mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 00:16:48 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165403 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1575 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1575 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | |
|                       "http://www.w3.org/TR/html4/strict.dtd">
 | |
| 
 | |
| <html>
 | |
| <head>
 | |
|   <title>Kaleidoscope: Extending the Language: User-defined Operators</title>
 | |
|   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | |
|   <meta name="author" content="Chris Lattner">
 | |
|   <meta name="author" content="Erick Tryzelaar">
 | |
|   <link rel="stylesheet" href="../_static/llvm.css" type="text/css">
 | |
| </head>
 | |
| 
 | |
| <body>
 | |
| 
 | |
| <h1>Kaleidoscope: Extending the Language: User-defined Operators</h1>
 | |
| 
 | |
| <ul>
 | |
| <li><a href="index.html">Up to Tutorial Index</a></li>
 | |
| <li>Chapter 6
 | |
|   <ol>
 | |
|     <li><a href="#intro">Chapter 6 Introduction</a></li>
 | |
|     <li><a href="#idea">User-defined Operators: the Idea</a></li>
 | |
|     <li><a href="#binary">User-defined Binary Operators</a></li>
 | |
|     <li><a href="#unary">User-defined Unary Operators</a></li>
 | |
|     <li><a href="#example">Kicking the Tires</a></li>
 | |
|     <li><a href="#code">Full Code Listing</a></li>
 | |
|   </ol>
 | |
| </li>
 | |
| <li><a href="OCamlLangImpl7.html">Chapter 7</a>: Extending the Language: Mutable
 | |
| Variables / SSA Construction</li>
 | |
| </ul>
 | |
| 
 | |
| <div class="doc_author">
 | |
| 	<p>
 | |
| 		Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
 | |
| 		and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
 | |
| 	</p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="intro">Chapter 6 Introduction</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Welcome to Chapter 6 of the "<a href="index.html">Implementing a language
 | |
| with LLVM</a>" tutorial.  At this point in our tutorial, we now have a fully
 | |
| functional language that is fairly minimal, but also useful.  There
 | |
| is still one big problem with it, however. Our language doesn't have many
 | |
| useful operators (like division, logical negation, or even any comparisons
 | |
| besides less-than).</p>
 | |
| 
 | |
| <p>This chapter of the tutorial takes a wild digression into adding user-defined
 | |
| operators to the simple and beautiful Kaleidoscope language. This digression now
 | |
| gives us a simple and ugly language in some ways, but also a powerful one at the
 | |
| same time.  One of the great things about creating your own language is that you
 | |
| get to decide what is good or bad.  In this tutorial we'll assume that it is
 | |
| okay to use this as a way to show some interesting parsing techniques.</p>
 | |
| 
 | |
| <p>At the end of this tutorial, we'll run through an example Kaleidoscope
 | |
| application that <a href="#example">renders the Mandelbrot set</a>.  This gives
 | |
| an example of what you can build with Kaleidoscope and its feature set.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="idea">User-defined Operators: the Idea</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| The "operator overloading" that we will add to Kaleidoscope is more general than
 | |
| languages like C++.  In C++, you are only allowed to redefine existing
 | |
| operators: you can't programatically change the grammar, introduce new
 | |
| operators, change precedence levels, etc.  In this chapter, we will add this
 | |
| capability to Kaleidoscope, which will let the user round out the set of
 | |
| operators that are supported.</p>
 | |
| 
 | |
| <p>The point of going into user-defined operators in a tutorial like this is to
 | |
| show the power and flexibility of using a hand-written parser.  Thus far, the parser
 | |
| we have been implementing uses recursive descent for most parts of the grammar and
 | |
| operator precedence parsing for the expressions.  See <a
 | |
| href="OCamlLangImpl2.html">Chapter 2</a> for details.  Without using operator
 | |
| precedence parsing, it would be very difficult to allow the programmer to
 | |
| introduce new operators into the grammar: the grammar is dynamically extensible
 | |
| as the JIT runs.</p>
 | |
| 
 | |
| <p>The two specific features we'll add are programmable unary operators (right
 | |
| now, Kaleidoscope has no unary operators at all) as well as binary operators.
 | |
| An example of this is:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| # Logical unary not.
 | |
| def unary!(v)
 | |
|   if v then
 | |
|     0
 | |
|   else
 | |
|     1;
 | |
| 
 | |
| # Define > with the same precedence as <.
 | |
| def binary> 10 (LHS RHS)
 | |
|   RHS < LHS;
 | |
| 
 | |
| # Binary "logical or", (note that it does not "short circuit")
 | |
| def binary| 5 (LHS RHS)
 | |
|   if LHS then
 | |
|     1
 | |
|   else if RHS then
 | |
|     1
 | |
|   else
 | |
|     0;
 | |
| 
 | |
| # Define = with slightly lower precedence than relationals.
 | |
| def binary= 9 (LHS RHS)
 | |
|   !(LHS < RHS | LHS > RHS);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Many languages aspire to being able to implement their standard runtime
 | |
| library in the language itself.  In Kaleidoscope, we can implement significant
 | |
| parts of the language in the library!</p>
 | |
| 
 | |
| <p>We will break down implementation of these features into two parts:
 | |
| implementing support for user-defined binary operators and adding unary
 | |
| operators.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="binary">User-defined Binary Operators</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Adding support for user-defined binary operators is pretty simple with our
 | |
| current framework.  We'll first add support for the unary/binary keywords:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| type token =
 | |
|   ...
 | |
|   <b>(* operators *)
 | |
|   | Binary | Unary</b>
 | |
| 
 | |
| ...
 | |
| 
 | |
| and lex_ident buffer = parser
 | |
|   ...
 | |
|       | "for" -> [< 'Token.For; stream >]
 | |
|       | "in" -> [< 'Token.In; stream >]
 | |
|       <b>| "binary" -> [< 'Token.Binary; stream >]
 | |
|       | "unary" -> [< 'Token.Unary; stream >]</b>
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This just adds lexer support for the unary and binary keywords, like we
 | |
| did in <a href="OCamlLangImpl5.html#iflexer">previous chapters</a>.  One nice
 | |
| thing about our current AST, is that we represent binary operators with full
 | |
| generalisation by using their ASCII code as the opcode.  For our extended
 | |
| operators, we'll use this same representation, so we don't need any new AST or
 | |
| parser support.</p>
 | |
| 
 | |
| <p>On the other hand, we have to be able to represent the definitions of these
 | |
| new operators, in the "def binary| 5" part of the function definition.  In our
 | |
| grammar so far, the "name" for the function definition is parsed as the
 | |
| "prototype" production and into the <tt>Ast.Prototype</tt> AST node.  To
 | |
| represent our new user-defined operators as prototypes, we have to extend
 | |
| the  <tt>Ast.Prototype</tt> AST node like this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| (* proto - This type represents the "prototype" for a function, which captures
 | |
|  * its name, and its argument names (thus implicitly the number of arguments the
 | |
|  * function takes). *)
 | |
| type proto =
 | |
|   | Prototype of string * string array
 | |
|   <b>| BinOpPrototype of string * string array * int</b>
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Basically, in addition to knowing a name for the prototype, we now keep track
 | |
| of whether it was an operator, and if it was, what precedence level the operator
 | |
| is at.  The precedence is only used for binary operators (as you'll see below,
 | |
| it just doesn't apply for unary operators).  Now that we have a way to represent
 | |
| the prototype for a user-defined operator, we need to parse it:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| (* prototype
 | |
|  *   ::= id '(' id* ')'
 | |
|  <b>*   ::= binary LETTER number? (id, id)
 | |
|  *   ::= unary LETTER number? (id) *)</b>
 | |
| let parse_prototype =
 | |
|   let rec parse_args accumulator = parser
 | |
|     | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | |
|     | [< >] -> accumulator
 | |
|   in
 | |
|   let parse_operator = parser
 | |
|     | [< 'Token.Unary >] -> "unary", 1
 | |
|     | [< 'Token.Binary >] -> "binary", 2
 | |
|   in
 | |
|   let parse_binary_precedence = parser
 | |
|     | [< 'Token.Number n >] -> int_of_float n
 | |
|     | [< >] -> 30
 | |
|   in
 | |
|   parser
 | |
|   | [< 'Token.Ident id;
 | |
|        'Token.Kwd '(' ?? "expected '(' in prototype";
 | |
|        args=parse_args [];
 | |
|        'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 | |
|       (* success. *)
 | |
|       Ast.Prototype (id, Array.of_list (List.rev args))
 | |
|   <b>| [< (prefix, kind)=parse_operator;
 | |
|        'Token.Kwd op ?? "expected an operator";
 | |
|        (* Read the precedence if present. *)
 | |
|        binary_precedence=parse_binary_precedence;
 | |
|        'Token.Kwd '(' ?? "expected '(' in prototype";
 | |
|         args=parse_args [];
 | |
|        'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 | |
|       let name = prefix ^ (String.make 1 op) in
 | |
|       let args = Array.of_list (List.rev args) in
 | |
| 
 | |
|       (* Verify right number of arguments for operator. *)
 | |
|       if Array.length args != kind
 | |
|       then raise (Stream.Error "invalid number of operands for operator")
 | |
|       else
 | |
|         if kind == 1 then
 | |
|           Ast.Prototype (name, args)
 | |
|         else
 | |
|           Ast.BinOpPrototype (name, args, binary_precedence)</b>
 | |
|   | [< >] ->
 | |
|       raise (Stream.Error "expected function name in prototype")
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This is all fairly straightforward parsing code, and we have already seen
 | |
| a lot of similar code in the past.  One interesting part about the code above is
 | |
| the couple lines that set up <tt>name</tt> for binary operators.  This builds
 | |
| names like "binary@" for a newly defined "@" operator.  This then takes
 | |
| advantage of the fact that symbol names in the LLVM symbol table are allowed to
 | |
| have any character in them, including embedded nul characters.</p>
 | |
| 
 | |
| <p>The next interesting thing to add, is codegen support for these binary
 | |
| operators.  Given our current structure, this is a simple addition of a default
 | |
| case for our existing binary operator node:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| let codegen_expr = function
 | |
|   ...
