mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This reverts commit r219135 -- still causing miscompiles in SPEC it seems... git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219432 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1426 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1426 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the primary stateless implementation of the
 | 
						|
// Alias Analysis interface that implements identities (two different
 | 
						|
// globals cannot alias, etc), but does no stateful analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/Passes.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionTracker.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Target/TargetLibraryInfo.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// Cutoff after which to stop analysing a set of phi nodes potentially involved
 | 
						|
/// in a cycle. Because we are analysing 'through' phi nodes we need to be
 | 
						|
/// careful with value equivalence. We use reachability to make sure a value
 | 
						|
/// cannot be involved in a cycle.
 | 
						|
const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
 | 
						|
 | 
						|
// The max limit of the search depth in DecomposeGEPExpression() and
 | 
						|
// GetUnderlyingObject(), both functions need to use the same search
 | 
						|
// depth otherwise the algorithm in aliasGEP will assert.
 | 
						|
static const unsigned MaxLookupSearchDepth = 6;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Useful predicates
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
 | 
						|
/// object that never escapes from the function.
 | 
						|
static bool isNonEscapingLocalObject(const Value *V) {
 | 
						|
  // If this is a local allocation, check to see if it escapes.
 | 
						|
  if (isa<AllocaInst>(V) || isNoAliasCall(V))
 | 
						|
    // Set StoreCaptures to True so that we can assume in our callers that the
 | 
						|
    // pointer is not the result of a load instruction. Currently
 | 
						|
    // PointerMayBeCaptured doesn't have any special analysis for the
 | 
						|
    // StoreCaptures=false case; if it did, our callers could be refined to be
 | 
						|
    // more precise.
 | 
						|
    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
 | 
						|
 | 
						|
  // If this is an argument that corresponds to a byval or noalias argument,
 | 
						|
  // then it has not escaped before entering the function.  Check if it escapes
 | 
						|
  // inside the function.
 | 
						|
  if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
    if (A->hasByValAttr() || A->hasNoAliasAttr())
 | 
						|
      // Note even if the argument is marked nocapture we still need to check
 | 
						|
      // for copies made inside the function. The nocapture attribute only
 | 
						|
      // specifies that there are no copies made that outlive the function.
 | 
						|
      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isEscapeSource - Return true if the pointer is one which would have
 | 
						|
/// been considered an escape by isNonEscapingLocalObject.
 | 
						|
static bool isEscapeSource(const Value *V) {
 | 
						|
  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // The load case works because isNonEscapingLocalObject considers all
 | 
						|
  // stores to be escapes (it passes true for the StoreCaptures argument
 | 
						|
  // to PointerMayBeCaptured).
 | 
						|
  if (isa<LoadInst>(V))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getObjectSize - Return the size of the object specified by V, or
 | 
						|
/// UnknownSize if unknown.
 | 
						|
static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
 | 
						|
                              const TargetLibraryInfo &TLI,
 | 
						|
                              bool RoundToAlign = false) {
 | 
						|
  uint64_t Size;
 | 
						|
  if (getObjectSize(V, Size, &DL, &TLI, RoundToAlign))
 | 
						|
    return Size;
 | 
						|
  return AliasAnalysis::UnknownSize;
 | 
						|
}
 | 
						|
 | 
						|
/// isObjectSmallerThan - Return true if we can prove that the object specified
 | 
						|
/// by V is smaller than Size.
 | 
						|
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
 | 
						|
                                const DataLayout &DL,
 | 
						|
                                const TargetLibraryInfo &TLI) {
 | 
						|
  // Note that the meanings of the "object" are slightly different in the
 | 
						|
  // following contexts:
 | 
						|
  //    c1: llvm::getObjectSize()
 | 
						|
  //    c2: llvm.objectsize() intrinsic
 | 
						|
  //    c3: isObjectSmallerThan()
 | 
						|
  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
 | 
						|
  // refers to the "entire object".
 | 
						|
  //
 | 
						|
  //  Consider this example:
 | 
						|
  //     char *p = (char*)malloc(100)
 | 
						|
  //     char *q = p+80;
 | 
						|
  //
 | 
						|
  //  In the context of c1 and c2, the "object" pointed by q refers to the
 | 
						|
  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
 | 
						|
  //
 | 
						|
  //  However, in the context of c3, the "object" refers to the chunk of memory
 | 
						|
  // being allocated. So, the "object" has 100 bytes, and q points to the middle
 | 
						|
  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
 | 
						|
  // parameter, before the llvm::getObjectSize() is called to get the size of
 | 
						|
  // entire object, we should:
 | 
						|
  //    - either rewind the pointer q to the base-address of the object in
 | 
						|
  //      question (in this case rewind to p), or
 | 
						|
  //    - just give up. It is up to caller to make sure the pointer is pointing
 | 
						|
  //      to the base address the object.
 | 
						|
  //
 | 
						|
  // We go for 2nd option for simplicity.
 | 
						|
  if (!isIdentifiedObject(V))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This function needs to use the aligned object size because we allow
 | 
						|
  // reads a bit past the end given sufficient alignment.
 | 
						|
  uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true);
 | 
						|
 | 
						|
  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
 | 
						|
}
 | 
						|
 | 
						|
/// isObjectSize - Return true if we can prove that the object specified
 | 
						|
/// by V has size Size.
 | 
						|
static bool isObjectSize(const Value *V, uint64_t Size,
 | 
						|
                         const DataLayout &DL, const TargetLibraryInfo &TLI) {
 | 
						|
  uint64_t ObjectSize = getObjectSize(V, DL, TLI);
 | 
						|
  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// GetElementPtr Instruction Decomposition and Analysis
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
  enum ExtensionKind {
 | 
						|
    EK_NotExtended,
 | 
						|
    EK_SignExt,
 | 
						|
    EK_ZeroExt
 | 
						|
  };
 | 
						|
 | 
						|
  struct VariableGEPIndex {
 | 
						|
    const Value *V;
 | 
						|
    ExtensionKind Extension;
 | 
						|
    int64_t Scale;
 | 
						|
 | 
						|
    bool operator==(const VariableGEPIndex &Other) const {
 | 
						|
      return V == Other.V && Extension == Other.Extension &&
 | 
						|
        Scale == Other.Scale;
 | 
						|
    }
 | 
						|
 | 
						|
    bool operator!=(const VariableGEPIndex &Other) const {
 | 
						|
      return !operator==(Other);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// GetLinearExpression - Analyze the specified value as a linear expression:
 | 
						|
/// "A*V + B", where A and B are constant integers.  Return the scale and offset
 | 
						|
/// values as APInts and return V as a Value*, and return whether we looked
 | 
						|
/// through any sign or zero extends.  The incoming Value is known to have
 | 
						|
/// IntegerType and it may already be sign or zero extended.
 | 
						|
///
 | 
						|
/// Note that this looks through extends, so the high bits may not be
 | 
						|
/// represented in the result.
 | 
						|
static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
 | 
						|
                                  ExtensionKind &Extension,
 | 
						|
                                  const DataLayout &DL, unsigned Depth,
 | 
						|
                                  AssumptionTracker *AT,
 | 
						|
                                  DominatorTree *DT) {
 | 
						|
  assert(V->getType()->isIntegerTy() && "Not an integer value");
 | 
						|
 | 
						|
  // Limit our recursion depth.
