|
|
return Error(L, "unexpected token in directive");
|
|
Parser.Lex();
|
|
|
|
if (!hasARM())
|
|
return Error(L, "target does not support ARM mode");
|
|
|
|
if (isThumb())
|
|
SwitchMode();
|
|
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveThumbFunc
|
|
/// ::= .thumbfunc symbol_name
|
|
bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
|
|
const MCAsmInfo *MAI = getParser().getStreamer().getContext().getAsmInfo();
|
|
bool isMachO = MAI->hasSubsectionsViaSymbols();
|
|
StringRef Name;
|
|
bool needFuncName = true;
|
|
|
|
// Darwin asm has (optionally) function name after .thumb_func direction
|
|
// ELF doesn't
|
|
if (isMachO) {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (Tok.isNot(AsmToken::EndOfStatement)) {
|
|
if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
|
|
return Error(L, "unexpected token in .thumb_func directive");
|
|
Name = Tok.getIdentifier();
|
|
Parser.Lex(); // Consume the identifier token.
|
|
needFuncName = false;
|
|
}
|
|
}
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement))
|
|
return Error(L, "unexpected token in directive");
|
|
|
|
// Eat the end of statement and any blank lines that follow.
|
|
while (getLexer().is(AsmToken::EndOfStatement))
|
|
Parser.Lex();
|
|
|
|
// FIXME: assuming function name will be the line following .thumb_func
|
|
// We really should be checking the next symbol definition even if there's
|
|
// stuff in between.
|
|
if (needFuncName) {
|
|
Name = Parser.getTok().getIdentifier();
|
|
}
|
|
|
|
// Mark symbol as a thumb symbol.
|
|
MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
|
|
getParser().getStreamer().EmitThumbFunc(Func);
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveSyntax
|
|
/// ::= .syntax unified | divided
|
|
bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (Tok.isNot(AsmToken::Identifier))
|
|
return Error(L, "unexpected token in .syntax directive");
|
|
StringRef Mode = Tok.getString();
|
|
if (Mode == "unified" || Mode == "UNIFIED")
|
|
Parser.Lex();
|
|
else if (Mode == "divided" || Mode == "DIVIDED")
|
|
return Error(L, "'.syntax divided' arm asssembly not supported");
|
|
else
|
|
return Error(L, "unrecognized syntax mode in .syntax directive");
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement))
|
|
return Error(Parser.getTok().getLoc(), "unexpected token in directive");
|
|
Parser.Lex();
|
|
|
|
// TODO tell the MC streamer the mode
|
|
// getParser().getStreamer().Emit???();
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveCode
|
|
/// ::= .code 16 | 32
|
|
bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
|
|
const AsmToken &Tok = Parser.getTok();
|
|
if (Tok.isNot(AsmToken::Integer))
|
|
return Error(L, "unexpected token in .code directive");
|
|
int64_t Val = Parser.getTok().getIntVal();
|
|
if (Val == 16)
|
|
Parser.Lex();
|
|
else if (Val == 32)
|
|
Parser.Lex();
|
|
else
|
|
return Error(L, "invalid operand to .code directive");
|
|
|
|
if (getLexer().isNot(AsmToken::EndOfStatement))
|
|
return Error(Parser.getTok().getLoc(), "unexpected token in directive");
|
|
Parser.Lex();
|
|
|
|
if (Val == 16) {
|
|
if (!hasThumb())
|
|
return Error(L, "target does not support Thumb mode");
|
|
|
|
if (!isThumb())
|
|
SwitchMode();
|
|
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
|
|
} else {
|
|
if (!hasARM())
|
|
return Error(L, "target does not support ARM mode");
|
|
|
|
if (isThumb())
|
|
SwitchMode();
|
|
getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveReq
|
|
/// ::= name .req registername
|
|
bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
|
|
Parser.Lex(); // Eat the '.req' token.
|
|
unsigned Reg;
|
|
SMLoc SRegLoc, ERegLoc;
|
|
if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
|
|
Parser.eatToEndOfStatement();
|
|
return Error(SRegLoc, "register name expected");
|
|
}
|
|
|
|
// Shouldn't be anything else.
|
|
if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
|
|
Parser.eatToEndOfStatement();
|
|
return Error(Parser.getTok().getLoc(),
|
|
"unexpected input in .req directive.");
|
|
}
|
|
|
|
Parser.Lex(); // Consume the EndOfStatement
|
|
|
|
if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg)
|
|
return Error(SRegLoc, "redefinition of '" + Name +
|
|
"' does not match original.");
|
|
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveUneq
|
|
/// ::= .unreq registername
|
|
bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
|
|
if (Parser.getTok().isNot(AsmToken::Identifier)) {
|
|
Parser.eatToEndOfStatement();
|
|
return Error(L, "unexpected input in .unreq directive.");
|
|
}
|
|
RegisterReqs.erase(Parser.getTok().getIdentifier());
|
|
Parser.Lex(); // Eat the identifier.
