mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	representing expressions that can only be resolved at link time, etc. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@30278 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			675 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			675 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by James M. Laskey and is distributed under the
 | 
						|
// University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements a simple two pass scheduler.  The first pass attempts to push
 | 
						|
// backward any lengthy instructions and critical paths.  The second pass packs
 | 
						|
// instructions into semi-optimal time slots.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "sched"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/SSARegMap.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <iostream>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
 | 
						|
/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
 | 
						|
/// This SUnit graph is similar to the SelectionDAG, but represents flagged
 | 
						|
/// together nodes with a single SUnit.
 | 
						|
void ScheduleDAG::BuildSchedUnits() {
 | 
						|
  // Reserve entries in the vector for each of the SUnits we are creating.  This
 | 
						|
  // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
 | 
						|
  // invalidated.
 | 
						|
  SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end()));
 | 
						|
  
 | 
						|
  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
 | 
						|
  
 | 
						|
  for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
 | 
						|
       E = DAG.allnodes_end(); NI != E; ++NI) {
 | 
						|
    if (isPassiveNode(NI))  // Leaf node, e.g. a TargetImmediate.
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // If this node has already been processed, stop now.
 | 
						|
    if (SUnitMap[NI]) continue;
 | 
						|
    
 | 
						|
    SUnit *NodeSUnit = NewSUnit(NI);
 | 
						|
    
 | 
						|
    // See if anything is flagged to this node, if so, add them to flagged
 | 
						|
    // nodes.  Nodes can have at most one flag input and one flag output.  Flags
 | 
						|
    // are required the be the last operand and result of a node.
 | 
						|
    
 | 
						|
    // Scan up, adding flagged preds to FlaggedNodes.
 | 
						|
    SDNode *N = NI;
 | 
						|
    if (N->getNumOperands() &&
 | 
						|
        N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
 | 
						|
      do {
 | 
						|
        N = N->getOperand(N->getNumOperands()-1).Val;
 | 
						|
        NodeSUnit->FlaggedNodes.push_back(N);
 | 
						|
        SUnitMap[N] = NodeSUnit;
 | 
						|
      } while (N->getNumOperands() &&
 | 
						|
               N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag);
 | 
						|
      std::reverse(NodeSUnit->FlaggedNodes.begin(),
 | 
						|
                   NodeSUnit->FlaggedNodes.end());
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Scan down, adding this node and any flagged succs to FlaggedNodes if they
 | 
						|
    // have a user of the flag operand.
 | 
						|
    N = NI;
 | 
						|
    while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
 | 
						|
      SDOperand FlagVal(N, N->getNumValues()-1);
 | 
						|
      
 | 
						|
      // There are either zero or one users of the Flag result.
 | 
						|
      bool HasFlagUse = false;
 | 
						|
      for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); 
 | 
						|
           UI != E; ++UI)
 | 
						|
        if (FlagVal.isOperand(*UI)) {
 | 
						|
          HasFlagUse = true;
 | 
						|
          NodeSUnit->FlaggedNodes.push_back(N);
 | 
						|
          SUnitMap[N] = NodeSUnit;
 | 
						|
          N = *UI;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      if (!HasFlagUse) break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
 | 
						|
    // Update the SUnit
 | 
						|
    NodeSUnit->Node = N;
 | 
						|
    SUnitMap[N] = NodeSUnit;
 | 
						|
    
