mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55588 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1713 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1713 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines a DAG pattern matching instruction selector for X86,
 | 
						|
// converting from a legalized dag to a X86 dag.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "x86-isel"
 | 
						|
#include "X86.h"
 | 
						|
#include "X86InstrBuilder.h"
 | 
						|
#include "X86ISelLowering.h"
 | 
						|
#include "X86MachineFunctionInfo.h"
 | 
						|
#include "X86RegisterInfo.h"
 | 
						|
#include "X86Subtarget.h"
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "llvm/GlobalValue.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Intrinsics.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/Streams.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <queue>
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumFPKill   , "Number of FP_REG_KILL instructions added");
 | 
						|
STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                      Pattern Matcher Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
 | 
						|
  /// SDValue's instead of register numbers for the leaves of the matched
 | 
						|
  /// tree.
 | 
						|
  struct X86ISelAddressMode {
 | 
						|
    enum {
 | 
						|
      RegBase,
 | 
						|
      FrameIndexBase
 | 
						|
    } BaseType;
 | 
						|
 | 
						|
    struct {            // This is really a union, discriminated by BaseType!
 | 
						|
      SDValue Reg;
 | 
						|
      int FrameIndex;
 | 
						|
    } Base;
 | 
						|
 | 
						|
    bool isRIPRel;     // RIP as base?
 | 
						|
    unsigned Scale;
 | 
						|
    SDValue IndexReg; 
 | 
						|
    unsigned Disp;
 | 
						|
    GlobalValue *GV;
 | 
						|
    Constant *CP;
 | 
						|
    const char *ES;
 | 
						|
    int JT;
 | 
						|
    unsigned Align;    // CP alignment.
 | 
						|
 | 
						|
    X86ISelAddressMode()
 | 
						|
      : BaseType(RegBase), isRIPRel(false), Scale(1), IndexReg(), Disp(0),
 | 
						|
        GV(0), CP(0), ES(0), JT(-1), Align(0) {
 | 
						|
    }
 | 
						|
    void dump() {
 | 
						|
      cerr << "X86ISelAddressMode " << this << "\n";
 | 
						|
      cerr << "Base.Reg ";
 | 
						|
              if (Base.Reg.getNode() != 0) Base.Reg.getNode()->dump(); 
 | 
						|
              else cerr << "nul";
 | 
						|
      cerr << " Base.FrameIndex " << Base.FrameIndex << "\n";
 | 
						|
      cerr << "isRIPRel " << isRIPRel << " Scale" << Scale << "\n";
 | 
						|
      cerr << "IndexReg ";
 | 
						|
              if (IndexReg.getNode() != 0) IndexReg.getNode()->dump();
 | 
						|
              else cerr << "nul"; 
 | 
						|
      cerr << " Disp " << Disp << "\n";
 | 
						|
      cerr << "GV "; if (GV) GV->dump(); 
 | 
						|
                     else cerr << "nul";
 | 
						|
      cerr << " CP "; if (CP) CP->dump(); 
 | 
						|
                     else cerr << "nul";
 | 
						|
      cerr << "\n";
 | 
						|
      cerr << "ES "; if (ES) cerr << ES; else cerr << "nul";
 | 
						|
      cerr  << " JT" << JT << " Align" << Align << "\n";
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  /// ISel - X86 specific code to select X86 machine instructions for
 | 
						|
  /// SelectionDAG operations.
 | 
						|
  ///
 | 
						|
  class VISIBILITY_HIDDEN X86DAGToDAGISel : public SelectionDAGISel {
 | 
						|
    /// ContainsFPCode - Every instruction we select that uses or defines a FP
 | 
						|
    /// register should set this to true.
 | 
						|
    bool ContainsFPCode;
 | 
						|
 | 
						|
    /// TM - Keep a reference to X86TargetMachine.
 | 
						|
    ///
 | 
						|
    X86TargetMachine &TM;
 | 
						|
 | 
						|
    /// X86Lowering - This object fully describes how to lower LLVM code to an
 | 
						|
    /// X86-specific SelectionDAG.
 | 
						|
    X86TargetLowering X86Lowering;
 | 
						|
 | 
						|
    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
 | 
						|
    /// make the right decision when generating code for different targets.
 | 
						|
    const X86Subtarget *Subtarget;
 | 
						|
 | 
						|
    /// GlobalBaseReg - keeps track of the virtual register mapped onto global
 | 
						|
    /// base register.
 | 
						|
    unsigned GlobalBaseReg;
 | 
						|
 | 
						|
    /// CurBB - Current BB being isel'd.
 | 
						|
    ///
 | 
						|
    MachineBasicBlock *CurBB;
 | 
						|
 | 
						|
  public:
 | 
						|
    X86DAGToDAGISel(X86TargetMachine &tm, bool fast)
 | 
						|
      : SelectionDAGISel(X86Lowering, fast),
 | 
						|
        ContainsFPCode(false), TM(tm),
 | 
						|
        X86Lowering(*TM.getTargetLowering()),
 | 
						|
        Subtarget(&TM.getSubtarget<X86Subtarget>()) {}
 | 
						|
 | 
						|
    virtual bool runOnFunction(Function &Fn) {
 | 
						|
      // Make sure we re-emit a set of the global base reg if necessary
 | 
						|
      GlobalBaseReg = 0;
 | 
						|
      return SelectionDAGISel::runOnFunction(Fn);
 | 
						|
    }
 | 
						|
   
 | 
						|
    virtual const char *getPassName() const {
 | 
						|
      return "X86 DAG->DAG Instruction Selection";
 | 
						|
    }
 | 
						|
 | 
						|
    /// InstructionSelect - This callback is invoked by
 | 
						|
    /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
 | 
						|
    virtual void InstructionSelect();
 | 
						|
 | 
						|
    /// InstructionSelectPostProcessing - Post processing of selected and
 | 
						|
    /// scheduled basic blocks.
 | 
						|
    virtual void InstructionSelectPostProcessing();
 | 
						|
 | 
						|
    virtual void EmitFunctionEntryCode(Function &Fn, MachineFunction &MF);
 | 
						|
 | 
						|
    virtual bool CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) const;
 | 
						|
 | 
						|
// Include the pieces autogenerated from the target description.
 | 
						|
#include "X86GenDAGISel.inc"
 | 
						|
 | 
						|
  private:
 | 
						|
    SDNode *Select(SDValue N);
 | 
						|
 | 
						|
    bool MatchAddress(SDValue N, X86ISelAddressMode &AM,
 | 
						|
                      bool isRoot = true, unsigned Depth = 0);
 | 
						|
    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
 | 
						|
                          bool isRoot, unsigned Depth);
 | 
						|
    bool SelectAddr(SDValue Op, SDValue N, SDValue &Base,
 | 
						|
                    SDValue &Scale, SDValue &Index, SDValue &Disp);
 | 
						|
    bool SelectLEAAddr(SDValue Op, SDValue N, SDValue &Base,
 | 
						|
                       SDValue &Scale, SDValue &Index, SDValue &Disp);
 | 
						|
    bool SelectScalarSSELoad(SDValue Op, SDValue Pred,
 | 
						|
                             SDValue N, SDValue &Base, SDValue &Scale,
 | 
						|
                             SDValue &Index, SDValue &Disp,
 | 
						|
                             SDValue &InChain, SDValue &OutChain);
 | 
						|
    bool TryFoldLoad(SDValue P, SDValue N,
 | 
						|
                     SDValue &Base, SDValue &Scale,
 | 
						|
                     SDValue &Index, SDValue &Disp);
 | 
						|
    void PreprocessForRMW();
 | 
						|
    void PreprocessForFPConvert();
 | 
						|
 | 
						|
    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | 
						|
    /// inline asm expressions.
 | 
						|
    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
 | 
						|
                                              char ConstraintCode,
 | 
						|
                                              std::vector<SDValue> &OutOps);
 | 
						|
    
 | 
						|
    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
 | 
						|
 | 
						|
    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base, 
 | 
						|
                                   SDValue &Scale, SDValue &Index,
 | 
						|
                                   SDValue &Disp) {
 | 
						|
      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
 | 
						|
        CurDAG->getTargetFrameIndex(AM.Base.FrameIndex, TLI.getPointerTy()) :
 | 
						|
        AM.Base.Reg;
 | 
						|
      Scale = getI8Imm(AM.Scale);
 | 
						|
      Index = AM.IndexReg;
 | 
						|
      // These are 32-bit even in 64-bit mode since RIP relative offset
 | 
						|
      // is 32-bit.
 | 
						|
      if (AM.GV)
 | 
						|
        Disp = CurDAG->getTargetGlobalAddress(AM.GV, MVT::i32, AM.Disp);
 | 
						|
      else if (AM.CP)
 | 
						|
        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
 | 
						|
                                             AM.Align, AM.Disp);
 | 
						|
      else if (AM.ES)
 | 
						|
        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32);
 | 
						|
      else if (AM.JT != -1)
 | 
						|
        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32);
 | 
						|
      else
 | 
						|
        Disp = getI32Imm(AM.Disp);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getI8Imm - Return a target constant with the specified value, of type
 | 
						|
    /// i8.
 | 
						|
    inline SDValue getI8Imm(unsigned Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, MVT::i8);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getI16Imm - Return a target constant with the specified value, of type
 | 
						|
    /// i16.
 | 
						|
    inline SDValue getI16Imm(unsigned Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, MVT::i16);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getI32Imm - Return a target constant with the specified value, of type
 | 
						|
    /// i32.
 | 
						|
    inline SDValue getI32Imm(unsigned Imm) {
 | 
						|
      return CurDAG->getTargetConstant(Imm, MVT::i32);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
 | 
						|
    /// base register.  Return the virtual register that holds this value.
 | 
						|
    SDNode *getGlobalBaseReg();
 | 
						|
 | 
						|
    /// getTruncateTo8Bit - return an SDNode that implements a subreg based
 | 
						|
    /// truncate of the specified operand to i8. This can be done with tablegen,
 | 
						|
    /// except that this code uses MVT::Flag in a tricky way that happens to
 | 
						|
    /// improve scheduling in some cases.
 | 
						|
    SDNode *getTruncateTo8Bit(SDValue N0);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    unsigned Indent;
 | 
						|
#endif
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// findFlagUse - Return use of MVT::Flag value produced by the specified
 | 
						|
/// SDNode.
 | 
						|
///
 | 
						|
static SDNode *findFlagUse(SDNode *N) {
 | 
						|
  unsigned FlagResNo = N->getNumValues()-1;
 | 
						|
  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
 | 
						|
    SDNode *User = *I;
 | 
						|
    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
 | 
						|
      SDValue Op = User->getOperand(i);
 | 
						|
      if (Op.getNode() == N && Op.getResNo() == FlagResNo)
 | 
						|
        return User;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/// findNonImmUse - Return true by reference in "found" if "Use" is an
 | 
						|
/// non-immediate use of "Def". This function recursively traversing
 | 
						|
/// up the operand chain ignoring certain nodes.
 | 
						|
static void findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
 | 
						|
                          SDNode *Root, SDNode *Skip, bool &found,
 | 
						|
                          SmallPtrSet<SDNode*, 16> &Visited) {
 | 
						|
  if (found ||
 | 
						|
      Use->getNodeId() > Def->getNodeId() ||
 | 
						|
      !Visited.insert(Use))
 | 
						|
    return;
 | 
						|
  