 | 
						|
  if (Depth == 6) {
 | 
						|
    Scale = 1;
 | 
						|
    Offset = 0;
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
 | 
						|
    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
 | 
						|
      switch (BOp->getOpcode()) {
 | 
						|
      default: break;
 | 
						|
      case Instruction::Or:
 | 
						|
        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
 | 
						|
        // analyze it.
 | 
						|
        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &DL, 0,
 | 
						|
                               AT, BOp, DT))
 | 
						|
          break;
 | 
						|
        // FALL THROUGH.
 | 
						|
      case Instruction::Add:
 | 
						|
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
 | 
						|
                                DL, Depth+1, AT, DT);
 | 
						|
        Offset += RHSC->getValue();
 | 
						|
        return V;
 | 
						|
      case Instruction::Mul:
 | 
						|
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
 | 
						|
                                DL, Depth+1, AT, DT);
 | 
						|
        Offset *= RHSC->getValue();
 | 
						|
        Scale *= RHSC->getValue();
 | 
						|
        return V;
 | 
						|
      case Instruction::Shl:
 | 
						|
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
 | 
						|
                                DL, Depth+1, AT, DT);
 | 
						|
        Offset <<= RHSC->getValue().getLimitedValue();
 | 
						|
        Scale <<= RHSC->getValue().getLimitedValue();
 | 
						|
        return V;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Since GEP indices are sign extended anyway, we don't care about the high
 | 
						|
  // bits of a sign or zero extended value - just scales and offsets.  The
 | 
						|
  // extensions have to be consistent though.
 | 
						|
  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
 | 
						|
      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
 | 
						|
    Value *CastOp = cast<CastInst>(V)->getOperand(0);
 | 
						|
    unsigned OldWidth = Scale.getBitWidth();
 | 
						|
    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
 | 
						|
    Scale = Scale.trunc(SmallWidth);
 | 
						|
    Offset = Offset.trunc(SmallWidth);
 | 
						|
    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
 | 
						|
 | 
						|
    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
 | 
						|
                                        DL, Depth+1, AT, DT);
 | 
						|
    Scale = Scale.zext(OldWidth);
 | 
						|
    Offset = Offset.zext(OldWidth);
 | 
						|
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  Scale = 1;
 | 
						|
  Offset = 0;
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
 | 
						|
/// into a base pointer with a constant offset and a number of scaled symbolic
 | 
						|
/// offsets.
 | 
						|
///
 | 
						|
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
 | 
						|
/// the VarIndices vector) are Value*'s that are known to be scaled by the
 | 
						|
/// specified amount, but which may have other unrepresented high bits. As such,
 | 
						|
/// the gep cannot necessarily be reconstructed from its decomposed form.
 | 
						|
///
 | 
						|
/// When DataLayout is around, this function is capable of analyzing everything
 | 
						|
/// that GetUnderlyingObject can look through. To be able to do that
 | 
						|
/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
 | 
						|
/// depth (MaxLookupSearchDepth).
 | 
						|
/// When DataLayout not is around, it just looks through pointer casts.
 | 
						|
///
 | 
						|
static const Value *
 | 
						|
DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
 | 
						|
                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
 | 
						|
                       bool &MaxLookupReached, const DataLayout *DL,
 | 
						|
                       AssumptionTracker *AT, DominatorTree *DT) {
 | 
						|
  // Limit recursion depth to limit compile time in crazy cases.
 | 
						|
  unsigned MaxLookup = MaxLookupSearchDepth;
 | 
						|
  MaxLookupReached = false;
 | 
						|
 | 
						|
  BaseOffs = 0;
 | 
						|
  do {
 | 
						|
    // See if this is a bitcast or GEP.
 | 
						|
    const Operator *Op = dyn_cast<Operator>(V);
 | 
						|
    if (!Op) {
 | 
						|
      // The only non-operator case we can handle are GlobalAliases.
 | 
						|
      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | 
						|
        if (!GA->mayBeOverridden()) {
 | 
						|
          V = GA->getAliasee();
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Op->getOpcode() == Instruction::BitCast ||
 | 
						|
        Op->getOpcode() == Instruction::AddrSpaceCast) {
 | 
						|
      V = Op->getOperand(0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
 | 
						|
    if (!GEPOp) {
 | 
						|
      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
 | 
						|
      // can come up with something. This matches what GetUnderlyingObject does.
 | 
						|
      if (const Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
        // TODO: Get a DominatorTree and AssumptionTracker and use them here
 | 
						|
        // (these are both now available in this function, but this should be
 | 
						|
        // updated when GetUnderlyingObject is updated). TLI should be
 | 
						|
        // provided also.
 | 
						|
        if (const Value *Simplified =
 | 
						|
              SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
 | 
						|
          V = Simplified;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't attempt to analyze GEPs over unsized objects.
 | 
						|
    if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
 | 
						|
      return V;
 | 
						|
 | 
						|
    // If we are lacking DataLayout information, we can't compute the offets of
 | 
						|
    // elements computed by GEPs.  However, we can handle bitcast equivalent
 | 
						|
    // GEPs.
 | 
						|
    if (!DL) {
 | 
						|
      if (!GEPOp->hasAllZeroIndices())
 | 
						|
        return V;
 | 
						|
      V = GEPOp->getOperand(0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned AS = GEPOp->getPointerAddressSpace();
 | 
						|
    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
 | 
						|
    gep_type_iterator GTI = gep_type_begin(GEPOp);
 | 
						|
    for (User::const_op_iterator I = GEPOp->op_begin()+1,
 | 
						|
         E = GEPOp->op_end(); I != E; ++I) {
 | 
						|
      Value *Index = *I;
 | 
						|
      // Compute the (potentially symbolic) offset in bytes for this index.
 | 
						|
      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
 | 
						|
        // For a struct, add the member offset.
 | 
						|
        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
 | 
						|
        if (FieldNo == 0) continue;
 | 
						|
 | 
						|
        BaseOffs += DL->getStructLayout(STy)->getElementOffset(FieldNo);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // For an array/pointer, add the element offset, explicitly scaled.
 | 
						|
      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
 | 
						|
        if (CIdx->isZero()) continue;
 | 
						|
        BaseOffs += DL->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      uint64_t Scale = DL->getTypeAllocSize(*GTI);
 | 
						|
      ExtensionKind Extension = EK_NotExtended;
 | 
						|
 | 
						|
      // If the integer type is smaller than the pointer size, it is implicitly
 | 
						|
      // sign extended to pointer size.
 | 
						|
      unsigned Width = Index->getType()->getIntegerBitWidth();
 | 
						|
      if (DL->getPointerSizeInBits(AS) > Width)
 | 
						|
        Extension = EK_SignExt;
 | 
						|
 | 
						|
      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
 | 
						|
      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
 | 
						|
      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
 | 
						|
                                  *DL, 0, AT, DT);
 | 
						|
 | 
						|
      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
 | 
						|
      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
 | 
						|
      BaseOffs += IndexOffset.getSExtValue()*Scale;
 | 
						|
      Scale *= IndexScale.getSExtValue();
 | 
						|
 | 
						|
      // If we already had an occurrence of this index variable, merge this
 | 
						|
      // scale into it.  For example, we want to handle:
 | 
						|
      //   A[x][x] -> x*16 + x*4 -> x*20
 | 
						|
      // This also ensures that 'x' only appears in the index list once.