 | |
|   | Ast.Binary (op, lhs, rhs) ->
 | |
|       let lhs_val = codegen_expr lhs in
 | |
|       let rhs_val = codegen_expr rhs in
 | |
|       begin
 | |
|         match op with
 | |
|         | '+' -> build_add lhs_val rhs_val "addtmp" builder
 | |
|         | '-' -> build_sub lhs_val rhs_val "subtmp" builder
 | |
|         | '*' -> build_mul lhs_val rhs_val "multmp" builder
 | |
|         | '<' ->
 | |
|             (* Convert bool 0/1 to double 0.0 or 1.0 *)
 | |
|             let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
 | |
|             build_uitofp i double_type "booltmp" builder
 | |
|         <b>| _ ->
 | |
|             (* If it wasn't a builtin binary operator, it must be a user defined
 | |
|              * one. Emit a call to it. *)
 | |
|             let callee = "binary" ^ (String.make 1 op) in
 | |
|             let callee =
 | |
|               match lookup_function callee the_module with
 | |
|               | Some callee -> callee
 | |
|               | None -> raise (Error "binary operator not found!")
 | |
|             in
 | |
|             build_call callee [|lhs_val; rhs_val|] "binop" builder</b>
 | |
|       end
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>As you can see above, the new code is actually really simple.  It just does
 | |
| a lookup for the appropriate operator in the symbol table and generates a
 | |
| function call to it.  Since user-defined operators are just built as normal
 | |
| functions (because the "prototype" boils down to a function with the right
 | |
| name) everything falls into place.</p>
 | |
| 
 | |
| <p>The final piece of code we are missing, is a bit of top level magic:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| let codegen_func the_fpm = function
 | |
|   | Ast.Function (proto, body) ->
 | |
|       Hashtbl.clear named_values;
 | |
|       let the_function = codegen_proto proto in
 | |
| 
 | |
|       <b>(* If this is an operator, install it. *)
 | |
|       begin match proto with
 | |
|       | Ast.BinOpPrototype (name, args, prec) ->
 | |
|           let op = name.[String.length name - 1] in
 | |
|           Hashtbl.add Parser.binop_precedence op prec;
 | |
|       | _ -> ()
 | |
|       end;</b>
 | |
| 
 | |
|       (* Create a new basic block to start insertion into. *)
 | |
|       let bb = append_block context "entry" the_function in
 | |
|       position_at_end bb builder;
 | |
|       ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Basically, before codegening a function, if it is a user-defined operator, we
 | |
| register it in the precedence table.  This allows the binary operator parsing
 | |
| logic we already have in place to handle it.  Since we are working on a
 | |
| fully-general operator precedence parser, this is all we need to do to "extend
 | |
| the grammar".</p>
 | |
| 
 | |
| <p>Now we have useful user-defined binary operators.  This builds a lot
 | |
| on the previous framework we built for other operators.  Adding unary operators
 | |
| is a bit more challenging, because we don't have any framework for it yet - lets
 | |
| see what it takes.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="unary">User-defined Unary Operators</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>Since we don't currently support unary operators in the Kaleidoscope
 | |
| language, we'll need to add everything to support them.  Above, we added simple
 | |
| support for the 'unary' keyword to the lexer.  In addition to that, we need an
 | |
| AST node:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| type expr =
 | |
|   ...
 | |
|   (* variant for a unary operator. *)
 | |
|   | Unary of char * expr
 | |
|   ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This AST node is very simple and obvious by now.  It directly mirrors the
 | |
| binary operator AST node, except that it only has one child.  With this, we
 | |
| need to add the parsing logic.  Parsing a unary operator is pretty simple: we'll
 | |
| add a new function to do it:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| (* unary
 | |
|  *   ::= primary
 | |
|  *   ::= '!' unary *)
 | |
| and parse_unary = parser
 | |
|   (* If this is a unary operator, read it. *)
 | |
|   | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] ->
 | |
|       Ast.Unary (op, operand)
 | |
| 
 | |
|   (* If the current token is not an operator, it must be a primary expr. *)
 | |
|   | [< stream >] -> parse_primary stream
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The grammar we add is pretty straightforward here.  If we see a unary
 | |
| operator when parsing a primary operator, we eat the operator as a prefix and
 | |
| parse the remaining piece as another unary operator.  This allows us to handle
 | |
| multiple unary operators (e.g. "!!x").  Note that unary operators can't have
 | |
| ambiguous parses like binary operators can, so there is no need for precedence
 | |
| information.</p>
 | |
| 
 | |
| <p>The problem with this function, is that we need to call ParseUnary from
 | |
| somewhere.  To do this, we change previous callers of ParsePrimary to call
 | |
| <tt>parse_unary</tt> instead:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| (* binoprhs
 | |
|  *   ::= ('+' primary)* *)
 | |
| and parse_bin_rhs expr_prec lhs stream =
 | |
|         ...
 | |
|         <b>(* Parse the unary expression after the binary operator. *)
 | |
|         let rhs = parse_unary stream in</b>
 | |
|         ...
 | |
| 
 | |
| ...