 | 
						|
  for (unsigned i = 0, e = Use->getNumOperands(); !found && i != e; ++i) {
 | 
						|
    SDNode *N = Use->getOperand(i).getNode();
 | 
						|
    if (N == Skip)
 | 
						|
      continue;
 | 
						|
    if (N == Def) {
 | 
						|
      if (Use == ImmedUse)
 | 
						|
        continue;  // We are not looking for immediate use.
 | 
						|
      if (Use == Root) {
 | 
						|
        // Must be a chain reading node where it is possible to reach its own
 | 
						|
        // chain operand through a path started from another operand.
 | 
						|
        assert(Use->getOpcode() == ISD::STORE ||
 | 
						|
               Use->getOpcode() == X86ISD::CMP ||
 | 
						|
               Use->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | 
						|
               Use->getOpcode() == ISD::INTRINSIC_VOID);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      found = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Traverse up the operand chain.
 | 
						|
    findNonImmUse(N, Def, ImmedUse, Root, Skip, found, Visited);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// isNonImmUse - Start searching from Root up the DAG to check is Def can
 | 
						|
/// be reached. Return true if that's the case. However, ignore direct uses
 | 
						|
/// by ImmedUse (which would be U in the example illustrated in
 | 
						|
/// CanBeFoldedBy) and by Root (which can happen in the store case).
 | 
						|
/// FIXME: to be really generic, we should allow direct use by any node
 | 
						|
/// that is being folded. But realisticly since we only fold loads which
 | 
						|
/// have one non-chain use, we only need to watch out for load/op/store
 | 
						|
/// and load/op/cmp case where the root (store / cmp) may reach the load via
 | 
						|
/// its chain operand.
 | 
						|
static inline bool isNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
 | 
						|
                               SDNode *Skip = NULL) {
 | 
						|
  SmallPtrSet<SDNode*, 16> Visited;
 | 
						|
  bool found = false;
 | 
						|
  findNonImmUse(Root, Def, ImmedUse, Root, Skip, found, Visited);
 | 
						|
  return found;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool X86DAGToDAGISel::CanBeFoldedBy(SDNode *N, SDNode *U, SDNode *Root) const {
 | 
						|
  if (Fast) return false;
 | 
						|
 | 
						|
  // If U use can somehow reach N through another path then U can't fold N or
 | 
						|
  // it will create a cycle. e.g. In the following diagram, U can reach N
 | 
						|
  // through X. If N is folded into into U, then X is both a predecessor and
 | 
						|
  // a successor of U.
 | 
						|
  //
 | 
						|
  //         [ N ]
 | 
						|
  //         ^  ^
 | 
						|
  //         |  |
 | 
						|
  //        /   \---
 | 
						|
  //      /        [X]
 | 
						|
  //      |         ^
 | 
						|
  //     [U]--------|
 | 
						|
 | 
						|
  if (isNonImmUse(Root, N, U))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If U produces a flag, then it gets (even more) interesting. Since it
 | 
						|
  // would have been "glued" together with its flag use, we need to check if
 | 
						|
  // it might reach N:
 | 
						|
  //
 | 
						|
  //       [ N ]
 | 
						|
  //        ^ ^
 | 
						|
  //        | |
 | 
						|
  //       [U] \--
 | 
						|
  //        ^   [TF]
 | 
						|
  //        |    ^
 | 
						|
  //        |    |
 | 
						|
  //         \  /
 | 
						|
  //          [FU]
 | 
						|
  //
 | 
						|
  // If FU (flag use) indirectly reach N (the load), and U fold N (call it
 | 
						|
  // NU), then TF is a predecessor of FU and a successor of NU. But since
 | 
						|
  // NU and FU are flagged together, this effectively creates a cycle.
 | 
						|
  bool HasFlagUse = false;
 | 
						|
  MVT VT = Root->getValueType(Root->getNumValues()-1);
 | 
						|
  while ((VT == MVT::Flag && !Root->use_empty())) {
 | 
						|
    SDNode *FU = findFlagUse(Root);
 | 
						|
    if (FU == NULL)
 | 
						|
      break;
 | 
						|
    else {
 | 
						|
      Root = FU;
 | 
						|
      HasFlagUse = true;
 | 
						|
    }
 | 
						|
    VT = Root->getValueType(Root->getNumValues()-1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (HasFlagUse)
 | 
						|
    return !isNonImmUse(Root, N, Root, U);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// MoveBelowTokenFactor - Replace TokenFactor operand with load's chain operand
 | 
						|
/// and move load below the TokenFactor. Replace store's chain operand with
 | 
						|
/// load's chain result.
 | 
						|
static void MoveBelowTokenFactor(SelectionDAG *CurDAG, SDValue Load,
 | 
						|
                                 SDValue Store, SDValue TF) {
 | 
						|
  SmallVector<SDValue, 4> Ops;
 | 
						|
  for (unsigned i = 0, e = TF.getNode()->getNumOperands(); i != e; ++i)
 | 
						|
    if (Load.getNode() == TF.getOperand(i).getNode())
 | 
						|
      Ops.push_back(Load.getOperand(0));
 | 
						|
    else
 | 
						|
      Ops.push_back(TF.getOperand(i));
 | 
						|
  CurDAG->UpdateNodeOperands(TF, &Ops[0], Ops.size());
 | 
						|
  CurDAG->UpdateNodeOperands(Load, TF, Load.getOperand(1), Load.getOperand(2));
 | 
						|
  CurDAG->UpdateNodeOperands(Store, Load.getValue(1), Store.getOperand(1),
 | 
						|
                             Store.getOperand(2), Store.getOperand(3));
 | 
						|
}
 | 
						|
 | 
						|
/// isRMWLoad - Return true if N is a load that's part of RMW sub-DAG.
 | 
						|
/// 
 | 
						|
static bool isRMWLoad(SDValue N, SDValue Chain, SDValue Address,
 | 
						|
                      SDValue &Load) {
 | 
						|
  if (N.getOpcode() == ISD::BIT_CONVERT)
 | 
						|
    N = N.getOperand(0);
 | 
						|
 | 
						|
  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
 | 
						|
  if (!LD || LD->isVolatile())
 | 
						|
    return false;
 | 
						|
  if (LD->getAddressingMode() != ISD::UNINDEXED)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ISD::LoadExtType ExtType = LD->getExtensionType();
 | 
						|
  if (ExtType != ISD::NON_EXTLOAD && ExtType != ISD::EXTLOAD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (N.hasOneUse() &&
 | 
						|
      N.getOperand(1) == Address &&
 | 
						|
      N.getNode()->isOperandOf(Chain.getNode())) {
 | 
						|
    Load = N;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// MoveBelowCallSeqStart - Replace CALLSEQ_START operand with load's chain
 | 
						|
/// operand and move load below the call's chain operand.
 | 
						|
static void MoveBelowCallSeqStart(SelectionDAG *CurDAG, SDValue Load,
 | 
						|
                           SDValue Call, SDValue Chain) {
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  for (unsigned i = 0, e = Chain.getNode()->getNumOperands(); i != e; ++i)
 | 
						|
    if (Load.getNode() == Chain.getOperand(i).getNode())
 | 
						|
      Ops.push_back(Load.getOperand(0));
 | 
						|
    else
 | 
						|
      Ops.push_back(Chain.getOperand(i));
 | 
						|
  CurDAG->UpdateNodeOperands(Chain, &Ops[0], Ops.size());
 | 
						|
  CurDAG->UpdateNodeOperands(Load, Call.getOperand(0),
 | 
						|
                             Load.getOperand(1), Load.getOperand(2));
 | 
						|
  Ops.clear();
 | 
						|
  Ops.push_back(SDValue(Load.getNode(), 1));
 | 
						|
  for (unsigned i = 1, e = Call.getNode()->getNumOperands(); i != e; ++i)
 | 
						|
    Ops.push_back(Call.getOperand(i));
 | 
						|
  CurDAG->UpdateNodeOperands(Call, &Ops[0], Ops.size());
 | 
						|
}
 | 
						|
 | 
						|
/// isCalleeLoad - Return true if call address is a load and it can be
 | 
						|
/// moved below CALLSEQ_START and the chains leading up to the call.
 | 
						|
/// Return the CALLSEQ_START by reference as a second output.
 | 
						|
static bool isCalleeLoad(SDValue Callee, SDValue &Chain) {
 | 
						|
  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
 | 
						|
    return false;
 | 
						|
  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
 | 
						|
  if (!LD ||
 | 
						|
      LD->isVolatile() ||
 | 
						|
      LD->getAddressingMode() != ISD::UNINDEXED ||
 | 
						|
      LD->getExtensionType() != ISD::NON_EXTLOAD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now let's find the callseq_start.
 | 
						|
  while (Chain.getOpcode() != ISD::CALLSEQ_START) {
 | 
						|
    if (!Chain.hasOneUse())
 | 
						|
      return false;
 | 
						|
    Chain = Chain.getOperand(0);
 | 
						|
  }
 | 
						|
  return Chain.getOperand(0).getNode() == Callee.getNode();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// PreprocessForRMW - Preprocess the DAG to make instruction selection better.
 | 
						|
/// This is only run if not in -fast mode (aka -O0).
 | 
						|
/// This allows the instruction selector to pick more read-modify-write
 | 
						|
/// instructions. This is a common case:
 | 
						|
///
 | 
						|
///     [Load chain]
 | 
						|
///         ^
 | 
						|
///         |
 | 
						|
///       [Load]
 | 
						|
///       ^    ^
 | 
						|
///       |    |
 | 
						|
///      /      \-
 | 
						|
///     /         |
 | 
						|
/// [TokenFactor] [Op]
 | 
						|
///     ^          ^
 | 
						|
///     |          |
 | 
						|
///      \        /
 | 
						|
///       \      /
 | 
						|
///       [Store]
 | 
						|
///
 | 
						|
/// The fact the store's chain operand != load's chain will prevent the
 | 
						|
/// (store (op (load))) instruction from being selected. We can transform it to:
 | 
						|
///
 | 
						|
///     [Load chain]
 | 
						|
///         ^
 | 
						|
///         |
 | 
						|
///    [TokenFactor]
 | 
						|
///         ^
 | 
						|
///         |
 | 
						|
///       [Load]
 | 
						|
///       ^    ^
 | 
						|
///       |    |
 | 
						|
///       |     \- 
 | 
						|
///       |       | 
 | 
						|
///       |     [Op]
 | 
						|
///       |       ^
 | 
						|
///       |       |
 | 
						|
///       \      /
 | 
						|
///        \    /
 | 
						|
///       [Store]
 | 
						|
void X86DAGToDAGISel::PreprocessForRMW() {
 | 
						|
  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
 | 
						|
         E = CurDAG->allnodes_end(); I != E; ++I) {
 | 
						|
    if (I->getOpcode() == X86ISD::CALL) {
 | 
						|
      /// Also try moving call address load from outside callseq_start to just
 | 
						|
      /// before the call to allow it to be folded.
 | 
						|
      ///
 | 
						|
      ///     [Load chain]
 | 
						|
      ///         ^
 | 
						|
      ///         |
 | 
						|
      ///       [Load]
 | 
						|
      ///       ^    ^
 | 
						|
      ///       |    |
 | 
						|
      ///      /      \--
 | 
						|
      ///     /          |
 | 
						|
      ///[CALLSEQ_START] |
 | 
						|
      ///     ^          |
 | 
						|
      ///     |          |
 | 
						|
      /// [LOAD/C2Reg]   |
 | 
						|
      ///     |          |
 | 
						|
      ///      \        /
 | 
						|
      ///       \      /
 | 
						|
      ///       [CALL]
 | 
						|
      SDValue Chain = I->getOperand(0);
 | 
						|
      SDValue Load  = I->getOperand(1);
 | 
						|
      if (!isCalleeLoad(Load, Chain))
 | 
						|
        continue;
 | 
						|
      MoveBelowCallSeqStart(CurDAG, Load, SDValue(I, 0), Chain);
 | 
						|
      ++NumLoadMoved;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ISD::isNON_TRUNCStore(I))
 | 
						|
      continue;
 | 
						|
    SDValue Chain = I->getOperand(0);
 | 
						|
 | 
						|
    if (Chain.getNode()->getOpcode() != ISD::TokenFactor)
 | 
						|
      continue;
 | 
						|
 | 
						|
    SDValue N1 = I->getOperand(1);
 | 
						|
    SDValue N2 = I->getOperand(2);
 | 
						|
    if ((N1.getValueType().isFloatingPoint() &&
 | 
						|
         !N1.getValueType().isVector()) ||
 | 
						|
        !N1.hasOneUse())
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool RModW = false;
 | 
						|
    SDValue Load;
 | 
						|
    unsigned Opcode = N1.getNode()->getOpcode();
 | 
						|
    switch (Opcode) {
 | 
						|
    case ISD::ADD:
 | 
						|
    case ISD::MUL:
 | 
						|
    case ISD::AND:
 | 
						|
    case ISD::OR:
 | 
						|
    case ISD::XOR:
 | 
						|
    case ISD::ADDC:
 | 
						|
    case ISD::ADDE:
 | 
						|
    case ISD::VECTOR_SHUFFLE: {
 | 
						|
      SDValue N10 = N1.getOperand(0);
 | 
						|
      SDValue N11 = N1.getOperand(1);
 | 
						|
      RModW = isRMWLoad(N10, Chain, N2, Load);
 | 
						|
      if (!RModW)
 | 
						|
        RModW = isRMWLoad(N11, Chain, N2, Load);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case ISD::SUB:
 | 
						|
    case ISD::SHL:
 | 
						|
    case ISD::SRA:
 | 
						|
    case ISD::SRL:
 | 
						|
    case ISD::ROTL:
 | 
						|
    case ISD::ROTR:
 | 
						|
    case ISD::SUBC:
 | 
						|
    case ISD::SUBE:
 | 
						|
    case X86ISD::SHLD:
 | 
						|
    case X86ISD::SHRD: {
 | 
						|
      SDValue N10 = N1.getOperand(0);
 | 
						|
      RModW = isRMWLoad(N10, Chain, N2, Load);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    if (RModW) {
 | 
						|
      MoveBelowTokenFactor(CurDAG, Load, SDValue(I, 0), Chain);
 | 
						|
      ++NumLoadMoved;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// PreprocessForFPConvert - Walk over the dag lowering fpround and fpextend
 | 
						|
/// nodes that target the FP stack to be store and load to the stack.  This is a
 | 
						|
/// gross hack.  We would like to simply mark these as being illegal, but when
 | 
						|
/// we do that, legalize produces these when it expands calls, then expands
 | 
						|
/// these in the same legalize pass.  We would like dag combine to be able to
 | 
						|
/// hack on these between the call expansion and the node legalization.  As such
 | 
						|
/// this pass basically does "really late" legalization of these inline with the
 | 
						|
/// X86 isel pass.
 | 
						|
void X86DAGToDAGISel::PreprocessForFPConvert() {
 | 
						|
  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
 | 
						|
       E = CurDAG->allnodes_end(); I != E; ) {
 | 
						|
    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
 | 
						|
    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // If the source and destination are SSE registers, then this is a legal
 | 
						|
    // conversion that should not be lowered.
 | 
						|
    MVT SrcVT = N->getOperand(0).getValueType();
 | 
						|
    MVT DstVT = N->getValueType(0);
 | 
						|
    bool SrcIsSSE = X86Lowering.isScalarFPTypeInSSEReg(SrcVT);
 | 
						|
    bool DstIsSSE = X86Lowering.isScalarFPTypeInSSEReg(DstVT);
 | 
						|
    if (SrcIsSSE && DstIsSSE)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!SrcIsSSE && !DstIsSSE) {
 | 
						|
      // If this is an FPStack extension, it is a noop.
 | 
						|
      if (N->getOpcode() == ISD::FP_EXTEND)
 | 
						|
        continue;
 | 
						|
      // If this is a value-preserving FPStack truncation, it is a noop.
 | 
						|
      if (N->getConstantOperandVal(1))
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
   