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveArch
|
|
/// ::= .arch token
|
|
bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
|
|
return true;
|
|
}
|
|
|
|
/// parseDirectiveEabiAttr
|
|
/// ::= .eabi_attribute int, int
|
|
bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
|
|
return true;
|
|
}
|
|
|
|
/// parseDirectiveFnStart
|
|
/// ::= .fnstart
|
|
bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
|
|
if (FnStartLoc.isValid()) {
|
|
Error(L, ".fnstart starts before the end of previous one");
|
|
Error(FnStartLoc, "previous .fnstart starts here");
|
|
return true;
|
|
}
|
|
|
|
FnStartLoc = L;
|
|
getParser().getStreamer().EmitFnStart();
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveFnEnd
|
|
/// ::= .fnend
|
|
bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
|
|
// Check the ordering of unwind directives
|
|
if (!FnStartLoc.isValid())
|
|
return Error(L, ".fnstart must precede .fnend directive");
|
|
|
|
// Reset the unwind directives parser state
|
|
resetUnwindDirectiveParserState();
|
|
|
|
getParser().getStreamer().EmitFnEnd();
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveCantUnwind
|
|
/// ::= .cantunwind
|
|
bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
|
|
// Check the ordering of unwind directives
|
|
CantUnwindLoc = L;
|
|
if (!FnStartLoc.isValid())
|
|
return Error(L, ".fnstart must precede .cantunwind directive");
|
|
if (HandlerDataLoc.isValid()) {
|
|
Error(L, ".cantunwind can't be used with .handlerdata directive");
|
|
Error(HandlerDataLoc, ".handlerdata was specified here");
|
|
return true;
|
|
}
|
|
if (PersonalityLoc.isValid()) {
|
|
Error(L, ".cantunwind can't be used with .personality directive");
|
|
Error(PersonalityLoc, ".personality was specified here");
|
|
return true;
|
|
}
|
|
|
|
getParser().getStreamer().EmitCantUnwind();
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectivePersonality
|
|
/// ::= .personality name
|
|
bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
|
|
// Check the ordering of unwind directives
|
|
PersonalityLoc = L;
|
|
if (!FnStartLoc.isValid())
|
|
return Error(L, ".fnstart must precede .personality directive");
|
|
if (CantUnwindLoc.isValid()) {
|
|
Error(L, ".personality can't be used with .cantunwind directive");
|
|
Error(CantUnwindLoc, ".cantunwind was specified here");
|
|
return true;
|
|
}
|
|
if (HandlerDataLoc.isValid()) {
|
|
Error(L, ".personality must precede .handlerdata directive");
|
|
Error(HandlerDataLoc, ".handlerdata was specified here");
|
|
return true;
|
|
}
|
|
|
|
// Parse the name of the personality routine
|
|
if (Parser.getTok().isNot(AsmToken::Identifier)) {
|
|
Parser.eatToEndOfStatement();
|
|
return Error(L, "unexpected input in .personality directive.");
|
|
}
|
|
StringRef Name(Parser.getTok().getIdentifier());
|
|
Parser.Lex();
|
|
|
|
MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name);
|
|
getParser().getStreamer().EmitPersonality(PR);
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveHandlerData
|
|
/// ::= .handlerdata
|
|
bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
|
|
// Check the ordering of unwind directives
|
|
HandlerDataLoc = L;
|
|
if (!FnStartLoc.isValid())
|
|
return Error(L, ".fnstart must precede .personality directive");
|
|
if (CantUnwindLoc.isValid()) {
|
|
Error(L, ".handlerdata can't be used with .cantunwind directive");
|
|
Error(CantUnwindLoc, ".cantunwind was specified here");
|
|
return true;
|
|
}
|
|
|
|
getParser().getStreamer().EmitHandlerData();
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveSetFP
|
|
/// ::= .setfp fpreg, spreg [, offset]
|
|
bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
|
|
// Check the ordering of unwind directives
|
|
if (!FnStartLoc.isValid())
|
|
return Error(L, ".fnstart must precede .setfp directive");
|
|
if (HandlerDataLoc.isValid())
|
|
return Error(L, ".setfp must precede .handlerdata directive");
|
|
|
|
// Parse fpreg
|
|
SMLoc NewFPRegLoc = Parser.getTok().getLoc();
|
|
int NewFPReg = tryParseRegister();
|
|
if (NewFPReg == -1)
|
|
return Error(NewFPRegLoc, "frame pointer register expected");
|
|
|
|
// Consume comma
|
|
if (!Parser.getTok().is(AsmToken::Comma))
|
|
return Error(Parser.getTok().getLoc(), "comma expected");
|
|
Parser.Lex(); // skip comma
|
|
|
|
// Parse spreg
|
|
SMLoc NewSPRegLoc = Parser.getTok().getLoc();
|
|
int NewSPReg = tryParseRegister();
|
|
if (NewSPReg == -1)
|
|
return Error(NewSPRegLoc, "stack pointer register expected");
|
|
|
|
if (NewSPReg != ARM::SP && NewSPReg != FPReg)
|
|
return Error(NewSPRegLoc,
|
|
"register should be either $sp or the latest fp register");
|
|
|
|
// Update the frame pointer register
|
|
FPReg = NewFPReg;
|
|
|
|
// Parse offset
|
|
int64_t Offset = 0;
|
|
if (Parser.getTok().is(AsmToken::Comma)) {
|
|
Parser.Lex(); // skip comma
|
|
|
|
if (Parser.getTok().isNot(AsmToken::Hash) &&
|
|
Parser.getTok().isNot(AsmToken::Dollar)) {
|
|
return Error(Parser.getTok().getLoc(), "'#' expected");
|
|
}
|
|
Parser.Lex(); // skip hash token.
