llvm-6502/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
2005-10-04 16:41:51 +00:00

1325 lines
45 KiB
C++

//===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a simple two pass scheduler. The first pass attempts to push
// backward any lengthy instructions and critical paths. The second pass packs
// instructions into semi-optimal time slots.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sched"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <iostream>
using namespace llvm;
namespace {
// Style of scheduling to use.
enum ScheduleChoices {
noScheduling,
simpleScheduling,
};
} // namespace
cl::opt<ScheduleChoices> ScheduleStyle("sched",
cl::desc("Choose scheduling style"),
cl::init(noScheduling),
cl::values(
clEnumValN(noScheduling, "none",
"Trivial emission with no analysis"),
clEnumValN(simpleScheduling, "simple",
"Minimize critical path and maximize processor utilization"),
clEnumValEnd));
#ifndef NDEBUG
static cl::opt<bool>
ViewDAGs("view-sched-dags", cl::Hidden,
cl::desc("Pop up a window to show sched dags as they are processed"));
#else
static const bool ViewDAGs = 0;
#endif
namespace {
//===----------------------------------------------------------------------===//
///
/// BitsIterator - Provides iteration through individual bits in a bit vector.
///
template<class T>
class BitsIterator {
private:
T Bits; // Bits left to iterate through
public:
/// Ctor.
BitsIterator(T Initial) : Bits(Initial) {}
/// Next - Returns the next bit set or zero if exhausted.
inline T Next() {
// Get the rightmost bit set
T Result = Bits & -Bits;
// Remove from rest
Bits &= ~Result;
// Return single bit or zero
return Result;
}
};
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
///
/// ResourceTally - Manages the use of resources over time intervals. Each
/// item (slot) in the tally vector represents the resources used at a given
/// moment. A bit set to 1 indicates that a resource is in use, otherwise
/// available. An assumption is made that the tally is large enough to schedule
/// all current instructions (asserts otherwise.)
///
template<class T>
class ResourceTally {
private:
std::vector<T> Tally; // Resources used per slot
typedef typename std::vector<T>::iterator Iter;
// Tally iterator
/// AllInUse - Test to see if all of the resources in the slot are busy (set.)
inline bool AllInUse(Iter Cursor, unsigned ResourceSet) {
return (*Cursor & ResourceSet) == ResourceSet;
}
/// Skip - Skip over slots that use all of the specified resource (all are
/// set.)
Iter Skip(Iter Cursor, unsigned ResourceSet) {
assert(ResourceSet && "At least one resource bit needs to bet set");
// Continue to the end
while (true) {
// Break out if one of the resource bits is not set
if (!AllInUse(Cursor, ResourceSet)) return Cursor;
// Try next slot
Cursor++;
assert(Cursor < Tally.end() && "Tally is not large enough for schedule");
}
}
/// FindSlots - Starting from Begin, locate N consecutive slots where at least
/// one of the resource bits is available. Returns the address of first slot.
Iter FindSlots(Iter Begin, unsigned N, unsigned ResourceSet,
unsigned &Resource) {
// Track position
Iter Cursor = Begin;
// Try all possible slots forward
while (true) {
// Skip full slots
Cursor = Skip(Cursor, ResourceSet);
// Determine end of interval
Iter End = Cursor + N;
assert(End <= Tally.end() && "Tally is not large enough for schedule");
// Iterate thru each resource
BitsIterator<T> Resources(ResourceSet & ~*Cursor);
while (unsigned Res = Resources.Next()) {
// Check if resource is available for next N slots
// Break out if resource is busy
Iter Interval = Cursor;
for (; Interval < End && !(*Interval & Res); Interval++) {}
// If available for interval, return where and which resource
if (Interval == End) {
Resource = Res;
return Cursor;
}
// Otherwise, check if worth checking other resources
if (AllInUse(Interval, ResourceSet)) {
// Start looking beyond interval
Cursor = Interval;
break;
}
}
Cursor++;
}
}
/// Reserve - Mark busy (set) the specified N slots.
void Reserve(Iter Begin, unsigned N, unsigned Resource) {
// Determine end of interval
Iter End = Begin + N;
assert(End <= Tally.end() && "Tally is not large enough for schedule");
// Set resource bit in each slot
for (; Begin < End; Begin++)
*Begin |= Resource;
}
public:
/// Initialize - Resize and zero the tally to the specified number of time
/// slots.
inline void Initialize(unsigned N) {
Tally.assign(N, 0); // Initialize tally to all zeros.
}
// FindAndReserve - Locate and mark busy (set) N bits started at slot I, using
// ResourceSet for choices.
unsigned FindAndReserve(unsigned I, unsigned N, unsigned ResourceSet) {
// Which resource used
unsigned Resource;
// Find slots for instruction.
Iter Where = FindSlots(Tally.begin() + I, N, ResourceSet, Resource);
// Reserve the slots
Reserve(Where, N, Resource);
// Return time slot (index)
return Where - Tally.begin();
}
};
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
///
/// Node group - This struct is used to manage flagged node groups.
///
class NodeInfo;
class NodeGroup : public std::vector<NodeInfo *> {
private:
int Pending; // Number of visits pending before
// adding to order
public:
// Ctor.