 | 
						|
    // Compute the latency for the node.  We use the sum of the latencies for
 | 
						|
    // all nodes flagged together into this SUnit.
 | 
						|
    if (InstrItins.isEmpty()) {
 | 
						|
      // No latency information.
 | 
						|
      NodeSUnit->Latency = 1;
 | 
						|
    } else {
 | 
						|
      NodeSUnit->Latency = 0;
 | 
						|
      if (N->isTargetOpcode()) {
 | 
						|
        unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
 | 
						|
        InstrStage *S = InstrItins.begin(SchedClass);
 | 
						|
        InstrStage *E = InstrItins.end(SchedClass);
 | 
						|
        for (; S != E; ++S)
 | 
						|
          NodeSUnit->Latency += S->Cycles;
 | 
						|
      }
 | 
						|
      for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) {
 | 
						|
        SDNode *FNode = NodeSUnit->FlaggedNodes[i];
 | 
						|
        if (FNode->isTargetOpcode()) {
 | 
						|
          unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
 | 
						|
          InstrStage *S = InstrItins.begin(SchedClass);
 | 
						|
          InstrStage *E = InstrItins.end(SchedClass);
 | 
						|
          for (; S != E; ++S)
 | 
						|
            NodeSUnit->Latency += S->Cycles;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Pass 2: add the preds, succs, etc.
 | 
						|
  for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
 | 
						|
    SUnit *SU = &SUnits[su];
 | 
						|
    SDNode *MainNode = SU->Node;
 | 
						|
    
 | 
						|
    if (MainNode->isTargetOpcode()) {
 | 
						|
      unsigned Opc = MainNode->getTargetOpcode();
 | 
						|
      if (TII->isTwoAddrInstr(Opc))
 | 
						|
        SU->isTwoAddress = true;
 | 
						|
      if (TII->isCommutableInstr(Opc))
 | 
						|
        SU->isCommutable = true;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Find all predecessors and successors of the group.
 | 
						|
    // Temporarily add N to make code simpler.
 | 
						|
    SU->FlaggedNodes.push_back(MainNode);
 | 
						|
    
 | 
						|
    for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
 | 
						|
      SDNode *N = SU->FlaggedNodes[n];
 | 
						|
      
 | 
						|
      for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
        SDNode *OpN = N->getOperand(i).Val;
 | 
						|
        if (isPassiveNode(OpN)) continue;   // Not scheduled.
 | 
						|
        SUnit *OpSU = SUnitMap[OpN];
 | 
						|
        assert(OpSU && "Node has no SUnit!");
 | 
						|
        if (OpSU == SU) continue;           // In the same group.
 | 
						|
 | 
						|
        MVT::ValueType OpVT = N->getOperand(i).getValueType();
 | 
						|
        assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
 | 
						|
        bool isChain = OpVT == MVT::Other;
 | 
						|
        
 | 
						|
        if (SU->addPred(OpSU, isChain)) {
 | 
						|
          if (!isChain) {
 | 
						|
            SU->NumPreds++;
 | 
						|
            SU->NumPredsLeft++;
 | 
						|
          } else {
 | 
						|
            SU->NumChainPredsLeft++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        if (OpSU->addSucc(SU, isChain)) {
 | 
						|
          if (!isChain) {
 | 
						|
            OpSU->NumSuccs++;
 | 
						|
            OpSU->NumSuccsLeft++;
 | 
						|
          } else {
 | 
						|
            OpSU->NumChainSuccsLeft++;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Remove MainNode from FlaggedNodes again.
 | 
						|
    SU->FlaggedNodes.pop_back();
 | 
						|
  }
 | 
						|
  
