mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This reverts commit r220811 and r220839. It made an incorrect change to musttail handling. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221226 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1408 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1408 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements inlining of a function into a call site, resolving
 | 
						|
// parameters and the return value as appropriate.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionTracker.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugInfo.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
 | 
						|
  cl::Hidden,
 | 
						|
  cl::desc("Convert noalias attributes to metadata during inlining."));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
 | 
						|
  cl::init(true), cl::Hidden,
 | 
						|
  cl::desc("Convert align attributes to assumptions during inlining."));
 | 
						|
 | 
						|
bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
 | 
						|
                          bool InsertLifetime) {
 | 
						|
  return InlineFunction(CallSite(CI), IFI, InsertLifetime);
 | 
						|
}
 | 
						|
bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
 | 
						|
                          bool InsertLifetime) {
 | 
						|
  return InlineFunction(CallSite(II), IFI, InsertLifetime);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// A class for recording information about inlining through an invoke.
 | 
						|
  class InvokeInliningInfo {
 | 
						|
    BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
 | 
						|
    BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
 | 
						|
    LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
 | 
						|
    PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
 | 
						|
    SmallVector<Value*, 8> UnwindDestPHIValues;
 | 
						|
 | 
						|
  public:
 | 
						|
    InvokeInliningInfo(InvokeInst *II)
 | 
						|
      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
 | 
						|
        CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
 | 
						|
      // If there are PHI nodes in the unwind destination block, we need to keep
 | 
						|
      // track of which values came into them from the invoke before removing
 | 
						|
      // the edge from this block.
 | 
						|
      llvm::BasicBlock *InvokeBB = II->getParent();
 | 
						|
      BasicBlock::iterator I = OuterResumeDest->begin();
 | 
						|
      for (; isa<PHINode>(I); ++I) {
 | 
						|
        // Save the value to use for this edge.
 | 
						|
        PHINode *PHI = cast<PHINode>(I);
 | 
						|
        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
 | 
						|
      }
 | 
						|
 | 
						|
      CallerLPad = cast<LandingPadInst>(I);
 | 
						|
    }
 | 
						|
 | 
						|
    /// getOuterResumeDest - The outer unwind destination is the target of
 | 
						|
    /// unwind edges introduced for calls within the inlined function.
 | 
						|
    BasicBlock *getOuterResumeDest() const {
 | 
						|
      return OuterResumeDest;
 | 
						|
    }
 | 
						|
 | 
						|
    BasicBlock *getInnerResumeDest();
 | 
						|
 | 
						|
    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
 | 
						|
 | 
						|
    /// forwardResume - Forward the 'resume' instruction to the caller's landing
 | 
						|
    /// pad block. When the landing pad block has only one predecessor, this is
 | 
						|
    /// a simple branch. When there is more than one predecessor, we need to
 | 
						|
    /// split the landing pad block after the landingpad instruction and jump
 | 
						|
    /// to there.
 | 
						|
    void forwardResume(ResumeInst *RI,
 | 
						|
                       SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
 | 
						|
 | 
						|
    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
 | 
						|
    /// destination block for the given basic block, using the values for the
 | 
						|
    /// original invoke's source block.
 | 
						|
    void addIncomingPHIValuesFor(BasicBlock *BB) const {
 | 
						|
      addIncomingPHIValuesForInto(BB, OuterResumeDest);
 | 
						|
    }
 | 
						|
 | 
						|
    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
 | 
						|
      BasicBlock::iterator I = dest->begin();
 | 
						|
      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
 | 
						|
        PHINode *phi = cast<PHINode>(I);
 | 
						|
        phi->addIncoming(UnwindDestPHIValues[i], src);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
 | 
						|
BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
 | 
						|
  if (InnerResumeDest) return InnerResumeDest;
 | 
						|
 | 
						|
  // Split the landing pad.
 | 
						|
  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
 | 
						|
  InnerResumeDest =
 | 
						|
    OuterResumeDest->splitBasicBlock(SplitPoint,
 | 
						|
                                     OuterResumeDest->getName() + ".body");
 | 
						|
 | 
						|
  // The number of incoming edges we expect to the inner landing pad.
 | 
						|
  const unsigned PHICapacity = 2;
 | 
						|
 | 
						|
  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
 | 
						|
  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
 | 
						|
  BasicBlock::iterator I = OuterResumeDest->begin();
 | 
						|
  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
 | 
						|
    PHINode *OuterPHI = cast<PHINode>(I);
 | 
						|
    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
 | 
						|
                                        OuterPHI->getName() + ".lpad-body",
 | 
						|
                                        InsertPoint);
 | 
						|
    OuterPHI->replaceAllUsesWith(InnerPHI);
 | 
						|
    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a PHI for the exception values.
 | 
						|
  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
 | 
						|
                                     "eh.lpad-body", InsertPoint);
 | 
						|
  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
 | 
						|
  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
 | 
						|
 | 
						|
  // All done.
 | 
						|
  return InnerResumeDest;
 | 
						|
}
 | 
						|
 | 
						|
/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
 | 
						|
/// block. When the landing pad block has only one predecessor, this is a simple
 | 
						|
/// branch. When there is more than one predecessor, we need to split the
 | 
						|
/// landing pad block after the landingpad instruction and jump to there.
 | 
						|
void InvokeInliningInfo::forwardResume(ResumeInst *RI,
 | 
						|
                               SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) {
 | 
						|
  BasicBlock *Dest = getInnerResumeDest();
 | 
						|
  BasicBlock *Src = RI->getParent();
 | 
						|
 | 
						|
  BranchInst::Create(Dest, Src);
 | 
						|
 | 
						|
  // Update the PHIs in the destination. They were inserted in an order which
 | 
						|
  // makes this work.
 | 
						|
  addIncomingPHIValuesForInto(Src, Dest);
 | 
						|
 | 
						|
  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
 | 
						|
  RI->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
 | 
						|
/// an invoke, we have to turn all of the calls that can throw into
 | 
						|
/// invokes.  This function analyze BB to see if there are any calls, and if so,
 | 
						|
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
 | 
						|
/// nodes in that block with the values specified in InvokeDestPHIValues.
