mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-20 14:29:27 +00:00
Rather than just splitting the input type and hoping for the best, apply a bit more cleverness. Just splitting the types until the source is legal often leads to an illegal result time, which is then widened and a scalarization step is introduced which leads to truly horrible code generation. With the loop vectorizer, these sorts of operations are much more common, and so it's worth extra effort to do them well. Add a legalization hook for the operands of a TRUNCATE node, which will be encountered after the result type has been legalized, but if the operand type is still illegal. If simple splitting of both types ends up with the result type of each half still being legal, just do that (v16i16 -> v16i8 on ARM, for example). If, however, that would result in an illegal result type (v8i32 -> v8i8 on ARM, for example), we can get more clever with power-two vectors. Specifically, split the input type, but also widen the result element size, then concatenate the halves and truncate again. For example on ARM, To perform a "%res = v8i8 trunc v8i32 %in" we transform to: %inlo = v4i32 extract_subvector %in, 0 %inhi = v4i32 extract_subvector %in, 4 %lo16 = v4i16 trunc v4i32 %inlo %hi16 = v4i16 trunc v4i32 %inhi %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16 %res = v8i8 trunc v8i16 %in16 This allows instruction selection to generate three VMOVN instructions instead of a sequences of moves, stores and loads. Update the ARMTargetTransformInfo to take this improved legalization into account. Consider the simplified IR: define <16 x i8> @test1(<16 x i32>* %ap) { %a = load <16 x i32>* %ap %tmp = trunc <16 x i32> %a to <16 x i8> ret <16 x i8> %tmp } define <8 x i8> @test2(<8 x i32>* %ap) { %a = load <8 x i32>* %ap %tmp = trunc <8 x i32> %a to <8 x i8> ret <8 x i8> %tmp } Previously, we would generate the truly hideous: .syntax unified .section __TEXT,__text,regular,pure_instructions .globl _test1 .align 2 _test1: @ @test1 @ BB#0: push {r7} mov r7, sp sub sp, sp, #20 bic sp, sp, #7 add r1, r0, #48 add r2, r0, #32 vld1.64 {d24, d25}, [r0:128] vld1.64 {d16, d17}, [r1:128] vld1.64 {d18, d19}, [r2:128] add r1, r0, #16 vmovn.i32 d22, q8 vld1.64 {d16, d17}, [r1:128] vmovn.i32 d20, q9 vmovn.i32 d18, q12 vmov.u16 r0, d22[3] strb r0, [sp, #15] vmov.u16 r0, d22[2] strb r0, [sp, #14] vmov.u16 r0, d22[1] strb r0, [sp, #13] vmov.u16 r0, d22[0] vmovn.i32 d16, q8 strb r0, [sp, #12] vmov.u16 r0, d20[3] strb r0, [sp, #11] vmov.u16 r0, d20[2] strb r0, [sp, #10] vmov.u16 r0, d20[1] strb r0, [sp, #9] vmov.u16 r0, d20[0] strb r0, [sp, #8] vmov.u16 r0, d18[3] strb r0, [sp, #3] vmov.u16 r0, d18[2] strb r0, [sp, #2] vmov.u16 r0, d18[1] strb r0, [sp, #1] vmov.u16 r0, d18[0] strb r0, [sp] vmov.u16 r0, d16[3] strb r0, [sp, #7] vmov.u16 r0, d16[2] strb r0, [sp, #6] vmov.u16 r0, d16[1] strb r0, [sp, #5] vmov.u16 r0, d16[0] strb r0, [sp, #4] vldmia sp, {d16, d17} vmov r0, r1, d16 vmov r2, r3, d17 mov sp, r7 pop {r7} bx lr .globl _test2 .align 2 _test2: @ @test2 @ BB#0: push {r7} mov r7, sp sub sp, sp, #12 bic sp, sp, #7 vld1.64 {d16, d17}, [r0:128] add r0, r0, #16 vld1.64 {d20, d21}, [r0:128] vmovn.i32 