|
|
|
|
const MCExpr *OffsetExpr;
|
|
SMLoc ExLoc = Parser.getTok().getLoc();
|
|
SMLoc EndLoc;
|
|
if (getParser().parseExpression(OffsetExpr, EndLoc))
|
|
return Error(ExLoc, "malformed setfp offset");
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
|
|
if (!CE)
|
|
return Error(ExLoc, "setfp offset must be an immediate");
|
|
|
|
Offset = CE->getValue();
|
|
}
|
|
|
|
getParser().getStreamer().EmitSetFP(static_cast<unsigned>(NewFPReg),
|
|
static_cast<unsigned>(NewSPReg),
|
|
Offset);
|
|
return false;
|
|
}
|
|
|
|
/// parseDirective
|
|
/// ::= .pad offset
|
|
bool ARMAsmParser::parseDirectivePad(SMLoc L) {
|
|
// Check the ordering of unwind directives
|
|
if (!FnStartLoc.isValid())
|
|
return Error(L, ".fnstart must precede .pad directive");
|
|
if (HandlerDataLoc.isValid())
|
|
return Error(L, ".pad must precede .handlerdata directive");
|
|
|
|
// Parse the offset
|
|
if (Parser.getTok().isNot(AsmToken::Hash) &&
|
|
Parser.getTok().isNot(AsmToken::Dollar)) {
|
|
return Error(Parser.getTok().getLoc(), "'#' expected");
|
|
}
|
|
Parser.Lex(); // skip hash token.
|
|
|
|
const MCExpr *OffsetExpr;
|
|
SMLoc ExLoc = Parser.getTok().getLoc();
|
|
SMLoc EndLoc;
|
|
if (getParser().parseExpression(OffsetExpr, EndLoc))
|
|
return Error(ExLoc, "malformed pad offset");
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
|
|
if (!CE)
|
|
return Error(ExLoc, "pad offset must be an immediate");
|
|
|
|
getParser().getStreamer().EmitPad(CE->getValue());
|
|
return false;
|
|
}
|
|
|
|
/// parseDirectiveRegSave
|
|
/// ::= .save { registers }
|
|
/// ::= .vsave { registers }
|
|
bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
|
|
// Check the ordering of unwind directives
|
|
if (!FnStartLoc.isValid())
|
|
return Error(L, ".fnstart must precede .save or .vsave directives");
|
|
if (HandlerDataLoc.isValid())
|
|
return Error(L, ".save or .vsave must precede .handlerdata directive");
|
|
|
|
// Parse the register list
|
|
SmallVector<MCParsedAsmOperand*, 1> Operands;
|
|
if (parseRegisterList(Operands))
|
|
return true;
|
|
ARMOperand *Op = (ARMOperand*)Operands[0];
|
|
if (!IsVector && !Op->isRegList())
|
|
return Error(L, ".save expects GPR registers");
|
|
if (IsVector && !Op->isDPRRegList())
|
|
return Error(L, ".vsave expects DPR registers");
|
|
|
|
getParser().getStreamer().EmitRegSave(Op->getRegList(), IsVector);
|
|
return false;
|
|
}
|
|
|
|
/// Force static initialization.
|
|
extern "C" void LLVMInitializeARMAsmParser() {
|
|
RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
|
|
RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
|
|
}
|
|
|
|
#define GET_REGISTER_MATCHER
|
|
#define GET_SUBTARGET_FEATURE_NAME
|
|
#define GET_MATCHER_IMPLEMENTATION
|
|
#include "ARMGenAsmMatcher.inc"
|
|
|
|
// Define this matcher function after the auto-generated include so we
|
|
// have the match class enum definitions.
|
|
unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand *AsmOp,
|
|
unsigned Kind) {
|
|
ARMOperand *Op = static_cast<ARMOperand*>(AsmOp);
|
|
// If the kind is a token for a literal immediate, check if our asm
|
|
// operand matches. This is for InstAliases which have a fixed-value
|
|
// immediate in the syntax.
|
|
if (Kind == MCK__35_0 && Op->isImm()) {
|
|
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
|
|
if (!CE)
|
|
return Match_InvalidOperand;
|
|
if (CE->getValue() == 0)
|
|
return Match_Success;
|
|
}
|
|
return Match_InvalidOperand;
|
|
}
|