 | 
						|
      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
 | 
						|
        if (VarIndices[i].V == Index &&
 | 
						|
            VarIndices[i].Extension == Extension) {
 | 
						|
          Scale += VarIndices[i].Scale;
 | 
						|
          VarIndices.erase(VarIndices.begin()+i);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Make sure that we have a scale that makes sense for this target's
 | 
						|
      // pointer size.
 | 
						|
      if (unsigned ShiftBits = 64 - DL->getPointerSizeInBits(AS)) {
 | 
						|
        Scale <<= ShiftBits;
 | 
						|
        Scale = (int64_t)Scale >> ShiftBits;
 | 
						|
      }
 | 
						|
 | 
						|
      if (Scale) {
 | 
						|
        VariableGEPIndex Entry = {Index, Extension,
 | 
						|
                                  static_cast<int64_t>(Scale)};
 | 
						|
        VarIndices.push_back(Entry);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Analyze the base pointer next.
 | 
						|
    V = GEPOp->getOperand(0);
 | 
						|
  } while (--MaxLookup);
 | 
						|
 | 
						|
  // If the chain of expressions is too deep, just return early.
 | 
						|
  MaxLookupReached = true;
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// BasicAliasAnalysis Pass
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static const Function *getParent(const Value *V) {
 | 
						|
  if (const Instruction *inst = dyn_cast<Instruction>(V))
 | 
						|
    return inst->getParent()->getParent();
 | 
						|
 | 
						|
  if (const Argument *arg = dyn_cast<Argument>(V))
 | 
						|
    return arg->getParent();
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static bool notDifferentParent(const Value *O1, const Value *O2) {
 | 
						|
 | 
						|
  const Function *F1 = getParent(O1);
 | 
						|
  const Function *F2 = getParent(O2);
 | 
						|
 | 
						|
  return !F1 || !F2 || F1 == F2;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
 | 
						|
  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
 | 
						|
    static char ID; // Class identification, replacement for typeinfo
 | 
						|
    BasicAliasAnalysis() : ImmutablePass(ID) {
 | 
						|
      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    void initializePass() override {
 | 
						|
      InitializeAliasAnalysis(this);
 | 
						|
    }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<AliasAnalysis>();
 | 
						|
      AU.addRequired<AssumptionTracker>();
 | 
						|
      AU.addRequired<TargetLibraryInfo>();
 | 
						|
    }
 | 
						|
 | 
						|
    AliasResult alias(const Location &LocA, const Location &LocB) override {
 | 
						|
      assert(AliasCache.empty() && "AliasCache must be cleared after use!");
 | 
						|
      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
 | 
						|
             "BasicAliasAnalysis doesn't support interprocedural queries.");
 | 
						|
      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags,
 | 
						|
                                     LocB.Ptr, LocB.Size, LocB.AATags);
 | 
						|
      // AliasCache rarely has more than 1 or 2 elements, always use
 | 
						|
      // shrink_and_clear so it quickly returns to the inline capacity of the
 | 
						|
      // SmallDenseMap if it ever grows larger.
 | 
						|
      // FIXME: This should really be shrink_to_inline_capacity_and_clear().
 | 
						|
      AliasCache.shrink_and_clear();
 | 
						|
      VisitedPhiBBs.clear();
 | 
						|
      return Alias;
 | 
						|
    }
 | 
						|
 | 
						|
    ModRefResult getModRefInfo(ImmutableCallSite CS,
 | 
						|
                               const Location &Loc) override;
 | 
						|
 | 
						|
    ModRefResult getModRefInfo(ImmutableCallSite CS1,
 | 
						|
                               ImmutableCallSite CS2) override;
 | 
						|
 | 
						|
    /// pointsToConstantMemory - Chase pointers until we find a (constant
 | 
						|
    /// global) or not.
 | 
						|
    bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
 | 
						|
 | 
						|
    /// Get the location associated with a pointer argument of a callsite.
 | 
						|
    Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
 | 
						|
                            ModRefResult &Mask) override;
 | 
						|
 | 
						|
    /// getModRefBehavior - Return the behavior when calling the given
 | 
						|
    /// call site.
 | 
						|
    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
 | 
						|
 | 
						|
    /// getModRefBehavior - Return the behavior when calling the given function.
 | 
						|
    /// For use when the call site is not known.
 | 
						|
    ModRefBehavior getModRefBehavior(const Function *F) override;
 | 
						|
 | 
						|
    /// getAdjustedAnalysisPointer - This method is used when a pass implements
 | 
						|
    /// an analysis interface through multiple inheritance.  If needed, it
 | 
						|
    /// should override this to adjust the this pointer as needed for the
 | 
						|
    /// specified pass info.
 | 
						|
    void *getAdjustedAnalysisPointer(const void *ID) override {
 | 
						|
      if (ID == &AliasAnalysis::ID)
 | 
						|
        return (AliasAnalysis*)this;
 | 
						|
      return this;
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    // AliasCache - Track alias queries to guard against recursion.
 | 
						|
    typedef std::pair<Location, Location> LocPair;
 | 
						|
    typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
 | 
						|
    AliasCacheTy AliasCache;
 | 
						|
 | 
						|
    /// \brief Track phi nodes we have visited. When interpret "Value" pointer
 | 
						|
    /// equality as value equality we need to make sure that the "Value" is not
 | 
						|
    /// part of a cycle. Otherwise, two uses could come from different
 | 
						|
    /// "iterations" of a cycle and see different values for the same "Value"
 | 
						|
    /// pointer.
 | 
						|
    /// The following example shows the problem:
 | 
						|
    ///   %p = phi(%alloca1, %addr2)
 | 
						|
    ///   %l = load %ptr
 | 
						|
    ///   %addr1 = gep, %alloca2, 0, %l
 | 
						|
    ///   %addr2 = gep  %alloca2, 0, (%l + 1)
 | 
						|
    ///      alias(%p, %addr1) -> MayAlias !
 | 
						|
    ///   store %l, ...
 | 
						|
    SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs;
 | 
						|
 | 
						|
    // Visited - Track instructions visited by pointsToConstantMemory.
 | 
						|
    SmallPtrSet<const Value*, 16> Visited;
 | 
						|
 | 
						|
    /// \brief Check whether two Values can be considered equivalent.
 | 
						|
    ///
 | 
						|
    /// In addition to pointer equivalence of \p V1 and \p V2 this checks
 | 
						|
    /// whether they can not be part of a cycle in the value graph by looking at
 | 
						|
    /// all visited phi nodes an making sure that the phis cannot reach the
 | 
						|
    /// value. We have to do this because we are looking through phi nodes (That
 | 
						|
    /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
 | 
						|
    bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);
 | 
						|
 | 
						|
    /// \brief Dest and Src are the variable indices from two decomposed
 | 
						|
    /// GetElementPtr instructions GEP1 and GEP2 which have common base
 | 
						|
    /// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
 | 
						|
    /// difference between the two pointers.
 | 
						|
    void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
 | 
						|
                            const SmallVectorImpl<VariableGEPIndex> &Src);
 | 
						|
 | 
						|
    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
 | 
						|
    // instruction against another.
 | 
						|
    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
 | 
						|
                         const AAMDNodes &V1AAInfo,
 | 
						|
                         const Value *V2, uint64_t V2Size,
 | 
						|
                         const AAMDNodes &V2AAInfo,
 | 
						|
                         const Value *UnderlyingV1, const Value *UnderlyingV2);
 | 
						|
 | 
						|
    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
 | 
						|
    // instruction against another.