NodeGroup() : Pending(0) {}
// Accessors
inline NodeInfo *getLeader() { return empty() ? NULL : front(); }
inline int getPending() const { return Pending; }
inline void setPending(int P) { Pending = P; }
inline int addPending(int I) { return Pending += I; }
static void Add(NodeInfo *D, NodeInfo *U);
static unsigned CountInternalUses(NodeInfo *D, NodeInfo *U);
};
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
///
/// NodeInfo - This struct tracks information used to schedule the a node.
///
class NodeInfo {
private:
int Pending; // Number of visits pending before
// adding to order
public:
SDNode *Node; // DAG node
unsigned Latency; // Cycles to complete instruction
unsigned ResourceSet; // Bit vector of usable resources
unsigned Slot; // Node's time slot
NodeGroup *Group; // Grouping information
unsigned VRBase; // Virtual register base
// Ctor.
NodeInfo(SDNode *N = NULL)
: Pending(0)
, Node(N)
, Latency(0)
, ResourceSet(0)
, Slot(0)
, Group(NULL)
, VRBase(0)
{}
// Accessors
inline bool isInGroup() const {
assert(!Group || !Group->empty() && "Group with no members");
return Group != NULL;
}
inline bool isGroupLeader() const {
return isInGroup() && Group->getLeader() == this;
}
inline int getPending() const {
return Group ? Group->getPending() : Pending;
}
inline void setPending(int P) {
if (Group) Group->setPending(P);
else Pending = P;
}
inline int addPending(int I) {
if (Group) return Group->addPending(I);
else return Pending += I;
}
};
typedef std::vector<NodeInfo *>::iterator NIIterator;
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
///
/// NodeGroupIterator - Iterates over all the nodes indicated by the node info.
/// If the node is in a group then iterate over the members of the group,
/// otherwise just the node info.
///
class NodeGroupIterator {
private:
NodeInfo *NI; // Node info
NIIterator NGI; // Node group iterator
NIIterator NGE; // Node group iterator end
public:
// Ctor.
NodeGroupIterator(NodeInfo *N) : NI(N) {
// If the node is in a group then set up the group iterator. Otherwise
// the group iterators will trip first time out.
if (N->isInGroup()) {
// get Group
NodeGroup *Group = NI->Group;
NGI = Group->begin();
NGE = Group->end();
// Prevent this node from being used (will be in members list
NI = NULL;
}
}
/// next - Return the next node info, otherwise NULL.
///
NodeInfo *next() {
// If members list
if (NGI != NGE) return *NGI++;
// Use node as the result (may be NULL)
NodeInfo *Result = NI;
// Only use once
NI = NULL;
// Return node or NULL
return Result;
}
};
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
///
/// NodeGroupOpIterator - Iterates over all the operands of a node. If the node
/// is a member of a group, this iterates over all the operands of all the
/// members of the group.
///
class NodeGroupOpIterator {
private:
NodeInfo *NI; // Node containing operands
NodeGroupIterator GI; // Node group iterator
SDNode::op_iterator OI; // Operand iterator
SDNode::op_iterator OE; // Operand iterator end
/// CheckNode - Test if node has more operands. If not get the next node
/// skipping over nodes that have no operands.
void CheckNode() {
// Only if operands are exhausted first
while (OI == OE) {
// Get next node info
NodeInfo *NI = GI.next();
// Exit if nodes are exhausted
if (!NI) return;
// Get node itself
SDNode *Node = NI->Node;
// Set up the operand iterators
OI = Node->op_begin();
OE = Node->op_end();
}
}
public:
// Ctor.
NodeGroupOpIterator(NodeInfo *N) : NI(N), GI(N) {}
/// isEnd - Returns true when not more operands are available.
///
inline bool isEnd() { CheckNode(); return OI == OE; }
/// next - Returns the next available operand.
///
inline SDOperand next() {
assert(OI != OE && "Not checking for end of NodeGroupOpIterator correctly");
return *OI++;
}
};
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
///
/// SimpleSched - Simple two pass scheduler.
///
class SimpleSched {
private:
// TODO - get ResourceSet from TII
enum {
RSInteger = 0x3, // Two integer units
RSFloat = 0xC, // Two float units
RSLoadStore = 0x30, // Two load store units
RSOther = 0 // Processing unit independent
};
MachineBasicBlock *BB; // Current basic block
SelectionDAG &DAG; // DAG of the current basic block
const TargetMachine &TM; // Target processor
const TargetInstrInfo &TII; // Target instruction information
const MRegisterInfo &MRI; // Target processor register information
SSARegMap *RegMap; // Virtual/real register map
MachineConstantPool *ConstPool; // Target constant pool
unsigned NodeCount; // Number of nodes in DAG
NodeInfo *Info; // Info for nodes being scheduled
std::map<SDNode *, NodeInfo *> Map; // Map nodes to info
std::vector<NodeInfo*> Ordering; // Emit ordering of nodes
ResourceTally<unsigned> Tally; // Resource usage tally
unsigned NSlots; // Total latency
std::map<SDNode *, unsigned> VRMap; // Node to VR map
static const unsigned NotFound = ~0U; // Search marker
public:
// Ctor.
SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
: BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()),
MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
ConstPool(BB->getParent()->getConstantPool()),
NSlots(0) {
assert(&TII && "Target doesn't provide instr info?");
assert(&MRI && "Target doesn't provide register info?");
}
// Run - perform scheduling.
MachineBasicBlock *Run() {
Schedule();
return BB;
}
private:
/// getNI - Returns the node info for the specified node.
///
inline NodeInfo *getNI(SDNode *Node) { return Map[Node]; }
/// getVR - Returns the virtual register number of the node.
///
inline unsigned getVR(SDOperand Op) {
NodeInfo *NI = getNI(Op.Val);
assert(NI->VRBase != 0 && "Node emitted out of order - late");
return NI->VRBase + Op.ResNo;
}
static bool isFlagDefiner(SDNode *A);
static bool isFlagUser(SDNode *A);
static bool isDefiner(NodeInfo *A, NodeInfo *B);
static bool isPassiveNode(SDNode *Node);
void IncludeNode(NodeInfo *NI);
void VisitAll();
void Schedule();
void GatherNodeInfo();
bool isStrongDependency(NodeInfo *A, NodeInfo *B);
bool isWeakDependency(NodeInfo *A, NodeInfo *B);
void ScheduleBackward();
void ScheduleForward();
void EmitAll();
void EmitNode(NodeInfo *NI);
static unsigned CountResults(SDNode *Node);
static unsigned CountOperands(SDNode *Node);
unsigned CreateVirtualRegisters(MachineInstr *MI,
unsigned NumResults,
const TargetInstrDescriptor &II);
unsigned EmitDAG(SDOperand A);
void printSI(std::ostream &O, NodeInfo *NI) const;
void print(std::ostream &O) const;
inline void dump(const char *tag) const { std::cerr << tag; dump(); }
void dump() const;
};
//===----------------------------------------------------------------------===//
} // namespace
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// Add - Adds a definer and user pair to a node group.
///
void NodeGroup::Add(NodeInfo *D, NodeInfo *U) {
// Get current groups
NodeGroup *DGroup = D->Group;
NodeGroup *UGroup = U->Group;
// If both are members of groups
if (DGroup && UGroup) {
// There may have been another edge connecting
if (DGroup == UGroup) return;
// Add the pending users count
DGroup->addPending(UGroup->getPending());
// For each member of the users group
NodeGroupIterator UNGI(U);
while (NodeInfo *UNI = UNGI.next() ) {
// Change the group
UNI->Group = DGroup;
// For each member of the definers group
NodeGroupIterator DNGI(D);
while (NodeInfo *DNI = DNGI.next() ) {
// Remove internal edges
DGroup->addPending(-CountInternalUses(DNI, UNI));
}
}
// Merge the two lists
DGroup->insert(DGroup->end(), UGroup->begin(), UGroup->end());
} else if (DGroup) {
// Make user member of definers group
U->Group = DGroup;
// Add users uses to definers group pending
DGroup->addPending(U->Node->use_size());
// For each member of the definers group
NodeGroupIterator DNGI(D);
while (NodeInfo *DNI = DNGI.next() ) {
// Remove internal edges
DGroup->addPending(-CountInternalUses(DNI, U));
}
DGroup->push_back(U);
} else if (UGroup) {
// Make definer member of users group
D->Group = UGroup;
// Add definers uses to users group pending
UGroup->addPending(D->Node->use_size());
// For each member of the users group
NodeGroupIterator UNGI(U);
while (NodeInfo *UNI = UNGI.next() ) {
// Remove internal edges
UGroup->addPending(-CountInternalUses(D, UNI));
}
UGroup->insert(UGroup->begin(), D);
} else {
D->Group = U->Group = DGroup = new NodeGroup();
DGroup->addPending(D->Node->use_size() + U->Node->use_size() -
CountInternalUses(D, U));
DGroup->push_back(D);
DGroup->push_back(U);
}
}
/// CountInternalUses - Returns the number of edges between the two nodes.
///
unsigned NodeGroup::CountInternalUses(NodeInfo *D, NodeInfo *U) {
unsigned N = 0;
for (SDNode:: use_iterator UI = D->Node->use_begin(),
E = D->Node->use_end(); UI != E; UI++) {
if (*UI == U->Node) N++;
}
return N;
}
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// isFlagDefiner - Returns true if the node defines a flag result.
bool SimpleSched::isFlagDefiner(SDNode *A) {
unsigned N = A->getNumValues();
return N && A->getValueType(N - 1) == MVT::Flag;
}
/// isFlagUser - Returns true if the node uses a flag result.
///
bool SimpleSched::isFlagUser(SDNode *A) {
unsigned N = A->getNumOperands();
return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
}
/// isDefiner - Return true if node A is a definer for B.
///
bool SimpleSched::isDefiner(NodeInfo *A, NodeInfo *B) {
// While there are A nodes
NodeGroupIterator NII(A);
while (NodeInfo *NI = NII.next()) {
// Extract node
SDNode *Node = NI->Node;
// While there operands in nodes of B
NodeGroupOpIterator NGOI(B);
while (!NGOI.isEnd()) {
SDOperand Op = NGOI.next();
// If node from A defines a node in B
if (Node == Op.Val) return true;
}
}
return false;
}
/// isPassiveNode - Return true if the node is a non-scheduled leaf.
