mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
843c6c2d0e
This is using a hint from AMD APP OpenCL Programming Guide with empirically tweaked parameters. I used Unigine Heaven 3.0 to determine best parameters on my system (i7 2600/Radeon 6950/Kernel 3.9.4) the benchmark : it went from 38.8 average fps to 39.6, which is ~3% gain. (Lightmark 2008.2 gain is much more marginal: from 537 to 539) There is no lit test provided as the parameter were determined empirically and it it would be nearly impossiblet to find a test program that check for optimal behavior. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183593 91177308-0d34-0410-b5e6-96231b3b80d8
464 lines
13 KiB
C++
464 lines
13 KiB
C++
//===-- R600MachineScheduler.cpp - R600 Scheduler Interface -*- C++ -*-----===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief R600 Machine Scheduler interface
|
|
// TODO: Scheduling is optimised for VLIW4 arch, modify it to support TRANS slot
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "misched"
|
|
|
|
#include "R600MachineScheduler.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
void R600SchedStrategy::initialize(ScheduleDAGMI *dag) {
|
|
|
|
DAG = dag;
|
|
TII = static_cast<const R600InstrInfo*>(DAG->TII);
|
|
TRI = static_cast<const R600RegisterInfo*>(DAG->TRI);
|
|
MRI = &DAG->MRI;
|
|
CurInstKind = IDOther;
|
|
CurEmitted = 0;
|
|
OccupedSlotsMask = 15;
|
|
InstKindLimit[IDAlu] = TII->getMaxAlusPerClause();
|
|
InstKindLimit[IDOther] = 32;
|
|
|
|
const AMDGPUSubtarget &ST = DAG->TM.getSubtarget<AMDGPUSubtarget>();
|
|
InstKindLimit[IDFetch] = ST.getTexVTXClauseSize();
|
|
AluInstCount = 0;
|
|
FetchInstCount = 0;
|
|
}
|
|
|
|
void R600SchedStrategy::MoveUnits(std::vector<SUnit *> &QSrc,
|
|
std::vector<SUnit *> &QDst)
|
|
{
|
|
QDst.insert(QDst.end(), QSrc.begin(), QSrc.end());
|
|
QSrc.clear();
|
|
}
|
|
|
|
static
|
|
unsigned getWFCountLimitedByGPR(unsigned GPRCount) {
|
|
assert (GPRCount && "GPRCount cannot be 0");
|
|
return 248 / GPRCount;
|
|
}
|
|
|
|
SUnit* R600SchedStrategy::pickNode(bool &IsTopNode) {
|
|
SUnit *SU = 0;
|
|
NextInstKind = IDOther;
|
|
|
|
IsTopNode = false;
|
|
|
|
// check if we might want to switch current clause type
|
|
bool AllowSwitchToAlu = (CurEmitted >= InstKindLimit[CurInstKind]) ||
|
|
(Available[CurInstKind].empty());
|
|
bool AllowSwitchFromAlu = (CurEmitted >= InstKindLimit[CurInstKind]) &&
|
|
(!Available[IDFetch].empty() || !Available[IDOther].empty());
|
|
|
|
if (CurInstKind == IDAlu && !Available[IDFetch].empty()) {
|
|
// We use the heuristic provided by AMD Accelerated Parallel Processing
|
|
// OpenCL Programming Guide :
|
|
// The approx. number of WF that allows TEX inst to hide ALU inst is :
|
|
// 500 (cycles for TEX) / (AluFetchRatio * 8 (cycles for ALU))
|
|
float ALUFetchRationEstimate =
|
|
(AluInstCount + AvailablesAluCount() + Pending[IDAlu].size()) /
|
|
(FetchInstCount + Available[IDFetch].size());
|
|
unsigned NeededWF = 62.5f / ALUFetchRationEstimate;
|
|
DEBUG( dbgs() << NeededWF << " approx. Wavefronts Required\n" );
|
|
// We assume the local GPR requirements to be "dominated" by the requirement
|
|
// of the TEX clause (which consumes 128 bits regs) ; ALU inst before and
|
|
// after TEX are indeed likely to consume or generate values from/for the
|
|
// TEX clause.