 | |
| 
 | |
| (* expression
 | |
|  *   ::= primary binoprhs *)
 | |
| and parse_expr = parser
 | |
|   | [< lhs=<b>parse_unary</b>; stream >] -> parse_bin_rhs 0 lhs stream
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>With these two simple changes, we are now able to parse unary operators and build the
 | |
| AST for them.  Next up, we need to add parser support for prototypes, to parse
 | |
| the unary operator prototype.  We extend the binary operator code above
 | |
| with:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| (* prototype
 | |
|  *   ::= id '(' id* ')'
 | |
|  *   ::= binary LETTER number? (id, id)
 | |
|  <b>*   ::= unary LETTER number? (id)</b> *)
 | |
| let parse_prototype =
 | |
|   let rec parse_args accumulator = parser
 | |
|     | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | |
|     | [< >] -> accumulator
 | |
|   in
 | |
|   <b>let parse_operator = parser
 | |
|     | [< 'Token.Unary >] -> "unary", 1
 | |
|     | [< 'Token.Binary >] -> "binary", 2
 | |
|   in</b>
 | |
|   let parse_binary_precedence = parser
 | |
|     | [< 'Token.Number n >] -> int_of_float n
 | |
|     | [< >] -> 30
 | |
|   in
 | |
|   parser
 | |
|   | [< 'Token.Ident id;
 | |
|        'Token.Kwd '(' ?? "expected '(' in prototype";
 | |
|        args=parse_args [];
 | |
|        'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 | |
|       (* success. *)
 | |
|       Ast.Prototype (id, Array.of_list (List.rev args))
 | |
|   <b>| [< (prefix, kind)=parse_operator;
 | |
|        'Token.Kwd op ?? "expected an operator";
 | |
|        (* Read the precedence if present. *)
 | |
|        binary_precedence=parse_binary_precedence;
 | |
|        'Token.Kwd '(' ?? "expected '(' in prototype";
 | |
|         args=parse_args [];
 | |
|        'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 | |
|       let name = prefix ^ (String.make 1 op) in
 | |
|       let args = Array.of_list (List.rev args) in
 | |
| 
 | |
|       (* Verify right number of arguments for operator. *)
 | |
|       if Array.length args != kind
 | |
|       then raise (Stream.Error "invalid number of operands for operator")
 | |
|       else
 | |
|         if kind == 1 then
 | |
|           Ast.Prototype (name, args)
 | |
|         else
 | |
|           Ast.BinOpPrototype (name, args, binary_precedence)</b>
 | |
|   | [< >] ->
 | |
|       raise (Stream.Error "expected function name in prototype")
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>As with binary operators, we name unary operators with a name that includes
 | |
| the operator character.  This assists us at code generation time.  Speaking of,
 | |
| the final piece we need to add is codegen support for unary operators.  It looks
 | |
| like this:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| let rec codegen_expr = function
 | |
|   ...
 | |
|   | Ast.Unary (op, operand) ->
 | |
|       let operand = codegen_expr operand in
 | |
|       let callee = "unary" ^ (String.make 1 op) in
 | |
|       let callee =
 | |
|         match lookup_function callee the_module with
 | |
|         | Some callee -> callee
 | |
|         | None -> raise (Error "unknown unary operator")
 | |
|       in
 | |
|       build_call callee [|operand|] "unop" builder
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This code is similar to, but simpler than, the code for binary operators.  It
 | |
| is simpler primarily because it doesn't need to handle any predefined operators.
 | |
| </p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="example">Kicking the Tires</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>It is somewhat hard to believe, but with a few simple extensions we've
 | |
| covered in the last chapters, we have grown a real-ish language.  With this, we
 | |
| can do a lot of interesting things, including I/O, math, and a bunch of other
 | |
| things.  For example, we can now add a nice sequencing operator (printd is
 | |
| defined to print out the specified value and a newline):</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>extern printd(x);</b>
 | |
| Read extern: declare double @printd(double)
 | |
| ready> <b>def binary : 1 (x y) 0;  # Low-precedence operator that ignores operands.</b>
 | |
| ..
 | |
| ready> <b>printd(123) : printd(456) : printd(789);</b>
 | |
| 123.000000
 | |
| 456.000000
 | |
| 789.000000
 | |
| Evaluated to 0.000000
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>We can also define a bunch of other "primitive" operations, such as:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| # Logical unary not.
 | |
| def unary!(v)
 | |
|   if v then
 | |
|     0
 | |
|   else
 | |
|     1;
 | |
| 
 | |
| # Unary negate.
 | |
| def unary-(v)
 | |
|   0-v;
 | |
| 
 | |
| # Define > with the same precedence as <.
 | |
| def binary> 10 (LHS RHS)
 | |
|   RHS < LHS;
 | |
| 
 | |
| # Binary logical or, which does not short circuit.
 | |
| def binary| 5 (LHS RHS)
 | |
|   if LHS then
 | |
|     1
 | |
|   else if RHS then
 | |
|     1
 | |
|   else
 | |
|     0;
 | |
| 
 | |
| # Binary logical and, which does not short circuit.
 | |
| def binary& 6 (LHS RHS)
 | |
|   if !LHS then
 | |
|     0
 | |
|   else
 | |
|     !!RHS;
 | |
| 
 | |
| # Define = with slightly lower precedence than relationals.
 | |
| def binary = 9 (LHS RHS)
 | |
|   !(LHS < RHS | LHS > RHS);
 | |
| 
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <p>Given the previous if/then/else support, we can also define interesting
 | |
| functions for I/O.  For example, the following prints out a character whose
 | |
| "density" reflects the value passed in: the lower the value, the denser the
 | |
| character:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready>
 | |
| <b>
 | |
| extern putchard(char)
 | |
| def printdensity(d)
 | |
|   if d > 8 then
 | |
|     putchard(32)  # ' '
 | |
|   else if d > 4 then
 | |
|     putchard(46)  # '.'
 | |
|   else if d > 2 then
 | |
|     putchard(43)  # '+'
 | |
|   else
 | |
|     putchard(42); # '*'</b>
 | |
| ...
 | |
| ready> <b>printdensity(1): printdensity(2): printdensity(3) :
 | |
|           printdensity(4): printdensity(5): printdensity(9): putchard(10);</b>
 | |
| *++..
 | |
| Evaluated to 0.000000
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Based on these simple primitive operations, we can start to define more
 | |
| interesting things.  For example, here's a little function that solves for the
 | |
| number of iterations it takes a function in the complex plane to
 | |
| converge:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| # determine whether the specific location diverges.
 | |
| # Solve for z = z^2 + c in the complex plane.
 | |
| def mandleconverger(real imag iters creal cimag)
 | |
|   if iters > 255 | (real*real + imag*imag > 4) then
 | |
|     iters
 | |
|   else
 | |
|     mandleconverger(real*real - imag*imag + creal,
 | |
|                     2*real*imag + cimag,
 | |
|                     iters+1, creal, cimag);
 | |
| 
 | |
| # return the number of iterations required for the iteration to escape
 | |
| def mandleconverge(real imag)
 | |
|   mandleconverger(real, imag, 0, real, imag);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This "z = z<sup>2</sup> + c" function is a beautiful little creature that is the basis
 | |
| for computation of the <a
 | |
| href="http://en.wikipedia.org/wiki/Mandelbrot_set">Mandelbrot Set</a>.  Our
 | |
| <tt>mandelconverge</tt> function returns the number of iterations that it takes
 | |
| for a complex orbit to escape, saturating to 255.  This is not a very useful
 | |
| function by itself, but if you plot its value over a two-dimensional plane,
 | |
| you can see the Mandelbrot set.  Given that we are limited to using putchard
 | |
| here, our amazing graphical output is limited, but we can whip together
 | |
| something using the density plotter above:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| # compute and plot the mandlebrot set with the specified 2 dimensional range
 | |
| # info.
 | |
| def mandelhelp(xmin xmax xstep   ymin ymax ystep)
 | |
|   for y = ymin, y < ymax, ystep in (
 | |
|     (for x = xmin, x < xmax, xstep in
 | |
|        printdensity(mandleconverge(x,y)))
 | |
|     : putchard(10)
 | |
|   )
 | |
| 
 | |
| # mandel - This is a convenient helper function for plotting the mandelbrot set
 | |
| # from the specified position with the specified Magnification.
