mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Change `Instruction::getMetadata()` to return `Value` as part of PR21433. Update most callers to use `Instruction::getMDNode()`, which wraps the result in a `cast_or_null<MDNode>`. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221024 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			633 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			633 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the TypeBasedAliasAnalysis pass, which implements
 | 
						|
// metadata-based TBAA.
 | 
						|
//
 | 
						|
// In LLVM IR, memory does not have types, so LLVM's own type system is not
 | 
						|
// suitable for doing TBAA. Instead, metadata is added to the IR to describe
 | 
						|
// a type system of a higher level language. This can be used to implement
 | 
						|
// typical C/C++ TBAA, but it can also be used to implement custom alias
 | 
						|
// analysis behavior for other languages.
 | 
						|
//
 | 
						|
// We now support two types of metadata format: scalar TBAA and struct-path
 | 
						|
// aware TBAA. After all testing cases are upgraded to use struct-path aware
 | 
						|
// TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
 | 
						|
// can be dropped.
 | 
						|
//
 | 
						|
// The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
 | 
						|
// three fields, e.g.:
 | 
						|
//   !0 = metadata !{ metadata !"an example type tree" }
 | 
						|
//   !1 = metadata !{ metadata !"int", metadata !0 }
 | 
						|
//   !2 = metadata !{ metadata !"float", metadata !0 }
 | 
						|
//   !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
 | 
						|
//
 | 
						|
// The first field is an identity field. It can be any value, usually
 | 
						|
// an MDString, which uniquely identifies the type. The most important
 | 
						|
// name in the tree is the name of the root node. Two trees with
 | 
						|
// different root node names are entirely disjoint, even if they
 | 
						|
// have leaves with common names.
 | 
						|
//
 | 
						|
// The second field identifies the type's parent node in the tree, or
 | 
						|
// is null or omitted for a root node. A type is considered to alias
 | 
						|
// all of its descendants and all of its ancestors in the tree. Also,
 | 
						|
// a type is considered to alias all types in other trees, so that
 | 
						|
// bitcode produced from multiple front-ends is handled conservatively.
 | 
						|
//
 | 
						|
// If the third field is present, it's an integer which if equal to 1
 | 
						|
// indicates that the type is "constant" (meaning pointsToConstantMemory
 | 
						|
// should return true; see
 | 
						|
// http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
 | 
						|
//
 | 
						|
// With struct-path aware TBAA, the MDNodes attached to an instruction using
 | 
						|
// "!tbaa" are called path tag nodes.
 | 
						|
//
 | 
						|
// The path tag node has 4 fields with the last field being optional.
 | 
						|
//
 | 
						|
// The first field is the base type node, it can be a struct type node
 | 
						|
// or a scalar type node. The second field is the access type node, it
 | 
						|
// must be a scalar type node. The third field is the offset into the base type.
 | 
						|
// The last field has the same meaning as the last field of our scalar TBAA:
 | 
						|
// it's an integer which if equal to 1 indicates that the access is "constant".
 | 
						|
//
 | 
						|
// The struct type node has a name and a list of pairs, one pair for each member
 | 
						|
// of the struct. The first element of each pair is a type node (a struct type
 | 
						|
// node or a sclar type node), specifying the type of the member, the second
 | 
						|
// element of each pair is the offset of the member.
 | 
						|
//
 | 
						|
// Given an example
 | 
						|
// typedef struct {
 | 
						|
//   short s;
 | 
						|
// } A;
 | 
						|
// typedef struct {
 | 
						|
//   uint16_t s;
 | 
						|
//   A a;
 | 
						|
// } B;
 | 
						|
//
 | 
						|
// For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
 | 
						|
// instruction. The base type is !4 (struct B), the access type is !2 (scalar
 | 
						|
// type short) and the offset is 4.