 | 
						|
static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
 | 
						|
                                                   InvokeInliningInfo &Invoke) {
 | 
						|
  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | 
						|
    Instruction *I = BBI++;
 | 
						|
 | 
						|
    // We only need to check for function calls: inlined invoke
 | 
						|
    // instructions require no special handling.
 | 
						|
    CallInst *CI = dyn_cast<CallInst>(I);
 | 
						|
 | 
						|
    // If this call cannot unwind, don't convert it to an invoke.
 | 
						|
    // Inline asm calls cannot throw.
 | 
						|
    if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Convert this function call into an invoke instruction.  First, split the
 | 
						|
    // basic block.
 | 
						|
    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
 | 
						|
 | 
						|
    // Delete the unconditional branch inserted by splitBasicBlock
 | 
						|
    BB->getInstList().pop_back();
 | 
						|
 | 
						|
    // Create the new invoke instruction.
 | 
						|
    ImmutableCallSite CS(CI);
 | 
						|
    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
 | 
						|
    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
 | 
						|
                                        Invoke.getOuterResumeDest(),
 | 
						|
                                        InvokeArgs, CI->getName(), BB);
 | 
						|
    II->setDebugLoc(CI->getDebugLoc());
 | 
						|
    II->setCallingConv(CI->getCallingConv());
 | 
						|
    II->setAttributes(CI->getAttributes());
 | 
						|
    
 | 
						|
    // Make sure that anything using the call now uses the invoke!  This also
 | 
						|
    // updates the CallGraph if present, because it uses a WeakVH.
 | 
						|
    CI->replaceAllUsesWith(II);
 | 
						|
 | 
						|
    // Delete the original call
 | 
						|
    Split->getInstList().pop_front();
 | 
						|
 | 
						|
    // Update any PHI nodes in the exceptional block to indicate that there is
 | 
						|
    // now a new entry in them.
 | 
						|
    Invoke.addIncomingPHIValuesFor(BB);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
 | 
						|
/// in the body of the inlined function into invokes.
 | 
						|
///
 | 
						|
/// II is the invoke instruction being inlined.  FirstNewBlock is the first
 | 
						|
/// block of the inlined code (the last block is the end of the function),
 | 
						|
/// and InlineCodeInfo is information about the code that got inlined.
 | 
						|
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
 | 
						|
                                ClonedCodeInfo &InlinedCodeInfo) {
 | 
						|
  BasicBlock *InvokeDest = II->getUnwindDest();
 | 
						|
 | 
						|
  Function *Caller = FirstNewBlock->getParent();
 | 
						|
 | 
						|
  // The inlined code is currently at the end of the function, scan from the
 | 
						|
  // start of the inlined code to its end, checking for stuff we need to
 | 
						|
  // rewrite.
 | 
						|
  InvokeInliningInfo Invoke(II);
 | 
						|
 | 
						|
  // Get all of the inlined landing pad instructions.
 | 
						|
  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
 | 
						|
  for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
 | 
						|
      InlinedLPads.insert(II->getLandingPadInst());
 | 
						|
 | 
						|
  // Append the clauses from the outer landing pad instruction into the inlined
 | 
						|
  // landing pad instructions.
 | 
						|
  LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
 | 
						|
  for (LandingPadInst *InlinedLPad : InlinedLPads) {
 | 
						|
    unsigned OuterNum = OuterLPad->getNumClauses();
 | 
						|
    InlinedLPad->reserveClauses(OuterNum);
 | 
						|
    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
 | 
						|
      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
 | 
						|
    if (OuterLPad->isCleanup())
 | 
						|
      InlinedLPad->setCleanup(true);
 | 
						|
  }
 | 
						|
 | 
						|
  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
 | 
						|
    if (InlinedCodeInfo.ContainsCalls)
 | 
						|
      HandleCallsInBlockInlinedThroughInvoke(BB, Invoke);
 | 
						|
 | 
						|
    // Forward any resumes that are remaining here.
 | 
						|
    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
 | 
						|
      Invoke.forwardResume(RI, InlinedLPads);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that everything is happy, we have one final detail.  The PHI nodes in
 | 
						|
  // the exception destination block still have entries due to the original
 | 
						|
  // invoke instruction. Eliminate these entries (which might even delete the
 | 
						|
  // PHI node) now.
 | 
						|
  InvokeDest->removePredecessor(II->getParent());
 | 
						|
}
 | 
						|
 | 
						|
/// CloneAliasScopeMetadata - When inlining a function that contains noalias
 | 
						|
/// scope metadata, this metadata needs to be cloned so that the inlined blocks
 | 
						|
/// have different "unqiue scopes" at every call site. Were this not done, then
 | 
						|
/// aliasing scopes from a function inlined into a caller multiple times could
 | 
						|
/// not be differentiated (and this would lead to miscompiles because the
 | 
						|
/// non-aliasing property communicated by the metadata could have
 | 
						|
/// call-site-specific control dependencies).
 | 
						|
static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) {
 | 
						|
  const Function *CalledFunc = CS.getCalledFunction();
 | 
						|
  SetVector<const MDNode *> MD;
 | 
						|
 | 
						|
  // Note: We could only clone the metadata if it is already used in the
 | 
						|
  // caller. I'm omitting that check here because it might confuse
 | 
						|
  // inter-procedural alias analysis passes. We can revisit this if it becomes
 | 
						|
  // an efficiency or overhead problem.
 | 
						|
 | 
						|
  for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end();
 | 
						|
       I != IE; ++I)
 | 
						|
    for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) {
 | 
						|
      if (const MDNode *M = J->getMDNode(LLVMContext::MD_alias_scope))
 | 
						|
        MD.insert(M);
 | 
						|
      if (const MDNode *M = J->getMDNode(LLVMContext::MD_noalias))
 | 
						|
        MD.insert(M);
 | 
						|
    }
 | 
						|
 | 
						|
  if (MD.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Walk the existing metadata, adding the complete (perhaps cyclic) chain to
 | 
						|
  // the set.