d18, q8 vmov.u16 r0, d18[3] vmovn.i32 d16, q10 strb r0, [sp, #3] vmov.u16 r0, d18[2] strb r0, [sp, #2] vmov.u16 r0, d18[1] strb r0, [sp, #1] vmov.u16 r0, d18[0] strb r0, [sp] vmov.u16 r0, d16[3] strb r0, [sp, #7] vmov.u16 r0, d16[2] strb r0, [sp, #6] vmov.u16 r0, d16[1] strb r0, [sp, #5] vmov.u16 r0, d16[0] strb r0, [sp, #4] ldm sp, {r0, r1} mov sp, r7 pop {r7} bx lr Now, however, we generate the much more straightforward: .syntax unified .section __TEXT,__text,regular,pure_instructions .globl _test1 .align 2 _test1: @ @test1 @ BB#0: add r1, r0, #48 add r2, r0, #32 vld1.64 {d20, d21}, [r0:128] vld1.64 {d16, d17}, [r1:128] add r1, r0, #16 vld1.64 {d18, d19}, [r2:128] vld1.64 {d22, d23}, [r1:128] vmovn.i32 d17, q8 vmovn.i32 d16, q9 vmovn.i32 d18, q10 vmovn.i32 d19, q11 vmovn.i16 d17, q8 vmovn.i16 d16, q9 vmov r0, r1, d16 vmov r2, r3, d17 bx lr .globl _test2 .align 2 _test2: @ @test2 @ BB#0: vld1.64 {d16, d17}, [r0:128] add r0, r0, #16 vld1.64 {d18, d19}, [r0:128] vmovn.i32 d16, q8 vmovn.i32 d17, q9 vmovn.i16 d16, q8 vmov r0, r1, d16 bx lr git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179989 91177308-0d34-0410-b5e6-96231b3b80d8
459 lines
17 KiB
C++
459 lines
17 KiB
C++
//===-- ARMTargetTransformInfo.cpp - ARM specific TTI pass ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements a TargetTransformInfo analysis pass specific to the
|
|
/// ARM target machine. It uses the target's detailed information to provide
|
|
/// more precise answers to certain TTI queries, while letting the target
|
|
/// independent and default TTI implementations handle the rest.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "armtti"
|
|
#include "ARM.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/CostTable.h"
|
|
using namespace llvm;
|
|
|
|
// Declare the pass initialization routine locally as target-specific passes
|
|
// don't havve a target-wide initialization entry point, and so we rely on the
|
|
// pass constructor initialization.
|
|
namespace llvm {
|
|
void initializeARMTTIPass(PassRegistry &);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ARMTTI : public ImmutablePass, public TargetTransformInfo {
|
|
const ARMBaseTargetMachine *TM;
|
|
const ARMSubtarget *ST;
|
|
const ARMTargetLowering *TLI;
|
|
|
|
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
|
|
/// are set if the result needs to be inserted and/or extracted from vectors.
|
|
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
|
|
|
|
public:
|
|
ARMTTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
|
|
llvm_unreachable("This pass cannot be directly constructed");
|
|
}
|
|
|
|
ARMTTI(const ARMBaseTargetMachine *TM)
|
|
: ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
|
|
TLI(TM->getTargetLowering()) {
|
|
initializeARMTTIPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
virtual void initializePass() {
|
|
pushTTIStack(this);
|
|
}
|
|
|
|
virtual void finalizePass() {
|
|
popTTIStack();
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
TargetTransformInfo::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// Pass identification.
|
|
static char ID;
|
|
|
|
/// Provide necessary pointer adjustments for the two base classes.