 | 
						|
    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
 | 
						|
                         const AAMDNodes &PNAAInfo,
 | 
						|
                         const Value *V2, uint64_t V2Size,
 | 
						|
                         const AAMDNodes &V2AAInfo);
 | 
						|
 | 
						|
    /// aliasSelect - Disambiguate a Select instruction against another value.
 | 
						|
    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
 | 
						|
                            const AAMDNodes &SIAAInfo,
 | 
						|
                            const Value *V2, uint64_t V2Size,
 | 
						|
                            const AAMDNodes &V2AAInfo);
 | 
						|
 | 
						|
    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
 | 
						|
                           AAMDNodes V1AATag,
 | 
						|
                           const Value *V2, uint64_t V2Size,
 | 
						|
                           AAMDNodes V2AATag);
 | 
						|
  };
 | 
						|
}  // End of anonymous namespace
 | 
						|
 | 
						|
// Register this pass...
 | 
						|
char BasicAliasAnalysis::ID = 0;
 | 
						|
INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
 | 
						|
                   "Basic Alias Analysis (stateless AA impl)",
 | 
						|
                   false, true, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 | 
						|
INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
 | 
						|
                   "Basic Alias Analysis (stateless AA impl)",
 | 
						|
                   false, true, false)
 | 
						|
 | 
						|
 | 
						|
ImmutablePass *llvm::createBasicAliasAnalysisPass() {
 | 
						|
  return new BasicAliasAnalysis();
 | 
						|
}
 | 
						|
 | 
						|
/// pointsToConstantMemory - Returns whether the given pointer value
 | 
						|
/// points to memory that is local to the function, with global constants being
 | 
						|
/// considered local to all functions.
 | 
						|
bool
 | 
						|
BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
 | 
						|
  assert(Visited.empty() && "Visited must be cleared after use!");
 | 
						|
 | 
						|
  unsigned MaxLookup = 8;
 | 
						|
  SmallVector<const Value *, 16> Worklist;
 | 
						|
  Worklist.push_back(Loc.Ptr);
 | 
						|
  do {
 | 
						|
    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
 | 
						|
    if (!Visited.insert(V)) {
 | 
						|
      Visited.clear();
 | 
						|
      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | 
						|
    }
 | 
						|
 | 
						|
    // An alloca instruction defines local memory.
 | 
						|
    if (OrLocal && isa<AllocaInst>(V))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // A global constant counts as local memory for our purposes.
 | 
						|
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | 
						|
      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
 | 
						|
      // global to be marked constant in some modules and non-constant in
 | 
						|
      // others.  GV may even be a declaration, not a definition.
 | 
						|
      if (!GV->isConstant()) {
 | 
						|
        Visited.clear();
 | 
						|
        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If both select values point to local memory, then so does the select.
 | 
						|
    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
 | 
						|
      Worklist.push_back(SI->getTrueValue());
 | 
						|
      Worklist.push_back(SI->getFalseValue());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If all values incoming to a phi node point to local memory, then so does
 | 
						|
    // the phi.
 | 
						|
    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
 | 
						|
      // Don't bother inspecting phi nodes with many operands.
 | 
						|
      if (PN->getNumIncomingValues() > MaxLookup) {
 | 
						|
        Visited.clear();
 | 
						|
        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | 
						|
      }
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
        Worklist.push_back(PN->getIncomingValue(i));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise be conservative.
 | 
						|
    Visited.clear();
 | 
						|
    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | 
						|
 | 
						|
  } while (!Worklist.empty() && --MaxLookup);
 | 
						|
 | 
						|
  Visited.clear();
 | 
						|
  return Worklist.empty();
 | 
						|
}
 | 
						|
 | 
						|
static bool isMemsetPattern16(const Function *MS,
 | 
						|
                              const TargetLibraryInfo &TLI) {
 | 
						|
  if (TLI.has(LibFunc::memset_pattern16) &&
 | 
						|
      MS->getName() == "memset_pattern16") {
 | 
						|
    FunctionType *MemsetType = MS->getFunctionType();
 | 
						|
    if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
 | 
						|
        isa<PointerType>(MemsetType->getParamType(0)) &&
 | 
						|
        isa<PointerType>(MemsetType->getParamType(1)) &&
 | 
						|
        isa<IntegerType>(MemsetType->getParamType(2)))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getModRefBehavior - Return the behavior when calling the given call site.
 | 
						|
AliasAnalysis::ModRefBehavior
 | 
						|
BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
 | 
						|
  if (CS.doesNotAccessMemory())
 | 
						|
    // Can't do better than this.
 | 
						|
    return DoesNotAccessMemory;
 | 
						|
 | 
						|
  ModRefBehavior Min = UnknownModRefBehavior;
 | 
						|
 | 
						|
  // If the callsite knows it only reads memory, don't return worse
 | 
						|
  // than that.
 | 
						|
  if (CS.onlyReadsMemory())
 | 
						|
    Min = OnlyReadsMemory;
 | 
						|
 | 
						|
  // The AliasAnalysis base class has some smarts, lets use them.
 | 
						|
  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
 | 
						|
}
 | 
						|
 | 
						|
/// getModRefBehavior - Return the behavior when calling the given function.
 | 
						|
/// For use when the call site is not known.
 | 
						|
AliasAnalysis::ModRefBehavior
 | 
						|
BasicAliasAnalysis::getModRefBehavior(const Function *F) {
 | 
						|
  // If the function declares it doesn't access memory, we can't do better.
 | 
						|
  if (F->doesNotAccessMemory())
 | 
						|
    return DoesNotAccessMemory;
 | 
						|
 | 
						|
  // For intrinsics, we can check the table.
 | 
						|
  if (unsigned iid = F->getIntrinsicID()) {
 | 
						|
#define GET_INTRINSIC_MODREF_BEHAVIOR
 | 
						|
#include "llvm/IR/Intrinsics.gen"
 | 
						|
#undef GET_INTRINSIC_MODREF_BEHAVIOR
 | 
						|
  }
 | 
						|
 | 
						|
  ModRefBehavior Min = UnknownModRefBehavior;
 | 
						|
 | 
						|
  // If the function declares it only reads memory, go with that.
 | 
						|
  if (F->onlyReadsMemory())
 | 
						|
    Min = OnlyReadsMemory;
 | 
						|
 | 
						|
  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
 | 
						|
  if (isMemsetPattern16(F, TLI))
 | 
						|
    Min = OnlyAccessesArgumentPointees;
 | 
						|
 | 
						|
  // Otherwise be conservative.
 | 
						|
  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::Location
 | 
						|
BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
 | 
						|
                                   ModRefResult &Mask) {
 | 
						|
  Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask);
 | 
						|
  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
 | 
						|
  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
 | 
						|
  if (II != nullptr)
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::memset:
 | 
						|
    case Intrinsic::memcpy:
 | 
						|
    case Intrinsic::memmove: {
 | 
						|
      assert((ArgIdx == 0 || ArgIdx == 1) &&
 | 
						|
             "Invalid argument index for memory intrinsic");
 | 
						|
      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
 | 
						|
        Loc.Size = LenCI->getZExtValue();
 | 
						|
      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
 | 
						|
             "Memory intrinsic location pointer not argument?");
 | 
						|
      Mask = ArgIdx ? Ref : Mod;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Intrinsic::lifetime_start:
 | 
						|
    case Intrinsic::lifetime_end:
 | 
						|
    case Intrinsic::invariant_start: {
 | 
						|
      assert(ArgIdx == 1 && "Invalid argument index");
 | 
						|
      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
 | 
						|
             "Intrinsic location pointer not argument?");
 | 
						|
      Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Intrinsic::invariant_end: {
 | 
						|
      assert(ArgIdx == 2 && "Invalid argument index");
 | 
						|
      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
 | 
						|
             "Intrinsic location pointer not argument?");
 | 
						|
      Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Intrinsic::arm_neon_vld1: {
 | 
						|
      assert(ArgIdx == 0 && "Invalid argument index");
 | 
						|
      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
 | 
						|
             "Intrinsic location pointer not argument?");
 | 
						|
      // LLVM's vld1 and vst1 intrinsics currently only support a single
 | 
						|
      // vector register.