 | 
						|
    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
 | 
						|
    // FPStack has extload and truncstore.  SSE can fold direct loads into other
 | 
						|
    // operations.  Based on this, decide what we want to do.
 | 
						|
    MVT MemVT;
 | 
						|
    if (N->getOpcode() == ISD::FP_ROUND)
 | 
						|
      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
 | 
						|
    else
 | 
						|
      MemVT = SrcIsSSE ? SrcVT : DstVT;
 | 
						|
    
 | 
						|
    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
 | 
						|
    
 | 
						|
    // FIXME: optimize the case where the src/dest is a load or store?
 | 
						|
    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(),
 | 
						|
                                          N->getOperand(0),
 | 
						|
                                          MemTmp, NULL, 0, MemVT);
 | 
						|
    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, DstVT, Store, MemTmp,
 | 
						|
                                        NULL, 0, MemVT);
 | 
						|
 | 
						|
    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
 | 
						|
    // extload we created.  This will cause general havok on the dag because
 | 
						|
    // anything below the conversion could be folded into other existing nodes.
 | 
						|
    // To avoid invalidating 'I', back it up to the convert node.
 | 
						|
    --I;
 | 
						|
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
 | 
						|
    
 | 
						|
    // Now that we did that, the node is dead.  Increment the iterator to the
 | 
						|
    // next node to process, then delete N.
 | 
						|
    ++I;
 | 
						|
    CurDAG->DeleteNode(N);
 | 
						|
  }  
 | 
						|
}
 | 
						|
 | 
						|
/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
 | 
						|
/// when it has created a SelectionDAG for us to codegen.
 | 
						|
void X86DAGToDAGISel::InstructionSelect() {
 | 
						|
  CurBB = BB;  // BB can change as result of isel.
 | 
						|
 | 
						|
  DEBUG(BB->dump());
 | 
						|
  if (!Fast)
 | 
						|
    PreprocessForRMW();
 | 
						|
 | 
						|
  // FIXME: This should only happen when not -fast.
 | 
						|
  PreprocessForFPConvert();
 | 
						|
 | 
						|
  // Codegen the basic block.
 | 
						|
#ifndef NDEBUG
 | 
						|
  DOUT << "===== Instruction selection begins:\n";
 | 
						|
  Indent = 0;
 | 
						|
#endif
 | 
						|
  SelectRoot();
 | 
						|
#ifndef NDEBUG
 | 
						|
  DOUT << "===== Instruction selection ends:\n";
 | 
						|
#endif
 | 
						|
 | 
						|
  CurDAG->RemoveDeadNodes();
 | 
						|
}
 | 
						|
 | 
						|
void X86DAGToDAGISel::InstructionSelectPostProcessing() {
 | 
						|
  // If we are emitting FP stack code, scan the basic block to determine if this
 | 
						|
  // block defines any FP values.  If so, put an FP_REG_KILL instruction before
 | 
						|
  // the terminator of the block.
 | 
						|
 | 
						|
  // Note that FP stack instructions are used in all modes for long double,
 | 
						|
  // so we always need to do this check.
 | 
						|
  // Also note that it's possible for an FP stack register to be live across
 | 
						|
  // an instruction that produces multiple basic blocks (SSE CMOV) so we
 | 
						|
  // must check all the generated basic blocks.
 | 
						|
 | 
						|
  // Scan all of the machine instructions in these MBBs, checking for FP
 | 
						|
  // stores.  (RFP32 and RFP64 will not exist in SSE mode, but RFP80 might.)
 | 
						|
  MachineFunction::iterator MBBI = CurBB;
 | 
						|
  MachineFunction::iterator EndMBB = BB; ++EndMBB;
 | 
						|
  for (; MBBI != EndMBB; ++MBBI) {
 | 
						|
    MachineBasicBlock *MBB = MBBI;
 | 
						|
    