|
|
// Available[IDFetch].size() * 2 : GPRs required in the Fetch clause
|
|
// We assume that fetch instructions are either TnXYZW = TEX TnXYZW (need
|
|
// one GPR) or TmXYZW = TnXYZW (need 2 GPR).
|
|
// (TODO : use RegisterPressure)
|
|
// If we are going too use too many GPR, we flush Fetch instruction to lower
|
|
// register pressure on 128 bits regs.
|
|
unsigned NearRegisterRequirement = 2 * Available[IDFetch].size();
|
|
if (NeededWF > getWFCountLimitedByGPR(NearRegisterRequirement))
|
|
AllowSwitchFromAlu = true;
|
|
}
|
|
|
|
|
|
// We want to scheduled AR defs as soon as possible to make sure they aren't
|
|
// put in a different ALU clause from their uses.
|
|
if (!SU && !UnscheduledARDefs.empty()) {
|
|
SU = UnscheduledARDefs[0];
|
|
UnscheduledARDefs.erase(UnscheduledARDefs.begin());
|
|
NextInstKind = IDAlu;
|
|
}
|
|
|
|
if (!SU && ((AllowSwitchToAlu && CurInstKind != IDAlu) ||
|
|
(!AllowSwitchFromAlu && CurInstKind == IDAlu))) {
|
|
// try to pick ALU
|
|
SU = pickAlu();
|
|
if (!SU && !PhysicalRegCopy.empty()) {
|
|
SU = PhysicalRegCopy.front();
|
|
PhysicalRegCopy.erase(PhysicalRegCopy.begin());
|
|
}
|
|
if (SU) {
|
|
if (CurEmitted >= InstKindLimit[IDAlu])
|
|
CurEmitted = 0;
|
|
NextInstKind = IDAlu;
|
|
}
|
|
}
|
|
|
|
if (!SU) {
|
|
// try to pick FETCH
|
|
SU = pickOther(IDFetch);
|
|
if (SU)
|
|
NextInstKind = IDFetch;
|
|
}
|
|
|
|
// try to pick other
|
|
if (!SU) {
|
|
SU = pickOther(IDOther);
|
|
if (SU)
|
|
NextInstKind = IDOther;
|
|
}
|
|
|
|
// We want to schedule the AR uses as late as possible to make sure that
|
|
// the AR defs have been released.
|
|
if (!SU && !UnscheduledARUses.empty()) {
|
|
SU = UnscheduledARUses[0];
|
|
UnscheduledARUses.erase(UnscheduledARUses.begin());
|
|
NextInstKind = IDAlu;
|
|
}
|
|
|
|
|
|
DEBUG(
|
|
if (SU) {
|
|
dbgs() << " ** Pick node **\n";
|
|
SU->dump(DAG);
|
|
} else {
|
|
dbgs() << "NO NODE \n";
|
|
for (unsigned i = 0; i < DAG->SUnits.size(); i++) {
|
|
const SUnit &S = DAG->SUnits[i];
|
|
if (!S.isScheduled)
|
|
S.dump(DAG);
|
|
}
|
|
}
|
|
);
|
|
|
|
return SU;
|
|
}
|
|
|
|
void R600SchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
|
|
if (NextInstKind != CurInstKind) {
|
|
DEBUG(dbgs() << "Instruction Type Switch\n");
|
|
if (NextInstKind != IDAlu)
|
|
OccupedSlotsMask = 15;
|
|
CurEmitted = 0;
|
|
CurInstKind = NextInstKind;
|
|
}
|
|
|
|
if (CurInstKind == IDAlu) {
|
|
AluInstCount ++;
|
|
switch (getAluKind(SU)) {
|
|
case AluT_XYZW:
|
|
CurEmitted += 4;
|
|
break;
|
|
case AluDiscarded:
|
|
break;
|
|
default: {
|
|
++CurEmitted;
|
|
for (MachineInstr::mop_iterator It = SU->getInstr()->operands_begin(),
|
|
E = SU->getInstr()->operands_end(); It != E; ++It) {
|
|
MachineOperand &MO = *It;
|
|
if (MO.isReg() && MO.getReg() == AMDGPU::ALU_LITERAL_X)
|
|