 | 
						|
      if (DL)
 | 
						|
        Loc.Size = DL->getTypeStoreSize(II->getType());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Intrinsic::arm_neon_vst1: {
 | 
						|
      assert(ArgIdx == 0 && "Invalid argument index");
 | 
						|
      assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
 | 
						|
             "Intrinsic location pointer not argument?");
 | 
						|
      if (DL)
 | 
						|
        Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType());
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
  // We can bound the aliasing properties of memset_pattern16 just as we can
 | 
						|
  // for memcpy/memset.  This is particularly important because the
 | 
						|
  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
 | 
						|
  // whenever possible.
 | 
						|
  else if (CS.getCalledFunction() &&
 | 
						|
           isMemsetPattern16(CS.getCalledFunction(), TLI)) {
 | 
						|
    assert((ArgIdx == 0 || ArgIdx == 1) &&
 | 
						|
           "Invalid argument index for memset_pattern16");
 | 
						|
    if (ArgIdx == 1)
 | 
						|
      Loc.Size = 16;
 | 
						|
    else if (const ConstantInt *LenCI =
 | 
						|
             dyn_cast<ConstantInt>(CS.getArgument(2)))
 | 
						|
      Loc.Size = LenCI->getZExtValue();
 | 
						|
    assert(Loc.Ptr == CS.getArgument(ArgIdx) &&
 | 
						|
           "memset_pattern16 location pointer not argument?");
 | 
						|
    Mask = ArgIdx ? Ref : Mod;
 | 
						|
  }
 | 
						|
  // FIXME: Handle memset_pattern4 and memset_pattern8 also.
 | 
						|
 | 
						|
  return Loc;
 | 
						|
}
 | 
						|
 | 
						|
static bool isAssumeIntrinsic(ImmutableCallSite CS) {
 | 
						|
  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
 | 
						|
  if (II && II->getIntrinsicID() == Intrinsic::assume)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getModRefInfo - Check to see if the specified callsite can clobber the
 | 
						|
/// specified memory object.  Since we only look at local properties of this
 | 
						|
/// function, we really can't say much about this query.  We do, however, use
 | 
						|
/// simple "address taken" analysis on local objects.
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
 | 
						|
                                  const Location &Loc) {
 | 
						|
  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
 | 
						|
         "AliasAnalysis query involving multiple functions!");
 | 
						|
 | 
						|
  const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
 | 
						|
 | 
						|
  // If this is a tail call and Loc.Ptr points to a stack location, we know that
 | 
						|
  // the tail call cannot access or modify the local stack.
 | 
						|
  // We cannot exclude byval arguments here; these belong to the caller of
 | 
						|
  // the current function not to the current function, and a tail callee
 | 
						|
  // may reference them.
 | 
						|
  if (isa<AllocaInst>(Object))
 | 
						|
    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
 | 
						|
      if (CI->isTailCall())
 | 
						|
        return NoModRef;
 | 
						|
 | 
						|
  // If the pointer is to a locally allocated object that does not escape,
 | 
						|
  // then the call can not mod/ref the pointer unless the call takes the pointer
 | 
						|
  // as an argument, and itself doesn't capture it.
 | 
						|
  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
 | 
						|
      isNonEscapingLocalObject(Object)) {
 | 
						|
    bool PassedAsArg = false;
 | 
						|
    unsigned ArgNo = 0;
 | 
						|
    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
 | 
						|
         CI != CE; ++CI, ++ArgNo) {
 | 
						|
      // Only look at the no-capture or byval pointer arguments.  If this
 | 
						|
      // pointer were passed to arguments that were neither of these, then it
 | 
						|
      // couldn't be no-capture.
 | 
						|
      if (!(*CI)->getType()->isPointerTy() ||
 | 
						|
          (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If this is a no-capture pointer argument, see if we can tell that it
 | 
						|
      // is impossible to alias the pointer we're checking.  If not, we have to
 | 
						|
      // assume that the call could touch the pointer, even though it doesn't
 | 
						|
      // escape.
 | 
						|
      if (!isNoAlias(Location(*CI), Location(Object))) {
 | 
						|
        PassedAsArg = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!PassedAsArg)
 | 
						|
      return NoModRef;
 | 
						|
  }
 | 
						|
 | 
						|
  // While the assume intrinsic is marked as arbitrarily writing so that
 | 
						|
  // proper control dependencies will be maintained, it never aliases any
 | 
						|
  // particular memory location.
 | 
						|
  if (isAssumeIntrinsic(CS))
 | 
						|
    return NoModRef;
 | 
						|
 | 
						|
  // The AliasAnalysis base class has some smarts, lets use them.
 | 
						|
  return AliasAnalysis::getModRefInfo(CS, Loc);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
 | 
						|
                                  ImmutableCallSite CS2) {
 | 
						|
  // While the assume intrinsic is marked as arbitrarily writing so that
 | 
						|
  // proper control dependencies will be maintained, it never aliases any
 | 
						|
  // particular memory location.
 | 
						|
  if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
 | 
						|
    return NoModRef;
 | 
						|
 | 
						|
  // The AliasAnalysis base class has some smarts, lets use them.
 | 
						|
  return AliasAnalysis::getModRefInfo(CS1, CS2);
 | 
						|
}
 | 
						|
 | 
						|
/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
 | 
						|
/// against another pointer.  We know that V1 is a GEP, but we don't know
 | 
						|
/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
 | 
						|
/// UnderlyingV2 is the same for V2.
 | 
						|
///
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
 | 
						|
                             const AAMDNodes &V1AAInfo,
 | 
						|
                             const Value *V2, uint64_t V2Size,
 | 
						|
                             const AAMDNodes &V2AAInfo,
 | 
						|
                             const Value *UnderlyingV1,
 | 
						|
                             const Value *UnderlyingV2) {
 | 
						|
  int64_t GEP1BaseOffset;
 | 
						|
  bool GEP1MaxLookupReached;
 | 
						|
  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
 | 
						|
 | 
						|
  AssumptionTracker *AT = &getAnalysis<AssumptionTracker>();
 | 
						|
  DominatorTreeWrapperPass *DTWP =
 | 
						|
      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | 
						|
 | 
						|
  // If we have two gep instructions with must-alias or not-alias'ing base
 | 
						|
  // pointers, figure out if the indexes to the GEP tell us anything about the
 | 
						|
  // derived pointer.
 | 
						|
  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
 | 
						|
    // Do the base pointers alias?
 | 
						|
    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
 | 
						|
                                       UnderlyingV2, UnknownSize, AAMDNodes());
 | 
						|
 | 
						|
    // Check for geps of non-aliasing underlying pointers where the offsets are
 | 
						|
    // identical.