 | 
						|
  return;
 | 
						|
}
 | 
						|
 | 
						|
static void CalculateDepths(SUnit &SU, unsigned Depth) {
 | 
						|
  if (SU.Depth == 0 || Depth > SU.Depth) {
 | 
						|
    SU.Depth = Depth;
 | 
						|
    for (SUnit::succ_iterator I = SU.Succs.begin(), E = SU.Succs.end();
 | 
						|
         I != E; ++I)
 | 
						|
      CalculateDepths(*I->first, Depth+1);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAG::CalculateDepths() {
 | 
						|
  SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
 | 
						|
  ::CalculateDepths(*Entry, 0U);
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i)
 | 
						|
    if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
 | 
						|
      ::CalculateDepths(SUnits[i], 0U);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void CalculateHeights(SUnit &SU, unsigned Height) {
 | 
						|
  if (SU.Height == 0 || Height > SU.Height) {
 | 
						|
    SU.Height = Height;
 | 
						|
    for (SUnit::pred_iterator I = SU.Preds.begin(), E = SU.Preds.end();
 | 
						|
         I != E; ++I)
 | 
						|
      CalculateHeights(*I->first, Height+1);
 | 
						|
  }
 | 
						|
}
 | 
						|
void ScheduleDAG::CalculateHeights() {
 | 
						|
  SUnit *Root = SUnitMap[DAG.getRoot().Val];
 | 
						|
  ::CalculateHeights(*Root, 0U);
 | 
						|
}
 | 
						|
 | 
						|
/// CountResults - The results of target nodes have register or immediate
 | 
						|
/// operands first, then an optional chain, and optional flag operands (which do
 | 
						|
/// not go into the machine instrs.)
 | 
						|
static unsigned CountResults(SDNode *Node) {
 | 
						|
  unsigned N = Node->getNumValues();
 | 
						|
  while (N && Node->getValueType(N - 1) == MVT::Flag)
 | 
						|
    --N;
 | 
						|
  if (N && Node->getValueType(N - 1) == MVT::Other)
 | 
						|
    --N;    // Skip over chain result.
 | 
						|
  return N;
 | 
						|
}
 | 
						|
 | 
						|
/// CountOperands  The inputs to target nodes have any actual inputs first,
 | 
						|
/// followed by an optional chain operand, then flag operands.  Compute the
 | 
						|
/// number of actual operands that  will go into the machine instr.
 | 
						|
static unsigned CountOperands(SDNode *Node) {
 | 
						|
  unsigned N = Node->getNumOperands();
 | 
						|
  while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
 | 
						|
    --N;
 | 
						|
  if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
 | 
						|
    --N; // Ignore chain if it exists.
 | 
						|
  return N;
 | 
						|
}
 | 
						|
 | 
						|
static const TargetRegisterClass *getInstrOperandRegClass(
 | 
						|
        const MRegisterInfo *MRI, 
 | 
						|
        const TargetInstrInfo *TII,
 | 
						|
        const TargetInstrDescriptor *II,
 | 
						|
        unsigned Op) {
 | 
						|
  if (Op >= II->numOperands) {
 | 
						|
    assert((II->Flags & M_VARIABLE_OPS)&& "Invalid operand # of instruction");
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
  const TargetOperandInfo &toi = II->OpInfo[Op];
 | 
						|
  return (toi.Flags & M_LOOK_UP_PTR_REG_CLASS)
 | 
						|
         ? TII->getPointerRegClass() : MRI->getRegClass(toi.RegClass);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned CreateVirtualRegisters(const MRegisterInfo *MRI,
 | 
						|
                                       MachineInstr *MI,
 | 
						|
                                       unsigned NumResults,
 | 
						|
                                       SSARegMap *RegMap,
 | 
						|
                                       const TargetInstrInfo *TII,
 | 
						|
                                       const TargetInstrDescriptor &II) {
 | 
						|
  // Create the result registers for this node and add the result regs to
 | 
						|
  // the machine instruction.
 | 
						|
  unsigned ResultReg =
 | 
						|
    RegMap->createVirtualRegister(getInstrOperandRegClass(MRI, TII, &II, 0));
 | 
						|
  MI->addRegOperand(ResultReg, true);
 | 
						|
  for (unsigned i = 1; i != NumResults; ++i) {
 | 
						|
    const TargetRegisterClass *RC = getInstrOperandRegClass(MRI, TII, &II, i);
 | 
						|
    assert(RC && "Isn't a register operand!");
 | 
						|
    MI->addRegOperand(RegMap->createVirtualRegister(RC), true);
 | 
						|
  }
 | 
						|
  return ResultReg;
 | 
						|
}
 | 
						|
 | 
						|
/// getVR - Return the virtual register corresponding to the specified result
 | 
						|
/// of the specified node.
 | 
						|
static unsigned getVR(SDOperand Op, std::map<SDNode*, unsigned> &VRBaseMap) {
 | 
						|
  std::map<SDNode*, unsigned>::iterator I = VRBaseMap.find(Op.Val);
 | 
						|
  assert(I != VRBaseMap.end() && "Node emitted out of order - late");
 | 
						|
  return I->second + Op.ResNo;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// AddOperand - Add the specified operand to the specified machine instr.  II
 | 
						|
/// specifies the instruction information for the node, and IIOpNum is the
 | 
						|
/// operand number (in the II) that we are adding. IIOpNum and II are used for 
 | 
						|
/// assertions only.
 | 
						|
void ScheduleDAG::AddOperand(MachineInstr *MI, SDOperand Op,
 | 
						|
                             unsigned IIOpNum,
 | 
						|
                             const TargetInstrDescriptor *II,
 | 
						|
                             std::map<SDNode*, unsigned> &VRBaseMap) {
 | 
						|
  if (Op.isTargetOpcode()) {
 | 
						|
    // Note that this case is redundant with the final else block, but we
 | 
						|
    // include it because it is the most common and it makes the logic
 | 
						|
    // simpler here.
 | 
						|
    assert(Op.getValueType() != MVT::Other &&
 | 
						|
           Op.getValueType() != MVT::Flag &&
 | 
						|
           "Chain and flag operands should occur at end of operand list!");
 | 
						|
    