 | 
						|
    // If this block returns, ignore it.  We don't want to insert an FP_REG_KILL
 | 
						|
    // before the return.
 | 
						|
    if (!MBB->empty()) {
 | 
						|
      MachineBasicBlock::iterator EndI = MBB->end();
 | 
						|
      --EndI;
 | 
						|
      if (EndI->getDesc().isReturn())
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    bool ContainsFPCode = false;
 | 
						|
    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
 | 
						|
         !ContainsFPCode && I != E; ++I) {
 | 
						|
      if (I->getNumOperands() != 0 && I->getOperand(0).isRegister()) {
 | 
						|
        const TargetRegisterClass *clas;
 | 
						|
        for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) {
 | 
						|
          if (I->getOperand(op).isRegister() && I->getOperand(op).isDef() &&
 | 
						|
            TargetRegisterInfo::isVirtualRegister(I->getOperand(op).getReg()) &&
 | 
						|
              ((clas = RegInfo->getRegClass(I->getOperand(0).getReg())) == 
 | 
						|
                 X86::RFP32RegisterClass ||
 | 
						|
               clas == X86::RFP64RegisterClass ||
 | 
						|
               clas == X86::RFP80RegisterClass)) {
 | 
						|
            ContainsFPCode = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Check PHI nodes in successor blocks.  These PHI's will be lowered to have
 | 
						|
    // a copy of the input value in this block.  In SSE mode, we only care about
 | 
						|
    // 80-bit values.
 | 
						|
    if (!ContainsFPCode) {
 | 
						|
      // Final check, check LLVM BB's that are successors to the LLVM BB
 | 
						|
      // corresponding to BB for FP PHI nodes.
 | 
						|
      const BasicBlock *LLVMBB = BB->getBasicBlock();
 | 
						|
      const PHINode *PN;
 | 
						|
      for (succ_const_iterator SI = succ_begin(LLVMBB), E = succ_end(LLVMBB);
 | 
						|
           !ContainsFPCode && SI != E; ++SI) {
 | 
						|
        for (BasicBlock::const_iterator II = SI->begin();
 | 
						|
             (PN = dyn_cast<PHINode>(II)); ++II) {
 | 
						|
          if (PN->getType()==Type::X86_FP80Ty ||
 | 
						|
              (!Subtarget->hasSSE1() && PN->getType()->isFloatingPoint()) ||
 | 
						|
              (!Subtarget->hasSSE2() && PN->getType()==Type::DoubleTy)) {
 | 
						|
            ContainsFPCode = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Finally, if we found any FP code, emit the FP_REG_KILL instruction.
 | 
						|
    if (ContainsFPCode) {
 | 
						|
      BuildMI(*MBB, MBBI->getFirstTerminator(),
 | 
						|
              TM.getInstrInfo()->get(X86::FP_REG_KILL));
 | 
						|
      ++NumFPKill;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
 | 
						|
/// the main function.
 | 
						|
void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
 | 
						|
                                             MachineFrameInfo *MFI) {
 | 
						|
  const TargetInstrInfo *TII = TM.getInstrInfo();
 | 
						|
  if (Subtarget->isTargetCygMing())
 | 
						|
    BuildMI(BB, TII->get(X86::CALLpcrel32)).addExternalSymbol("__main");
 | 
						|
}
 | 
						|
 | 
						|
void X86DAGToDAGISel::EmitFunctionEntryCode(Function &Fn, MachineFunction &MF) {
 | 
						|
  // If this is main, emit special code for main.
 | 
						|
  MachineBasicBlock *BB = MF.begin();
 | 
						|
  if (Fn.hasExternalLinkage() && Fn.getName() == "main")
 | 
						|
    EmitSpecialCodeForMain(BB, MF.getFrameInfo());
 | 
						|
}
 | 
						|
 | 
						|
/// MatchAddress - Add the specified node to the specified addressing mode,
 | 
						|
/// returning true if it cannot be done.  This just pattern matches for the
 | 
						|
/// addressing mode.
 | 
						|
bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM,
 | 
						|
                                   bool isRoot, unsigned Depth) {
 | 
						|
DOUT << "MatchAddress: "; DEBUG(AM.dump());
 | 
						|
  // Limit recursion.
 | 
						|
  if (Depth > 5)
 | 
						|
    return MatchAddressBase(N, AM, isRoot, Depth);
 | 
						|
  
 | 
						|
  // RIP relative addressing: %rip + 32-bit displacement!
 | 
						|
  if (AM.isRIPRel) {
 | 
						|
    if (!AM.ES && AM.JT != -1 && N.getOpcode() == ISD::Constant) {
 | 
						|
      int64_t Val = cast<ConstantSDNode>(N)->getSignExtended();
 | 
						|
      if (isInt32(AM.Disp + Val)) {
 | 
						|
        AM.Disp += Val;
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  int id = N.getNode()->getNodeId();
 | 
						|
  bool AlreadySelected = isSelected(id); // Already selected, not yet replaced.
 | 
						|
 | 
						|
  switch (N.getOpcode()) {
 | 
						|
  default: break;
 | 
						|
  case ISD::Constant: {
 | 
						|
    int64_t Val = cast<ConstantSDNode>(N)->getSignExtended();
 | 
						|
    if (isInt32(AM.Disp + Val)) {
 | 
						|
      AM.Disp += Val;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case X86ISD::Wrapper: {
 | 
						|
DOUT << "Wrapper: 64bit " << Subtarget->is64Bit();
 | 
						|
DOUT << " AM "; DEBUG(AM.dump()); DOUT << "\n";
 | 
						|
DOUT << "AlreadySelected " << AlreadySelected << "\n";
 | 
						|
    bool is64Bit = Subtarget->is64Bit();
 | 
						|
    // Under X86-64 non-small code model, GV (and friends) are 64-bits.
 | 
						|
    // Also, base and index reg must be 0 in order to use rip as base.
 | 
						|
    if (is64Bit && (TM.getCodeModel() != CodeModel::Small ||
 | 
						|
                    AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
 | 
						|
      break;
 | 
						|
    if (AM.GV != 0 || AM.CP != 0 || AM.ES != 0 || AM.JT != -1)
 | 
						|
      break;
 | 
						|
    // If value is available in a register both base and index components have
 | 
						|
    // been picked, we can't fit the result available in the register in the
 | 
						|
    // addressing mode. Duplicate GlobalAddress or ConstantPool as displacement.
 | 
						|
    if (!AlreadySelected || (AM.Base.Reg.getNode() && AM.IndexReg.getNode())) {
 | 
						|
      SDValue N0 = N.getOperand(0);
 | 
						|
      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
 | 
						|
        GlobalValue *GV = G->getGlobal();
 | 
						|
        AM.GV = GV;
 | 
						|
        AM.Disp += G->getOffset();
 | 
						|
        AM.isRIPRel = TM.getRelocationModel() != Reloc::Static &&
 | 
						|
          Subtarget->isPICStyleRIPRel();
 | 
						|
        return false;
 | 
						|
      } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
 | 
						|
        AM.CP = CP->getConstVal();
 | 
						|
        AM.Align = CP->getAlignment();
 | 
						|
        AM.Disp += CP->getOffset();
 | 
						|
        AM.isRIPRel = TM.getRelocationModel() != Reloc::Static &&
 | 
						|
          Subtarget->isPICStyleRIPRel();
 | 
						|
        return false;
 | 
						|
      } else if (ExternalSymbolSDNode *S =dyn_cast<ExternalSymbolSDNode>(N0)) {
 | 
						|
        AM.ES = S->getSymbol();
 | 
						|
        AM.isRIPRel = TM.getRelocationModel() != Reloc::Static &&
 | 
						|
          Subtarget->isPICStyleRIPRel();
 | 
						|
        return false;
 | 
						|
      } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
 | 
						|
        AM.JT = J->getIndex();
 | 
						|
        AM.isRIPRel = TM.getRelocationModel() != Reloc::Static &&
 | 
						|
          Subtarget->isPICStyleRIPRel();
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::FrameIndex:
 | 
						|
    if (AM.BaseType == X86ISelAddressMode::RegBase
 | 
						|
        && AM.Base.Reg.getNode() == 0) {
 | 
						|
      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
 | 
						|
      AM.Base.FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case ISD::SHL:
 | 
						|
    if (AlreadySelected || AM.IndexReg.getNode() != 0
 | 
						|
        || AM.Scale != 1 || AM.isRIPRel)
 | 
						|
      break;
 | 
						|
      