 | |
| def mandel(realstart imagstart realmag imagmag)
 | |
|   mandelhelp(realstart, realstart+realmag*78, realmag,
 | |
|              imagstart, imagstart+imagmag*40, imagmag);
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Given this, we can try plotting out the mandlebrot set!  Lets try it out:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>mandel(-2.3, -1.3, 0.05, 0.07);</b>
 | |
| *******************************+++++++++++*************************************
 | |
| *************************+++++++++++++++++++++++*******************************
 | |
| **********************+++++++++++++++++++++++++++++****************************
 | |
| *******************+++++++++++++++++++++.. ...++++++++*************************
 | |
| *****************++++++++++++++++++++++.... ...+++++++++***********************
 | |
| ***************+++++++++++++++++++++++.....   ...+++++++++*********************
 | |
| **************+++++++++++++++++++++++....     ....+++++++++********************
 | |
| *************++++++++++++++++++++++......      .....++++++++*******************
 | |
| ************+++++++++++++++++++++.......       .......+++++++******************
 | |
| ***********+++++++++++++++++++....                ... .+++++++*****************
 | |
| **********+++++++++++++++++.......                     .+++++++****************
 | |
| *********++++++++++++++...........                    ...+++++++***************
 | |
| ********++++++++++++............                      ...++++++++**************
 | |
| ********++++++++++... ..........                        .++++++++**************
 | |
| *******+++++++++.....                                   .+++++++++*************
 | |
| *******++++++++......                                  ..+++++++++*************
 | |
| *******++++++.......                                   ..+++++++++*************
 | |
| *******+++++......                                     ..+++++++++*************
 | |
| *******.... ....                                      ...+++++++++*************
 | |
| *******.... .                                         ...+++++++++*************
 | |
| *******+++++......                                    ...+++++++++*************
 | |
| *******++++++.......                                   ..+++++++++*************
 | |
| *******++++++++......                                   .+++++++++*************
 | |
| *******+++++++++.....                                  ..+++++++++*************
 | |
| ********++++++++++... ..........                        .++++++++**************
 | |
| ********++++++++++++............                      ...++++++++**************
 | |
| *********++++++++++++++..........                     ...+++++++***************
 | |
| **********++++++++++++++++........                     .+++++++****************
 | |
| **********++++++++++++++++++++....                ... ..+++++++****************
 | |
| ***********++++++++++++++++++++++.......       .......++++++++*****************
 | |
| ************+++++++++++++++++++++++......      ......++++++++******************
 | |
| **************+++++++++++++++++++++++....      ....++++++++********************
 | |
| ***************+++++++++++++++++++++++.....   ...+++++++++*********************
 | |
| *****************++++++++++++++++++++++....  ...++++++++***********************
 | |
| *******************+++++++++++++++++++++......++++++++*************************
 | |
| *********************++++++++++++++++++++++.++++++++***************************
 | |
| *************************+++++++++++++++++++++++*******************************
 | |
| ******************************+++++++++++++************************************
 | |
| *******************************************************************************
 | |
| *******************************************************************************
 | |
| *******************************************************************************
 | |
| Evaluated to 0.000000
 | |
| ready> <b>mandel(-2, -1, 0.02, 0.04);</b>
 | |
| **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++
 | |
| ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 | |
| *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.
 | |
| *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++...
 | |
| *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++.....
 | |
| ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........
 | |
| **************++++++++++++++++++++++++++++++++++++++++++++++++++++++...........
 | |
| ************+++++++++++++++++++++++++++++++++++++++++++++++++++++..............
 | |
| ***********++++++++++++++++++++++++++++++++++++++++++++++++++........        .
 | |
| **********++++++++++++++++++++++++++++++++++++++++++++++.............
 | |
| ********+++++++++++++++++++++++++++++++++++++++++++..................
 | |
| *******+++++++++++++++++++++++++++++++++++++++.......................
 | |
| ******+++++++++++++++++++++++++++++++++++...........................
 | |
| *****++++++++++++++++++++++++++++++++............................
 | |
| *****++++++++++++++++++++++++++++...............................
 | |
| ****++++++++++++++++++++++++++......   .........................
 | |
| ***++++++++++++++++++++++++.........     ......    ...........
 | |
| ***++++++++++++++++++++++............
 | |
| **+++++++++++++++++++++..............
 | |
| **+++++++++++++++++++................
 | |
| *++++++++++++++++++.................
 | |
| *++++++++++++++++............ ...
 | |
| *++++++++++++++..............
 | |
| *+++....++++................
 | |
| *..........  ...........
 | |
| *
 | |
| *..........  ...........
 | |
| *+++....++++................
 | |
| *++++++++++++++..............
 | |
| *++++++++++++++++............ ...
 | |
| *++++++++++++++++++.................
 | |
| **+++++++++++++++++++................
 | |
| **+++++++++++++++++++++..............
 | |
| ***++++++++++++++++++++++............
 | |
| ***++++++++++++++++++++++++.........     ......    ...........
 | |
| ****++++++++++++++++++++++++++......   .........................
 | |
| *****++++++++++++++++++++++++++++...............................
 | |
| *****++++++++++++++++++++++++++++++++............................
 | |
| ******+++++++++++++++++++++++++++++++++++...........................
 | |
| *******+++++++++++++++++++++++++++++++++++++++.......................
 | |
| ********+++++++++++++++++++++++++++++++++++++++++++..................
 | |
| Evaluated to 0.000000
 | |
| ready> <b>mandel(-0.9, -1.4, 0.02, 0.03);</b>
 | |
| *******************************************************************************
 | |
| *******************************************************************************
 | |
| *******************************************************************************
 | |
| **********+++++++++++++++++++++************************************************
 | |
| *+++++++++++++++++++++++++++++++++++++++***************************************
 | |
| +++++++++++++++++++++++++++++++++++++++++++++**********************************
 | |
| ++++++++++++++++++++++++++++++++++++++++++++++++++*****************************
 | |
| ++++++++++++++++++++++++++++++++++++++++++++++++++++++*************************
 | |
| +++++++++++++++++++++++++++++++++++++++++++++++++++++++++**********************
 | |
| +++++++++++++++++++++++++++++++++.........++++++++++++++++++*******************
 | |
| +++++++++++++++++++++++++++++++....   ......+++++++++++++++++++****************
 | |
| +++++++++++++++++++++++++++++.......  ........+++++++++++++++++++**************
 | |
| ++++++++++++++++++++++++++++........   ........++++++++++++++++++++************
 | |
| +++++++++++++++++++++++++++.........     ..  ...+++++++++++++++++++++**********
 | |
| ++++++++++++++++++++++++++...........        ....++++++++++++++++++++++********
 | |
| ++++++++++++++++++++++++.............       .......++++++++++++++++++++++******
 | |
| +++++++++++++++++++++++.............        ........+++++++++++++++++++++++****
 | |
| ++++++++++++++++++++++...........           ..........++++++++++++++++++++++***
 | |
| ++++++++++++++++++++...........                .........++++++++++++++++++++++*
 | |
| ++++++++++++++++++............                  ...........++++++++++++++++++++
 | |
| ++++++++++++++++...............                 .............++++++++++++++++++
 | |
| ++++++++++++++.................                 ...............++++++++++++++++
 | |
| ++++++++++++..................                  .................++++++++++++++
 | |
| +++++++++..................                      .................+++++++++++++
 | |
| ++++++........        .                               .........  ..++++++++++++
 | |
| ++............                                         ......    ....++++++++++
 | |
| ..............                                                    ...++++++++++
 | |
| ..............                                                    ....+++++++++
 | |
| ..............                                                    .....++++++++
 | |
| .............                                                    ......++++++++
 | |
| ...........                                                     .......++++++++