|
|
virtual void *getAdjustedAnalysisPointer(const void *ID) {
|
|
if (ID == &TargetTransformInfo::ID)
|
|
return (TargetTransformInfo*)this;
|
|
return this;
|
|
}
|
|
|
|
/// \name Scalar TTI Implementations
|
|
/// @{
|
|
|
|
virtual unsigned getIntImmCost(const APInt &Imm, Type *Ty) const;
|
|
|
|
/// @}
|
|
|
|
|
|
/// \name Vector TTI Implementations
|
|
/// @{
|
|
|
|
unsigned getNumberOfRegisters(bool Vector) const {
|
|
if (Vector) {
|
|
if (ST->hasNEON())
|
|
return 16;
|
|
return 0;
|
|
}
|
|
|
|
if (ST->isThumb1Only())
|
|
return 8;
|
|
return 16;
|
|
}
|
|
|
|
unsigned getRegisterBitWidth(bool Vector) const {
|
|
if (Vector) {
|
|
if (ST->hasNEON())
|
|
return 128;
|
|
return 0;
|
|
}
|
|
|
|
return 32;
|
|
}
|
|
|
|
unsigned getMaximumUnrollFactor() const {
|
|
// These are out of order CPUs:
|
|
if (ST->isCortexA15() || ST->isSwift())
|
|
return 2;
|
|
return 1;
|
|
}
|
|
|
|
unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
|
|
int Index, Type *SubTp) const;
|
|
|
|
unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const;
|
|
|
|
unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) const;
|
|
|
|
unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) const;
|
|
|
|
unsigned getAddressComputationCost(Type *Val) const;
|
|
/// @}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_AG_PASS(ARMTTI, TargetTransformInfo, "armtti",
|
|
"ARM Target Transform Info", true, true, false)
|
|
char ARMTTI::ID = 0;
|
|
|
|
ImmutablePass *
|
|
llvm::createARMTargetTransformInfoPass(const ARMBaseTargetMachine *TM) {
|
|
return new ARMTTI(TM);
|
|
}
|
|
|
|
|
|
unsigned ARMTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned Bits = Ty->getPrimitiveSizeInBits();
|
|
if (Bits == 0 || Bits > 32)
|
|
return 4;
|
|
|
|
int32_t SImmVal = Imm.getSExtValue();
|
|
uint32_t ZImmVal = Imm.getZExtValue();
|
|
if (!ST->isThumb()) {
|
|
if ((SImmVal >= 0 && SImmVal < 65536) ||
|
|
(ARM_AM::getSOImmVal(ZImmVal) != -1) ||
|
|
(ARM_AM::getSOImmVal(~ZImmVal) != -1))
|
|
return 1;
|
|
return ST->hasV6T2Ops() ? 2 : 3;
|
|
} else if (ST->isThumb2()) {
|
|
if ((SImmVal >= 0 && SImmVal < 65536) ||
|
|
(ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
|
|
(ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
|
|
return 1;
|
|
return ST->hasV6T2Ops() ? 2 : 3;
|
|
} else /*Thumb1*/ {
|
|
if (SImmVal >= 0 && SImmVal < 256)
|
|
return 1;
|
|
if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
|
|
return 2;
|
|
// Load from constantpool.
|
|
return 3;
|
|
}
|
|
return 2;
|
|
}
|
|
|
|
unsigned ARMTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src) const {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// Single to/from double precision conversions.
|
|
static const CostTblEntry<MVT> NEONFltDblTbl[] = {
|
|
// Vector fptrunc/fpext conversions.
|
|
{ ISD::FP_ROUND, MVT::v2f64, 2 },
|
|
{ ISD::FP_EXTEND, MVT::v2f32, 2 },
|
|
{ ISD::FP_EXTEND, MVT::v4f32, 4 }
|
|
};
|
|
|
|
if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
|
|
ISD == ISD::FP_EXTEND)) {
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
|
|
int Idx = CostTableLookup<MVT>(NEONFltDblTbl, array_lengthof(NEONFltDblTbl),
|
|
ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * NEONFltDblTbl[Idx].Cost;
|
|
}
|
|
|
|
EVT SrcTy = TLI->getValueType(Src);
|
|
EVT DstTy = TLI->getValueType(Dst);
|
|
|
|
if (!SrcTy.isSimple() || !DstTy.isSimple())
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
|
|
// Some arithmetic, load and store operations have specific instructions
|
|
// to cast up/down their types automatically at no extra cost.
|
|
// TODO: Get these tables to know at least what the related operations are.
|
|
static const TypeConversionCostTblEntry<MVT> NEONVectorConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
|
|
|
|
// The number of vmovl instructions for the extension.
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
|
|
|
|
// Operations that we legalize using splitting.
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
|
|
|
|
// Vector float <-> i32 conversions.
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
|
|
|
|
// Vector double <-> i32 conversions.