 | 
						|
    // Get/emit the operand.
 | 
						|
    unsigned VReg = getVR(Op, VRBaseMap);
 | 
						|
    MI->addRegOperand(VReg, false);
 | 
						|
    
 | 
						|
    // Verify that it is right.
 | 
						|
    assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
 | 
						|
    if (II) {
 | 
						|
      const TargetRegisterClass *RC =
 | 
						|
                          getInstrOperandRegClass(MRI, TII, II, IIOpNum);
 | 
						|
      assert(RC && "Don't have operand info for this instruction!");
 | 
						|
      assert(RegMap->getRegClass(VReg) == RC &&
 | 
						|
             "Register class of operand and regclass of use don't agree!");
 | 
						|
    }
 | 
						|
  } else if (ConstantSDNode *C =
 | 
						|
             dyn_cast<ConstantSDNode>(Op)) {
 | 
						|
    MI->addImmOperand(C->getValue());
 | 
						|
  } else if (RegisterSDNode*R =
 | 
						|
             dyn_cast<RegisterSDNode>(Op)) {
 | 
						|
    MI->addRegOperand(R->getReg(), false);
 | 
						|
  } else if (GlobalAddressSDNode *TGA =
 | 
						|
             dyn_cast<GlobalAddressSDNode>(Op)) {
 | 
						|
    MI->addGlobalAddressOperand(TGA->getGlobal(), TGA->getOffset());
 | 
						|
  } else if (BasicBlockSDNode *BB =
 | 
						|
             dyn_cast<BasicBlockSDNode>(Op)) {
 | 
						|
    MI->addMachineBasicBlockOperand(BB->getBasicBlock());
 | 
						|
  } else if (FrameIndexSDNode *FI =
 | 
						|
             dyn_cast<FrameIndexSDNode>(Op)) {
 | 
						|
    MI->addFrameIndexOperand(FI->getIndex());
 | 
						|
  } else if (JumpTableSDNode *JT =
 | 
						|
             dyn_cast<JumpTableSDNode>(Op)) {
 | 
						|
    MI->addJumpTableIndexOperand(JT->getIndex());
 | 
						|
  } else if (ConstantPoolSDNode *CP = 
 | 
						|
             dyn_cast<ConstantPoolSDNode>(Op)) {
 | 
						|
    int Offset = CP->getOffset();
 | 
						|
    unsigned Align = CP->getAlignment();
 | 
						|
    const Type *Type = CP->getType();
 | 
						|
    // MachineConstantPool wants an explicit alignment.
 | 
						|
    if (Align == 0) {
 | 
						|
      if (Type == Type::DoubleTy)
 | 
						|
        Align = 3;  // always 8-byte align doubles.
 | 
						|
      else {
 | 
						|
        Align = TM.getTargetData()->getTypeAlignmentShift(Type);
 | 
						|
        if (Align == 0) {
 | 
						|
          // Alignment of packed types.  FIXME!
 | 
						|
          Align = TM.getTargetData()->getTypeSize(Type);
 | 
						|
          Align = Log2_64(Align);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    unsigned Idx;
 | 
						|
    if (CP->isMachineConstantPoolEntry())
 | 
						|
      Idx = ConstPool->getConstantPoolIndex(CP->getMachineCPVal(), Align);
 | 
						|
    else
 | 
						|
      Idx = ConstPool->getConstantPoolIndex(CP->getConstVal(), Align);
 | 
						|
    MI->addConstantPoolIndexOperand(Idx, Offset);
 | 
						|
  } else if (ExternalSymbolSDNode *ES = 
 | 
						|
             dyn_cast<ExternalSymbolSDNode>(Op)) {
 | 
						|
    MI->addExternalSymbolOperand(ES->getSymbol());
 | 
						|
  } else {
 | 
						|
    assert(Op.getValueType() != MVT::Other &&
 | 
						|
           Op.getValueType() != MVT::Flag &&
 | 
						|
           "Chain and flag operands should occur at end of operand list!");
 | 
						|
    unsigned VReg = getVR(Op, VRBaseMap);
 | 
						|
    MI->addRegOperand(VReg, false);
 | 
						|
    