 | 
						|
    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
 | 
						|
      // Do the base pointers alias assuming type and size.
 | 
						|
      AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
 | 
						|
                                                V1AAInfo, UnderlyingV2,
 | 
						|
                                                V2Size, V2AAInfo);
 | 
						|
      if (PreciseBaseAlias == NoAlias) {
 | 
						|
        // See if the computed offset from the common pointer tells us about the
 | 
						|
        // relation of the resulting pointer.
 | 
						|
        int64_t GEP2BaseOffset;
 | 
						|
        bool GEP2MaxLookupReached;
 | 
						|
        SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
 | 
						|
        const Value *GEP2BasePtr =
 | 
						|
          DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
 | 
						|
                                 GEP2MaxLookupReached, DL, AT, DT);
 | 
						|
        const Value *GEP1BasePtr =
 | 
						|
          DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
 | 
						|
                                 GEP1MaxLookupReached, DL, AT, DT);
 | 
						|
        // DecomposeGEPExpression and GetUnderlyingObject should return the
 | 
						|
        // same result except when DecomposeGEPExpression has no DataLayout.
 | 
						|
        if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
 | 
						|
          assert(!DL &&
 | 
						|
                 "DecomposeGEPExpression and GetUnderlyingObject disagree!");
 | 
						|
          return MayAlias;
 | 
						|
        }
 | 
						|
        // If the max search depth is reached the result is undefined
 | 
						|
        if (GEP2MaxLookupReached || GEP1MaxLookupReached)
 | 
						|
          return MayAlias;
 | 
						|
 | 
						|
        // Same offsets.
 | 
						|
        if (GEP1BaseOffset == GEP2BaseOffset &&
 | 
						|
            GEP1VariableIndices == GEP2VariableIndices)
 | 
						|
          return NoAlias;
 | 
						|
        GEP1VariableIndices.clear();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we get a No or May, then return it immediately, no amount of analysis
 | 
						|
    // will improve this situation.
 | 
						|
    if (BaseAlias != MustAlias) return BaseAlias;
 | 
						|
 | 
						|
    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
 | 
						|
    // exactly, see if the computed offset from the common pointer tells us
 | 
						|
    // about the relation of the resulting pointer.
 | 
						|
    const Value *GEP1BasePtr =
 | 
						|
      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
 | 
						|
                             GEP1MaxLookupReached, DL, AT, DT);
 | 
						|
 | 
						|
    int64_t GEP2BaseOffset;
 | 
						|
    bool GEP2MaxLookupReached;
 | 
						|
    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
 | 
						|
    const Value *GEP2BasePtr =
 | 
						|
      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
 | 
						|
                             GEP2MaxLookupReached, DL, AT, DT);
 | 
						|
 | 
						|
    // DecomposeGEPExpression and GetUnderlyingObject should return the
 | 
						|
    // same result except when DecomposeGEPExpression has no DataLayout.
 | 
						|
    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
 | 
						|
      assert(!DL &&
 | 
						|
             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
 | 
						|
      return MayAlias;
 | 
						|
    }
 | 
						|
    // If the max search depth is reached the result is undefined
 | 
						|
    if (GEP2MaxLookupReached || GEP1MaxLookupReached)
 | 
						|
      return MayAlias;
 | 
						|
 | 
						|
    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
 | 
						|
    // symbolic difference.
 | 
						|
    GEP1BaseOffset -= GEP2BaseOffset;
 | 
						|
    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Check to see if these two pointers are related by the getelementptr
 | 
						|
    // instruction.  If one pointer is a GEP with a non-zero index of the other
 | 
						|
    // pointer, we know they cannot alias.
 | 
						|
 | 
						|
    // If both accesses are unknown size, we can't do anything useful here.
 | 
						|
    if (V1Size == UnknownSize && V2Size == UnknownSize)
 | 
						|
      return MayAlias;
 | 
						|
 | 
						|
    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
 | 
						|
                               V2, V2Size, V2AAInfo);
 | 
						|
    if (R != MustAlias)
 | 
						|
      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
 | 
						|
      // If V2 is known not to alias GEP base pointer, then the two values
 | 
						|
      // cannot alias per GEP semantics: "A pointer value formed from a
 | 
						|
      // getelementptr instruction is associated with the addresses associated
 | 
						|
      // with the first operand of the getelementptr".
 | 
						|
      return R;
 | 
						|
 | 
						|
    const Value *GEP1BasePtr =
 | 
						|
      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
 | 
						|
                             GEP1MaxLookupReached, DL, AT, DT);
 | 
						|
 | 
						|
    // DecomposeGEPExpression and GetUnderlyingObject should return the
 | 
						|
    // same result except when DecomposeGEPExpression has no DataLayout.
 | 
						|
    if (GEP1BasePtr != UnderlyingV1) {
 | 
						|
      assert(!DL &&
 | 
						|
             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
 | 
						|
      return MayAlias;
 | 
						|
    }
 | 
						|
    // If the max search depth is reached the result is undefined
 | 
						|
    if (GEP1MaxLookupReached)
 | 
						|
      return MayAlias;
 | 
						|
  }
 | 
						|
 | 
						|
  // In the two GEP Case, if there is no difference in the offsets of the
 | 
						|
  // computed pointers, the resultant pointers are a must alias.  This
 | 
						|
  // hapens when we have two lexically identical GEP's (for example).
 | 
						|
  //
 | 
						|
  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
 | 
						|
  // must aliases the GEP, the end result is a must alias also.
 | 
						|
  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
 | 
						|
    return MustAlias;
 | 
						|
 | 
						|
  // If there is a constant difference between the pointers, but the difference
 | 
						|
  // is less than the size of the associated memory object, then we know
 | 
						|
  // that the objects are partially overlapping.  If the difference is
 | 
						|
  // greater, we know they do not overlap.
 | 
						|
  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
 | 
						|
    if (GEP1BaseOffset >= 0) {
 | 
						|
      if (V2Size != UnknownSize) {
 | 
						|
        if ((uint64_t)GEP1BaseOffset < V2Size)
 | 
						|
          return PartialAlias;
 | 
						|
        return NoAlias;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // We have the situation where:
 | 
						|
      // +                +
 | 
						|
      // | BaseOffset     |
 | 
						|
      // ---------------->|
 | 
						|
      // |-->V1Size       |-------> V2Size
 | 
						|
      // GEP1             V2
 | 
						|
      // We need to know that V2Size is not unknown, otherwise we might have
 | 
						|
      // stripped a gep with negative index ('gep <ptr>, -1, ...).
 | 
						|
      if (V1Size != UnknownSize && V2Size != UnknownSize) {
 | 
						|
        if (-(uint64_t)GEP1BaseOffset < V1Size)
 | 
						|
          return PartialAlias;
 | 
						|
        return NoAlias;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to distinguish something like &A[i][1] against &A[42][0].
 | 
						|
  // Grab the least significant bit set in any of the scales.
 | 
						|
  if (!GEP1VariableIndices.empty()) {
 | 
						|
    uint64_t Modulo = 0;
 | 
						|
    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
 | 
						|
      Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
 | 
						|
    Modulo = Modulo ^ (Modulo & (Modulo - 1));
 | 
						|
 | 
						|
    // We can compute the difference between the two addresses
 | 
						|
    // mod Modulo. Check whether that difference guarantees that the
 | 
						|
    // two locations do not alias.