 | |
| .........                                                       ........+++++++
 | |
| .........                                                       ........+++++++
 | |
| .........                                                           ....+++++++
 | |
| ........                                                             ...+++++++
 | |
| .......                                                              ...+++++++
 | |
|                                                                     ....+++++++
 | |
|                                                                    .....+++++++
 | |
|                                                                     ....+++++++
 | |
|                                                                     ....+++++++
 | |
|                                                                     ....+++++++
 | |
| Evaluated to 0.000000
 | |
| ready> <b>^D</b>
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>At this point, you may be starting to realize that Kaleidoscope is a real
 | |
| and powerful language.  It may not be self-similar :), but it can be used to
 | |
| plot things that are!</p>
 | |
| 
 | |
| <p>With this, we conclude the "adding user-defined operators" chapter of the
 | |
| tutorial.  We have successfully augmented our language, adding the ability to
 | |
| extend the language in the library, and we have shown how this can be used to
 | |
| build a simple but interesting end-user application in Kaleidoscope.  At this
 | |
| point, Kaleidoscope can build a variety of applications that are functional and
 | |
| can call functions with side-effects, but it can't actually define and mutate a
 | |
| variable itself.</p>
 | |
| 
 | |
| <p>Strikingly, variable mutation is an important feature of some
 | |
| languages, and it is not at all obvious how to <a href="OCamlLangImpl7.html">add
 | |
| support for mutable variables</a> without having to add an "SSA construction"
 | |
| phase to your front-end.  In the next chapter, we will describe how you can
 | |
| add variable mutation without building SSA in your front-end.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <h2><a name="code">Full Code Listing</a></h2>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div>
 | |
| 
 | |
| <p>
 | |
| Here is the complete code listing for our running example, enhanced with the
 | |
| if/then/else and for expressions..  To build this example, use:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| # Compile
 | |
| ocamlbuild toy.byte
 | |
| # Run
 | |
| ./toy.byte
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Here is the code:</p>
 | |
| 
 | |
| <dl>
 | |
| <dt>_tags:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| <{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
 | |
| <*.{byte,native}>: g++, use_llvm, use_llvm_analysis
 | |
| <*.{byte,native}>: use_llvm_executionengine, use_llvm_target
 | |
| <*.{byte,native}>: use_llvm_scalar_opts, use_bindings
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>myocamlbuild.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| open Ocamlbuild_plugin;;
 | |
| 
 | |
| ocaml_lib ~extern:true "llvm";;
 | |
| ocaml_lib ~extern:true "llvm_analysis";;
 | |
| ocaml_lib ~extern:true "llvm_executionengine";;
 | |
| ocaml_lib ~extern:true "llvm_target";;
 | |
| ocaml_lib ~extern:true "llvm_scalar_opts";;
 | |
| 
 | |
| flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"; A"-cclib"; A"-rdynamic"]);;
 | |
| dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];;
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>token.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===----------------------------------------------------------------------===
 | |
|  * Lexer Tokens
 | |
|  *===----------------------------------------------------------------------===*)
 | |
| 
 | |
| (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
 | |
|  * these others for known things. *)
 | |
| type token =
 | |
|   (* commands *)
 | |
|   | Def | Extern
 | |
| 
 | |
|   (* primary *)
 | |
|   | Ident of string | Number of float
 | |
| 
 | |
|   (* unknown *)
 | |
|   | Kwd of char
 | |
| 
 | |
|   (* control *)
 | |
|   | If | Then | Else
 | |
|   | For | In
 | |
| 
 | |
|   (* operators *)
 | |
|   | Binary | Unary
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>lexer.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===----------------------------------------------------------------------===
 | |
|  * Lexer
 | |
|  *===----------------------------------------------------------------------===*)
 | |
| 
 | |
| let rec lex = parser
 | |
|   (* Skip any whitespace. *)
 | |
|   | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
 | |
| 
 | |
|   (* identifier: [a-zA-Z][a-zA-Z0-9] *)
 | |
|   | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
 | |
|       let buffer = Buffer.create 1 in
 | |
|       Buffer.add_char buffer c;
 | |
|       lex_ident buffer stream
 | |
| 
 | |
|   (* number: [0-9.]+ *)
 | |
|   | [< ' ('0' .. '9' as c); stream >] ->
 | |
|       let buffer = Buffer.create 1 in
 | |
|       Buffer.add_char buffer c;
 | |
|       lex_number buffer stream
 | |
| 
 | |
|   (* Comment until end of line. *)
 | |
|   | [< ' ('#'); stream >] ->
 | |
|       lex_comment stream
 | |
| 
 | |
|   (* Otherwise, just return the character as its ascii value. *)
 | |
|   | [< 'c; stream >] ->
 | |
|       [< 'Token.Kwd c; lex stream >]
 | |
| 
 | |
|   (* end of stream. *)
 | |
|   | [< >] -> [< >]
 | |
| 
 | |
| and lex_number buffer = parser
 | |
|   | [< ' ('0' .. '9' | '.' as c); stream >] ->
 | |
|       Buffer.add_char buffer c;
 | |
|       lex_number buffer stream
 | |
|   | [< stream=lex >] ->
 | |
|       [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
 | |
| 
 | |
| and lex_ident buffer = parser
 | |
|   | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
 | |
|       Buffer.add_char buffer c;
 | |
|       lex_ident buffer stream
 | |
|   | [< stream=lex >] ->
 | |
|       match Buffer.contents buffer with
 | |
|       | "def" -> [< 'Token.Def; stream >]
 | |
|       | "extern" -> [< 'Token.Extern; stream >]
 | |
|       | "if" -> [< 'Token.If; stream >]
 | |
|       | "then" -> [< 'Token.Then; stream >]
 | |
|       | "else" -> [< 'Token.Else; stream >]
 | |
|       | "for" -> [< 'Token.For; stream >]
 | |
|       | "in" -> [< 'Token.In; stream >]
 | |
|       | "binary" -> [< 'Token.Binary; stream >]
 | |
|       | "unary" -> [< 'Token.Unary; stream >]
 | |
|       | id -> [< 'Token.Ident id; stream >]
 | |
| 
 | |
| and lex_comment = parser
 | |
|   | [< ' ('\n'); stream=lex >] -> stream
 | |
|   | [< 'c; e=lex_comment >] -> e
 | |
|   | [< >] -> [< >]
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>ast.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===----------------------------------------------------------------------===
 | |
|  * Abstract Syntax Tree (aka Parse Tree)
 | |
|  *===----------------------------------------------------------------------===*)
 | |
| 
 | |
| (* expr - Base type for all expression nodes. *)
 | |
| type expr =
 | |
|   (* variant for numeric literals like "1.0". *)
 | |
|   | Number of float
 | |
| 
 | |
|   (* variant for referencing a variable, like "a". *)
 | |
|   | Variable of string
 | |
| 
 | |
|   (* variant for a unary operator. *)
 | |
|   | Unary of char * expr
 | |
| 
 | |
|   (* variant for a binary operator. *)
 | |
|   | Binary of char * expr * expr
 | |
| 
 | |
|   (* variant for function calls. *)
 | |
|   | Call of string * expr array
 | |
| 
 | |
|   (* variant for if/then/else. *)
 | |
|   | If of expr * expr * expr
 | |
| 
 | |
|   (* variant for for/in. *)
 | |
|   | For of string * expr * expr * expr option * expr
 | |
| 
 | |
| (* proto - This type represents the "prototype" for a function, which captures
 | |
|  * its name, and its argument names (thus implicitly the number of arguments the
 | |
|  * function takes). *)
 | |
| type proto =
 | |
|   | Prototype of string * string array
 | |
|   | BinOpPrototype of string * string array * int
 | |
| 
 | |
| (* func - This type represents a function definition itself. *)
 | |
| type func = Function of proto * expr
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>parser.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===---------------------------------------------------------------------===
 | |
|  * Parser
 | |
|  *===---------------------------------------------------------------------===*)
 | |
| 
 | |
| (* binop_precedence - This holds the precedence for each binary operator that is
 | |
|  * defined *)
 | |
| let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
 | |
| 
 | |
| (* precedence - Get the precedence of the pending binary operator token. *)
 | |
| let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
 | |
| 
 | |
| (* primary
 | |
|  *   ::= identifier
 | |
|  *   ::= numberexpr
 | |
|  *   ::= parenexpr
 | |
|  *   ::= ifexpr
 | |
|  *   ::= forexpr *)
 | |
| let rec parse_primary = parser
 | |
|   (* numberexpr ::= number *)
 | |
|   | [< 'Token.Number n >] -> Ast.Number n
 | |
| 
 | |
|   (* parenexpr ::= '(' expression ')' *)
 | |
|   | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
 | |
| 
 | |
|   (* identifierexpr
 | |
|    *   ::= identifier
 | |
|    *   ::= identifier '(' argumentexpr ')' *)
 | |
|   | [< 'Token.Ident id; stream >] ->
 | |
|       let rec parse_args accumulator = parser
 | |
|         | [< e=parse_expr; stream >] ->
 | |
|             begin parser
 | |
|               | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
 | |
|               | [< >] -> e :: accumulator
 | |
|             end stream
 | |
|         | [< >] -> accumulator
 | |
|       in
 | |
|       let rec parse_ident id = parser
 | |
|         (* Call. *)
 | |
|         | [< 'Token.Kwd '(';
 | |
|              args=parse_args [];
 | |
|              'Token.Kwd ')' ?? "expected ')'">] ->
 | |
|             Ast.Call (id, Array.of_list (List.rev args))
 | |
| 
 | |
|         (* Simple variable ref. *)
 | |
|         | [< >] -> Ast.Variable id
 | |
|       in
 | |
|       parse_ident id stream
 | |
| 
 | |
|   (* ifexpr ::= 'if' expr 'then' expr 'else' expr *)
 | |
|   | [< 'Token.If; c=parse_expr;
 | |
|        'Token.Then ?? "expected 'then'"; t=parse_expr;
 | |
|        'Token.Else ?? "expected 'else'"; e=parse_expr >] ->
 | |
|       Ast.If (c, t, e)
 | |
| 
 | |
|   (* forexpr
 | |
|         ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *)
 | |
|   | [< 'Token.For;
 | |
|        'Token.Ident id ?? "expected identifier after for";
 | |
|        'Token.Kwd '=' ?? "expected '=' after for";
 | |
|        stream >] ->
 | |
|       begin parser
 | |
|         | [<
 | |
|              start=parse_expr;
 | |
|              'Token.Kwd ',' ?? "expected ',' after for";
 | |
|              end_=parse_expr;
 | |
|              stream >] ->
 | |
|             let step =
 | |
|               begin parser
 | |
|               | [< 'Token.Kwd ','; step=parse_expr >] -> Some step
 | |
|               | [< >] -> None
 | |
|               end stream
 | |
|             in
 | |
|             begin parser
 | |
|             | [< 'Token.In; body=parse_expr >] ->
 | |
|                 Ast.For (id, start, end_, step, body)
 | |
|             | [< >] ->
 | |
|                 raise (Stream.Error "expected 'in' after for")
 | |
|             end stream
 | |
|         | [< >] ->
 | |
|             raise (Stream.Error "expected '=' after for")
 | |
|       end stream
 | |
| 
 | |
|   | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
 | |
| 
 | |
| (* unary
 | |
|  *   ::= primary
 | |
|  *   ::= '!' unary *)
 | |
| and parse_unary = parser
 | |
|   (* If this is a unary operator, read it. *)
 | |
|   | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] ->
 | |
|       Ast.Unary (op, operand)
 | |
| 
 | |
|   (* If the current token is not an operator, it must be a primary expr. *)
 | |
|   | [< stream >] -> parse_primary stream
 | |
| 
 | |
| (* binoprhs
 | |
|  *   ::= ('+' primary)* *)
 | |
| and parse_bin_rhs expr_prec lhs stream =
 | |
|   match Stream.peek stream with
 | |
|   (* If this is a binop, find its precedence. *)
 | |
|   | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
 | |
|       let token_prec = precedence c in
 | |
| 
 | |
|       (* If this is a binop that binds at least as tightly as the current binop,
 | |
|        * consume it, otherwise we are done. *)
 | |
|       if token_prec < expr_prec then lhs else begin
 | |
|         (* Eat the binop. *)
 | |
|         Stream.junk stream;
 | |
| 
 | |
|         (* Parse the unary expression after the binary operator. *)
 | |
|         let rhs = parse_unary stream in
 | |
| 
 | |
|         (* Okay, we know this is a binop. *)
 | |
|         let rhs =
 | |
|           match Stream.peek stream with
 | |
|           | Some (Token.Kwd c2) ->
 | |
|               (* If BinOp binds less tightly with rhs than the operator after
 | |
|                * rhs, let the pending operator take rhs as its lhs. *)
 | |
|               let next_prec = precedence c2 in
 | |
|               if token_prec < next_prec
 | |
|               then parse_bin_rhs (token_prec + 1) rhs stream
 | |
|               else rhs
 | |
|           | _ -> rhs
 | |
|         in
 | |
| 
 | |
|         (* Merge lhs/rhs. *)
 | |
|         let lhs = Ast.Binary (c, lhs, rhs) in
 | |
|         parse_bin_rhs expr_prec lhs stream
 | |
|       end
 | |
|   | _ -> lhs
 | |
| 
 | |
| (* expression
 | |
|  *   ::= primary binoprhs *)
 | |
| and parse_expr = parser
 | |
|   | [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream
 | |
| 
 | |
| (* prototype
 | |
|  *   ::= id '(' id* ')'
 | |
|  *   ::= binary LETTER number? (id, id)
 | |
|  *   ::= unary LETTER number? (id) *)
 | |
| let parse_prototype =
 | |
|   let rec parse_args accumulator = parser
 | |
|     | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | |
|     | [< >] -> accumulator
 | |
|   in
 | |
|   let parse_operator = parser
 | |
|     | [< 'Token.Unary >] -> "unary", 1
 | |
|     | [< 'Token.Binary >] -> "binary", 2
 | |
|   in
 | |
|   let parse_binary_precedence = parser
 | |
|     | [< 'Token.Number n >] -> int_of_float n
 | |
|     | [< >] -> 30
 | |
|   in
 | |
|   parser
 | |
|   | [< 'Token.Ident id;
 | |
|        'Token.Kwd '(' ?? "expected '(' in prototype";
 | |
|        args=parse_args [];
 | |
|        'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 | |
|       (* success. *)
 | |
|       Ast.Prototype (id, Array.of_list (List.rev args))
 | |
|   | [< (prefix, kind)=parse_operator;
 | |
|        'Token.Kwd op ?? "expected an operator";
 | |
|        (* Read the precedence if present. *)
 | |
|        binary_precedence=parse_binary_precedence;
 | |
|        'Token.Kwd '(' ?? "expected '(' in prototype";
 | |
|         args=parse_args [];
 | |
|        'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 | |
|       let name = prefix ^ (String.make 1 op) in
 | |
|       let args = Array.of_list (List.rev args) in
 | |
| 
 | |
|       (* Verify right number of arguments for operator. *)
 | |
|       if Array.length args != kind
 | |
|       then raise (Stream.Error "invalid number of operands for operator")
 | |
|       else
 | |
|         if kind == 1 then
 | |
|           Ast.Prototype (name, args)
 | |
|         else
 | |
|           Ast.BinOpPrototype (name, args, binary_precedence)
 | |
|   | [< >] ->
 | |
|       raise (Stream.Error "expected function name in prototype")
 | |
| 
 | |
| (* definition ::= 'def' prototype expression *)
 | |
| let parse_definition = parser
 | |
|   | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
 | |
|       Ast.Function (p, e)
 | |
| 
 | |
| (* toplevelexpr ::= expression *)
 | |
| let parse_toplevel = parser
 | |
|   | [< e=parse_expr >] ->
 | |
|       (* Make an anonymous proto. *)
 | |
|       Ast.Function (Ast.Prototype ("", [||]), e)
 | |
| 
 | |
| (*  external ::= 'extern' prototype *)
 | |
| let parse_extern = parser
 | |
|   | [< 'Token.Extern; e=parse_prototype >] -> e
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>codegen.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===----------------------------------------------------------------------===
 | |
|  * Code Generation
 | |
|  *===----------------------------------------------------------------------===*)
 | |
| 
 | |
| open Llvm
 | |
| 
 | |
| exception Error of string
 | |
| 
 | |
| let context = global_context ()
 | |
| let the_module = create_module context "my cool jit"
 | |
| let builder = builder context
 | |
| let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
 | |
| let double_type = double_type context
 | |
| 
 | |
| let rec codegen_expr = function
 | |
|   | Ast.Number n -> const_float double_type n
 | |
|   | Ast.Variable name ->
 | |
|       (try Hashtbl.find named_values name with
 | |
|         | Not_found -> raise (Error "unknown variable name"))
 | |
|   | Ast.Unary (op, operand) ->
 | |
|       let operand = codegen_expr operand in
 | |
|       let callee = "unary" ^ (String.make 1 op) in
 | |
|       let callee =
 | |
|         match lookup_function callee the_module with
 | |
|         | Some callee -> callee
 | |
|         | None -> raise (Error "unknown unary operator")
 | |
|       in
 | |
|       build_call callee [|operand|] "unop" builder
 | |
|   | Ast.Binary (op, lhs, rhs) ->
 | |
|       let lhs_val = codegen_expr lhs in
 | |
|       let rhs_val = codegen_expr rhs in
 | |
|       begin
 | |
|         match op with
 | |
|         | '+' -> build_add lhs_val rhs_val "addtmp" builder
 | |
|         | '-' -> build_sub lhs_val rhs_val "subtmp" builder
 | |
|         | '*' -> build_mul lhs_val rhs_val "multmp" builder
 | |
|         | '<' ->
 | |
|             (* Convert bool 0/1 to double 0.0 or 1.0 *)
 | |
|             let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
 | |
|             build_uitofp i double_type "booltmp" builder
 | |
|         | _ ->
 | |
|             (* If it wasn't a builtin binary operator, it must be a user defined
 | |
|              * one. Emit a call to it. *)
 | |
|             let callee = "binary" ^ (String.make 1 op) in
 | |
|             let callee =
 | |
|               match lookup_function callee the_module with
 | |
|               | Some callee -> callee
 | |
|               | None -> raise (Error "binary operator not found!")
 | |
|             in
 | |
|             build_call callee [|lhs_val; rhs_val|] "binop" builder
 | |
|       end
 | |
|   | Ast.Call (callee, args) ->
 | |
|       (* Look up the name in the module table. *)
 | |
|       let callee =
 | |
|         match lookup_function callee the_module with
 | |
|         | Some callee -> callee
 | |
|         | None -> raise (Error "unknown function referenced")
 | |
|       in
 | |
|       let params = params callee in
 | |
| 
 | |
|       (* If argument mismatch error. *)
 | |
|       if Array.length params == Array.length args then () else
 | |
|         raise (Error "incorrect # arguments passed");
 | |
|       let args = Array.map codegen_expr args in
 | |
|       build_call callee args "calltmp" builder
 | |
|   | Ast.If (cond, then_, else_) ->
 | |
|       let cond = codegen_expr cond in
 | |
| 
 | |
|       (* Convert condition to a bool by comparing equal to 0.0 *)
 | |
|       let zero = const_float double_type 0.0 in
 | |
|       let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in
 | |
| 
 | |
|       (* Grab the first block so that we might later add the conditional branch
 | |
|        * to it at the end of the function. *)
 | |
|       let start_bb = insertion_block builder in
 | |
|       let the_function = block_parent start_bb in
 | |
| 
 | |
|       let then_bb = append_block context "then" the_function in
 | |
| 
 | |
|       (* Emit 'then' value. *)
 | |
|       position_at_end then_bb builder;
 | |
|       let then_val = codegen_expr then_ in
 | |
| 
 | |
|       (* Codegen of 'then' can change the current block, update then_bb for the
 | |
|        * phi. We create a new name because one is used for the phi node, and the
 | |
|        * other is used for the conditional branch. *)
 | |
|       let new_then_bb = insertion_block builder in
 | |
| 
 | |
|       (* Emit 'else' value. *)
 | |
|       let else_bb = append_block context "else" the_function in
 | |
|       position_at_end else_bb builder;
 | |
|       let else_val = codegen_expr else_ in
 | |
| 
 | |
|       (* Codegen of 'else' can change the current block, update else_bb for the
 | |
|        * phi. *)
 | |
|       let new_else_bb = insertion_block builder in
 | |
| 
 | |
|       (* Emit merge block. *)
 | |
|       let merge_bb = append_block context "ifcont" the_function in
 | |
|       position_at_end merge_bb builder;
 | |
|       let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in
 | |
|       let phi = build_phi incoming "iftmp" builder in
 | |
| 
 | |
|       (* Return to the start block to add the conditional branch. *)
 | |
|       position_at_end start_bb builder;
 | |
|       ignore (build_cond_br cond_val then_bb else_bb builder);
 | |
| 
 | |
|       (* Set a unconditional branch at the end of the 'then' block and the
 | |
|        * 'else' block to the 'merge' block. *)
 | |
|       position_at_end new_then_bb builder; ignore (build_br merge_bb builder);
 | |
|       position_at_end new_else_bb builder; ignore (build_br merge_bb builder);
 | |
| 
 | |
|       (* Finally, set the builder to the end of the merge block. *)
 | |
|       position_at_end merge_bb builder;
 | |
| 
 | |
|       phi
 | |
|   | Ast.For (var_name, start, end_, step, body) ->
 | |
|       (* Emit the start code first, without 'variable' in scope. *)
 | |
|       let start_val = codegen_expr start in
 | |
| 
 | |
|       (* Make the new basic block for the loop header, inserting after current
 | |
|        * block. *)
 | |
|       let preheader_bb = insertion_block builder in
 | |
|       let the_function = block_parent preheader_bb in
 | |
|       let loop_bb = append_block context "loop" the_function in
 | |
| 
 | |
|       (* Insert an explicit fall through from the current block to the
 | |
|        * loop_bb. *)
 | |
|       ignore (build_br loop_bb builder);
 | |
| 
 | |
|       (* Start insertion in loop_bb. *)
 | |
|       position_at_end loop_bb builder;
 | |
| 
 | |
|       (* Start the PHI node with an entry for start. *)
 | |
|       let variable = build_phi [(start_val, preheader_bb)] var_name builder in
 | |
| 
 | |
|       (* Within the loop, the variable is defined equal to the PHI node. If it
 | |
|        * shadows an existing variable, we have to restore it, so save it
 | |
|        * now. *)
 | |
|       let old_val =
 | |
|         try Some (Hashtbl.find named_values var_name) with Not_found -> None
 | |
|       in
 | |
|       Hashtbl.add named_values var_name variable;
 | |
| 
 | |
|       (* Emit the body of the loop.  This, like any other expr, can change the
 | |
|        * current BB.  Note that we ignore the value computed by the body, but
 | |
|        * don't allow an error *)
 | |
|       ignore (codegen_expr body);
 | |
| 
 | |
|       (* Emit the step value. *)
 | |
|       let step_val =
 | |
|         match step with
 | |
|         | Some step -> codegen_expr step
 | |
|         (* If not specified, use 1.0. *)
 | |
|         | None -> const_float double_type 1.0
 | |
|       in
 | |
| 
 | |
|       let next_var = build_add variable step_val "nextvar" builder in
 | |
| 
 | |
|       (* Compute the end condition. *)
 | |
|       let end_cond = codegen_expr end_ in
 | |
| 
 | |
|       (* Convert condition to a bool by comparing equal to 0.0. *)
 | |
|       let zero = const_float double_type 0.0 in
 | |
|       let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in
 | |
| 
 | |
|       (* Create the "after loop" block and insert it. *)
 | |
|       let loop_end_bb = insertion_block builder in
 | |
|       let after_bb = append_block context "afterloop" the_function in
 | |
| 
 | |
|       (* Insert the conditional branch into the end of loop_end_bb. *)
 | |
|       ignore (build_cond_br end_cond loop_bb after_bb builder);
 | |
| 
 | |
|       (* Any new code will be inserted in after_bb. *)
 | |
|       position_at_end after_bb builder;
 | |
| 
 | |
|       (* Add a new entry to the PHI node for the backedge. *)
 | |
|       add_incoming (next_var, loop_end_bb) variable;
 | |
| 
 | |
|       (* Restore the unshadowed variable. *)
 | |
|       begin match old_val with
 | |
|       | Some old_val -> Hashtbl.add named_values var_name old_val
 | |
|       | None -> ()
 | |
|       end;
 | |
| 
 | |
|       (* for expr always returns 0.0. *)
 | |
|       const_null double_type
 | |
| 
 | |
| let codegen_proto = function
 | |
|   | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) ->
 | |
|       (* Make the function type: double(double,double) etc. *)
 | |
|       let doubles = Array.make (Array.length args) double_type in
 | |
|       let ft = function_type double_type doubles in
 | |
|       let f =
 | |
|         match lookup_function name the_module with
 | |
|         | None -> declare_function name ft the_module
 | |
| 
 | |
|         (* If 'f' conflicted, there was already something named 'name'. If it
 | |
|          * has a body, don't allow redefinition or reextern. *)
 | |
|         | Some f ->
 | |
|             (* If 'f' already has a body, reject this. *)
 | |
|             if block_begin f <> At_end f then
 | |
|               raise (Error "redefinition of function");
 | |
| 
 | |
|             (* If 'f' took a different number of arguments, reject. *)
 | |
|             if element_type (type_of f) <> ft then
 | |
|               raise (Error "redefinition of function with different # args");
 | |
|             f
 | |
|       in
 | |
| 
 | |
|       (* Set names for all arguments. *)
 | |
|       Array.iteri (fun i a ->
 | |
|         let n = args.(i) in
 | |
|         set_value_name n a;
 | |
|         Hashtbl.add named_values n a;
 | |
|       ) (params f);
 | |
|       f
 | |
| 
 | |
| let codegen_func the_fpm = function
 | |
|   | Ast.Function (proto, body) ->
 | |
|       Hashtbl.clear named_values;
 | |
|       let the_function = codegen_proto proto in
 | |
| 
 | |
|       (* If this is an operator, install it. *)
 | |
|       begin match proto with
 | |
|       | Ast.BinOpPrototype (name, args, prec) ->
 | |
|           let op = name.[String.length name - 1] in
 | |
|           Hashtbl.add Parser.binop_precedence op prec;
 | |
|       | _ -> ()
 | |
|       end;
 | |
| 
 | |
|       (* Create a new basic block to start insertion into. *)
 | |
|       let bb = append_block context "entry" the_function in
 | |
|       position_at_end bb builder;
 | |
| 
 | |
|       try
 | |
|         let ret_val = codegen_expr body in
 | |
| 
 | |
|         (* Finish off the function. *)
 | |
|         let _ = build_ret ret_val builder in
 | |
| 
 | |
|         (* Validate the generated code, checking for consistency. *)
 | |
|         Llvm_analysis.assert_valid_function the_function;
 | |
| 
 | |
|         (* Optimize the function. *)
 | |
|         let _ = PassManager.run_function the_function the_fpm in
 | |
| 
 | |
|         the_function
 | |
|       with e ->
 | |
|         delete_function the_function;
 | |
|         raise e
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>toplevel.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===----------------------------------------------------------------------===
 | |
|  * Top-Level parsing and JIT Driver
 | |
|  *===----------------------------------------------------------------------===*)
 | |
| 
 | |
| open Llvm
 | |
| open Llvm_executionengine
 | |
| 
 | |
| (* top ::= definition | external | expression | ';' *)
 | |
| let rec main_loop the_fpm the_execution_engine stream =
 | |
|   match Stream.peek stream with
 | |
|   | None -> ()
 | |
| 
 | |
|   (* ignore top-level semicolons. *)
 | |
|   | Some (Token.Kwd ';') ->
 | |
|       Stream.junk stream;
 | |
|       main_loop the_fpm the_execution_engine stream
 | |
| 
 | |
|   | Some token ->
 | |
|       begin
 | |
|         try match token with
 | |
|         | Token.Def ->
 | |
|             let e = Parser.parse_definition stream in
 | |
|             print_endline "parsed a function definition.";
 | |
|             dump_value (Codegen.codegen_func the_fpm e);
 | |
|         | Token.Extern ->
 | |
|             let e = Parser.parse_extern stream in
 | |
|             print_endline "parsed an extern.";
 | |
|             dump_value (Codegen.codegen_proto e);
 | |
|         | _ ->
 | |
|             (* Evaluate a top-level expression into an anonymous function. *)
 | |
|             let e = Parser.parse_toplevel stream in
 | |
|             print_endline "parsed a top-level expr";
 | |
|             let the_function = Codegen.codegen_func the_fpm e in
 | |
|             dump_value the_function;
 | |
| 
 | |
|             (* JIT the function, returning a function pointer. *)
 | |
|             let result = ExecutionEngine.run_function the_function [||]
 | |
|               the_execution_engine in
 | |
| 
 | |
|             print_string "Evaluated to ";
 | |
|             print_float (GenericValue.as_float Codegen.double_type result);
 | |
|             print_newline ();
 | |
|         with Stream.Error s | Codegen.Error s ->
 | |
|           (* Skip token for error recovery. *)
 | |
|           Stream.junk stream;
 | |
|           print_endline s;
 | |
|       end;
 | |
|       print_string "ready> "; flush stdout;
 | |
|       main_loop the_fpm the_execution_engine stream
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>toy.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===----------------------------------------------------------------------===
 | |
|  * Main driver code.
 | |
|  *===----------------------------------------------------------------------===*)
 | |
| 
 | |
| open Llvm
 | |
| open Llvm_executionengine
 | |
| open Llvm_target
 | |
| open Llvm_scalar_opts
 | |
| 
 | |
| let main () =
 | |
|   ignore (initialize_native_target ());
 | |
| 
 | |
|   (* Install standard binary operators.
 | |
|    * 1 is the lowest precedence. *)
 | |
|   Hashtbl.add Parser.binop_precedence '<' 10;
 | |
|   Hashtbl.add Parser.binop_precedence '+' 20;
 | |
|   Hashtbl.add Parser.binop_precedence '-' 20;
 | |
|   Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
 | |
| 
 | |
|   (* Prime the first token. *)
 | |
|   print_string "ready> "; flush stdout;
 | |
|   let stream = Lexer.lex (Stream.of_channel stdin) in
 | |
| 
 | |
|   (* Create the JIT. *)
 | |
|   let the_execution_engine = ExecutionEngine.create Codegen.the_module in
 | |
|   let the_fpm = PassManager.create_function Codegen.the_module in
 | |
| 
 | |
|   (* Set up the optimizer pipeline.  Start with registering info about how the
 | |
|    * target lays out data structures. *)
 | |
|   DataLayout.add (ExecutionEngine.target_data the_execution_engine) the_fpm;
 | |
| 
 | |
|   (* Do simple "peephole" optimizations and bit-twiddling optzn. *)
 | |
|   add_instruction_combination the_fpm;
 | |
| 
 | |
|   (* reassociate expressions. *)
 | |
|   add_reassociation the_fpm;
 | |
| 
 | |
|   (* Eliminate Common SubExpressions. *)
 | |
|   add_gvn the_fpm;
 | |
| 
 | |
|   (* Simplify the control flow graph (deleting unreachable blocks, etc). *)
 | |
|   add_cfg_simplification the_fpm;
 | |
| 
 | |
|   ignore (PassManager.initialize the_fpm);
 | |
| 
 | |
|   (* Run the main "interpreter loop" now. *)
 | |
|   Toplevel.main_loop the_fpm the_execution_engine stream;
 | |
| 
 | |
|   (* Print out all the generated code. *)
 | |
|   dump_module Codegen.the_module
 | |
| ;;
 | |
| 
 | |
| main ()
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>bindings.c</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| #include <stdio.h>
 | |
| 
 | |
| /* putchard - putchar that takes a double and returns 0. */
 | |
| extern double putchard(double X) {
 | |
|   putchar((char)X);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /* printd - printf that takes a double prints it as "%f\n", returning 0. */
 | |
| extern double printd(double X) {
 | |
|   printf("%f\n", X);
 | |
|   return 0;
 | |
| }
 | |
| </pre>
 | |
| </dd>
 | |
| </dl>
 | |
| 
 | |
| <a href="OCamlLangImpl7.html">Next: Extending the language: mutable variables /
 | |
| SSA construction</a>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <hr>
 | |
| <address>
 | |
|   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | |
|   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
 | |
|   <a href="http://validator.w3.org/check/referer"><img
 | |
|   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 | |
| 
 | |
|   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
 | |
|   <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
 | |
|   <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
 | |
|   Last modified: $Date$
 | |
| </address>
 | |
| </body>
 | |
| </html>
 |