 | 
						|
    // Verify that it is right.
 | 
						|
    assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
 | 
						|
    if (II) {
 | 
						|
      const TargetRegisterClass *RC =
 | 
						|
                            getInstrOperandRegClass(MRI, TII, II, IIOpNum);
 | 
						|
      assert(RC && "Don't have operand info for this instruction!");
 | 
						|
      assert(RegMap->getRegClass(VReg) == RC &&
 | 
						|
             "Register class of operand and regclass of use don't agree!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// EmitNode - Generate machine code for an node and needed dependencies.
 | 
						|
///
 | 
						|
void ScheduleDAG::EmitNode(SDNode *Node, 
 | 
						|
                           std::map<SDNode*, unsigned> &VRBaseMap) {
 | 
						|
  unsigned VRBase = 0;                 // First virtual register for node
 | 
						|
  
 | 
						|
  // If machine instruction
 | 
						|
  if (Node->isTargetOpcode()) {
 | 
						|
    unsigned Opc = Node->getTargetOpcode();
 | 
						|
    const TargetInstrDescriptor &II = TII->get(Opc);
 | 
						|
 | 
						|
    unsigned NumResults = CountResults(Node);
 | 
						|
    unsigned NodeOperands = CountOperands(Node);
 | 
						|
    unsigned NumMIOperands = NodeOperands + NumResults;
 | 
						|
#ifndef NDEBUG
 | 
						|
    assert((unsigned(II.numOperands) == NumMIOperands ||
 | 
						|
            (II.Flags & M_VARIABLE_OPS)) &&
 | 
						|
           "#operands for dag node doesn't match .td file!"); 
 | 
						|
#endif
 | 
						|
 | 
						|
    // Create the new machine instruction.
 | 
						|
    MachineInstr *MI = new MachineInstr(Opc, NumMIOperands);
 | 
						|
    
 | 
						|
    // Add result register values for things that are defined by this
 | 
						|
    // instruction.
 | 
						|
    