++CurEmitted;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
++CurEmitted;
|
|
}
|
|
|
|
|
|
DEBUG(dbgs() << CurEmitted << " Instructions Emitted in this clause\n");
|
|
|
|
if (CurInstKind != IDFetch) {
|
|
MoveUnits(Pending[IDFetch], Available[IDFetch]);
|
|
} else
|
|
FetchInstCount++;
|
|
}
|
|
|
|
static bool
|
|
isPhysicalRegCopy(MachineInstr *MI) {
|
|
if (MI->getOpcode() != AMDGPU::COPY)
|
|
return false;
|
|
|
|
return !TargetRegisterInfo::isVirtualRegister(MI->getOperand(1).getReg());
|
|
}
|
|
|
|
void R600SchedStrategy::releaseTopNode(SUnit *SU) {
|
|
DEBUG(dbgs() << "Top Releasing ";SU->dump(DAG););
|
|
}
|
|
|
|
void R600SchedStrategy::releaseBottomNode(SUnit *SU) {
|
|
DEBUG(dbgs() << "Bottom Releasing ";SU->dump(DAG););
|
|
if (isPhysicalRegCopy(SU->getInstr())) {
|
|
PhysicalRegCopy.push_back(SU);
|
|
return;
|
|
}
|
|
|
|
int IK = getInstKind(SU);
|
|
|
|
// Check for AR register defines
|
|
for (MachineInstr::const_mop_iterator I = SU->getInstr()->operands_begin(),
|
|
E = SU->getInstr()->operands_end();
|
|
I != E; ++I) {
|
|
if (I->isReg() && I->getReg() == AMDGPU::AR_X) {
|
|
if (I->isDef()) {
|
|
UnscheduledARDefs.push_back(SU);
|
|
} else {
|
|
UnscheduledARUses.push_back(SU);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// There is no export clause, we can schedule one as soon as its ready
|
|
if (IK == IDOther)
|
|
Available[IDOther].push_back(SU);
|
|
else
|
|
Pending[IK].push_back(SU);
|
|
|
|
}
|
|
|
|
bool R600SchedStrategy::regBelongsToClass(unsigned Reg,
|
|
const TargetRegisterClass *RC) const {
|
|
if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
return RC->contains(Reg);
|
|
} else {
|
|
return MRI->getRegClass(Reg) == RC;
|
|
}
|
|
}
|
|
|
|
R600SchedStrategy::AluKind R600SchedStrategy::getAluKind(SUnit *SU) const {
|
|
MachineInstr *MI = SU->getInstr();
|
|
|
|
switch (MI->getOpcode()) {
|
|
case AMDGPU::PRED_X:
|
|
return AluPredX;
|
|
case AMDGPU::INTERP_PAIR_XY:
|
|
case AMDGPU::INTERP_PAIR_ZW:
|
|
case AMDGPU::INTERP_VEC_LOAD:
|
|
case AMDGPU::DOT_4:
|
|
return AluT_XYZW;
|
|
case AMDGPU::COPY:
|
|
if (MI->getOperand(1).isUndef()) {
|
|
// MI will become a KILL, don't considers it in scheduling
|
|
return AluDiscarded;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Does the instruction take a whole IG ?
|
|
if(TII->isVector(*MI) ||
|
|
TII->isCubeOp(MI->getOpcode()) ||
|
|
TII->isReductionOp(MI->getOpcode()))
|
|
return AluT_XYZW;
|
|
|
|
// Is the result already assigned to a channel ?
|
|
unsigned DestSubReg = MI->getOperand(0).getSubReg();
|
|
switch (DestSubReg) {
|
|
case AMDGPU::sub0:
|
|
return AluT_X;
|
|
case AMDGPU::sub1:
|
|
return AluT_Y;
|
|
case AMDGPU::sub2:
|
|
return AluT_Z;
|
|
case AMDGPU::sub3:
|
|
return AluT_W;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Is the result already member of a X/Y/Z/W class ?
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_XRegClass) ||
|
|
regBelongsToClass(DestReg, &AMDGPU::R600_AddrRegClass))
|
|
return AluT_X;
|
|
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_YRegClass))
|
|
return AluT_Y;
|
|
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass))
|
|
return AluT_Z;
|
|
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_WRegClass))
|
|
return AluT_W;
|
|
if (regBelongsToClass(DestReg, &AMDGPU::R600_Reg128RegClass))
|
|
return AluT_XYZW;
|
|
|
|
return AluAny;
|
|
|
|
}
|
|
|
|
int R600SchedStrategy::getInstKind(SUnit* SU) {
|
|
int Opcode = SU->getInstr()->getOpcode();
|
|
|
|
if (TII->usesTextureCache(Opcode) || TII->usesVertexCache(Opcode))
|
|
return IDFetch;
|
|
|
|
if (TII->isALUInstr(Opcode)) {
|
|
return IDAlu;
|
|
}
|
|
|
|
switch (Opcode) {
|
|
case AMDGPU::PRED_X:
|
|
case AMDGPU::COPY:
|
|
case AMDGPU::CONST_COPY:
|
|
case AMDGPU::INTERP_PAIR_XY:
|
|
case AMDGPU::INTERP_PAIR_ZW:
|
|
case AMDGPU::INTERP_VEC_LOAD:
|
|
case AMDGPU::DOT_4:
|
|
return IDAlu;
|
|
default:
|
|
return IDOther;
|
|
}
|
|
}
|
|
|
|
SUnit *R600SchedStrategy::PopInst(std::vector<SUnit *> &Q) {
|
|
if (Q.empty())
|
|
return NULL;
|
|
for (std::vector<SUnit *>::reverse_iterator It = Q.rbegin(), E = Q.rend();
|
|
It != E; ++It) {
|
|
SUnit *SU = *It;
|
|
InstructionsGroupCandidate.push_back(SU->getInstr());
|
|
if (TII->canBundle(InstructionsGroupCandidate)) {
|
|
InstructionsGroupCandidate.pop_back();
|
|
Q.erase((It + 1).base());
|
|
return SU;
|
|
} else {
|
|
InstructionsGroupCandidate.pop_back();
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void R600SchedStrategy::LoadAlu() {
|
|
std::vector<SUnit *> &QSrc = Pending[IDAlu];
|
|
for (unsigned i = 0, e = QSrc.size(); i < e; ++i) {
|
|
AluKind AK = getAluKind(QSrc[i]);
|
|
AvailableAlus[AK].push_back(QSrc[i]);
|
|
}
|
|
QSrc.clear();
|
|
}
|
|
|
|
void R600SchedStrategy::PrepareNextSlot() {
|
|
DEBUG(dbgs() << "New Slot\n");
|
|
assert (OccupedSlotsMask && "Slot wasn't filled");
|
|
OccupedSlotsMask = 0;
|
|
InstructionsGroupCandidate.clear();
|
|
LoadAlu();
|
|
}
|
|
|
|
void R600SchedStrategy::AssignSlot(MachineInstr* MI, unsigned Slot) {
|
|
unsigned DestReg = MI->getOperand(0).getReg();
|
|
// PressureRegister crashes if an operand is def and used in the same inst
|
|
// and we try to constraint its regclass
|
|
for (MachineInstr::mop_iterator It = MI->operands_begin(),
|
|
E = MI->operands_end(); It != E; ++It) {
|
|
MachineOperand &MO = *It;
|
|
if (MO.isReg() && !MO.isDef() &&
|
|
MO.getReg() == MI->getOperand(0).getReg())