 | 
						|
//
 | 
						|
// !0 = metadata !{metadata !"Simple C/C++ TBAA"}
 | 
						|
// !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
 | 
						|
// !2 = metadata !{metadata !"short", metadata !1}           // Scalar type node
 | 
						|
// !3 = metadata !{metadata !"A", metadata !2, i64 0}        // Struct type node
 | 
						|
// !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
 | 
						|
//                                                           // Struct type node
 | 
						|
// !5 = metadata !{metadata !4, metadata !2, i64 4}          // Path tag node
 | 
						|
//
 | 
						|
// The struct type nodes and the scalar type nodes form a type DAG.
 | 
						|
//         Root (!0)
 | 
						|
//         char (!1)  -- edge to Root
 | 
						|
//         short (!2) -- edge to char
 | 
						|
//         A (!3) -- edge with offset 0 to short
 | 
						|
//         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
 | 
						|
//
 | 
						|
// To check if two tags (tagX and tagY) can alias, we start from the base type
 | 
						|
// of tagX, follow the edge with the correct offset in the type DAG and adjust
 | 
						|
// the offset until we reach the base type of tagY or until we reach the Root
 | 
						|
// node.
 | 
						|
// If we reach the base type of tagY, compare the adjusted offset with
 | 
						|
// offset of tagY, return Alias if the offsets are the same, return NoAlias
 | 
						|
// otherwise.
 | 
						|
// If we reach the Root node, perform the above starting from base type of tagY
 | 
						|
// to see if we reach base type of tagX.
 | 
						|
//
 | 
						|
// If they have different roots, they're part of different potentially
 | 
						|
// unrelated type systems, so we return Alias to be conservative.
 | 
						|
// If neither node is an ancestor of the other and they have the same root,
 | 
						|
// then we say NoAlias.
 | 
						|
//
 | 
						|
// TODO: The current metadata format doesn't support struct
 | 
						|
// fields. For example:
 | 
						|
//   struct X {
 | 
						|
//     double d;
 | 
						|
//     int i;
 | 
						|
//   };
 | 
						|
//   void foo(struct X *x, struct X *y, double *p) {
 | 
						|
//     *x = *y;
 | 
						|
//     *p = 0.0;
 | 
						|
//   }
 | 
						|
// Struct X has a double member, so the store to *x can alias the store to *p.
 | 
						|
// Currently it's not possible to precisely describe all the things struct X
 | 
						|
// aliases, so struct assignments must use conservative TBAA nodes. There's
 | 
						|
// no scheme for attaching metadata to @llvm.memcpy yet either.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/Passes.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// A handy option for disabling TBAA functionality. The same effect can also be
 | 
						|
// achieved by stripping the !tbaa tags from IR, but this option is sometimes
 | 
						|
// more convenient.
 | 
						|
static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// TBAANode - This is a simple wrapper around an MDNode which provides a
 | 
						|
  /// higher-level interface by hiding the details of how alias analysis
 | 
						|
  /// information is encoded in its operands.
 | 
						|
  class TBAANode {
 | 
						|
    const MDNode *Node;
 | 
						|
 | 
						|
  public:
 | 
						|
    TBAANode() : Node(nullptr) {}
 | 
						|
    explicit TBAANode(const MDNode *N) : Node(N) {}
 | 
						|
 | 
						|
    /// getNode - Get the MDNode for this TBAANode.
 | 
						|
    const MDNode *getNode() const { return Node; }
 | 
						|
 | 
						|
    /// getParent - Get this TBAANode's Alias tree parent.
 | 
						|
    TBAANode getParent() const {
 | 
						|
      if (Node->getNumOperands() < 2)
 | 
						|
        return TBAANode();
 | 
						|
      MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
 | 
						|
      if (!P)
 | 
						|
        return TBAANode();
 | 
						|
      // Ok, this node has a valid parent. Return it.
 | 
						|
      return TBAANode(P);
 | 
						|
    }
 | 
						|
 | 
						|
    /// TypeIsImmutable - Test if this TBAANode represents a type for objects
 | 
						|
    /// which are not modified (by any means) in the context where this
 | 
						|
    /// AliasAnalysis is relevant.
 | 
						|
    bool TypeIsImmutable() const {
 | 
						|
      if (Node->getNumOperands() < 3)
 | 
						|
        return false;
 | 
						|
      ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(2));
 | 
						|
      if (!CI)
 | 
						|
        return false;
 | 
						|
      return CI->getValue()[0];
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// This is a simple wrapper around an MDNode which provides a
 | 
						|
  /// higher-level interface by hiding the details of how alias analysis
 | 
						|
  /// information is encoded in its operands.
 | 
						|
  class TBAAStructTagNode {
 | 
						|
    /// This node should be created with createTBAAStructTagNode.
 | 
						|
    const MDNode *Node;
 | 
						|
 | 
						|
  public:
 | 
						|
    explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
 | 
						|
 | 
						|
    /// Get the MDNode for this TBAAStructTagNode.
 | 
						|
    const MDNode *getNode() const { return Node; }
 | 
						|
 | 
						|
    const MDNode *getBaseType() const {
 | 
						|
      return dyn_cast_or_null<MDNode>(Node->getOperand(0));
 | 
						|
    }
 | 
						|
    const MDNode *getAccessType() const {
 | 
						|
      return dyn_cast_or_null<MDNode>(Node->getOperand(1));
 | 
						|
    }
 | 
						|
    uint64_t getOffset() const {
 | 
						|
      return cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
 | 
						|
    }
 | 
						|
    /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
 | 
						|
    /// objects which are not modified (by any means) in the context where this
 | 
						|
    /// AliasAnalysis is relevant.
 | 
						|
    bool TypeIsImmutable() const {
 | 
						|
      if (Node->getNumOperands() < 4)
 | 
						|
        return false;
 | 
						|
      ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(3));
 | 
						|
      if (!CI)
 | 
						|
        return false;
 | 
						|
      return CI->getValue()[0];
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// This is a simple wrapper around an MDNode which provides a
 | 
						|
  /// higher-level interface by hiding the details of how alias analysis
 | 
						|
  /// information is encoded in its operands.
 | 
						|
  class TBAAStructTypeNode {
 | 
						|
    /// This node should be created with createTBAAStructTypeNode.
 | 
						|
    const MDNode *Node;
 | 
						|
 | 
						|
  public:
 | 
						|
    TBAAStructTypeNode() : Node(nullptr) {}
 | 
						|
    explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
 | 
						|
 | 
						|
    /// Get the MDNode for this TBAAStructTypeNode.
 | 
						|
    const MDNode *getNode() const { return Node; }
 | 
						|
 | 
						|
    /// Get this TBAAStructTypeNode's field in the type DAG with
 | 
						|
    /// given offset. Update the offset to be relative to the field type.
 | 
						|
    TBAAStructTypeNode getParent(uint64_t &Offset) const {
 | 
						|
      // Parent can be omitted for the root node.
 | 
						|
      if (Node->getNumOperands() < 2)
 | 
						|
        return TBAAStructTypeNode();
 | 
						|
 | 
						|
      // Fast path for a scalar type node and a struct type node with a single
 | 
						|
      // field.
 | 
						|
      if (Node->getNumOperands() <= 3) {
 | 
						|
        uint64_t Cur = Node->getNumOperands() == 2 ? 0 :
 | 
						|
                       cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
 | 
						|
        Offset -= Cur;
 | 
						|
        MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
 | 
						|
        if (!P)
 | 
						|
          return TBAAStructTypeNode();
 | 
						|
        return TBAAStructTypeNode(P);
 | 
						|
      }
 | 
						|
 | 
						|
      // Assume the offsets are in order. We return the previous field if
 | 
						|
      // the current offset is bigger than the given offset.
 | 
						|
      unsigned TheIdx = 0;
 | 
						|
      for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
 | 
						|
        uint64_t Cur = cast<ConstantInt>(Node->getOperand(Idx + 1))->
 | 
						|
                         getZExtValue();
 | 
						|
        if (Cur > Offset) {
 | 
						|
          assert(Idx >= 3 &&
 | 
						|
                 "TBAAStructTypeNode::getParent should have an offset match!");
 | 
						|
          TheIdx = Idx - 2;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // Move along the last field.
 | 
						|
      if (TheIdx == 0)
 | 
						|
        TheIdx = Node->getNumOperands() - 2;
 | 
						|
      uint64_t Cur = cast<ConstantInt>(Node->getOperand(TheIdx + 1))->
 | 
						|
                       getZExtValue();
 | 
						|
      Offset -= Cur;
 | 
						|
      MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
 | 
						|
      if (!P)
 | 
						|
        return TBAAStructTypeNode();
 | 
						|
      return TBAAStructTypeNode(P);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// TypeBasedAliasAnalysis - This is a simple alias analysis
 | 
						|
  /// implementation that uses TypeBased to answer queries.
 | 
						|
  class TypeBasedAliasAnalysis : public ImmutablePass,
 | 
						|
                                 public AliasAnalysis {
 | 
						|
  public:
 | 
						|
    static char ID; // Class identification, replacement for typeinfo
 | 
						|
    TypeBasedAliasAnalysis() : ImmutablePass(ID) {
 | 
						|
      initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    void initializePass() override {
 | 
						|
      InitializeAliasAnalysis(this);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getAdjustedAnalysisPointer - This method is used when a pass implements
 | 
						|
    /// an analysis interface through multiple inheritance.  If needed, it
 | 
						|
    /// should override this to adjust the this pointer as needed for the
 | 
						|
    /// specified pass info.
 | 
						|
    void *getAdjustedAnalysisPointer(const void *PI) override {
 | 
						|
      if (PI == &AliasAnalysis::ID)
 | 
						|
        return (AliasAnalysis*)this;
 | 
						|
      return this;
 | 
						|
    }
 | 
						|
 | 
						|
    bool Aliases(const MDNode *A, const MDNode *B) const;
 | 
						|
    bool PathAliases(const MDNode *A, const MDNode *B) const;
 | 
						|
 | 
						|
  private:
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override;
 | 
						|
    AliasResult alias(const Location &LocA, const Location &LocB) override;
 | 
						|
    bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
 | 
						|
    ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
 | 
						|
    ModRefBehavior getModRefBehavior(const Function *F) override;
 | 
						|
    ModRefResult getModRefInfo(ImmutableCallSite CS,
 | 
						|
                               const Location &Loc) override;
 | 
						|
    ModRefResult getModRefInfo(ImmutableCallSite CS1,
 | 
						|
                               ImmutableCallSite CS2) override;
 | 
						|
  };
 | 
						|
}  // End of anonymous namespace
 | 
						|
 | 
						|
// Register this pass...
 | 
						|
char TypeBasedAliasAnalysis::ID = 0;
 | 
						|
INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
 | 
						|
                   "Type-Based Alias Analysis", false, true, false)
 | 
						|
 | 
						|
ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() {
 | 
						|
  return new TypeBasedAliasAnalysis();
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AliasAnalysis::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
/// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
 | 
						|
/// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
 | 
						|
/// format.
 | 
						|
static bool isStructPathTBAA(const MDNode *MD) {
 | 
						|
  // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
 | 
						|
  // a TBAA tag.
 | 
						|
  return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
 | 
						|
}
 | 
						|
 | 
						|
/// Aliases - Test whether the type represented by A may alias the
 | 
						|
/// type represented by B.
 | 
						|
bool
 | 
						|
TypeBasedAliasAnalysis::Aliases(const MDNode *A,
 | 
						|
                                const MDNode *B) const {
 | 
						|
  // Make sure that both MDNodes are struct-path aware.
 | 
						|
  if (isStructPathTBAA(A) && isStructPathTBAA(B))
 | 
						|
    return PathAliases(A, B);
 | 
						|
 | 
						|
  // Keep track of the root node for A and B.
 | 
						|
  TBAANode RootA, RootB;
 | 
						|
 | 
						|
  // Climb the tree from A to see if we reach B.
 | 
						|
  for (TBAANode T(A); ; ) {
 | 
						|
    if (T.getNode() == B)
 | 
						|
      // B is an ancestor of A.
 | 
						|
      return true;
 | 
						|
 | 
						|
    RootA = T;
 | 
						|
    T = T.getParent();
 | 
						|
    if (!T.getNode())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Climb the tree from B to see if we reach A.
 | 
						|
  for (TBAANode T(B); ; ) {
 | 
						|
    if (T.getNode() == A)
 | 
						|
      // A is an ancestor of B.
 | 
						|
      return true;
 | 
						|
 | 
						|
    RootB = T;
 | 
						|
    T = T.getParent();
 | 
						|
    if (!T.getNode())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Neither node is an ancestor of the other.
 | 
						|
  
 | 
						|
  // If they have different roots, they're part of different potentially
 | 
						|
  // unrelated type systems, so we must be conservative.
 | 
						|
  if (RootA.getNode() != RootB.getNode())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If they have the same root, then we've proved there's no alias.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Test whether the struct-path tag represented by A may alias the
 | 
						|
/// struct-path tag represented by B.
 | 
						|
bool
 | 
						|
TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
 | 
						|
                                    const MDNode *B) const {
 | 
						|
  // Verify that both input nodes are struct-path aware.
 | 
						|
  assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
 | 
						|
  assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
 | 
						|
 | 
						|
  // Keep track of the root node for A and B.
 | 
						|
  TBAAStructTypeNode RootA, RootB;
 | 
						|
  TBAAStructTagNode TagA(A), TagB(B);
 | 
						|
 | 
						|
  // TODO: We need to check if AccessType of TagA encloses AccessType of
 | 
						|
  // TagB to support aggregate AccessType. If yes, return true.
 | 
						|
 | 
						|
  // Start from the base type of A, follow the edge with the correct offset in
 | 
						|
  // the type DAG and adjust the offset until we reach the base type of B or
 | 
						|
  // until we reach the Root node.
 | 
						|
  // Compare the adjusted offset once we have the same base.
 | 
						|
 | 
						|
  // Climb the type DAG from base type of A to see if we reach base type of B.
 | 
						|
  const MDNode *BaseA = TagA.getBaseType();
 | 
						|
  const MDNode *BaseB = TagB.getBaseType();
 | 
						|
  uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
 | 
						|
  for (TBAAStructTypeNode T(BaseA); ; ) {
 | 
						|
    if (T.getNode() == BaseB)
 | 
						|
      // Base type of A encloses base type of B, check if the offsets match.
 | 
						|
      return OffsetA == OffsetB;
 | 
						|
 | 
						|
    RootA = T;
 | 
						|
    // Follow the edge with the correct offset, OffsetA will be adjusted to
 | 
						|
    // be relative to the field type.
 | 
						|
    T = T.getParent(OffsetA);
 | 
						|
    if (!T.getNode())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reset OffsetA and climb the type DAG from base type of B to see if we reach
 | 
						|
  // base type of A.
 | 
						|
  OffsetA = TagA.getOffset();
 | 
						|
  for (TBAAStructTypeNode T(BaseB); ; ) {
 | 
						|
    if (T.getNode() == BaseA)
 | 
						|
      // Base type of B encloses base type of A, check if the offsets match.
 | 
						|
      return OffsetA == OffsetB;
 | 
						|
 | 
						|
    RootB = T;
 | 
						|
    // Follow the edge with the correct offset, OffsetB will be adjusted to
 | 
						|
    // be relative to the field type.
 | 
						|
    T = T.getParent(OffsetB);
 | 
						|
    if (!T.getNode())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Neither node is an ancestor of the other.
 | 
						|
 | 
						|
  // If they have different roots, they're part of different potentially
 | 
						|
  // unrelated type systems, so we must be conservative.
 | 
						|
  if (RootA.getNode() != RootB.getNode())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If they have the same root, then we've proved there's no alias.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::AliasResult
 | 
						|
TypeBasedAliasAnalysis::alias(const Location &LocA,
 | 
						|
                              const Location &LocB) {
 | 
						|
  if (!EnableTBAA)
 | 
						|
    return AliasAnalysis::alias(LocA, LocB);
 | 
						|
 | 
						|
  // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
 | 
						|
  // be conservative.
 | 
						|
  const MDNode *AM = LocA.AATags.TBAA;
 | 
						|
  if (!AM) return AliasAnalysis::alias(LocA, LocB);
 | 
						|
  const MDNode *BM = LocB.AATags.TBAA;
 | 
						|
  if (!BM) return AliasAnalysis::alias(LocA, LocB);
 | 
						|
 | 
						|
  // If they may alias, chain to the next AliasAnalysis.
 | 
						|
  if (Aliases(AM, BM))
 | 
						|
    return AliasAnalysis::alias(LocA, LocB);
 | 
						|
 | 
						|
  // Otherwise return a definitive result.
 | 
						|
  return NoAlias;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
 | 
						|
                                                    bool OrLocal) {
 | 
						|
  if (!EnableTBAA)
 | 
						|
    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | 
						|
 | 
						|
  const MDNode *M = Loc.AATags.TBAA;
 | 
						|
  if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | 
						|
 | 
						|
  // If this is an "immutable" type, we can assume the pointer is pointing
 | 
						|
  // to constant memory.
 | 
						|
  if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
 | 
						|
      (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefBehavior
 | 
						|
TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
 | 
						|
  if (!EnableTBAA)
 | 
						|
    return AliasAnalysis::getModRefBehavior(CS);
 | 
						|
 | 
						|
  ModRefBehavior Min = UnknownModRefBehavior;
 | 
						|
 | 
						|
  // If this is an "immutable" type, we can assume the call doesn't write
 | 
						|
  // to memory.
 | 
						|
  if (const MDNode *M = CS.getInstruction()->getMDNode(LLVMContext::MD_tbaa))
 | 
						|
    if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
 | 
						|
        (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
 | 
						|
      Min = OnlyReadsMemory;
 | 
						|
 | 
						|
  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefBehavior
 | 
						|
TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
 | 
						|
  // Functions don't have metadata. Just chain to the next implementation.
 | 
						|
  return AliasAnalysis::getModRefBehavior(F);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
 | 
						|
                                      const Location &Loc) {
 | 
						|
  if (!EnableTBAA)
 | 
						|
    return AliasAnalysis::getModRefInfo(CS, Loc);
 | 
						|
 | 
						|
  if (const MDNode *L = Loc.AATags.TBAA)
 | 
						|
    if (const MDNode *M = CS.getInstruction()->getMDNode(LLVMContext::MD_tbaa))
 | 
						|
      if (!Aliases(L, M))
 | 
						|
        return NoModRef;
 | 
						|
 | 
						|
  return AliasAnalysis::getModRefInfo(CS, Loc);
 | 
						|
}
 | 
						|
 | 
						|
AliasAnalysis::ModRefResult
 | 
						|
TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
 | 
						|
                                      ImmutableCallSite CS2) {
 | 
						|
  if (!EnableTBAA)
 | 
						|
    return AliasAnalysis::getModRefInfo(CS1, CS2);
 | 
						|
 | 
						|
  if (const MDNode *M1 = CS1.getInstruction()->getMDNode(LLVMContext::MD_tbaa))
 | 
						|
    if (const MDNode *M2 =
 | 
						|
            CS2.getInstruction()->getMDNode(LLVMContext::MD_tbaa))
 | 
						|
      if (!Aliases(M1, M2))
 | 
						|
        return NoModRef;
 | 
						|
 | 
						|
  return AliasAnalysis::getModRefInfo(CS1, CS2);
 | 
						|
}
 | 
						|
 | 
						|
bool MDNode::isTBAAVtableAccess() const {
 | 
						|
  if (!isStructPathTBAA(this)) {
 | 
						|
    if (getNumOperands() < 1) return false;
 | 
						|
    if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
 | 
						|
      if (Tag1->getString() == "vtable pointer") return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // For struct-path aware TBAA, we use the access type of the tag.
 | 
						|
  if (getNumOperands() < 2) return false;
 | 
						|
  MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
 | 
						|
  if (!Tag) return false;
 | 
						|
  if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
 | 
						|
    if (Tag1->getString() == "vtable pointer") return true;
 | 
						|
  }
 | 
						|
  return false;  
 | 
						|
}
 | 
						|
 | 
						|
MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
 | 
						|
  if (!A || !B)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (A == B)
 | 
						|
    return A;
 | 
						|
 | 
						|
  // For struct-path aware TBAA, we use the access type of the tag.
 | 
						|
  bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
 | 
						|
  if (StructPath) {
 | 
						|
    A = cast_or_null<MDNode>(A->getOperand(1));
 | 
						|
    if (!A) return nullptr;
 | 
						|
    B = cast_or_null<MDNode>(B->getOperand(1));
 | 
						|
    if (!B) return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<MDNode *, 4> PathA;
 | 
						|
  MDNode *T = A;
 | 
						|
  while (T) {
 | 
						|
    PathA.push_back(T);
 | 
						|
    T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
 | 
						|
                                 : nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<MDNode *, 4> PathB;
 | 
						|
  T = B;
 | 
						|
  while (T) {
 | 
						|
    PathB.push_back(T);
 | 
						|
    T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
 | 
						|
                                 : nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  int IA = PathA.size() - 1;
 | 
						|
  int IB = PathB.size() - 1;
 | 
						|
 | 
						|
  MDNode *Ret = nullptr;
 | 
						|
  while (IA >= 0 && IB >=0) {
 | 
						|
    if (PathA[IA] == PathB[IB])
 | 
						|
      Ret = PathA[IA];
 | 
						|
    else
 | 
						|
      break;
 | 
						|
    --IA;
 | 
						|
    --IB;
 | 
						|
  }
 | 
						|
  if (!StructPath)
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  if (!Ret)
 | 
						|
    return nullptr;
 | 
						|
  // We need to convert from a type node to a tag node.
 | 
						|
  Type *Int64 = IntegerType::get(A->getContext(), 64);
 | 
						|
  Value *Ops[3] = { Ret, Ret, ConstantInt::get(Int64, 0) };
 | 
						|
  return MDNode::get(A->getContext(), Ops);
 | 
						|
}
 | 
						|
 | 
						|
void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
 | 
						|
  if (Merge)
 | 
						|
    N.TBAA =
 | 
						|
        MDNode::getMostGenericTBAA(N.TBAA, getMDNode(LLVMContext::MD_tbaa));
 | 
						|
  else
 | 
						|
    N.TBAA = getMDNode(LLVMContext::MD_tbaa);
 | 
						|
 | 
						|
  if (Merge)
 | 
						|
    N.Scope =
 | 
						|
        MDNode::intersect(N.Scope, getMDNode(LLVMContext::MD_alias_scope));
 | 
						|
  else
 | 
						|
    N.Scope = getMDNode(LLVMContext::MD_alias_scope);
 | 
						|
 | 
						|
  if (Merge)
 | 
						|
    N.NoAlias =
 | 
						|
        MDNode::intersect(N.NoAlias, getMDNode(LLVMContext::MD_noalias));
 | 
						|
  else
 | 
						|
    N.NoAlias = getMDNode(LLVMContext::MD_noalias);
 | 
						|
}
 | 
						|
 |