 | 
						|
    // If the node is only used by a CopyToReg and the dest reg is a vreg, use
 | 
						|
    // the CopyToReg'd destination register instead of creating a new vreg.
 | 
						|
    if (NumResults == 1) {
 | 
						|
      for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
 | 
						|
           UI != E; ++UI) {
 | 
						|
        SDNode *Use = *UI;
 | 
						|
        if (Use->getOpcode() == ISD::CopyToReg && 
 | 
						|
            Use->getOperand(2).Val == Node) {
 | 
						|
          unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
 | 
						|
          if (MRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
            VRBase = Reg;
 | 
						|
            MI->addRegOperand(Reg, true);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Otherwise, create new virtual registers.
 | 
						|
    if (NumResults && VRBase == 0)
 | 
						|
      VRBase = CreateVirtualRegisters(MRI, MI, NumResults, RegMap, TII, II);
 | 
						|
    
 | 
						|
    // Emit all of the actual operands of this instruction, adding them to the
 | 
						|
    // instruction as appropriate.
 | 
						|
    for (unsigned i = 0; i != NodeOperands; ++i)
 | 
						|
      AddOperand(MI, Node->getOperand(i), i+NumResults, &II, VRBaseMap);
 | 
						|
 | 
						|
    // Commute node if it has been determined to be profitable.
 | 
						|
    if (CommuteSet.count(Node)) {
 | 
						|
      MachineInstr *NewMI = TII->commuteInstruction(MI);
 | 
						|
      if (NewMI == 0)
 | 
						|
        DEBUG(std::cerr << "Sched: COMMUTING FAILED!\n");
 | 
						|
      else {
 | 
						|
        DEBUG(std::cerr << "Sched: COMMUTED TO: " << *NewMI);
 | 
						|
        if (MI != NewMI) {
 | 
						|
          delete MI;
 | 
						|
          MI = NewMI;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we have emitted all operands, emit this instruction itself.
 | 
						|
    if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) {
 | 
						|
      BB->insert(BB->end(), MI);
 | 
						|
    } else {
 | 
						|
      // Insert this instruction into the end of the basic block, potentially
 | 
						|
      // taking some custom action.
 | 
						|
      BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    switch (Node->getOpcode()) {
 | 
						|
    default:
 | 
						|
#ifndef NDEBUG
 | 
						|
      Node->dump();
 | 
						|
#endif
 | 
						|
      assert(0 && "This target-independent node should have been selected!");
 | 
						|
    case ISD::EntryToken: // fall thru
 | 
						|
    case ISD::TokenFactor:
 | 
						|
      break;
 | 
						|
    case ISD::CopyToReg: {
 | 
						|
      unsigned InReg = getVR(Node->getOperand(2), VRBaseMap);
 | 
						|
      unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | 
						|
      if (InReg != DestReg)   // Coalesced away the copy?
 | 
						|
        MRI->copyRegToReg(*BB, BB->end(), DestReg, InReg,
 | 
						|
                          RegMap->getRegClass(InReg));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case ISD::CopyFromReg: {
 | 
						|
      unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
 | 
						|
      if (MRegisterInfo::isVirtualRegister(SrcReg)) {
 | 
						|
        VRBase = SrcReg;  // Just use the input register directly!
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // If the node is only used by a CopyToReg and the dest reg is a vreg, use
 | 
						|
      // the CopyToReg'd destination register instead of creating a new vreg.
 | 
						|
      for (SDNode::use_iterator UI = Node->use_begin(), E = Node->use_end();
 | 
						|
           UI != E; ++UI) {
 | 
						|
        SDNode *Use = *UI;
 | 
						|
        if (Use->getOpcode() == ISD::CopyToReg && 
 | 
						|
            Use->getOperand(2).Val == Node) {
 | 
						|
          unsigned DestReg = cast<RegisterSDNode>(Use->getOperand(1))->getReg();
 | 
						|
          if (MRegisterInfo::isVirtualRegister(DestReg)) {
 | 
						|
            VRBase = DestReg;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Figure out the register class to create for the destreg.
 | 
						|
      const TargetRegisterClass *TRC = 0;
 | 
						|
      if (VRBase) {
 | 
						|
        TRC = RegMap->getRegClass(VRBase);
 | 
						|
      } else {
 | 
						|
 | 
						|
        // Pick the register class of the right type that contains this physreg.
 | 
						|
        for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(),
 | 
						|
             E = MRI->regclass_end(); I != E; ++I)
 | 
						|
          if ((*I)->hasType(Node->getValueType(0)) &&
 | 
						|
              (*I)->contains(SrcReg)) {
 | 
						|
            TRC = *I;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        assert(TRC && "Couldn't find register class for reg copy!");
 | 
						|
      