|
|
return;
|
|
}
|
|
// Constrains the regclass of DestReg to assign it to Slot
|
|
switch (Slot) {
|
|
case 0:
|
|
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_XRegClass);
|
|
break;
|
|
case 1:
|
|
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_YRegClass);
|
|
break;
|
|
case 2:
|
|
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass);
|
|
break;
|
|
case 3:
|
|
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_WRegClass);
|
|
break;
|
|
}
|
|
}
|
|
|
|
SUnit *R600SchedStrategy::AttemptFillSlot(unsigned Slot) {
|
|
static const AluKind IndexToID[] = {AluT_X, AluT_Y, AluT_Z, AluT_W};
|
|
SUnit *SlotedSU = PopInst(AvailableAlus[IndexToID[Slot]]);
|
|
if (SlotedSU)
|
|
return SlotedSU;
|
|
SUnit *UnslotedSU = PopInst(AvailableAlus[AluAny]);
|
|
if (UnslotedSU)
|
|
AssignSlot(UnslotedSU->getInstr(), Slot);
|
|
return UnslotedSU;
|
|
}
|
|
|
|
unsigned R600SchedStrategy::AvailablesAluCount() const {
|
|
return AvailableAlus[AluAny].size() + AvailableAlus[AluT_XYZW].size() +
|
|
AvailableAlus[AluT_X].size() + AvailableAlus[AluT_Y].size() +
|
|
AvailableAlus[AluT_Z].size() + AvailableAlus[AluT_W].size() +
|
|
AvailableAlus[AluDiscarded].size() + AvailableAlus[AluPredX].size();
|
|
}
|
|
|
|
SUnit* R600SchedStrategy::pickAlu() {
|
|
while (AvailablesAluCount() || !Pending[IDAlu].empty()) {
|
|
if (!OccupedSlotsMask) {
|
|
// Bottom up scheduling : predX must comes first
|
|
if (!AvailableAlus[AluPredX].empty()) {
|
|
OccupedSlotsMask = 15;
|
|
return PopInst(AvailableAlus[AluPredX]);
|
|
}
|
|
// Flush physical reg copies (RA will discard them)
|
|
if (!AvailableAlus[AluDiscarded].empty()) {
|
|
OccupedSlotsMask = 15;
|
|
return PopInst(AvailableAlus[AluDiscarded]);
|
|
}
|
|
// If there is a T_XYZW alu available, use it
|
|
if (!AvailableAlus[AluT_XYZW].empty()) {
|
|
OccupedSlotsMask = 15;
|
|
return PopInst(AvailableAlus[AluT_XYZW]);
|
|
}
|
|
}
|
|
for (int Chan = 3; Chan > -1; --Chan) {
|
|
bool isOccupied = OccupedSlotsMask & (1 << Chan);
|
|
if (!isOccupied) {
|
|
SUnit *SU = AttemptFillSlot(Chan);
|
|
if (SU) {
|
|
OccupedSlotsMask |= (1 << Chan);
|
|
InstructionsGroupCandidate.push_back(SU->getInstr());
|
|
return SU;
|
|
}
|
|
}
|
|
}
|
|
PrepareNextSlot();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
SUnit* R600SchedStrategy::pickOther(int QID) {
|
|
SUnit *SU = 0;
|
|
std::vector<SUnit *> &AQ = Available[QID];
|
|
|
|
if (AQ.empty()) {
|
|
MoveUnits(Pending[QID], AQ);
|
|
}
|
|
if (!AQ.empty()) {
|
|
SU = AQ.back();
|
|
AQ.resize(AQ.size() - 1);
|
|
}
|
|
return SU;
|
|
}
|
|
|