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
|
|
};
|
|
|
|
if (SrcTy.isVector() && ST->hasNEON()) {
|
|
int Idx = ConvertCostTableLookup<MVT>(NEONVectorConversionTbl,
|
|
array_lengthof(NEONVectorConversionTbl),
|
|
ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return NEONVectorConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
// Scalar float to integer conversions.
|
|
static const TypeConversionCostTblEntry<MVT> NEONFloatConversionTbl[] = {
|
|
{ ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
|
|
};
|
|
if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
|
|
int Idx = ConvertCostTableLookup<MVT>(NEONFloatConversionTbl,
|
|
array_lengthof(NEONFloatConversionTbl),
|
|
ISD, DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return NEONFloatConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
// Scalar integer to float conversions.
|
|
static const TypeConversionCostTblEntry<MVT> NEONIntegerConversionTbl[] = {
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
|
|
};
|
|
|
|
if (SrcTy.isInteger() && ST->hasNEON()) {
|
|
int Idx = ConvertCostTableLookup<MVT>(NEONIntegerConversionTbl,
|
|
array_lengthof(NEONIntegerConversionTbl),
|
|
ISD, DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return NEONIntegerConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
// Scalar integer conversion costs.
|
|
static const TypeConversionCostTblEntry<MVT> ARMIntegerConversionTbl[] = {
|
|
// i16 -> i64 requires two dependent operations.
|
|
{ ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
|
|
|
|
// Truncates on i64 are assumed to be free.
|
|
{ ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
|
|
{ ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
|
|
};
|
|
|
|
if (SrcTy.isInteger()) {
|
|
int Idx =
|
|
ConvertCostTableLookup<MVT>(ARMIntegerConversionTbl,
|
|
array_lengthof(ARMIntegerConversionTbl),
|
|
ISD, DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return ARMIntegerConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
|
|
}
|
|
|
|
unsigned ARMTTI::getVectorInstrCost(unsigned Opcode, Type *ValTy,
|
|
unsigned Index) const {
|
|
// Penalize inserting into an D-subregister. We end up with a three times
|
|
// lower estimated throughput on swift.
|
|
if (ST->isSwift() &&
|
|
Opcode == Instruction::InsertElement &&
|
|
ValTy->isVectorTy() &&
|
|
ValTy->getScalarSizeInBits() <= 32)
|
|
return 3;
|
|
|
|
return TargetTransformInfo::getVectorInstrCost(Opcode, ValTy, Index);
|
|
}
|
|
|
|
unsigned ARMTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy) const {
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
// On NEON a a vector select gets lowered to vbsl.
|
|
if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
|
|
// Lowering of some vector selects is currently far from perfect.
|
|
static const TypeConversionCostTblEntry<MVT> NEONVectorSelectTbl[] = {
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i16, 2*16 + 1 + 3*1 + 4*1 },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i32, 4*8 + 1*3 + 1*4 + 1*2 },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i32, 4*16 + 1*6 + 1*8 + 1*4 },
|
|
{ ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
|
|
{ ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
|
|
{ ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
|
|
};
|
|
|
|
EVT SelCondTy = TLI->getValueType(CondTy);
|
|
EVT SelValTy = TLI->getValueType(ValTy);
|
|
int Idx = ConvertCostTableLookup<MVT>(NEONVectorSelectTbl,
|
|
array_lengthof(NEONVectorSelectTbl),
|
|
ISD, SelCondTy.getSimpleVT(),
|
|
SelValTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return NEONVectorSelectTbl[Idx].Cost;
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
|
|
return LT.first;
|
|
}
|
|
|
|
return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
|
|
}
|
|
|
|
unsigned ARMTTI::getAddressComputationCost(Type *Ty) const {
|
|
// In many cases the address computation is not merged into the instruction
|
|
// addressing mode.
|
|
return 1;
|
|
}
|
|
|
|
unsigned ARMTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) const {
|
|
// We only handle costs of reverse shuffles for now.
|
|
if (Kind != SK_Reverse)
|
|
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
|
|
static const CostTblEntry<MVT> NEONShuffleTbl[] = {
|
|
// Reverse shuffle cost one instruction if we are shuffling within a double
|
|
// word (vrev) or two if we shuffle a quad word (vrev, vext).
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v2i32, 1 },
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v2f32, 1 },
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v2i64, 1 },
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v2f64, 1 },
|
|
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v4i32, 2 },
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v4f32, 2 },
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v8i16, 2 },
|
|
{ ISD::VECTOR_SHUFFLE, MVT::v16i8, 2 }
|
|
};
|
|
|
|
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
|
|
|
|
int Idx = CostTableLookup<MVT>(NEONShuffleTbl, array_lengthof(NEONShuffleTbl),
|
|
ISD::VECTOR_SHUFFLE, LT.second);
|
|
if (Idx == -1)
|
|
return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
|
|
return LT.first * NEONShuffleTbl[Idx].Cost;
|
|
}
|