///
bool SimpleSched::isPassiveNode(SDNode *Node) {
if (isa<ConstantSDNode>(Node)) return true;
if (isa<RegisterSDNode>(Node)) return true;
if (isa<GlobalAddressSDNode>(Node)) return true;
if (isa<BasicBlockSDNode>(Node)) return true;
if (isa<FrameIndexSDNode>(Node)) return true;
if (isa<ConstantPoolSDNode>(Node)) return true;
if (isa<ExternalSymbolSDNode>(Node)) return true;
return false;
}
/// IncludeNode - Add node to NodeInfo vector.
///
void SimpleSched::IncludeNode(NodeInfo *NI) {
// Get node
SDNode *Node = NI->Node;
// Ignore entry node
if (Node->getOpcode() == ISD::EntryToken) return;
// Check current count for node
int Count = NI->getPending();
// If the node is already in list
if (Count < 0) return;
// Decrement count to indicate a visit
Count--;
// If count has gone to zero then add node to list
if (!Count) {
// Add node
if (NI->isInGroup()) {
Ordering.push_back(NI->Group->getLeader());
} else {
Ordering.push_back(NI);
}
// indicate node has been added
Count--;
}
// Mark as visited with new count
NI->setPending(Count);
}
/// VisitAll - Visit each node breadth-wise to produce an initial ordering.
/// Note that the ordering in the Nodes vector is reversed.
void SimpleSched::VisitAll() {
// Add first element to list
Ordering.push_back(getNI(DAG.getRoot().Val));
// Iterate through all nodes that have been added
for (unsigned i = 0; i < Ordering.size(); i++) { // note: size() varies
// Visit all operands
NodeGroupOpIterator NGI(Ordering[i]);
while (!NGI.isEnd()) {
// Get next operand
SDOperand Op = NGI.next();
// Get node
SDNode *Node = Op.Val;
// Ignore passive nodes
if (isPassiveNode(Node)) continue;
// Check out node
IncludeNode(getNI(Node));
}
}
// Add entry node last (IncludeNode filters entry nodes)
if (DAG.getEntryNode().Val != DAG.getRoot().Val)
Ordering.push_back(getNI(DAG.getEntryNode().Val));
// FIXME - Reverse the order
for (unsigned i = 0, N = Ordering.size(), Half = N >> 1; i < Half; i++) {
unsigned j = N - i - 1;
NodeInfo *tmp = Ordering[i];
Ordering[i] = Ordering[j];
Ordering[j] = tmp;
}
}
/// GatherNodeInfo - Get latency and resource information about each node.
///
void SimpleSched::GatherNodeInfo() {
// Allocate node information
Info = new NodeInfo[NodeCount];
// Get base of all nodes table
SelectionDAG::allnodes_iterator AllNodes = DAG.allnodes_begin();
// For each node being scheduled
for (unsigned i = 0, N = NodeCount; i < N; i++) {
// Get next node from DAG all nodes table
SDNode *Node = AllNodes[i];
// Fast reference to node schedule info
NodeInfo* NI = &Info[i];
// Set up map
Map[Node] = NI;
// Set node
NI->Node = Node;
// Set pending visit count
NI->setPending(Node->use_size());
MVT::ValueType VT = Node->getValueType(0);
if (Node->isTargetOpcode()) {
MachineOpCode TOpc = Node->getTargetOpcode();
// FIXME: This is an ugly (but temporary!) hack to test the scheduler
// before we have real target info.
// FIXME NI->Latency = std::max(1, TII.maxLatency(TOpc));
// FIXME NI->ResourceSet = TII.resources(TOpc);
if (TII.isCall(TOpc)) {
NI->ResourceSet = RSInteger;
NI->Latency = 40;
} else if (TII.isLoad(TOpc)) {
NI->ResourceSet = RSLoadStore;
NI->Latency = 5;
} else if (TII.isStore(TOpc)) {
NI->ResourceSet = RSLoadStore;
NI->Latency = 2;
} else if (MVT::isInteger(VT)) {
NI->ResourceSet = RSInteger;
NI->Latency = 2;
} else if (MVT::isFloatingPoint(VT)) {
NI->ResourceSet = RSFloat;
NI->Latency = 3;
} else {
NI->ResourceSet = RSOther;
NI->Latency = 0;
}
} else {
if (MVT::isInteger(VT)) {
NI->ResourceSet = RSInteger;
NI->Latency = 2;
} else if (MVT::isFloatingPoint(VT)) {
NI->ResourceSet = RSFloat;
NI->Latency = 3;
} else {
NI->ResourceSet = RSOther;
NI->Latency = 0;
}
}
// Add one slot for the instruction itself
NI->Latency++;
// Sum up all the latencies for max tally size
NSlots += NI->Latency;
}
// Put flagged nodes into groups
for (unsigned i = 0, N = NodeCount; i < N; i++) {
NodeInfo* NI = &Info[i];
SDNode *Node = NI->Node;
// For each operand (in reverse to only look at flags)
for (unsigned N = Node->getNumOperands(); 0 < N--;) {
// Get operand
SDOperand Op = Node->getOperand(N);
// No more flags to walk
if (Op.getValueType() != MVT::Flag) break;
// Add to node group
NodeGroup::Add(getNI(Op.Val), NI);
}
}
}
/// isStrongDependency - Return true if node A has results used by node B.