 | 
						|
    if (ConstantSDNode
 | 
						|
          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
 | 
						|
      unsigned Val = CN->getValue();
 | 
						|
      if (Val == 1 || Val == 2 || Val == 3) {
 | 
						|
        AM.Scale = 1 << Val;
 | 
						|
        SDValue ShVal = N.getNode()->getOperand(0);
 | 
						|
 | 
						|
        // Okay, we know that we have a scale by now.  However, if the scaled
 | 
						|
        // value is an add of something and a constant, we can fold the
 | 
						|
        // constant into the disp field here.
 | 
						|
        if (ShVal.getNode()->getOpcode() == ISD::ADD && ShVal.hasOneUse() &&
 | 
						|
            isa<ConstantSDNode>(ShVal.getNode()->getOperand(1))) {
 | 
						|
          AM.IndexReg = ShVal.getNode()->getOperand(0);
 | 
						|
          ConstantSDNode *AddVal =
 | 
						|
            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
 | 
						|
          uint64_t Disp = AM.Disp + (AddVal->getValue() << Val);
 | 
						|
          if (isInt32(Disp))
 | 
						|
            AM.Disp = Disp;
 | 
						|
          else
 | 
						|
            AM.IndexReg = ShVal;
 | 
						|
        } else {
 | 
						|
          AM.IndexReg = ShVal;
 | 
						|
        }
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    break;
 | 
						|
    }
 | 
						|
 | 
						|
  case ISD::SMUL_LOHI:
 | 
						|
  case ISD::UMUL_LOHI:
 | 
						|
    // A mul_lohi where we need the low part can be folded as a plain multiply.
 | 
						|
    if (N.getResNo() != 0) break;
 | 
						|
    // FALL THROUGH
 | 
						|
  case ISD::MUL:
 | 
						|
    // X*[3,5,9] -> X+X*[2,4,8]
 | 
						|
    if (!AlreadySelected &&
 | 
						|
        AM.BaseType == X86ISelAddressMode::RegBase &&
 | 
						|
        AM.Base.Reg.getNode() == 0 &&
 | 
						|
        AM.IndexReg.getNode() == 0 &&
 | 
						|
        !AM.isRIPRel) {
 | 
						|
      if (ConstantSDNode
 | 
						|
            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
 | 
						|
        if (CN->getValue() == 3 || CN->getValue() == 5 || CN->getValue() == 9) {
 | 
						|
          AM.Scale = unsigned(CN->getValue())-1;
 | 
						|
 | 
						|
          SDValue MulVal = N.getNode()->getOperand(0);
 | 
						|
          SDValue Reg;
 | 
						|
 | 
						|
          // Okay, we know that we have a scale by now.  However, if the scaled
 | 
						|
          // value is an add of something and a constant, we can fold the
 | 
						|
          // constant into the disp field here.
 | 
						|
          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
 | 
						|
              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
 | 
						|
            Reg = MulVal.getNode()->getOperand(0);
 | 
						|
            ConstantSDNode *AddVal =
 | 
						|
              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
 | 
						|
            uint64_t Disp = AM.Disp + AddVal->getValue() * CN->getValue();
 | 
						|
            if (isInt32(Disp))
 | 
						|
              AM.Disp = Disp;
 | 
						|
            else
 | 
						|
              Reg = N.getNode()->getOperand(0);
 | 
						|
          } else {
 | 
						|
            Reg = N.getNode()->getOperand(0);
 | 
						|
          }
 | 
						|
 | 
						|
          AM.IndexReg = AM.Base.Reg = Reg;
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case ISD::ADD:
 | 
						|
    if (!AlreadySelected) {
 | 
						|
      X86ISelAddressMode Backup = AM;
 | 
						|
      if (!MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1) &&
 | 
						|
          !MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1))
 | 
						|
        return false;
 | 
						|
      AM = Backup;
 | 
						|
      if (!MatchAddress(N.getNode()->getOperand(1), AM, false, Depth+1) &&
 | 
						|
          !MatchAddress(N.getNode()->getOperand(0), AM, false, Depth+1))
 | 
						|
        return false;
 | 
						|
      AM = Backup;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case ISD::OR:
 | 
						|
    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
 | 
						|
    if (AlreadySelected) break;
 | 
						|
      
 | 
						|
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | 
						|
      X86ISelAddressMode Backup = AM;
 | 
						|
      // Start with the LHS as an addr mode.
 | 
						|
      if (!MatchAddress(N.getOperand(0), AM, false) &&
 | 
						|
          // Address could not have picked a GV address for the displacement.
 | 
						|
          AM.GV == NULL &&
 | 
						|
          // On x86-64, the resultant disp must fit in 32-bits.
 | 
						|
          isInt32(AM.Disp + CN->getSignExtended()) &&
 | 
						|
          // Check to see if the LHS & C is zero.
 | 
						|
          CurDAG->MaskedValueIsZero(N.getOperand(0), CN->getAPIntValue())) {
 | 
						|
        AM.Disp += CN->getValue();
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      AM = Backup;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
      
 | 
						|
  case ISD::AND: {
 | 
						|
    // Handle "(x << C1) & C2" as "(X & (C2>>C1)) << C1" if safe and if this
 | 
						|
    // allows us to fold the shift into this addressing mode.
 | 
						|
    if (AlreadySelected) break;
 | 
						|
    SDValue Shift = N.getOperand(0);
 | 
						|
    if (Shift.getOpcode() != ISD::SHL) break;
 | 
						|
    
 | 
						|
    // Scale must not be used already.
 | 
						|
    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
 | 
						|
 | 
						|
    // Not when RIP is used as the base.
 | 
						|
    if (AM.isRIPRel) break;
 | 
						|
      
 | 
						|
    ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | 
						|
    ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Shift.getOperand(1));
 | 
						|
    if (!C1 || !C2) break;
 | 
						|
 | 
						|
    // Not likely to be profitable if either the AND or SHIFT node has more
 | 
						|
    // than one use (unless all uses are for address computation). Besides,
 | 
						|
    // isel mechanism requires their node ids to be reused.
 | 
						|
    if (!N.hasOneUse() || !Shift.hasOneUse())
 | 
						|
      break;
 | 
						|
    
 | 
						|
    // Verify that the shift amount is something we can fold.
 | 
						|
    unsigned ShiftCst = C1->getValue();
 | 
						|
    if (ShiftCst != 1 && ShiftCst != 2 && ShiftCst != 3)
 | 
						|
      break;
 | 
						|
    
 | 
						|
    // Get the new AND mask, this folds to a constant.
 | 
						|
    SDValue NewANDMask = CurDAG->getNode(ISD::SRL, N.getValueType(),
 | 
						|
                                           SDValue(C2, 0), SDValue(C1, 0));
 | 
						|
    SDValue NewAND = CurDAG->getNode(ISD::AND, N.getValueType(),
 | 
						|
                                       Shift.getOperand(0), NewANDMask);
 | 
						|
    NewANDMask.getNode()->setNodeId(Shift.getNode()->getNodeId());
 | 
						|
    NewAND.getNode()->setNodeId(N.getNode()->getNodeId());
 | 
						|
    