 | 
						|
  SmallVector<const Value *, 16> Queue(MD.begin(), MD.end());
 | 
						|
  while (!Queue.empty()) {
 | 
						|
    const MDNode *M = cast<MDNode>(Queue.pop_back_val());
 | 
						|
    for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i)
 | 
						|
      if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i)))
 | 
						|
        if (MD.insert(M1))
 | 
						|
          Queue.push_back(M1);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we have a complete set of all metadata in the chains used to specify
 | 
						|
  // the noalias scopes and the lists of those scopes.
 | 
						|
  SmallVector<MDNode *, 16> DummyNodes;
 | 
						|
  DenseMap<const MDNode *, TrackingVH<MDNode> > MDMap;
 | 
						|
  for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
 | 
						|
       I != IE; ++I) {
 | 
						|
    MDNode *Dummy = MDNode::getTemporary(CalledFunc->getContext(), None);
 | 
						|
    DummyNodes.push_back(Dummy);
 | 
						|
    MDMap[*I] = Dummy;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create new metadata nodes to replace the dummy nodes, replacing old
 | 
						|
  // metadata references with either a dummy node or an already-created new
 | 
						|
  // node.
 | 
						|
  for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end();
 | 
						|
       I != IE; ++I) {
 | 
						|
    SmallVector<Value *, 4> NewOps;
 | 
						|
    for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) {
 | 
						|
      const Value *V = (*I)->getOperand(i);
 | 
						|
      if (const MDNode *M = dyn_cast<MDNode>(V))
 | 
						|
        NewOps.push_back(MDMap[M]);
 | 
						|
      else
 | 
						|
        NewOps.push_back(const_cast<Value *>(V));
 | 
						|
    }
 | 
						|
 | 
						|
    MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps),
 | 
						|
           *TempM = MDMap[*I];
 | 
						|
 | 
						|
    TempM->replaceAllUsesWith(NewM);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now replace the metadata in the new inlined instructions with the
 | 
						|
  // repacements from the map.
 | 
						|
  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
 | 
						|
       VMI != VMIE; ++VMI) {
 | 
						|
    if (!VMI->second)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Instruction *NI = dyn_cast<Instruction>(VMI->second);
 | 
						|
    if (!NI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (MDNode *M = NI->getMDNode(LLVMContext::MD_alias_scope)) {
 | 
						|
      MDNode *NewMD = MDMap[M];
 | 
						|
      // If the call site also had alias scope metadata (a list of scopes to
 | 
						|
      // which instructions inside it might belong), propagate those scopes to
 | 
						|
      // the inlined instructions.
 | 
						|
      if (MDNode *CSM =
 | 
						|
              CS.getInstruction()->getMDNode(LLVMContext::MD_alias_scope))
 | 
						|
        NewMD = MDNode::concatenate(NewMD, CSM);
 | 
						|
      NI->setMetadata(LLVMContext::MD_alias_scope, NewMD);
 | 
						|
    } else if (NI->mayReadOrWriteMemory()) {
 | 
						|
      if (MDNode *M =
 | 
						|
              CS.getInstruction()->getMDNode(LLVMContext::MD_alias_scope))
 | 
						|
        NI->setMetadata(LLVMContext::MD_alias_scope, M);
 | 
						|
    }
 | 
						|
 | 
						|
    if (MDNode *M = NI->getMDNode(LLVMContext::MD_noalias)) {
 | 
						|
      MDNode *NewMD = MDMap[M];
 | 
						|
      // If the call site also had noalias metadata (a list of scopes with
 | 
						|
      // which instructions inside it don't alias), propagate those scopes to
 | 
						|
      // the inlined instructions.
 | 
						|
      if (MDNode *CSM = CS.getInstruction()->getMDNode(LLVMContext::MD_noalias))
 | 
						|
        NewMD = MDNode::concatenate(NewMD, CSM);
 | 
						|
      NI->setMetadata(LLVMContext::MD_noalias, NewMD);
 | 
						|
    } else if (NI->mayReadOrWriteMemory()) {
 | 
						|
      if (MDNode *M = CS.getInstruction()->getMDNode(LLVMContext::MD_noalias))
 | 
						|
        NI->setMetadata(LLVMContext::MD_noalias, M);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that everything has been replaced, delete the dummy nodes.
 | 
						|
  for (unsigned i = 0, ie = DummyNodes.size(); i != ie; ++i)
 | 
						|
    MDNode::deleteTemporary(DummyNodes[i]);
 | 
						|
}
 | 
						|
 | 
						|
/// AddAliasScopeMetadata - If the inlined function has noalias arguments, then
 | 
						|
/// add new alias scopes for each noalias argument, tag the mapped noalias
 | 
						|
/// parameters with noalias metadata specifying the new scope, and tag all
 | 
						|
/// non-derived loads, stores and memory intrinsics with the new alias scopes.
 | 
						|
static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap,
 | 
						|
                                  const DataLayout *DL, AliasAnalysis *AA) {
 | 
						|
  if (!EnableNoAliasConversion)
 | 
						|
    return;
 | 
						|
 | 
						|
  const Function *CalledFunc = CS.getCalledFunction();
 | 
						|
  SmallVector<const Argument *, 4> NoAliasArgs;
 | 
						|
 | 
						|
  for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
 | 
						|
       E = CalledFunc->arg_end(); I != E; ++I) {
 | 
						|
    if (I->hasNoAliasAttr() && !I->hasNUses(0))
 | 
						|
      NoAliasArgs.push_back(I);
 | 
						|
  }
 | 
						|
 | 
						|
  if (NoAliasArgs.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // To do a good job, if a noalias variable is captured, we need to know if
 | 
						|
  // the capture point dominates the particular use we're considering.
 | 
						|
  DominatorTree DT;
 | 
						|
  DT.recalculate(const_cast<Function&>(*CalledFunc));
 | 
						|
 | 
						|
  // noalias indicates that pointer values based on the argument do not alias
 | 
						|
  // pointer values which are not based on it. So we add a new "scope" for each
 | 
						|
  // noalias function argument. Accesses using pointers based on that argument
 | 
						|
  // become part of that alias scope, accesses using pointers not based on that
 | 
						|
  // argument are tagged as noalias with that scope.
 | 
						|
 | 
						|
  DenseMap<const Argument *, MDNode *> NewScopes;
 | 
						|
  MDBuilder MDB(CalledFunc->getContext());
 | 
						|
 | 
						|
  // Create a new scope domain for this function.
 | 
						|
  MDNode *NewDomain =
 | 
						|
    MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
 | 
						|
  for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
 | 
						|
    const Argument *A = NoAliasArgs[i];
 | 
						|
 | 
						|
    std::string Name = CalledFunc->getName();
 | 
						|
    if (A->hasName()) {
 | 
						|
      Name += ": %";
 | 
						|
      Name += A->getName();
 | 
						|
    } else {
 | 
						|
      Name += ": argument ";
 | 
						|
      Name += utostr(i);
 | 
						|
    }
 | 
						|
 | 
						|
    // Note: We always create a new anonymous root here. This is true regardless
 | 
						|
    // of the linkage of the callee because the aliasing "scope" is not just a
 | 
						|
    // property of the callee, but also all control dependencies in the caller.
 | 
						|
    MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
 | 
						|
    NewScopes.insert(std::make_pair(A, NewScope));
 | 
						|
  }
 | 
						|
 | 
						|
  // Iterate over all new instructions in the map; for all memory-access
 | 
						|
  // instructions, add the alias scope metadata.
 | 
						|
  for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
 | 
						|
       VMI != VMIE; ++VMI) {
 | 
						|
    if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
 | 
						|
      if (!VMI->second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      Instruction *NI = dyn_cast<Instruction>(VMI->second);
 | 
						|
      if (!NI)
 | 
						|
        continue;
 | 
						|
 | 
						|
      bool IsArgMemOnlyCall = false, IsFuncCall = false;
 | 
						|
      SmallVector<const Value *, 2> PtrArgs;
 | 
						|
 | 
						|
      if (const LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
        PtrArgs.push_back(LI->getPointerOperand());
 | 
						|
      else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
        PtrArgs.push_back(SI->getPointerOperand());
 | 
						|
      else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
 | 
						|
        PtrArgs.push_back(VAAI->getPointerOperand());
 | 
						|
      else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
 | 
						|
        PtrArgs.push_back(CXI->getPointerOperand());
 | 
						|
      else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
 | 
						|
        PtrArgs.push_back(RMWI->getPointerOperand());
 | 
						|
      else if (ImmutableCallSite ICS = ImmutableCallSite(I)) {
 | 
						|
        // If we know that the call does not access memory, then we'll still
 | 
						|
        // know that about the inlined clone of this call site, and we don't
 | 
						|
        // need to add metadata.
 | 
						|
        if (ICS.doesNotAccessMemory())
 | 
						|
          continue;
 | 
						|
 | 
						|
        IsFuncCall = true;
 | 
						|
        if (AA) {
 | 
						|
          AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS);
 | 
						|
          if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees ||
 | 
						|
              MRB == AliasAnalysis::OnlyReadsArgumentPointees)
 | 
						|
            IsArgMemOnlyCall = true;
 | 
						|
        }
 | 
						|
 | 
						|
        for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(),
 | 
						|
             AE = ICS.arg_end(); AI != AE; ++AI) {
 | 
						|
          // We need to check the underlying objects of all arguments, not just
 | 
						|
          // the pointer arguments, because we might be passing pointers as
 | 
						|
          // integers, etc.
 | 
						|
          // However, if we know that the call only accesses pointer arguments,
 | 
						|
          // then we only need to check the pointer arguments.
 | 
						|
          if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy())
 | 
						|
            continue;
 | 
						|
 | 
						|
          PtrArgs.push_back(*AI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If we found no pointers, then this instruction is not suitable for
 | 
						|
      // pairing with an instruction to receive aliasing metadata.
 | 
						|
      // However, if this is a call, this we might just alias with none of the
 | 
						|
      // noalias arguments.
 | 
						|
      if (PtrArgs.empty() && !IsFuncCall)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // It is possible that there is only one underlying object, but you
 | 
						|
      // need to go through several PHIs to see it, and thus could be
 | 
						|
      // repeated in the Objects list.
 | 
						|
      SmallPtrSet<const Value *, 4> ObjSet;
 | 
						|
      SmallVector<Value *, 4> Scopes, NoAliases;
 | 
						|
 | 
						|
      SmallSetVector<const Argument *, 4> NAPtrArgs;
 | 
						|
      for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) {
 | 
						|
        SmallVector<Value *, 4> Objects;
 | 
						|
        GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]),
 | 
						|
                             Objects, DL, /* MaxLookup = */ 0);
 | 
						|
 | 
						|
        for (Value *O : Objects)
 | 
						|
          ObjSet.insert(O);
 | 
						|
      }
 | 
						|
 | 
						|
      // Figure out if we're derived from anything that is not a noalias
 | 
						|
      // argument.
 | 
						|
      bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
 | 
						|
      for (const Value *V : ObjSet) {
 | 
						|
        // Is this value a constant that cannot be derived from any pointer
 | 
						|
        // value (we need to exclude constant expressions, for example, that
 | 
						|
        // are formed from arithmetic on global symbols).
 | 
						|
        bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
 | 
						|
                             isa<ConstantPointerNull>(V) ||
 | 
						|
                             isa<ConstantDataVector>(V) || isa<UndefValue>(V);
 | 
						|
        if (IsNonPtrConst)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If this is anything other than a noalias argument, then we cannot
 | 
						|
        // completely describe the aliasing properties using alias.scope
 | 
						|
        // metadata (and, thus, won't add any).
 | 
						|
        if (const Argument *A = dyn_cast<Argument>(V)) {
 | 
						|
          if (!A->hasNoAliasAttr())
 | 
						|
            UsesAliasingPtr = true;
 | 
						|
        } else {
 | 
						|
          UsesAliasingPtr = true;
 | 
						|
        }
 | 
						|
 | 
						|
        // If this is not some identified function-local object (which cannot
 | 
						|
        // directly alias a noalias argument), or some other argument (which,
 | 
						|
        // by definition, also cannot alias a noalias argument), then we could
 | 
						|
        // alias a noalias argument that has been captured).
 | 
						|
        if (!isa<Argument>(V) &&
 | 
						|
            !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
 | 
						|
          CanDeriveViaCapture = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // A function call can always get captured noalias pointers (via other
 | 
						|
      // parameters, globals, etc.).
 | 
						|
      if (IsFuncCall && !IsArgMemOnlyCall)
 | 
						|
        CanDeriveViaCapture = true;
 | 
						|
 | 
						|
      // First, we want to figure out all of the sets with which we definitely
 | 
						|
      // don't alias. Iterate over all noalias set, and add those for which:
 | 
						|
      //   1. The noalias argument is not in the set of objects from which we
 | 
						|
      //      definitely derive.
 | 
						|
      //   2. The noalias argument has not yet been captured.
 | 
						|
      // An arbitrary function that might load pointers could see captured
 | 
						|
      // noalias arguments via other noalias arguments or globals, and so we
 | 
						|
      // must always check for prior capture.
 | 
						|
      for (const Argument *A : NoAliasArgs) {
 | 
						|
        if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
 | 
						|
                                 // It might be tempting to skip the
 | 
						|
                                 // PointerMayBeCapturedBefore check if
 | 
						|
                                 // A->hasNoCaptureAttr() is true, but this is
 | 
						|
                                 // incorrect because nocapture only guarantees
 | 
						|
                                 // that no copies outlive the function, not
 | 
						|
                                 // that the value cannot be locally captured.
 | 
						|
                                 !PointerMayBeCapturedBefore(A,
 | 
						|
                                   /* ReturnCaptures */ false,
 | 
						|
                                   /* StoreCaptures */ false, I, &DT)))
 | 
						|
          NoAliases.push_back(NewScopes[A]);
 | 
						|
      }
 | 
						|
 | 
						|
      if (!NoAliases.empty())
 | 
						|
        NI->setMetadata(LLVMContext::MD_noalias,
 | 
						|
                        MDNode::concatenate(
 | 
						|
                            NI->getMDNode(LLVMContext::MD_noalias),
 | 
						|
                            MDNode::get(CalledFunc->getContext(), NoAliases)));
 | 
						|
 | 
						|
      // Next, we want to figure out all of the sets to which we might belong.
 | 
						|
      // We might belong to a set if the noalias argument is in the set of
 | 
						|
      // underlying objects. If there is some non-noalias argument in our list
 | 
						|
      // of underlying objects, then we cannot add a scope because the fact
 | 
						|
      // that some access does not alias with any set of our noalias arguments
 | 
						|
      // cannot itself guarantee that it does not alias with this access
 | 
						|
      // (because there is some pointer of unknown origin involved and the
 | 
						|
      // other access might also depend on this pointer). We also cannot add
 | 
						|
      // scopes to arbitrary functions unless we know they don't access any
 | 
						|
      // non-parameter pointer-values.
 | 
						|
      bool CanAddScopes = !UsesAliasingPtr;
 | 
						|
      if (CanAddScopes && IsFuncCall)
 | 
						|
        CanAddScopes = IsArgMemOnlyCall;
 | 
						|
 | 
						|
      if (CanAddScopes)
 | 
						|
        for (const Argument *A : NoAliasArgs) {
 | 
						|
          if (ObjSet.count(A))
 | 
						|
            Scopes.push_back(NewScopes[A]);
 | 
						|
        }
 | 
						|
 | 
						|
      if (!Scopes.empty())
 | 
						|
        NI->setMetadata(
 | 
						|
            LLVMContext::MD_alias_scope,
 | 
						|
            MDNode::concatenate(NI->getMDNode(LLVMContext::MD_alias_scope),
 | 
						|
                                MDNode::get(CalledFunc->getContext(), Scopes)));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If the inlined function has non-byval align arguments, then
 | 
						|
/// add @llvm.assume-based alignment assumptions to preserve this information.
 | 
						|
static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) {
 | 
						|
  if (!PreserveAlignmentAssumptions || !IFI.DL)
 | 
						|
    return;
 | 
						|
 | 
						|
  // To avoid inserting redundant assumptions, we should check for assumptions
 | 
						|
  // already in the caller. To do this, we might need a DT of the caller.
 | 
						|
  DominatorTree DT;
 | 
						|
  bool DTCalculated = false;
 | 
						|
 | 
						|
  const Function *CalledFunc = CS.getCalledFunction();
 | 
						|
  for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
 | 
						|
       E = CalledFunc->arg_end(); I != E; ++I) {
 | 
						|
    unsigned Align = I->getType()->isPointerTy() ? I->getParamAlignment() : 0;
 | 
						|
    if (Align && !I->hasByValOrInAllocaAttr() && !I->hasNUses(0)) {
 | 
						|
      if (!DTCalculated) {
 | 
						|
        DT.recalculate(const_cast<Function&>(*CS.getInstruction()->getParent()
 | 
						|
                                               ->getParent()));
 | 
						|
        DTCalculated = true;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we can already prove the asserted alignment in the context of the
 | 
						|
      // caller, then don't bother inserting the assumption.
 | 
						|
      Value *Arg = CS.getArgument(I->getArgNo());
 | 
						|
      if (getKnownAlignment(Arg, IFI.DL, IFI.AT, CS.getInstruction(),
 | 
						|
                            &DT) >= Align)
 | 
						|
        continue;
 | 
						|
 | 
						|
      IRBuilder<>(CS.getInstruction()).CreateAlignmentAssumption(*IFI.DL, Arg,
 | 
						|
                                                                 Align);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
 | 
						|
/// into the caller, update the specified callgraph to reflect the changes we
 | 
						|
/// made.  Note that it's possible that not all code was copied over, so only
 | 
						|
/// some edges of the callgraph may remain.
 | 
						|
static void UpdateCallGraphAfterInlining(CallSite CS,
 | 
						|
                                         Function::iterator FirstNewBlock,
 | 
						|
                                         ValueToValueMapTy &VMap,
 | 
						|
                                         InlineFunctionInfo &IFI) {
 | 
						|
  CallGraph &CG = *IFI.CG;
 | 
						|
  const Function *Caller = CS.getInstruction()->getParent()->getParent();
 | 
						|
  const Function *Callee = CS.getCalledFunction();
 | 
						|
  CallGraphNode *CalleeNode = CG[Callee];
 | 
						|
  CallGraphNode *CallerNode = CG[Caller];
 | 
						|
 | 
						|
  // Since we inlined some uninlined call sites in the callee into the caller,
 | 
						|
  // add edges from the caller to all of the callees of the callee.
 | 
						|
  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
 | 
						|
 | 
						|
  // Consider the case where CalleeNode == CallerNode.
 | 
						|
  CallGraphNode::CalledFunctionsVector CallCache;
 | 
						|
  if (CalleeNode == CallerNode) {
 | 
						|
    CallCache.assign(I, E);
 | 
						|
    I = CallCache.begin();
 | 
						|
    E = CallCache.end();
 | 
						|
  }
 | 
						|
 | 
						|
  for (; I != E; ++I) {
 | 
						|
    const Value *OrigCall = I->first;
 | 
						|
 | 
						|
    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
 | 
						|
    // Only copy the edge if the call was inlined!
 | 
						|
    if (VMI == VMap.end() || VMI->second == nullptr)
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // If the call was inlined, but then constant folded, there is no edge to
 | 
						|
    // add.  Check for this case.
 | 
						|
    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
 | 
						|
    if (!NewCall) continue;
 | 
						|
 | 
						|
    // Remember that this call site got inlined for the client of
 | 
						|
    // InlineFunction.
 | 
						|
    IFI.InlinedCalls.push_back(NewCall);
 | 
						|
 | 
						|
    // It's possible that inlining the callsite will cause it to go from an
 | 
						|
    // indirect to a direct call by resolving a function pointer.  If this
 | 
						|
    // happens, set the callee of the new call site to a more precise
 | 
						|
    // destination.  This can also happen if the call graph node of the caller
 | 
						|
    // was just unnecessarily imprecise.
 | 
						|
    if (!I->second->getFunction())
 | 
						|
      if (Function *F = CallSite(NewCall).getCalledFunction()) {
 | 
						|
        // Indirect call site resolved to direct call.
 | 
						|
        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
 | 
						|
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Update the call graph by deleting the edge from Callee to Caller.  We must
 | 
						|
  // do this after the loop above in case Caller and Callee are the same.
 | 
						|
  CallerNode->removeCallEdgeFor(CS);
 | 
						|
}
 | 
						|
 | 
						|
static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
 | 
						|
                                    BasicBlock *InsertBlock,
 | 
						|
                                    InlineFunctionInfo &IFI) {
 | 
						|
  Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
 | 
						|
  IRBuilder<> Builder(InsertBlock->begin());
 | 
						|
 | 
						|
  Value *Size;
 | 
						|
  if (IFI.DL == nullptr)
 | 
						|
    Size = ConstantExpr::getSizeOf(AggTy);
 | 
						|
  else
 | 
						|
    Size = Builder.getInt64(IFI.DL->getTypeStoreSize(AggTy));
 | 
						|
 | 
						|
  // Always generate a memcpy of alignment 1 here because we don't know
 | 
						|
  // the alignment of the src pointer.  Other optimizations can infer
 | 
						|
  // better alignment.
 | 
						|
  Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1);
 | 
						|
}
 | 
						|
 | 
						|
/// HandleByValArgument - When inlining a call site that has a byval argument,
 | 
						|
/// we have to make the implicit memcpy explicit by adding it.
 | 
						|
static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
 | 
						|
                                  const Function *CalledFunc,
 | 
						|
                                  InlineFunctionInfo &IFI,
 | 
						|
                                  unsigned ByValAlignment) {
 | 
						|
  PointerType *ArgTy = cast<PointerType>(Arg->getType());
 | 
						|
  Type *AggTy = ArgTy->getElementType();
 | 
						|
 | 
						|
  // If the called function is readonly, then it could not mutate the caller's
 | 
						|
  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
 | 
						|
  // temporary.
 | 
						|
  if (CalledFunc->onlyReadsMemory()) {
 | 
						|
    // If the byval argument has a specified alignment that is greater than the
 | 
						|
    // passed in pointer, then we either have to round up the input pointer or
 | 
						|
    // give up on this transformation.
 | 
						|
    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
 | 
						|
      return Arg;
 | 
						|
 | 
						|
    // If the pointer is already known to be sufficiently aligned, or if we can
 | 
						|
    // round it up to a larger alignment, then we don't need a temporary.
 | 
						|
    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
 | 
						|
                                   IFI.DL, IFI.AT, TheCall) >= ByValAlignment)
 | 
						|
      return Arg;
 | 
						|
    
 | 
						|
    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
 | 
						|
    // for code quality, but rarely happens and is required for correctness.
 | 
						|
  }
 | 
						|
 | 
						|
  // Create the alloca.  If we have DataLayout, use nice alignment.
 | 
						|
  unsigned Align = 1;
 | 
						|
  if (IFI.DL)
 | 
						|
    Align = IFI.DL->getPrefTypeAlignment(AggTy);
 | 
						|
  
 | 
						|
  // If the byval had an alignment specified, we *must* use at least that
 | 
						|
  // alignment, as it is required by the byval argument (and uses of the
 | 
						|
  // pointer inside the callee).
 | 
						|
  Align = std::max(Align, ByValAlignment);
 | 
						|
  
 | 
						|
  Function *Caller = TheCall->getParent()->getParent(); 
 | 
						|
  
 | 
						|
  Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 
 | 
						|
                                    &*Caller->begin()->begin());
 | 
						|
  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
 | 
						|
  
 | 
						|
  // Uses of the argument in the function should use our new alloca
 | 
						|
  // instead.
 | 
						|
  return NewAlloca;
 | 
						|
}
 | 
						|
 | 
						|
// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
 | 
						|
// intrinsic.
 | 
						|
static bool isUsedByLifetimeMarker(Value *V) {
 | 
						|
  for (User *U : V->users()) {
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
 | 
						|
      switch (II->getIntrinsicID()) {
 | 
						|
      default: break;
 | 
						|
      case Intrinsic::lifetime_start:
 | 
						|
      case Intrinsic::lifetime_end:
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// hasLifetimeMarkers - Check whether the given alloca already has
 | 
						|
// lifetime.start or lifetime.end intrinsics.
 | 
						|
static bool hasLifetimeMarkers(AllocaInst *AI) {
 | 
						|
  Type *Ty = AI->getType();
 | 
						|
  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
 | 
						|
                                       Ty->getPointerAddressSpace());
 | 
						|
  if (Ty == Int8PtrTy)
 | 
						|
    return isUsedByLifetimeMarker(AI);
 | 
						|
 | 
						|
  // Do a scan to find all the casts to i8*.
 | 
						|
  for (User *U : AI->users()) {
 | 
						|
    if (U->getType() != Int8PtrTy) continue;
 | 
						|
    if (U->stripPointerCasts() != AI) continue;
 | 
						|
    if (isUsedByLifetimeMarker(U))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
 | 
						|
/// recursively update InlinedAtEntry of a DebugLoc.
 | 
						|
static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 
 | 
						|
                                    const DebugLoc &InlinedAtDL,
 | 
						|
                                    LLVMContext &Ctx) {
 | 
						|
  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
 | 
						|
    DebugLoc NewInlinedAtDL 
 | 
						|
      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
 | 
						|
    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
 | 
						|
                         NewInlinedAtDL.getAsMDNode(Ctx));
 | 
						|
  }
 | 
						|
 | 
						|
  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
 | 
						|
                       InlinedAtDL.getAsMDNode(Ctx));
 | 
						|
}
 | 
						|
 | 
						|
/// fixupLineNumbers - Update inlined instructions' line numbers to 
 | 
						|
/// to encode location where these instructions are inlined.
 | 
						|
static void fixupLineNumbers(Function *Fn, Function::iterator FI,
 | 
						|
                             Instruction *TheCall) {
 | 
						|
  DebugLoc TheCallDL = TheCall->getDebugLoc();
 | 
						|
  if (TheCallDL.isUnknown())
 | 
						|
    return;
 | 
						|
 | 
						|
  for (; FI != Fn->end(); ++FI) {
 | 
						|
    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
 | 
						|
         BI != BE; ++BI) {
 | 
						|
      DebugLoc DL = BI->getDebugLoc();
 | 
						|
      if (DL.isUnknown()) {
 | 
						|
        // If the inlined instruction has no line number, make it look as if it
 | 
						|
        // originates from the call location. This is important for
 | 
						|
        // ((__always_inline__, __nodebug__)) functions which must use caller
 | 
						|
        // location for all instructions in their function body.
 | 
						|
 | 
						|
        // Don't update static allocas, as they may get moved later.
 | 
						|
        if (auto *AI = dyn_cast<AllocaInst>(BI))
 | 
						|
          if (isa<Constant>(AI->getArraySize()))
 | 
						|
            continue;
 | 
						|
 | 
						|
        BI->setDebugLoc(TheCallDL);
 | 
						|
      } else {
 | 
						|
        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
 | 
						|
        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
 | 
						|
          LLVMContext &Ctx = BI->getContext();
 | 
						|
          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
 | 
						|
          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 
 | 
						|
                                                   InlinedAt, Ctx));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// InlineFunction - This function inlines the called function into the basic
 | 
						|
/// block of the caller.  This returns false if it is not possible to inline
 | 
						|
/// this call.  The program is still in a well defined state if this occurs
 | 
						|
/// though.
 | 
						|
///
 | 
						|
/// Note that this only does one level of inlining.  For example, if the
 | 
						|
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
 | 
						|
/// exists in the instruction stream.  Similarly this will inline a recursive
 | 
						|
/// function by one level.
 | 
						|
bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
 | 
						|
                          bool InsertLifetime) {
 | 
						|
  Instruction *TheCall = CS.getInstruction();
 | 
						|
  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
 | 
						|
         "Instruction not in function!");
 | 
						|
 | 
						|
  // If IFI has any state in it, zap it before we fill it in.
 | 
						|
  IFI.reset();
 | 
						|
  
 | 
						|
  const Function *CalledFunc = CS.getCalledFunction();
 | 
						|
  if (!CalledFunc ||              // Can't inline external function or indirect
 | 
						|
      CalledFunc->isDeclaration() || // call, or call to a vararg function!
 | 
						|
      CalledFunc->getFunctionType()->isVarArg()) return false;
 | 
						|
 | 
						|
  // If the call to the callee cannot throw, set the 'nounwind' flag on any
 | 
						|
  // calls that we inline.
 | 
						|
  bool MarkNoUnwind = CS.doesNotThrow();
 | 
						|
 | 
						|
  BasicBlock *OrigBB = TheCall->getParent();
 | 
						|
  Function *Caller = OrigBB->getParent();
 | 
						|
 | 
						|
  // GC poses two hazards to inlining, which only occur when the callee has GC:
 | 
						|
  //  1. If the caller has no GC, then the callee's GC must be propagated to the
 | 
						|
  //     caller.
 | 
						|
  //  2. If the caller has a differing GC, it is invalid to inline.
 | 
						|
  if (CalledFunc->hasGC()) {
 | 
						|
    if (!Caller->hasGC())
 | 
						|
      Caller->setGC(CalledFunc->getGC());
 | 
						|
    else if (CalledFunc->getGC() != Caller->getGC())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the personality function from the callee if it contains a landing pad.
 | 
						|
  Value *CalleePersonality = nullptr;
 | 
						|
  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
 | 
						|
      const BasicBlock *BB = II->getUnwindDest();
 | 
						|
      const LandingPadInst *LP = BB->getLandingPadInst();
 | 
						|
      CalleePersonality = LP->getPersonalityFn();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  // Find the personality function used by the landing pads of the caller. If it
 | 
						|
  // exists, then check to see that it matches the personality function used in
 | 
						|
  // the callee.