 | 
						|
        // Create the reg, emit the copy.
 | 
						|
        VRBase = RegMap->createVirtualRegister(TRC);
 | 
						|
      }
 | 
						|
      MRI->copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case ISD::INLINEASM: {
 | 
						|
      unsigned NumOps = Node->getNumOperands();
 | 
						|
      if (Node->getOperand(NumOps-1).getValueType() == MVT::Flag)
 | 
						|
        --NumOps;  // Ignore the flag operand.
 | 
						|
      
 | 
						|
      // Create the inline asm machine instruction.
 | 
						|
      MachineInstr *MI =
 | 
						|
        new MachineInstr(BB, TargetInstrInfo::INLINEASM, (NumOps-2)/2+1);
 | 
						|
 | 
						|
      // Add the asm string as an external symbol operand.
 | 
						|
      const char *AsmStr =
 | 
						|
        cast<ExternalSymbolSDNode>(Node->getOperand(1))->getSymbol();
 | 
						|
      MI->addExternalSymbolOperand(AsmStr);
 | 
						|
      
 | 
						|
      // Add all of the operand registers to the instruction.
 | 
						|
      for (unsigned i = 2; i != NumOps;) {
 | 
						|
        unsigned Flags = cast<ConstantSDNode>(Node->getOperand(i))->getValue();
 | 
						|
        unsigned NumVals = Flags >> 3;
 | 
						|
        
 | 
						|
        MI->addImmOperand(Flags);
 | 
						|
        ++i;  // Skip the ID value.
 | 
						|
        