 | 
						|
    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
 | 
						|
    if (V1Size != UnknownSize && V2Size != UnknownSize &&
 | 
						|
        ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
 | 
						|
      return NoAlias;
 | 
						|
  }
 | 
						|
 | 
						|
  // Statically, we can see that the base objects are the same, but the
 | 
						|
  // pointers have dynamic offsets which we can't resolve. And none of our
 | 
						|
  // little tricks above worked.
 | 
						|
  //
 | 
						|
  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
 | 
						|
  // practical effect of this is protecting TBAA in the case of dynamic
 | 
						|
  // indices into arrays of unions or malloc'd memory.
 | 
						|
  return PartialAlias;
 | 
						|
}
 | 
						|
 | 
						|
static AliasAnalysis::AliasResult
 | 
						|
MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
 | 
						|
  // If the results agree, take it.
 | 
						|
  if (A == B)
 | 
						|
    return A;
 | 
						|
  // A mix of PartialAlias and MustAlias is PartialAlias.
 | 
						|
  if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
 | 
						|
      (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
 | 
						|
    return AliasAnalysis::PartialAlias;
 | 
						|
  // Otherwise, we don't know anything.
 | 
						|
  return AliasAnalysis::MayAlias;
 | 
						|
}
 | 
						|
 | 
						|
/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
 | 
						|
/// instruction against another.
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
 | 
						|
                                const AAMDNodes &SIAAInfo,
 | 
						|
                                const Value *V2, uint64_t V2Size,
 | 
						|
                                const AAMDNodes &V2AAInfo) {
 | 
						|
  // If the values are Selects with the same condition, we can do a more precise
 | 
						|
  // check: just check for aliases between the values on corresponding arms.
 | 
						|
  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
 | 
						|
    if (SI->getCondition() == SI2->getCondition()) {
 | 
						|
      AliasResult Alias =
 | 
						|
        aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
 | 
						|
                   SI2->getTrueValue(), V2Size, V2AAInfo);
 | 
						|
      if (Alias == MayAlias)
 | 
						|
        return MayAlias;
 | 
						|
      AliasResult ThisAlias =
 | 
						|
        aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
 | 
						|
                   SI2->getFalseValue(), V2Size, V2AAInfo);
 | 
						|
      return MergeAliasResults(ThisAlias, Alias);
 | 
						|
    }
 | 
						|
 | 
						|
  // If both arms of the Select node NoAlias or MustAlias V2, then returns
 | 
						|
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
 | 
						|
  AliasResult Alias =
 | 
						|
    aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
 | 
						|
  if (Alias == MayAlias)
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  AliasResult ThisAlias =
 | 
						|
    aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
 | 
						|
  return MergeAliasResults(ThisAlias, Alias);
 | 
						|
}
 | 
						|
 | 
						|
// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
 | 
						|
// against another.
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
 | 
						|
                             const AAMDNodes &PNAAInfo,
 | 
						|
                             const Value *V2, uint64_t V2Size,
 | 
						|
                             const AAMDNodes &V2AAInfo) {
 | 
						|
  // Track phi nodes we have visited. We use this information when we determine
 | 
						|
  // value equivalence.
 | 
						|
  VisitedPhiBBs.insert(PN->getParent());
 | 
						|
 | 
						|
  // If the values are PHIs in the same block, we can do a more precise
 | 
						|
  // as well as efficient check: just check for aliases between the values
 | 
						|
  // on corresponding edges.
 | 
						|
  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
 | 
						|
    if (PN2->getParent() == PN->getParent()) {
 | 
						|
      LocPair Locs(Location(PN, PNSize, PNAAInfo),
 | 
						|
                   Location(V2, V2Size, V2AAInfo));
 | 
						|
      if (PN > V2)
 | 
						|
        std::swap(Locs.first, Locs.second);
 | 
						|
      // Analyse the PHIs' inputs under the assumption that the PHIs are
 | 
						|
      // NoAlias.
 | 
						|
      // If the PHIs are May/MustAlias there must be (recursively) an input
 | 
						|
      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
 | 
						|
      // there must be an operation on the PHIs within the PHIs' value cycle
 | 
						|
      // that causes a MayAlias.
 | 
						|
      // Pretend the phis do not alias.
 | 
						|
      AliasResult Alias = NoAlias;
 | 
						|
      assert(AliasCache.count(Locs) &&
 | 
						|
             "There must exist an entry for the phi node");
 | 
						|
      AliasResult OrigAliasResult = AliasCache[Locs];
 | 
						|
      AliasCache[Locs] = NoAlias;
 | 
						|
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        AliasResult ThisAlias =
 | 
						|
          aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
 | 
						|
                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
 | 
						|
                     V2Size, V2AAInfo);
 | 
						|
        Alias = MergeAliasResults(ThisAlias, Alias);
 | 
						|
        if (Alias == MayAlias)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Reset if speculation failed.
 | 
						|
      if (Alias != NoAlias)
 | 
						|
        AliasCache[Locs] = OrigAliasResult;
 | 
						|
 | 
						|
      return Alias;
 | 
						|
    }
 | 
						|
 | 
						|
  SmallPtrSet<Value*, 4> UniqueSrc;
 | 
						|
  SmallVector<Value*, 4> V1Srcs;
 | 
						|
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *PV1 = PN->getIncomingValue(i);
 | 
						|
    if (isa<PHINode>(PV1))
 | 
						|
      // If any of the source itself is a PHI, return MayAlias conservatively
 | 
						|
      // to avoid compile time explosion. The worst possible case is if both
 | 
						|
      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
 | 
						|
      // and 'n' are the number of PHI sources.
 | 
						|
      return MayAlias;
 | 
						|
    if (UniqueSrc.insert(PV1))
 | 
						|
      V1Srcs.push_back(PV1);
 | 
						|
  }
 | 
						|
 | 
						|
  AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo,
 | 
						|
                                 V1Srcs[0], PNSize, PNAAInfo);
 | 
						|
  // Early exit if the check of the first PHI source against V2 is MayAlias.
 | 
						|
  // Other results are not possible.
 | 
						|
  if (Alias == MayAlias)
 | 
						|
    return MayAlias;
 | 
						|
 | 
						|
  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
 | 
						|
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
 | 
						|
  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
 | 
						|
    Value *V = V1Srcs[i];
 | 
						|
 | 
						|
    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo,
 | 
						|
                                       V, PNSize, PNAAInfo);
 | 
						|
    Alias = MergeAliasResults(ThisAlias, Alias);
 | 
						|
    if (Alias == MayAlias)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return Alias;
 | 
						|
}
 | 
						|
 | 
						|
// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
 | 
						|
// such as array references.
 | 
						|
//
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
 | 
						|
                               AAMDNodes V1AAInfo,
 | 
						|
                               const Value *V2, uint64_t V2Size,
 | 
						|
                               AAMDNodes V2AAInfo) {
 | 
						|
  // If either of the memory references is empty, it doesn't matter what the
 | 
						|
  // pointer values are.
 | 
						|
  if (V1Size == 0 || V2Size == 0)
 | 
						|
    return NoAlias;
 | 
						|
 | 
						|
  // Strip off any casts if they exist.
 | 
						|
  V1 = V1->stripPointerCasts();
 | 
						|
  V2 = V2->stripPointerCasts();
 | 
						|
 | 
						|
  // Are we checking for alias of the same value?