 | 
						|
    AM.Scale = 1 << ShiftCst;
 | 
						|
    AM.IndexReg = NewAND;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return MatchAddressBase(N, AM, isRoot, Depth);
 | 
						|
}
 | 
						|
 | 
						|
/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
 | 
						|
/// specified addressing mode without any further recursion.
 | 
						|
bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM,
 | 
						|
                                       bool isRoot, unsigned Depth) {
 | 
						|
  // Is the base register already occupied?
 | 
						|
  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.getNode()) {
 | 
						|
    // If so, check to see if the scale index register is set.
 | 
						|
    if (AM.IndexReg.getNode() == 0 && !AM.isRIPRel) {
 | 
						|
      AM.IndexReg = N;
 | 
						|
      AM.Scale = 1;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we cannot select it.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Default, generate it as a register.
 | 
						|
  AM.BaseType = X86ISelAddressMode::RegBase;
 | 
						|
  AM.Base.Reg = N;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// SelectAddr - returns true if it is able pattern match an addressing mode.
 | 
						|
/// It returns the operands which make up the maximal addressing mode it can
 | 
						|
/// match by reference.
 | 
						|
bool X86DAGToDAGISel::SelectAddr(SDValue Op, SDValue N, SDValue &Base,
 | 
						|
                                 SDValue &Scale, SDValue &Index,
 | 
						|
                                 SDValue &Disp) {
 | 
						|
  X86ISelAddressMode AM;
 | 
						|
  if (MatchAddress(N, AM))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MVT VT = N.getValueType();
 | 
						|
  if (AM.BaseType == X86ISelAddressMode::RegBase) {
 | 
						|
    if (!AM.Base.Reg.getNode())
 | 
						|
      AM.Base.Reg = CurDAG->getRegister(0, VT);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!AM.IndexReg.getNode())
 | 
						|
    AM.IndexReg = CurDAG->getRegister(0, VT);
 | 
						|
 | 
						|
  getAddressOperands(AM, Base, Scale, Index, Disp);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isZeroNode - Returns true if Elt is a constant zero or a floating point
 | 
						|
/// constant +0.0.
 | 
						|
static inline bool isZeroNode(SDValue Elt) {
 | 
						|
  return ((isa<ConstantSDNode>(Elt) &&
 | 
						|
  cast<ConstantSDNode>(Elt)->getValue() == 0) ||
 | 
						|
  (isa<ConstantFPSDNode>(Elt) &&
 | 
						|
  cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
 | 
						|
/// match a load whose top elements are either undef or zeros.  The load flavor
 | 
						|
/// is derived from the type of N, which is either v4f32 or v2f64.
 | 
						|
bool X86DAGToDAGISel::SelectScalarSSELoad(SDValue Op, SDValue Pred,
 | 
						|
                                          SDValue N, SDValue &Base,
 | 
						|
                                          SDValue &Scale, SDValue &Index,
 | 
						|
                                          SDValue &Disp, SDValue &InChain,
 | 
						|
                                          SDValue &OutChain) {
 | 
						|
  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
 | 
						|
    InChain = N.getOperand(0).getValue(1);
 | 
						|
    if (ISD::isNON_EXTLoad(InChain.getNode()) &&
 | 
						|
        InChain.getValue(0).hasOneUse() &&
 | 
						|
        N.hasOneUse() &&
 | 
						|
        CanBeFoldedBy(N.getNode(), Pred.getNode(), Op.getNode())) {
 | 
						|
      LoadSDNode *LD = cast<LoadSDNode>(InChain);
 | 
						|
      if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
 | 
						|
        return false;
 | 
						|
      OutChain = LD->getChain();
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Also handle the case where we explicitly require zeros in the top
 | 
						|
  // elements.  This is a vector shuffle from the zero vector.
 | 
						|
  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
 | 
						|
      // Check to see if the top elements are all zeros (or bitcast of zeros).
 | 
						|
      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR && 
 | 
						|
      N.getOperand(0).getNode()->hasOneUse() &&
 | 
						|
      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
 | 
						|
      N.getOperand(0).getOperand(0).hasOneUse()) {
 | 
						|
    // Okay, this is a zero extending load.  Fold it.
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
 | 
						|
    if (!SelectAddr(Op, LD->getBasePtr(), Base, Scale, Index, Disp))
 | 
						|
      return false;
 | 
						|
    OutChain = LD->getChain();
 | 
						|
    InChain = SDValue(LD, 1);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
 | 
						|
/// mode it matches can be cost effectively emitted as an LEA instruction.
 | 
						|
bool X86DAGToDAGISel::SelectLEAAddr(SDValue Op, SDValue N,
 | 
						|
                                    SDValue &Base, SDValue &Scale,
 | 
						|
                                    SDValue &Index, SDValue &Disp) {
 | 
						|
  X86ISelAddressMode AM;
 | 
						|
  if (MatchAddress(N, AM))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MVT VT = N.getValueType();
 | 
						|
  unsigned Complexity = 0;
 | 
						|
  if (AM.BaseType == X86ISelAddressMode::RegBase)
 | 
						|
    if (AM.Base.Reg.getNode())
 | 
						|
      Complexity = 1;
 | 
						|
    else
 | 
						|
      AM.Base.Reg = CurDAG->getRegister(0, VT);
 | 
						|
  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
 | 
						|
    Complexity = 4;
 | 
						|
 | 
						|
  if (AM.IndexReg.getNode())
 | 
						|
    Complexity++;
 | 
						|
  else
 | 
						|
    AM.IndexReg = CurDAG->getRegister(0, VT);
 | 
						|
 | 
						|
  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
 | 
						|
  // a simple shift.
 | 
						|
  if (AM.Scale > 1)
 | 
						|
    Complexity++;
 | 
						|
 | 
						|
  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
 | 
						|
  // to a LEA. This is determined with some expermentation but is by no means
 | 
						|
  // optimal (especially for code size consideration). LEA is nice because of
 | 
						|
  // its three-address nature. Tweak the cost function again when we can run
 | 
						|
  // convertToThreeAddress() at register allocation time.
 | 
						|
  if (AM.GV || AM.CP || AM.ES || AM.JT != -1) {
 | 
						|
    // For X86-64, we should always use lea to materialize RIP relative
 | 
						|
    // addresses.
 | 
						|
    if (Subtarget->is64Bit())
 | 
						|
      Complexity = 4;
 | 
						|
    else
 | 
						|
      Complexity += 2;
 | 
						|
  }
 | 
						|
 | 
						|
  if (AM.Disp && (AM.Base.Reg.getNode() || AM.IndexReg.getNode()))
 | 
						|
    Complexity++;
 | 
						|
 | 
						|
  if (Complexity > 2) {
 | 
						|
    getAddressOperands(AM, Base, Scale, Index, Disp);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86DAGToDAGISel::TryFoldLoad(SDValue P, SDValue N,
 | 
						|
                                  SDValue &Base, SDValue &Scale,
 | 
						|
                                  SDValue &Index, SDValue &Disp) {
 | 
						|
  if (ISD::isNON_EXTLoad(N.getNode()) &&
 | 
						|
      N.hasOneUse() &&
 | 
						|
      CanBeFoldedBy(N.getNode(), P.getNode(), P.getNode()))
 | 
						|
    return SelectAddr(P, N.getOperand(1), Base, Scale, Index, Disp);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getGlobalBaseReg - Output the instructions required to put the
 | 
						|
/// base address to use for accessing globals into a register.
 | 
						|
///
 | 
						|
SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
 | 
						|
  assert(!Subtarget->is64Bit() && "X86-64 PIC uses RIP relative addressing");
 | 
						|
  if (!GlobalBaseReg) {
 | 
						|
    // Insert the set of GlobalBaseReg into the first MBB of the function
 | 
						|
    MachineFunction *MF = BB->getParent();
 | 
						|
    MachineBasicBlock &FirstMBB = MF->front();
 | 
						|
    MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | 
						|
    MachineRegisterInfo &RegInfo = MF->getRegInfo();
 | 
						|
    unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
 | 
						|
    
 | 
						|
    const TargetInstrInfo *TII = TM.getInstrInfo();
 | 
						|
    // Operand of MovePCtoStack is completely ignored by asm printer. It's
 | 
						|
    // only used in JIT code emission as displacement to pc.
 | 
						|
    BuildMI(FirstMBB, MBBI, TII->get(X86::MOVPC32r), PC).addImm(0);
 | 
						|
    
 | 
						|
    // If we're using vanilla 'GOT' PIC style, we should use relative addressing
 | 
						|
    // not to pc, but to _GLOBAL_ADDRESS_TABLE_ external
 | 
						|
    if (TM.getRelocationModel() == Reloc::PIC_ &&
 | 
						|
        Subtarget->isPICStyleGOT()) {
 | 
						|
      GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
 | 
						|
      BuildMI(FirstMBB, MBBI, TII->get(X86::ADD32ri), GlobalBaseReg)
 | 
						|
        .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_");
 | 
						|
    } else {
 | 
						|
      GlobalBaseReg = PC;
 | 
						|
    }
 | 
						|
    
 | 
						|
  }
 | 
						|
  return CurDAG->getRegister(GlobalBaseReg, TLI.getPointerTy()).getNode();
 | 
						|
}
 | 
						|
 | 
						|
static SDNode *FindCallStartFromCall(SDNode *Node) {
 | 
						|
  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
 | 
						|
    assert(Node->getOperand(0).getValueType() == MVT::Other &&
 | 
						|
         "Node doesn't have a token chain argument!");
 | 
						|
  return FindCallStartFromCall(Node->getOperand(0).getNode());
 | 
						|
}
 | 
						|
 | 
						|
/// getTruncateTo8Bit - return an SDNode that implements a subreg based
 | 
						|
/// truncate of the specified operand to i8. This can be done with tablegen,
 | 
						|
/// except that this code uses MVT::Flag in a tricky way that happens to
 | 
						|
/// improve scheduling in some cases.
 | 
						|
SDNode *X86DAGToDAGISel::getTruncateTo8Bit(SDValue N0) {
 | 
						|
  assert(!Subtarget->is64Bit() &&
 | 
						|
         "getTruncateTo8Bit is only needed on x86-32!");
 | 
						|
  SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
 | 
						|
 | 
						|
  // Ensure that the source register has an 8-bit subreg on 32-bit targets
 | 
						|
  unsigned Opc;
 | 
						|
  MVT N0VT = N0.getValueType();
 | 
						|
  switch (N0VT.getSimpleVT()) {
 | 
						|
  default: assert(0 && "Unknown truncate!");
 | 
						|
  case MVT::i16:
 | 
						|
    Opc = X86::MOV16to16_;
 | 
						|
    break;
 | 
						|
  case MVT::i32:
 | 
						|
    Opc = X86::MOV32to32_;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // The use of MVT::Flag here is not strictly accurate, but it helps
 | 
						|
  // scheduling in some cases.
 | 
						|
  N0 = SDValue(CurDAG->getTargetNode(Opc, N0VT, MVT::Flag, N0), 0);
 | 
						|
  return CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
 | 
						|
                               MVT::i8, N0, SRIdx, N0.getValue(1));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
SDNode *X86DAGToDAGISel::Select(SDValue N) {
 | 
						|
  SDNode *Node = N.getNode();
 | 
						|
  MVT NVT = Node->getValueType(0);
 | 
						|
  unsigned Opc, MOpc;
 | 
						|
  unsigned Opcode = Node->getOpcode();
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  DOUT << std::string(Indent, ' ') << "Selecting: ";
 | 
						|
  DEBUG(Node->dump(CurDAG));
 | 
						|
  DOUT << "\n";
 | 
						|
  Indent += 2;
 | 
						|
#endif
 | 
						|
 | 
						|
  if (Node->isMachineOpcode()) {
 | 
						|
#ifndef NDEBUG
 | 
						|
    DOUT << std::string(Indent-2, ' ') << "== ";
 | 
						|
    DEBUG(Node->dump(CurDAG));
 | 
						|
    DOUT << "\n";
 | 
						|
    Indent -= 2;
 | 
						|
#endif
 | 
						|
    return NULL;   // Already selected.
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
    default: break;
 | 
						|
    case X86ISD::GlobalBaseReg: 
 | 
						|
      return getGlobalBaseReg();
 | 
						|
 | 
						|
    case ISD::ADD: {
 | 
						|
      // Turn ADD X, c to MOV32ri X+c. This cannot be done with tblgen'd
 | 
						|
      // code and is matched first so to prevent it from being turned into
 | 
						|
      // LEA32r X+c.
 | 
						|
      // In 64-bit small code size mode, use LEA to take advantage of
 | 
						|
      // RIP-relative addressing.
 | 
						|
      if (TM.getCodeModel() != CodeModel::Small)
 | 
						|
        break;
 | 
						|
      MVT PtrVT = TLI.getPointerTy();
 | 
						|
      SDValue N0 = N.getOperand(0);
 | 
						|
      SDValue N1 = N.getOperand(1);
 | 
						|
      if (N.getNode()->getValueType(0) == PtrVT &&
 | 
						|
          N0.getOpcode() == X86ISD::Wrapper &&
 | 
						|
          N1.getOpcode() == ISD::Constant) {
 | 
						|
        unsigned Offset = (unsigned)cast<ConstantSDNode>(N1)->getValue();
 | 
						|
        SDValue C(0, 0);
 | 
						|
        // TODO: handle ExternalSymbolSDNode.
 | 
						|
        if (GlobalAddressSDNode *G =
 | 
						|
            dyn_cast<GlobalAddressSDNode>(N0.getOperand(0))) {
 | 
						|
          C = CurDAG->getTargetGlobalAddress(G->getGlobal(), PtrVT,
 | 
						|
                                             G->getOffset() + Offset);
 | 
						|
        } else if (ConstantPoolSDNode *CP =
 | 
						|
                   dyn_cast<ConstantPoolSDNode>(N0.getOperand(0))) {
 | 
						|
          C = CurDAG->getTargetConstantPool(CP->getConstVal(), PtrVT,
 | 
						|
                                            CP->getAlignment(),
 | 
						|
                                            CP->getOffset()+Offset);
 | 
						|
        }
 | 
						|
 | 
						|
        if (C.getNode()) {
 | 
						|
          if (Subtarget->is64Bit()) {
 | 
						|
            SDValue Ops[] = { CurDAG->getRegister(0, PtrVT), getI8Imm(1),
 | 
						|
                                CurDAG->getRegister(0, PtrVT), C };
 | 
						|
            return CurDAG->SelectNodeTo(N.getNode(), X86::LEA64r,
 | 
						|
                                        MVT::i64, Ops, 4);
 | 
						|
          } else
 | 
						|
            return CurDAG->SelectNodeTo(N.getNode(), X86::MOV32ri, PtrVT, C);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Other cases are handled by auto-generated code.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ISD::SMUL_LOHI:
 | 
						|
    case ISD::UMUL_LOHI: {
 | 
						|
      SDValue N0 = Node->getOperand(0);
 | 
						|
      SDValue N1 = Node->getOperand(1);
 | 
						|
 | 
						|
      bool isSigned = Opcode == ISD::SMUL_LOHI;
 | 
						|
      if (!isSigned)
 | 
						|
        switch (NVT.getSimpleVT()) {
 | 
						|
        default: assert(0 && "Unsupported VT!");
 | 
						|
        case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
 | 
						|
        case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
 | 
						|
        case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break;
 | 
						|
        case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break;
 | 
						|
        }
 | 
						|
      else
 | 
						|
        switch (NVT.getSimpleVT()) {
 | 
						|
        default: assert(0 && "Unsupported VT!");
 | 
						|
        case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
 | 
						|
        case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
 | 
						|
        case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
 | 
						|
        case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
 | 
						|
        }
 | 
						|
 | 
						|
      unsigned LoReg, HiReg;
 | 
						|
      switch (NVT.getSimpleVT()) {
 | 
						|
      default: assert(0 && "Unsupported VT!");
 | 
						|
      case MVT::i8:  LoReg = X86::AL;  HiReg = X86::AH;  break;
 | 
						|
      case MVT::i16: LoReg = X86::AX;  HiReg = X86::DX;  break;
 | 
						|
      case MVT::i32: LoReg = X86::EAX; HiReg = X86::EDX; break;
 | 
						|
      case MVT::i64: LoReg = X86::RAX; HiReg = X86::RDX; break;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Tmp0, Tmp1, Tmp2, Tmp3;
 | 
						|
      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
 | 
						|
      // multiplty is commmutative
 | 
						|
      if (!foldedLoad) {
 | 
						|
        foldedLoad = TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3);
 | 
						|
        if (foldedLoad)
 | 
						|
          std::swap(N0, N1);
 | 
						|
      }
 | 
						|
 | 
						|
      AddToISelQueue(N0);
 | 
						|
      SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), LoReg,
 | 
						|
                                              N0, SDValue()).getValue(1);
 | 
						|
 | 
						|
      if (foldedLoad) {
 | 
						|
        AddToISelQueue(N1.getOperand(0));
 | 
						|
        AddToISelQueue(Tmp0);
 | 
						|
        AddToISelQueue(Tmp1);
 | 
						|
        AddToISelQueue(Tmp2);
 | 
						|
        AddToISelQueue(Tmp3);
 | 
						|
        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
 | 
						|
        SDNode *CNode =
 | 
						|
          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
 | 
						|
        InFlag = SDValue(CNode, 1);
 | 
						|
        // Update the chain.
 | 
						|
        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
 | 
						|
      } else {
 | 
						|
        AddToISelQueue(N1);
 | 
						|
        InFlag =
 | 
						|
          SDValue(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
 | 
						|
      }
 | 
						|
 | 
						|
      // Copy the low half of the result, if it is needed.
 | 
						|
      if (!N.getValue(0).use_empty()) {
 | 
						|
        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
 | 
						|
                                                  LoReg, NVT, InFlag);
 | 
						|
        InFlag = Result.getValue(2);
 | 
						|
        ReplaceUses(N.getValue(0), Result);
 | 
						|
#ifndef NDEBUG
 | 
						|
        DOUT << std::string(Indent-2, ' ') << "=> ";
 | 
						|
        DEBUG(Result.getNode()->dump(CurDAG));
 | 
						|
        DOUT << "\n";
 | 
						|
#endif
 | 
						|
      }
 | 
						|
      // Copy the high half of the result, if it is needed.
 | 
						|
      if (!N.getValue(1).use_empty()) {
 | 
						|
        SDValue Result;
 | 
						|
        if (HiReg == X86::AH && Subtarget->is64Bit()) {
 | 
						|
          // Prevent use of AH in a REX instruction by referencing AX instead.
 | 
						|
          // Shift it down 8 bits.
 | 
						|
          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
 | 
						|
                                          X86::AX, MVT::i16, InFlag);
 | 
						|
          InFlag = Result.getValue(2);
 | 
						|
          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result,
 | 
						|
                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
 | 
						|
          // Then truncate it down to i8.
 | 
						|
          SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
 | 
						|
          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
 | 
						|
                                                   MVT::i8, Result, SRIdx), 0);
 | 
						|
        } else {
 | 
						|
          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
 | 
						|
                                          HiReg, NVT, InFlag);
 | 
						|
          InFlag = Result.getValue(2);
 | 
						|
        }
 | 
						|
        ReplaceUses(N.getValue(1), Result);
 | 
						|
#ifndef NDEBUG
 | 
						|
        DOUT << std::string(Indent-2, ' ') << "=> ";
 | 
						|
        DEBUG(Result.getNode()->dump(CurDAG));
 | 
						|
        DOUT << "\n";
 | 
						|
#endif
 | 
						|
      }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
      Indent -= 2;
 | 
						|
#endif
 | 
						|
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
      
 | 
						|
    case ISD::SDIVREM:
 | 
						|
    case ISD::UDIVREM: {
 | 
						|
      SDValue N0 = Node->getOperand(0);
 | 
						|
      SDValue N1 = Node->getOperand(1);
 | 
						|
 | 
						|
      bool isSigned = Opcode == ISD::SDIVREM;
 | 
						|
      if (!isSigned)
 | 
						|
        switch (NVT.getSimpleVT()) {
 | 
						|
        default: assert(0 && "Unsupported VT!");
 | 
						|
        case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
 | 
						|
        case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
 | 
						|
        case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
 | 
						|
        case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
 | 
						|
        }
 | 
						|
      else
 | 
						|
        switch (NVT.getSimpleVT()) {
 | 
						|
        default: assert(0 && "Unsupported VT!");
 | 
						|
        case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
 | 
						|
        case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
 | 
						|
        case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
 | 
						|
        case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
 | 
						|
        }
 | 
						|
 | 
						|
      unsigned LoReg, HiReg;
 | 
						|
      unsigned ClrOpcode, SExtOpcode;
 | 
						|
      switch (NVT.getSimpleVT()) {
 | 
						|
      default: assert(0 && "Unsupported VT!");
 | 
						|
      case MVT::i8:
 | 
						|
        LoReg = X86::AL;  HiReg = X86::AH;
 | 
						|
        ClrOpcode  = 0;
 | 
						|
        SExtOpcode = X86::CBW;
 | 
						|
        break;
 | 
						|
      case MVT::i16:
 | 
						|
        LoReg = X86::AX;  HiReg = X86::DX;
 | 
						|
        ClrOpcode  = X86::MOV16r0;
 | 
						|
        SExtOpcode = X86::CWD;
 | 
						|
        break;
 | 
						|
      case MVT::i32:
 | 
						|
        LoReg = X86::EAX; HiReg = X86::EDX;
 | 
						|
        ClrOpcode  = X86::MOV32r0;
 | 
						|
        SExtOpcode = X86::CDQ;
 | 
						|
        break;
 | 
						|
      case MVT::i64:
 | 
						|
        LoReg = X86::RAX; HiReg = X86::RDX;
 | 
						|
        ClrOpcode  = X86::MOV64r0;
 | 
						|
        SExtOpcode = X86::CQO;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      SDValue Tmp0, Tmp1, Tmp2, Tmp3;
 | 
						|
      bool foldedLoad = TryFoldLoad(N, N1, Tmp0, Tmp1, Tmp2, Tmp3);
 | 
						|
 | 
						|
      SDValue InFlag;
 | 
						|
      if (NVT == MVT::i8 && !isSigned) {
 | 
						|
        // Special case for div8, just use a move with zero extension to AX to
 | 
						|
        // clear the upper 8 bits (AH).
 | 
						|
        SDValue Tmp0, Tmp1, Tmp2, Tmp3, Move, Chain;
 | 
						|
        if (TryFoldLoad(N, N0, Tmp0, Tmp1, Tmp2, Tmp3)) {
 | 
						|
          SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N0.getOperand(0) };
 | 
						|
          AddToISelQueue(N0.getOperand(0));
 | 
						|
          AddToISelQueue(Tmp0);
 | 
						|
          AddToISelQueue(Tmp1);
 | 
						|
          AddToISelQueue(Tmp2);
 | 
						|
          AddToISelQueue(Tmp3);
 | 
						|
          Move =
 | 
						|
            SDValue(CurDAG->getTargetNode(X86::MOVZX16rm8, MVT::i16, MVT::Other,
 | 
						|
                                            Ops, 5), 0);
 | 
						|
          Chain = Move.getValue(1);
 | 
						|
          ReplaceUses(N0.getValue(1), Chain);
 | 
						|
        } else {
 | 
						|
          AddToISelQueue(N0);
 | 
						|
          Move =
 | 
						|
            SDValue(CurDAG->getTargetNode(X86::MOVZX16rr8, MVT::i16, N0), 0);
 | 
						|
          Chain = CurDAG->getEntryNode();
 | 
						|
        }
 | 
						|
        Chain  = CurDAG->getCopyToReg(Chain, X86::AX, Move, SDValue());
 | 
						|
        InFlag = Chain.getValue(1);
 | 
						|
      } else {
 | 
						|
        AddToISelQueue(N0);
 | 
						|
        InFlag =
 | 
						|
          CurDAG->getCopyToReg(CurDAG->getEntryNode(),
 | 
						|
                               LoReg, N0, SDValue()).getValue(1);
 | 
						|
        if (isSigned) {
 | 
						|
          // Sign extend the low part into the high part.
 | 
						|
          InFlag =
 | 
						|
            SDValue(CurDAG->getTargetNode(SExtOpcode, MVT::Flag, InFlag), 0);
 | 
						|
        } else {
 | 
						|
          // Zero out the high part, effectively zero extending the input.
 | 
						|
          SDValue ClrNode = SDValue(CurDAG->getTargetNode(ClrOpcode, NVT), 0);
 | 
						|
          InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), HiReg,
 | 
						|
                                        ClrNode, InFlag).getValue(1);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (foldedLoad) {
 | 
						|
        AddToISelQueue(N1.getOperand(0));
 | 
						|
        AddToISelQueue(Tmp0);
 | 
						|
        AddToISelQueue(Tmp1);
 | 
						|
        AddToISelQueue(Tmp2);
 | 
						|
        AddToISelQueue(Tmp3);
 | 
						|
        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, N1.getOperand(0), InFlag };
 | 
						|
        SDNode *CNode =
 | 
						|
          CurDAG->getTargetNode(MOpc, MVT::Other, MVT::Flag, Ops, 6);
 | 
						|
        InFlag = SDValue(CNode, 1);
 | 
						|
        // Update the chain.
 | 
						|
        ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
 | 
						|
      } else {
 | 
						|
        AddToISelQueue(N1);
 | 
						|
        InFlag =
 | 
						|
          SDValue(CurDAG->getTargetNode(Opc, MVT::Flag, N1, InFlag), 0);
 | 
						|
      }
 | 
						|
 | 
						|
      // Copy the division (low) result, if it is needed.
 | 
						|
      if (!N.getValue(0).use_empty()) {
 | 
						|
        SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
 | 
						|
                                                  LoReg, NVT, InFlag);
 | 
						|
        InFlag = Result.getValue(2);
 | 
						|
        ReplaceUses(N.getValue(0), Result);
 | 
						|
#ifndef NDEBUG
 | 
						|
        DOUT << std::string(Indent-2, ' ') << "=> ";
 | 
						|
        DEBUG(Result.getNode()->dump(CurDAG));
 | 
						|
        DOUT << "\n";
 | 
						|
#endif
 | 
						|
      }
 | 
						|
      // Copy the remainder (high) result, if it is needed.
 | 
						|
      if (!N.getValue(1).use_empty()) {
 | 
						|
        SDValue Result;
 | 
						|
        if (HiReg == X86::AH && Subtarget->is64Bit()) {
 | 
						|
          // Prevent use of AH in a REX instruction by referencing AX instead.
 | 
						|
          // Shift it down 8 bits.
 | 
						|
          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
 | 
						|
                                          X86::AX, MVT::i16, InFlag);
 | 
						|
          InFlag = Result.getValue(2);
 | 
						|
          Result = SDValue(CurDAG->getTargetNode(X86::SHR16ri, MVT::i16, Result,
 | 
						|
                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
 | 
						|
          // Then truncate it down to i8.
 | 
						|
          SDValue SRIdx = CurDAG->getTargetConstant(1, MVT::i32); // SubRegSet 1
 | 
						|
          Result = SDValue(CurDAG->getTargetNode(X86::EXTRACT_SUBREG,
 | 
						|
                                                   MVT::i8, Result, SRIdx), 0);
 | 
						|
        } else {
 | 
						|
          Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
 | 
						|
                                          HiReg, NVT, InFlag);
 | 
						|
          InFlag = Result.getValue(2);
 | 
						|
        }
 | 
						|
        ReplaceUses(N.getValue(1), Result);
 | 
						|
#ifndef NDEBUG
 | 
						|
        DOUT << std::string(Indent-2, ' ') << "=> ";
 | 
						|
        DEBUG(Result.getNode()->dump(CurDAG));
 | 
						|
        DOUT << "\n";
 | 
						|
#endif
 | 
						|
      }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
      Indent -= 2;
 | 
						|
#endif
 | 
						|
 | 
						|
      return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    case ISD::SIGN_EXTEND_INREG: {
 | 
						|
      MVT SVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
 | 
						|
      if (SVT == MVT::i8 && !Subtarget->is64Bit()) {
 | 
						|
        SDValue N0 = Node->getOperand(0);
 | 
						|
        AddToISelQueue(N0);
 | 
						|
      
 | 
						|
        SDValue TruncOp = SDValue(getTruncateTo8Bit(N0), 0);
 | 
						|
        unsigned Opc = 0;
 | 
						|
        switch (NVT.getSimpleVT()) {
 | 
						|
        default: assert(0 && "Unknown sign_extend_inreg!");
 | 
						|
        case MVT::i16:
 | 
						|
          Opc = X86::MOVSX16rr8;
 | 
						|
          break;
 | 
						|
        case MVT::i32:
 | 
						|
          Opc = X86::MOVSX32rr8; 
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      
 | 
						|
        SDNode *ResNode = CurDAG->getTargetNode(Opc, NVT, TruncOp);
 | 
						|
      
 | 
						|
#ifndef NDEBUG
 | 
						|
        DOUT << std::string(Indent-2, ' ') << "=> ";
 | 
						|
        DEBUG(TruncOp.getNode()->dump(CurDAG));
 | 
						|
        DOUT << "\n";
 | 
						|
        DOUT << std::string(Indent-2, ' ') << "=> ";
 | 
						|
        DEBUG(ResNode->dump(CurDAG));
 | 
						|
        DOUT << "\n";
 | 
						|
        Indent -= 2;
 | 
						|
#endif
 | 
						|
        return ResNode;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    case ISD::TRUNCATE: {
 | 
						|
      if (NVT == MVT::i8 && !Subtarget->is64Bit()) {
 | 
						|
        SDValue Input = Node->getOperand(0);
 | 
						|
        AddToISelQueue(Node->getOperand(0));
 | 
						|
        SDNode *ResNode = getTruncateTo8Bit(Input);
 | 
						|
      
 | 
						|
#ifndef NDEBUG
 | 
						|
        DOUT << std::string(Indent-2, ' ') << "=> ";
 | 
						|
        DEBUG(ResNode->dump(CurDAG));
 | 
						|
        DOUT << "\n";
 | 
						|
        Indent -= 2;
 | 
						|
#endif
 | 
						|
        return ResNode;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    case ISD::DECLARE: {
 | 
						|
      // Handle DECLARE nodes here because the second operand may have been
 | 
						|
      // wrapped in X86ISD::Wrapper.
 | 
						|
      SDValue Chain = Node->getOperand(0);
 | 
						|
      SDValue N1 = Node->getOperand(1);
 | 
						|
      SDValue N2 = Node->getOperand(2);
 | 
						|
      if (!isa<FrameIndexSDNode>(N1))
 | 
						|
        break;
 | 
						|
      int FI = cast<FrameIndexSDNode>(N1)->getIndex();
 | 
						|
      if (N2.getOpcode() == ISD::ADD &&
 | 
						|
          N2.getOperand(0).getOpcode() == X86ISD::GlobalBaseReg)
 | 
						|
        N2 = N2.getOperand(1);
 | 
						|
      if (N2.getOpcode() == X86ISD::Wrapper &&
 | 
						|
          isa<GlobalAddressSDNode>(N2.getOperand(0))) {
 | 
						|
        GlobalValue *GV =
 | 
						|
          cast<GlobalAddressSDNode>(N2.getOperand(0))->getGlobal();
 | 
						|
        SDValue Tmp1 = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
 | 
						|
        SDValue Tmp2 = CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());
 | 
						|
        AddToISelQueue(Chain);
 | 
						|
        SDValue Ops[] = { Tmp1, Tmp2, Chain };
 | 
						|
        return CurDAG->getTargetNode(TargetInstrInfo::DECLARE,
 | 
						|
                                     MVT::Other, Ops, 3);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SDNode *ResNode = SelectCode(N);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  DOUT << std::string(Indent-2, ' ') << "=> ";
 | 
						|
  if (ResNode == NULL || ResNode == N.getNode())
 | 
						|
    DEBUG(N.getNode()->dump(CurDAG));
 | 
						|
  else
 | 
						|
    DEBUG(ResNode->dump(CurDAG));
 | 
						|
  DOUT << "\n";
 | 
						|
  Indent -= 2;
 | 
						|
#endif
 | 
						|
 | 
						|
  return ResNode;
 | 
						|
}
 | 
						|
 | 
						|
bool X86DAGToDAGISel::
 | 
						|
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
 | 
						|
                             std::vector<SDValue> &OutOps) {
 | 
						|
  SDValue Op0, Op1, Op2, Op3;
 | 
						|
  switch (ConstraintCode) {
 | 
						|
  case 'o':   // offsetable        ??
 | 
						|
  case 'v':   // not offsetable    ??
 | 
						|
  default: return true;
 | 
						|
  case 'm':   // memory
 | 
						|
    if (!SelectAddr(Op, Op, Op0, Op1, Op2, Op3))
 | 
						|
      return true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  
 | 
						|
  OutOps.push_back(Op0);
 | 
						|
  OutOps.push_back(Op1);
 | 
						|
  OutOps.push_back(Op2);
 | 
						|
  OutOps.push_back(Op3);
 | 
						|
  AddToISelQueue(Op0);
 | 
						|
  AddToISelQueue(Op1);
 | 
						|
  AddToISelQueue(Op2);
 | 
						|
  AddToISelQueue(Op3);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// createX86ISelDag - This pass converts a legalized DAG into a 
 | 
						|
/// X86-specific DAG, ready for instruction scheduling.
 | 
						|
///
 | 
						|
FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM, bool Fast) {
 | 
						|
  return new X86DAGToDAGISel(TM, Fast);
 | 
						|
}
 |