/// I.E., B must wait for latency of A.
bool SimpleSched::isStrongDependency(NodeInfo *A, NodeInfo *B) {
// If A defines for B then it's a strong dependency
return isDefiner(A, B);
}
/// isWeakDependency Return true if node A produces a result that will
/// conflict with operands of B.
bool SimpleSched::isWeakDependency(NodeInfo *A, NodeInfo *B) {
// TODO check for conflicting real registers and aliases
#if 0 // FIXME - Since we are in SSA form and not checking register aliasing
return A->Node->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
#else
return A->Node->getOpcode() == ISD::EntryToken;
#endif
}
/// ScheduleBackward - Schedule instructions so that any long latency
/// instructions and the critical path get pushed back in time. Time is run in
/// reverse to allow code reuse of the Tally and eliminate the overhead of
/// biasing every slot indices against NSlots.
void SimpleSched::ScheduleBackward() {
// Size and clear the resource tally
Tally.Initialize(NSlots);
// Get number of nodes to schedule
unsigned N = Ordering.size();
// For each node being scheduled
for (unsigned i = N; 0 < i--;) {
NodeInfo *NI = Ordering[i];
// Track insertion
unsigned Slot = NotFound;
// Compare against those previously scheduled nodes
unsigned j = i + 1;
for (; j < N; j++) {
// Get following instruction
NodeInfo *Other = Ordering[j];
// Check dependency against previously inserted nodes
if (isStrongDependency(NI, Other)) {
Slot = Other->Slot + Other->Latency;
break;
} else if (isWeakDependency(NI, Other)) {
Slot = Other->Slot;
break;
}
}
// If independent of others (or first entry)
if (Slot == NotFound) Slot = 0;
// Find a slot where the needed resources are available
if (NI->ResourceSet)
Slot = Tally.FindAndReserve(Slot, NI->Latency, NI->ResourceSet);
// Set node slot
NI->Slot = Slot;
// Insert sort based on slot
j = i + 1;
for (; j < N; j++) {
// Get following instruction
NodeInfo *Other = Ordering[j];
// Should we look further
if (Slot >= Other->Slot) break;
// Shuffle other into ordering
Ordering[j - 1] = Other;
}
// Insert node in proper slot
if (j != i + 1) Ordering[j - 1] = NI;
}
}
/// ScheduleForward - Schedule instructions to maximize packing.
///
void SimpleSched::ScheduleForward() {
// Size and clear the resource tally
Tally.Initialize(NSlots);
// Get number of nodes to schedule
unsigned N = Ordering.size();
// For each node being scheduled
for (unsigned i = 0; i < N; i++) {
NodeInfo *NI = Ordering[i];
// Track insertion
unsigned Slot = NotFound;
// Compare against those previously scheduled nodes
unsigned j = i;
for (; 0 < j--;) {
// Get following instruction
NodeInfo *Other = Ordering[j];
// Check dependency against previously inserted nodes
if (isStrongDependency(Other, NI)) {
Slot = Other->Slot + Other->Latency;
break;
} else if (isWeakDependency(Other, NI)) {
Slot = Other->Slot;
break;
}
}
// If independent of others (or first entry)
if (Slot == NotFound) Slot = 0;
// Find a slot where the needed resources are available
if (NI->ResourceSet)
Slot = Tally.FindAndReserve(Slot, NI->Latency, NI->ResourceSet);
// Set node slot
NI->Slot = Slot;
// Insert sort based on slot
j = i;
for (; 0 < j--;) {
// Get following instruction
NodeInfo *Other = Ordering[j];
// Should we look further
if (Slot >= Other->Slot) break;
// Shuffle other into ordering
Ordering[j + 1] = Other;
}
// Insert node in proper slot
if (j != i) Ordering[j + 1] = NI;
}
}
/// EmitAll - Emit all nodes in schedule sorted order.
///
void SimpleSched::EmitAll() {
// For each node in the ordering
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
// Get the scheduling info
NodeInfo *NI = Ordering[i];
#if 0
// Iterate through nodes
NodeGroupIterator NGI(Ordering[i]);
while (NodeInfo *NI = NGI.next()) EmitNode(NI);
#else
if (NI->isInGroup()) {
if (NI->isGroupLeader()) {
NodeGroupIterator NGI(Ordering[i]);
while (NodeInfo *NI = NGI.next()) EmitNode(NI);
}
} else {
EmitNode(NI);
}
#endif
}
}
/// CountResults - The results of target nodes have register or immediate
/// operands first, then an optional chain, and optional flag operands (which do
/// not go into the machine instrs.)
unsigned SimpleSched::CountResults(SDNode *Node) {
unsigned N = Node->getNumValues();
while (N && Node->getValueType(N - 1) == MVT::Flag)
--N;
if (N && Node->getValueType(N - 1) == MVT::Other)
--N; // Skip over chain result.
return N;
}
/// CountOperands The inputs to target nodes have any actual inputs first,
/// followed by an optional chain operand, then flag operands. Compute the
/// number of actual operands that will go into the machine instr.
unsigned SimpleSched::CountOperands(SDNode *Node) {
unsigned N = Node->getNumOperands();
while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag)
--N;
if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
--N; // Ignore chain if it exists.
return N;
}
/// CreateVirtualRegisters - Add result register values for things that are
/// defined by this instruction.
unsigned SimpleSched::CreateVirtualRegisters(MachineInstr *MI,
unsigned NumResults,
const TargetInstrDescriptor &II) {
// Create the result registers for this node and add the result regs to
// the machine instruction.
const TargetOperandInfo *OpInfo = II.OpInfo;
unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass);
MI->addRegOperand(ResultReg, MachineOperand::Def);
for (unsigned i = 1; i != NumResults; ++i) {
assert(OpInfo[i].RegClass && "Isn't a register operand!");
MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[i].RegClass),
MachineOperand::Def);
}
return ResultReg;
}
/// EmitNode - Generate machine code for an node and needed dependencies.
///
void SimpleSched::EmitNode(NodeInfo *NI) {
unsigned VRBase = 0; // First virtual register for node
SDNode *Node = NI->Node;
// If machine instruction
if (Node->isTargetOpcode()) {
unsigned Opc = Node->getTargetOpcode();
const TargetInstrDescriptor &II = TII.get(Opc);
unsigned NumResults = CountResults(Node);
unsigned NodeOperands = CountOperands(Node);
unsigned NumMIOperands = NodeOperands + NumResults;
#ifndef NDEBUG
assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&&
"#operands for dag node doesn't match .td file!");
#endif
// Create the new machine instruction.
MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true);
// Add result register values for things that are defined by this
// instruction.
if (NumResults) VRBase = CreateVirtualRegisters(MI, NumResults, II);
// Emit all of the actual operands of this instruction, adding them to the
// instruction as appropriate.
for (unsigned i = 0; i != NodeOperands; ++i) {
if (Node->getOperand(i).isTargetOpcode()) {
// Note that this case is redundant with the final else block, but we
// include it because it is the most common and it makes the logic
// simpler here.
assert(Node->getOperand(i).getValueType() != MVT::Other &&
Node->getOperand(i).getValueType() != MVT::Flag &&
"Chain and flag operands should occur at end of operand list!");
// Get/emit the operand.
unsigned VReg = getVR(Node->getOperand(i));
MI->addRegOperand(VReg, MachineOperand::Use);
// Verify that it is right.
assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
assert(II.OpInfo[i+NumResults].RegClass &&
"Don't have operand info for this instruction!");
assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass &&
"Register class of operand and regclass of use don't agree!");
} else if (ConstantSDNode *C =
dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
MI->addZeroExtImm64Operand(C->getValue());
} else if (RegisterSDNode*R =
dyn_cast<RegisterSDNode>(Node->getOperand(i))) {
MI->addRegOperand(R->getReg(), MachineOperand::Use);
} else if (GlobalAddressSDNode *TGA =
dyn_cast<GlobalAddressSDNode>(Node->getOperand(i))) {
MI->addGlobalAddressOperand(TGA->getGlobal(), false, 0);
} else if (BasicBlockSDNode *BB =
dyn_cast<BasicBlockSDNode>(Node->getOperand(i))) {
MI->addMachineBasicBlockOperand(BB->getBasicBlock());
} else if (FrameIndexSDNode *FI =
dyn_cast<FrameIndexSDNode>(Node->getOperand(i))) {
MI->addFrameIndexOperand(FI->getIndex());
} else if (ConstantPoolSDNode *CP =
dyn_cast<ConstantPoolSDNode>(Node->getOperand(i))) {
unsigned Idx = ConstPool->getConstantPoolIndex(CP->get());
MI->addConstantPoolIndexOperand(Idx);
} else if (ExternalSymbolSDNode *ES =
dyn_cast<ExternalSymbolSDNode>(Node->getOperand(i))) {
MI->addExternalSymbolOperand(ES->getSymbol(), false);
} else {
assert(Node->getOperand(i).getValueType() != MVT::Other &&
Node->getOperand(i).getValueType() != MVT::Flag &&
"Chain and flag operands should occur at end of operand list!");
unsigned VReg = getVR(Node->getOperand(i));
MI->addRegOperand(VReg, MachineOperand::Use);
// Verify that it is right.
assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
assert(II.OpInfo[i+NumResults].RegClass &&
"Don't have operand info for this instruction!");
assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass &&
"Register class of operand and regclass of use don't agree!");
}
}
// Now that we have emitted all operands, emit this instruction itself.
if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) {
BB->insert(BB->end(), MI);
} else {
// Insert this instruction into the end of the basic block, potentially
// taking some custom action.
BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB);
}
} else {
switch (Node->getOpcode()) {
default:
Node->dump();
assert(0 && "This target-independent node should have been selected!");
case ISD::EntryToken: // fall thru
case ISD::TokenFactor:
break;
case ISD::CopyToReg: {
unsigned Val = getVR(Node->getOperand(2));
MRI.copyRegToReg(*BB, BB->end(),
cast<RegisterSDNode>(Node->getOperand(1))->getReg(), Val,
RegMap->getRegClass(Val));
break;
}
case ISD::CopyFromReg: {
unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
// Figure out the register class to create for the destreg.
const TargetRegisterClass *TRC = 0;
if (MRegisterInfo::isVirtualRegister(SrcReg)) {
TRC = RegMap->getRegClass(SrcReg);
} else {
// Pick the register class of the right type that contains this physreg.
for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(),
E = MRI.regclass_end(); I != E; ++I)
if ((*I)->getType() == Node->getValueType(0) &&
(*I)->contains(SrcReg)) {
TRC = *I;
break;
}
assert(TRC && "Couldn't find register class for reg copy!");
}
// Create the reg, emit the copy.
VRBase = RegMap->createVirtualRegister(TRC);
MRI.copyRegToReg(*BB, BB->end(), VRBase, SrcReg, TRC);
break;
}
}
}
assert(NI->VRBase == 0 && "Node emitted out of order - early");
NI->VRBase = VRBase;
}
/// EmitDag - Generate machine code for an operand and needed dependencies.
///
unsigned SimpleSched::EmitDAG(SDOperand Op) {
std::map<SDNode *, unsigned>::iterator OpI = VRMap.lower_bound(Op.Val);
if (OpI != VRMap.end() && OpI->first == Op.Val)
return OpI->second + Op.ResNo;
unsigned &OpSlot = VRMap.insert(OpI, std::make_pair(Op.Val, 0))->second;
unsigned ResultReg = 0;
if (Op.isTargetOpcode()) {
unsigned Opc = Op.getTargetOpcode();
const TargetInstrDescriptor &II = TII.get(Opc);
unsigned NumResults = CountResults(Op.Val);
unsigned NodeOperands = CountOperands(Op.Val);
unsigned NumMIOperands = NodeOperands + NumResults;
#ifndef NDEBUG
assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&&
"#operands for dag node doesn't match .td file!");
#endif
// Create the new machine instruction.
MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true);
// Add result register values for things that are defined by this
// instruction.
if (NumResults) ResultReg = CreateVirtualRegisters(MI, NumResults, II);
// If there is a token chain operand, emit it first, as a hack to get avoid
// really bad cases.
if (Op.getNumOperands() > NodeOperands &&
Op.getOperand(NodeOperands).getValueType() == MVT::Other) {
EmitDAG(Op.getOperand(NodeOperands));
}
// Emit all of the actual operands of this instruction, adding them to the
// instruction as appropriate.
for (unsigned i = 0; i != NodeOperands; ++i) {
if (Op.getOperand(i).isTargetOpcode()) {
// Note that this case is redundant with the final else block, but we
// include it because it is the most common and it makes the logic
// simpler here.
assert(Op.getOperand(i).getValueType() != MVT::Other &&
Op.getOperand(i).getValueType() != MVT::Flag &&
"Chain and flag operands should occur at end of operand list!");
unsigned VReg = EmitDAG(Op.getOperand(i));
MI->addRegOperand(VReg, MachineOperand::Use);
// Verify that it is right.
assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
assert(II.OpInfo[i+NumResults].RegClass &&
"Don't have operand info for this instruction!");
#ifndef NDEBUG
if (RegMap->getRegClass(VReg) != II.OpInfo[i+NumResults].RegClass) {
std::cerr << "OP: ";
Op.getOperand(i).Val->dump(&DAG); std::cerr << "\nUSE: ";
Op.Val->dump(&DAG); std::cerr << "\n";
}
#endif
assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass &&
"Register class of operand and regclass of use don't agree!");
} else if (ConstantSDNode *C =
dyn_cast<ConstantSDNode>(Op.getOperand(i))) {
MI->addZeroExtImm64Operand(C->getValue());
} else if (RegisterSDNode*R =dyn_cast<RegisterSDNode>(Op.getOperand(i))) {
MI->addRegOperand(R->getReg(), MachineOperand::Use);
} else if (GlobalAddressSDNode *TGA =
dyn_cast<GlobalAddressSDNode>(Op.getOperand(i))) {
MI->addGlobalAddressOperand(TGA->getGlobal(), false, 0);
} else if (BasicBlockSDNode *BB =
dyn_cast<BasicBlockSDNode>(Op.getOperand(i))) {
MI->addMachineBasicBlockOperand(BB->getBasicBlock());
} else if (FrameIndexSDNode *FI =
dyn_cast<FrameIndexSDNode>(Op.getOperand(i))) {
MI->addFrameIndexOperand(FI->getIndex());
} else if (ConstantPoolSDNode *CP =
dyn_cast<ConstantPoolSDNode>(Op.getOperand(i))) {
unsigned Idx = ConstPool->getConstantPoolIndex(CP->get());
MI->addConstantPoolIndexOperand(Idx);
} else if (ExternalSymbolSDNode *ES =
dyn_cast<ExternalSymbolSDNode>(Op.getOperand(i))) {
MI->addExternalSymbolOperand(ES->getSymbol(), false);
} else {
assert(Op.getOperand(i).getValueType() != MVT::Other &&
Op.getOperand(i).getValueType() != MVT::Flag &&
"Chain and flag operands should occur at end of operand list!");
unsigned VReg = EmitDAG(Op.getOperand(i));
MI->addRegOperand(VReg, MachineOperand::Use);
// Verify that it is right.
assert(MRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
assert(II.OpInfo[i+NumResults].RegClass &&
"Don't have operand info for this instruction!");
assert(RegMap->getRegClass(VReg) == II.OpInfo[i+NumResults].RegClass &&
"Register class of operand and regclass of use don't agree!");
}
}
// Finally, if this node has any flag operands, we *must* emit them last, to
// avoid emitting operations that might clobber the flags.
if (Op.getNumOperands() > NodeOperands) {
unsigned i = NodeOperands;
if (Op.getOperand(i).getValueType() == MVT::Other)
++i; // the chain is already selected.
for (unsigned N = Op.getNumOperands(); i < N; i++) {
assert(Op.getOperand(i).getValueType() == MVT::Flag &&
"Must be flag operands!");
EmitDAG(Op.getOperand(i));
}
}
// Now that we have emitted all operands, emit this instruction itself.
if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) {
BB->insert(BB->end(), MI);
} else {
// Insert this instruction into the end of the basic block, potentially
// taking some custom action.
BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB);
}
} else {
switch (Op.getOpcode()) {
default:
Op.Val->dump();
assert(0 && "This target-independent node should have been selected!");
case ISD::EntryToken: break;
case ISD::TokenFactor:
for (unsigned i = 0, N = Op.getNumOperands(); i < N; i++) {
EmitDAG(Op.getOperand(i));
}
break;
case ISD::CopyToReg: {
SDOperand FlagOp; FlagOp.ResNo = 0;
if (Op.getNumOperands() == 4) {
FlagOp = Op.getOperand(3);
}
if (Op.getOperand(0).Val != FlagOp.Val) {
EmitDAG(Op.getOperand(0)); // Emit the chain.
}
unsigned Val = EmitDAG(Op.getOperand(2));
if (FlagOp.Val) {
EmitDAG(FlagOp);
}
MRI.copyRegToReg(*BB, BB->end(),
cast<RegisterSDNode>(Op.getOperand(1))->getReg(), Val,
RegMap->getRegClass(Val));
break;
}
case ISD::CopyFromReg: {
EmitDAG(Op.getOperand(0)); // Emit the chain.
unsigned SrcReg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
// Figure out the register class to create for the destreg.
const TargetRegisterClass *TRC = 0;
if (MRegisterInfo::isVirtualRegister(SrcReg)) {
TRC = RegMap->getRegClass(SrcReg);
} else {
// Pick the register class of the right type that contains this physreg.
for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(),
E = MRI.regclass_end(); I != E; ++I)
if ((*I)->getType() == Op.Val->getValueType(0) &&
(*I)->contains(SrcReg)) {
TRC = *I;
break;
}
assert(TRC && "Couldn't find register class for reg copy!");
}
// Create the reg, emit the copy.
ResultReg = RegMap->createVirtualRegister(TRC);
MRI.copyRegToReg(*BB, BB->end(), ResultReg, SrcReg, TRC);
break;
}
}
}
OpSlot = ResultReg;
return ResultReg+Op.ResNo;
}
/// Schedule - Order nodes according to selected style.
///
void SimpleSched::Schedule() {
switch (ScheduleStyle) {
case simpleScheduling:
// Number the nodes
NodeCount = DAG.allnodes_size();
// Don't waste time if is only entry and return
if (NodeCount > 3) {
// Get latency and resource requirements
GatherNodeInfo();
// Breadth first walk of DAG
VisitAll();
DEBUG(dump("Pre-"));
// Push back long instructions and critical path
ScheduleBackward();
DEBUG(dump("Mid-"));
// Pack instructions to maximize resource utilization
ScheduleForward();
DEBUG(dump("Post-"));
// Emit in scheduled order
EmitAll();
break;
} // fall thru
case noScheduling:
// Emit instructions in using a DFS from the exit root
EmitDAG(DAG.getRoot());
break;
}
}
/// printSI - Print schedule info.
///
void SimpleSched::printSI(std::ostream &O, NodeInfo *NI) const {
#ifndef NDEBUG
using namespace std;
SDNode *Node = NI->Node;
O << " "
<< hex << Node
<< ", RS=" << NI->ResourceSet
<< ", Lat=" << NI->Latency
<< ", Slot=" << NI->Slot
<< ", ARITY=(" << Node->getNumOperands() << ","
<< Node->getNumValues() << ")"
<< " " << Node->getOperationName(&DAG);
if (isFlagDefiner(Node)) O << "<#";
if (isFlagUser(Node)) O << ">#";
#endif
}
/// print - Print ordering to specified output stream.
///
void SimpleSched::print(std::ostream &O) const {
#ifndef NDEBUG
using namespace std;
O << "Ordering\n";
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
NodeInfo *NI = Ordering[i];
printSI(O, NI);
O << "\n";
if (NI->isGroupLeader()) {
NodeGroup *Group = NI->Group;
for (NIIterator NII = Group->begin(), E = Group->end();
NII != E; NII++) {
O << " ";
printSI(O, *NII);
O << "\n";
}
}
}
#endif
}
/// dump - Print ordering to std::cerr.
///
void SimpleSched::dump() const {
print(std::cerr);
}
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
/// target node in the graph.
void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) {
if (ViewDAGs) SD.viewGraph();
BB = SimpleSched(SD, BB).Run();
}