 | 
						|
  // Because we look 'through' phi nodes we could look at "Value" pointers from
 | 
						|
  // different iterations. We must therefore make sure that this is not the
 | 
						|
  // case. The function isValueEqualInPotentialCycles ensures that this cannot
 | 
						|
  // happen by looking at the visited phi nodes and making sure they cannot
 | 
						|
  // reach the value.
 | 
						|
  if (isValueEqualInPotentialCycles(V1, V2))
 | 
						|
    return MustAlias;
 | 
						|
 | 
						|
  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
 | 
						|
    return NoAlias;  // Scalars cannot alias each other
 | 
						|
 | 
						|
  // Figure out what objects these things are pointing to if we can.
 | 
						|
  const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
 | 
						|
  const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
 | 
						|
 | 
						|
  // Null values in the default address space don't point to any object, so they
 | 
						|
  // don't alias any other pointer.
 | 
						|
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
 | 
						|
    if (CPN->getType()->getAddressSpace() == 0)
 | 
						|
      return NoAlias;
 | 
						|
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
 | 
						|
    if (CPN->getType()->getAddressSpace() == 0)
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
  if (O1 != O2) {
 | 
						|
    // If V1/V2 point to two different objects we know that we have no alias.
 | 
						|
    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // Constant pointers can't alias with non-const isIdentifiedObject objects.
 | 
						|
    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
 | 
						|
        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // Function arguments can't alias with things that are known to be
 | 
						|
    // unambigously identified at the function level.
 | 
						|
    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
 | 
						|
        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // Most objects can't alias null.
 | 
						|
    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
 | 
						|
        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
    // If one pointer is the result of a call/invoke or load and the other is a
 | 
						|
    // non-escaping local object within the same function, then we know the
 | 
						|
    // object couldn't escape to a point where the call could return it.
 | 
						|
    //
 | 
						|
    // Note that if the pointers are in different functions, there are a
 | 
						|
    // variety of complications. A call with a nocapture argument may still
 | 
						|
    // temporary store the nocapture argument's value in a temporary memory
 | 
						|
    // location if that memory location doesn't escape. Or it may pass a
 | 
						|
    // nocapture value to other functions as long as they don't capture it.
 | 
						|
    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
 | 
						|
      return NoAlias;
 | 
						|
    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
 | 
						|
      return NoAlias;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the size of one access is larger than the entire object on the other
 | 
						|
  // side, then we know such behavior is undefined and can assume no alias.
 | 
						|
  if (DL)
 | 
						|
    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) ||
 | 
						|
        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI)))
 | 
						|
      return NoAlias;
 | 
						|
 | 
						|
  // Check the cache before climbing up use-def chains. This also terminates
 | 
						|
  // otherwise infinitely recursive queries.
 | 
						|
  LocPair Locs(Location(V1, V1Size, V1AAInfo),
 | 
						|
               Location(V2, V2Size, V2AAInfo));
 | 
						|
  if (V1 > V2)
 | 
						|
    std::swap(Locs.first, Locs.second);
 | 
						|
  std::pair<AliasCacheTy::iterator, bool> Pair =
 | 
						|
    AliasCache.insert(std::make_pair(Locs, MayAlias));
 | 
						|
  if (!Pair.second)
 | 
						|
    return Pair.first->second;
 | 
						|
 | 
						|
  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
 | 
						|
  // GEP can't simplify, we don't even look at the PHI cases.
 | 
						|
  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    std::swap(V1Size, V2Size);
 | 
						|
    std::swap(O1, O2);
 | 
						|
    std::swap(V1AAInfo, V2AAInfo);
 | 
						|
  }
 | 
						|
  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
 | 
						|
    AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
 | 
						|
    if (Result != MayAlias) return AliasCache[Locs] = Result;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    std::swap(V1Size, V2Size);
 | 
						|
    std::swap(V1AAInfo, V2AAInfo);
 | 
						|
  }
 | 
						|
  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
 | 
						|
    AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
 | 
						|
                                  V2, V2Size, V2AAInfo);
 | 
						|
    if (Result != MayAlias) return AliasCache[Locs] = Result;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
 | 
						|
    std::swap(V1, V2);
 | 
						|
    std::swap(V1Size, V2Size);
 | 
						|
    std::swap(V1AAInfo, V2AAInfo);
 | 
						|
  }
 | 
						|
  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
 | 
						|
    AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo,
 | 
						|
                                     V2, V2Size, V2AAInfo);
 | 
						|
    if (Result != MayAlias) return AliasCache[Locs] = Result;
 | 
						|
  }
 | 
						|
 | 
						|
  // If both pointers are pointing into the same object and one of them
 | 
						|
  // accesses is accessing the entire object, then the accesses must
 | 
						|
  // overlap in some way.
 | 
						|
  if (DL && O1 == O2)
 | 
						|
    if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) ||
 | 
						|
        (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI)))
 | 
						|
      return AliasCache[Locs] = PartialAlias;
 | 
						|
 | 
						|
  AliasResult Result =
 | 
						|
    AliasAnalysis::alias(Location(V1, V1Size, V1AAInfo),
 | 
						|
                         Location(V2, V2Size, V2AAInfo));
 | 
						|
  return AliasCache[Locs] = Result;
 | 
						|
}
 | 
						|
 | 
						|
bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
 | 
						|
                                                       const Value *V2) {
 | 
						|
  if (V != V2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const Instruction *Inst = dyn_cast<Instruction>(V);
 | 
						|
  if (!Inst)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Use dominance or loop info if available.
 | 
						|
  DominatorTreeWrapperPass *DTWP =
 | 
						|
      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | 
						|
  LoopInfo *LI = getAnalysisIfAvailable<LoopInfo>();
 | 
						|
 | 
						|
  // Make sure that the visited phis cannot reach the Value. This ensures that
 | 
						|
  // the Values cannot come from different iterations of a potential cycle the
 | 
						|
  // phi nodes could be involved in.
 | 
						|
  for (auto *P : VisitedPhiBBs)
 | 
						|
    if (isPotentiallyReachable(P->begin(), Inst, DT, LI))
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// GetIndexDifference - Dest and Src are the variable indices from two
 | 
						|
/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
 | 
						|
/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
 | 
						|
/// difference between the two pointers.
 | 
						|
void BasicAliasAnalysis::GetIndexDifference(
 | 
						|
    SmallVectorImpl<VariableGEPIndex> &Dest,
 | 
						|
    const SmallVectorImpl<VariableGEPIndex> &Src) {
 | 
						|
  if (Src.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
 | 
						|
    const Value *V = Src[i].V;
 | 
						|
    ExtensionKind Extension = Src[i].Extension;
 | 
						|
    int64_t Scale = Src[i].Scale;
 | 
						|
 | 
						|
    // Find V in Dest.  This is N^2, but pointer indices almost never have more
 | 
						|
    // than a few variable indexes.
 | 
						|
    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
 | 
						|
      if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
 | 
						|
          Dest[j].Extension != Extension)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If we found it, subtract off Scale V's from the entry in Dest.  If it
 | 
						|
      // goes to zero, remove the entry.
 | 
						|
      if (Dest[j].Scale != Scale)
 | 
						|
        Dest[j].Scale -= Scale;
 | 
						|
      else
 | 
						|
        Dest.erase(Dest.begin() + j);
 | 
						|
      Scale = 0;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we didn't consume this entry, add it to the end of the Dest list.
 | 
						|
    if (Scale) {
 | 
						|
      VariableGEPIndex Entry = { V, Extension, -Scale };
 | 
						|
      Dest.push_back(Entry);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |