llvm-6502/lib/Analysis/LazyCallGraph.cpp
Chandler Carruth 4bbfbdf7d7 [Modules] Move CallSite into the IR library where it belogs. It is
abstracting between a CallInst and an InvokeInst, both of which are IR
concepts.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202816 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-04 11:01:28 +00:00

188 lines
7.3 KiB
C++

//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InstVisitor.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static void findCallees(
SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *> > &Callees,
SmallPtrSetImpl<Function *> &CalleeSet) {
while (!Worklist.empty()) {
Constant *C = Worklist.pop_back_val();
if (Function *F = dyn_cast<Function>(C)) {
// Note that we consider *any* function with a definition to be a viable
// edge. Even if the function's definition is subject to replacement by
// some other module (say, a weak definition) there may still be
// optimizations which essentially speculate based on the definition and
// a way to check that the specific definition is in fact the one being
// used. For example, this could be done by moving the weak definition to
// a strong (internal) definition and making the weak definition be an
// alias. Then a test of the address of the weak function against the new
// strong definition's address would be an effective way to determine the
// safety of optimizing a direct call edge.
if (!F->isDeclaration() && CalleeSet.insert(F))
Callees.push_back(F);
continue;
}
for (Value *Op : C->operand_values())
if (Visited.insert(cast<Constant>(Op)))
Worklist.push_back(cast<Constant>(Op));
}
}
LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) : G(G), F(F) {
SmallVector<Constant *, 16> Worklist;
SmallPtrSet<Constant *, 16> Visited;
// Find all the potential callees in this function. First walk the
// instructions and add every operand which is a constant to the worklist.
for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI)
for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
++II)
for (Value *Op : II->operand_values())
if (Constant *C = dyn_cast<Constant>(Op))
if (Visited.insert(C))
Worklist.push_back(C);
// We've collected all the constant (and thus potentially function or
// function containing) operands to all of the instructions in the function.
// Process them (recursively) collecting every function found.
findCallees(Worklist, Visited, Callees, CalleeSet);
}
LazyCallGraph::Node::Node(LazyCallGraph &G, const Node &OtherN)
: G(G), F(OtherN.F), CalleeSet(OtherN.CalleeSet) {
// Loop over the other node's callees, adding the Function*s to our list
// directly, and recursing to add the Node*s.
Callees.reserve(OtherN.Callees.size());
for (NodeVectorImplT::iterator OI = OtherN.Callees.begin(),
OE = OtherN.Callees.end();
OI != OE; ++OI)
if (Function *Callee = OI->dyn_cast<Function *>())
Callees.push_back(Callee);
else
Callees.push_back(G.copyInto(*OI->get<Node *>()));
}
LazyCallGraph::Node::Node(LazyCallGraph &G, Node &&OtherN)
: G(G), F(OtherN.F), Callees(std::move(OtherN.Callees)),
CalleeSet(std::move(OtherN.CalleeSet)) {
// Loop over our Callees. They've been moved from another node, but we need
// to move the Node*s to live under our bump ptr allocator.
for (NodeVectorImplT::iterator CI = Callees.begin(), CE = Callees.end();
CI != CE; ++CI)
if (Node *ChildN = CI->dyn_cast<Node *>())
*CI = G.moveInto(std::move(*ChildN));
}
LazyCallGraph::LazyCallGraph(Module &M) : M(M) {
for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI)
if (!FI->isDeclaration() && !FI->hasLocalLinkage())
if (EntryNodeSet.insert(&*FI))
EntryNodes.push_back(&*FI);
// Now add entry nodes for functions reachable via initializers to globals.
SmallVector<Constant *, 16> Worklist;
SmallPtrSet<Constant *, 16> Visited;
for (Module::global_iterator GI = M.global_begin(), GE = M.global_end(); GI != GE; ++GI)
if (GI->hasInitializer())
if (Visited.insert(GI->getInitializer()))
Worklist.push_back(GI->getInitializer());
findCallees(Worklist, Visited, EntryNodes, EntryNodeSet);
}
LazyCallGraph::LazyCallGraph(const LazyCallGraph &G)
: M(G.M), EntryNodeSet(G.EntryNodeSet) {
EntryNodes.reserve(G.EntryNodes.size());
for (NodeVectorImplT::const_iterator EI = G.EntryNodes.begin(),
EE = G.EntryNodes.end();
EI != EE; ++EI)
if (Function *Callee = EI->dyn_cast<Function *>())
EntryNodes.push_back(Callee);
else
EntryNodes.push_back(copyInto(*EI->get<Node *>()));
}
// FIXME: This would be crazy simpler if BumpPtrAllocator were movable without
// invalidating any of the allocated memory. We should make that be the case at
// some point and delete this.
LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
: M(G.M), EntryNodes(std::move(G.EntryNodes)),
EntryNodeSet(std::move(G.EntryNodeSet)) {
// Loop over our EntryNodes. They've been moved from another graph, so we
// need to move the Node*s to live under our bump ptr allocator. We can just
// do this in-place.
for (NodeVectorImplT::iterator EI = EntryNodes.begin(),
EE = EntryNodes.end();
EI != EE; ++EI)
if (Node *EntryN = EI->dyn_cast<Node *>())
*EI = moveInto(std::move(*EntryN));
}
LazyCallGraph::Node *LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
return new (MappedN = BPA.Allocate()) Node(*this, F);
}
LazyCallGraph::Node *LazyCallGraph::copyInto(const Node &OtherN) {
Node *&N = NodeMap[&OtherN.F];
if (N)
return N;
return new (N = BPA.Allocate()) Node(*this, OtherN);
}
LazyCallGraph::Node *LazyCallGraph::moveInto(Node &&OtherN) {
Node *&N = NodeMap[&OtherN.F];
if (N)
return N;
return new (N = BPA.Allocate()) Node(*this, std::move(OtherN));
}
char LazyCallGraphAnalysis::PassID;
LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
// Recurse depth first through the nodes.
for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
if (Printed.insert(*I))
printNodes(OS, **I, Printed);
OS << " Call edges in function: " << N.getFunction().getName() << "\n";
for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
OS << " -> " << I->getFunction().getName() << "\n";
OS << "\n";
}
PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M, ModuleAnalysisManager *AM) {
LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);
OS << "Printing the call graph for module: " << M->getModuleIdentifier() << "\n\n";
SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
for (LazyCallGraph::iterator I = G.begin(), E = G.end(); I != E; ++I)
if (Printed.insert(*I))
printNodes(OS, **I, Printed);
return PreservedAnalyses::all();
}