 | 
						|
        switch (Flags & 7) {
 | 
						|
        default: assert(0 && "Bad flags!");
 | 
						|
        case 1:  // Use of register.
 | 
						|
          for (; NumVals; --NumVals, ++i) {
 | 
						|
            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | 
						|
            MI->addRegOperand(Reg, false);
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case 2:   // Def of register.
 | 
						|
          for (; NumVals; --NumVals, ++i) {
 | 
						|
            unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
 | 
						|
            MI->addRegOperand(Reg, true);
 | 
						|
          }
 | 
						|
          break;
 | 
						|
        case 3: { // Immediate.
 | 
						|
          assert(NumVals == 1 && "Unknown immediate value!");
 | 
						|
          uint64_t Val = cast<ConstantSDNode>(Node->getOperand(i))->getValue();
 | 
						|
          MI->addImmOperand(Val);
 | 
						|
          ++i;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        case 4:  // Addressing mode.
 | 
						|
          // The addressing mode has been selected, just add all of the
 | 
						|
          // operands to the machine instruction.
 | 
						|
          for (; NumVals; --NumVals, ++i)
 | 
						|
            AddOperand(MI, Node->getOperand(i), 0, 0, VRBaseMap);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!VRBaseMap.count(Node) && "Node emitted out of order - early");
 | 
						|
  VRBaseMap[Node] = VRBase;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAG::EmitNoop() {
 | 
						|
  TII->insertNoop(*BB, BB->end());
 | 
						|
}
 | 
						|
 | 
						|
/// EmitSchedule - Emit the machine code in scheduled order.
 | 
						|
void ScheduleDAG::EmitSchedule() {
 | 
						|
  // If this is the first basic block in the function, and if it has live ins
 | 
						|
  // that need to be copied into vregs, emit the copies into the top of the
 | 
						|
  // block before emitting the code for the block.
 | 
						|
  MachineFunction &MF = DAG.getMachineFunction();
 | 
						|
  if (&MF.front() == BB && MF.livein_begin() != MF.livein_end()) {
 | 
						|
    for (MachineFunction::livein_iterator LI = MF.livein_begin(),
 | 
						|
         E = MF.livein_end(); LI != E; ++LI)
 | 
						|
      if (LI->second)
 | 
						|
        MRI->copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
 | 
						|
                          LI->first, RegMap->getRegClass(LI->second));
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  // Finally, emit the code for all of the scheduled instructions.
 | 
						|
  std::map<SDNode*, unsigned> VRBaseMap;
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | 
						|
    if (SUnit *SU = Sequence[i]) {
 | 
						|
      for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++)
 | 
						|
        EmitNode(SU->FlaggedNodes[j], VRBaseMap);
 | 
						|
      EmitNode(SU->Node, VRBaseMap);
 | 
						|
    } else {
 | 
						|
      // Null SUnit* is a noop.
 | 
						|
      EmitNoop();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// dump - dump the schedule.
 | 
						|
void ScheduleDAG::dumpSchedule() const {
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | 
						|
    if (SUnit *SU = Sequence[i])
 | 
						|
      SU->dump(&DAG);
 | 
						|
    else
 | 
						|
      std::cerr << "**** NOOP ****\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Run - perform scheduling.
 | 
						|
///
 | 
						|
MachineBasicBlock *ScheduleDAG::Run() {
 | 
						|
  TII = TM.getInstrInfo();
 | 
						|
  MRI = TM.getRegisterInfo();
 | 
						|
  RegMap = BB->getParent()->getSSARegMap();
 | 
						|
  ConstPool = BB->getParent()->getConstantPool();
 | 
						|
 | 
						|
  Schedule();
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
 | 
						|
/// a group of nodes flagged together.
 | 
						|
void SUnit::dump(const SelectionDAG *G) const {
 | 
						|
  std::cerr << "SU(" << NodeNum << "): ";
 | 
						|
  Node->dump(G);
 | 
						|
  std::cerr << "\n";
 | 
						|
  if (FlaggedNodes.size() != 0) {
 | 
						|
    for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
 | 
						|
      std::cerr << "    ";
 | 
						|
      FlaggedNodes[i]->dump(G);
 | 
						|
      std::cerr << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SUnit::dumpAll(const SelectionDAG *G) const {
 | 
						|
  dump(G);
 | 
						|
 | 
						|
  std::cerr << "  # preds left       : " << NumPredsLeft << "\n";
 | 
						|
  std::cerr << "  # succs left       : " << NumSuccsLeft << "\n";
 | 
						|
  std::cerr << "  # chain preds left : " << NumChainPredsLeft << "\n";
 | 
						|
  std::cerr << "  # chain succs left : " << NumChainSuccsLeft << "\n";
 | 
						|
  std::cerr << "  Latency            : " << Latency << "\n";
 | 
						|
  std::cerr << "  Depth              : " << Depth << "\n";
 | 
						|
  std::cerr << "  Height             : " << Height << "\n";
 | 
						|
 | 
						|
  if (Preds.size() != 0) {
 | 
						|
    std::cerr << "  Predecessors:\n";
 | 
						|
    for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->second)
 | 
						|
        std::cerr << "   ch  #";
 | 
						|
      else
 | 
						|
        std::cerr << "   val #";
 | 
						|
      std::cerr << I->first << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Succs.size() != 0) {
 | 
						|
    std::cerr << "  Successors:\n";
 | 
						|
    for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->second)
 | 
						|
        std::cerr << "   ch  #";
 | 
						|
      else
 | 
						|
        std::cerr << "   val #";
 | 
						|
      std::cerr << I->first << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  std::cerr << "\n";
 | 
						|
}
 |