 | 
						|
  if (CalleePersonality) {
 | 
						|
    for (Function::const_iterator I = Caller->begin(), E = Caller->end();
 | 
						|
         I != E; ++I)
 | 
						|
      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
 | 
						|
        const BasicBlock *BB = II->getUnwindDest();
 | 
						|
        const LandingPadInst *LP = BB->getLandingPadInst();
 | 
						|
 | 
						|
        // If the personality functions match, then we can perform the
 | 
						|
        // inlining. Otherwise, we can't inline.
 | 
						|
        // TODO: This isn't 100% true. Some personality functions are proper
 | 
						|
        //       supersets of others and can be used in place of the other.
 | 
						|
        if (LP->getPersonalityFn() != CalleePersonality)
 | 
						|
          return false;
 | 
						|
 | 
						|
        break;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Get an iterator to the last basic block in the function, which will have
 | 
						|
  // the new function inlined after it.
 | 
						|
  Function::iterator LastBlock = &Caller->back();
 | 
						|
 | 
						|
  // Make sure to capture all of the return instructions from the cloned
 | 
						|
  // function.
 | 
						|
  SmallVector<ReturnInst*, 8> Returns;
 | 
						|
  ClonedCodeInfo InlinedFunctionInfo;
 | 
						|
  Function::iterator FirstNewBlock;
 | 
						|
 | 
						|
  { // Scope to destroy VMap after cloning.
 | 
						|
    ValueToValueMapTy VMap;
 | 
						|
    // Keep a list of pair (dst, src) to emit byval initializations.
 | 
						|
    SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
 | 
						|
 | 
						|
    assert(CalledFunc->arg_size() == CS.arg_size() &&
 | 
						|
           "No varargs calls can be inlined!");
 | 
						|
 | 
						|
    // Calculate the vector of arguments to pass into the function cloner, which
 | 
						|
    // matches up the formal to the actual argument values.
 | 
						|
    CallSite::arg_iterator AI = CS.arg_begin();
 | 
						|
    unsigned ArgNo = 0;
 | 
						|
    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
 | 
						|
         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
 | 
						|
      Value *ActualArg = *AI;
 | 
						|
 | 
						|
      // When byval arguments actually inlined, we need to make the copy implied
 | 
						|
      // by them explicit.  However, we don't do this if the callee is readonly
 | 
						|
      // or readnone, because the copy would be unneeded: the callee doesn't
 | 
						|
      // modify the struct.
 | 
						|
      if (CS.isByValArgument(ArgNo)) {
 | 
						|
        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
 | 
						|
                                        CalledFunc->getParamAlignment(ArgNo+1));
 | 
						|
        if (ActualArg != *AI)
 | 
						|
          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
 | 
						|
      }
 | 
						|
 | 
						|
      VMap[I] = ActualArg;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add alignment assumptions if necessary. We do this before the inlined
 | 
						|
    // instructions are actually cloned into the caller so that we can easily
 | 
						|
    // check what will be known at the start of the inlined code.
 | 
						|
    AddAlignmentAssumptions(CS, IFI);
 | 
						|
 | 
						|
    // We want the inliner to prune the code as it copies.  We would LOVE to
 | 
						|
    // have no dead or constant instructions leftover after inlining occurs
 | 
						|
    // (which can happen, e.g., because an argument was constant), but we'll be
 | 
						|
    // happy with whatever the cloner can do.
 | 
						|
    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 
 | 
						|
                              /*ModuleLevelChanges=*/false, Returns, ".i",
 | 
						|
                              &InlinedFunctionInfo, IFI.DL, TheCall);
 | 
						|
 | 
						|
    // Remember the first block that is newly cloned over.
 | 
						|
    FirstNewBlock = LastBlock; ++FirstNewBlock;
 | 
						|
 | 
						|
    // Inject byval arguments initialization.
 | 
						|
    for (std::pair<Value*, Value*> &Init : ByValInit)
 | 
						|
      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
 | 
						|
                              FirstNewBlock, IFI);
 | 
						|
 | 
						|
    // Update the callgraph if requested.
 | 
						|
    if (IFI.CG)
 | 
						|
      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
 | 
						|
 | 
						|
    // Update inlined instructions' line number information.
 | 
						|
    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
 | 
						|
 | 
						|
    // Clone existing noalias metadata if necessary.
 | 
						|
    CloneAliasScopeMetadata(CS, VMap);
 | 
						|
 | 
						|
    // Add noalias metadata if necessary.
 | 
						|
    AddAliasScopeMetadata(CS, VMap, IFI.DL, IFI.AA);
 | 
						|
 | 
						|
    // FIXME: We could register any cloned assumptions instead of clearing the
 | 
						|
    // whole function's cache.
 | 
						|
    if (IFI.AT)
 | 
						|
      IFI.AT->forgetCachedAssumptions(Caller);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any alloca instructions in the block that used to be the entry
 | 
						|
  // block for the callee, move them to the entry block of the caller.  First
 | 
						|
  // calculate which instruction they should be inserted before.  We insert the
 | 
						|
  // instructions at the end of the current alloca list.
 | 
						|
  {
 | 
						|
    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
 | 
						|
    for (BasicBlock::iterator I = FirstNewBlock->begin(),
 | 
						|
         E = FirstNewBlock->end(); I != E; ) {
 | 
						|
      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
 | 
						|
      if (!AI) continue;
 | 
						|
      
 | 
						|
      // If the alloca is now dead, remove it.  This often occurs due to code
 | 
						|
      // specialization.
 | 
						|
      if (AI->use_empty()) {
 | 
						|
        AI->eraseFromParent();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!isa<Constant>(AI->getArraySize()))
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      // Keep track of the static allocas that we inline into the caller.
 | 
						|
      IFI.StaticAllocas.push_back(AI);
 | 
						|
      
 | 
						|
      // Scan for the block of allocas that we can move over, and move them
 | 
						|
      // all at once.
 | 
						|
      while (isa<AllocaInst>(I) &&
 | 
						|
             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
 | 
						|
        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
 | 
						|
        ++I;
 | 
						|
      }
 | 
						|
 | 
						|
      // Transfer all of the allocas over in a block.  Using splice means
 | 
						|
      // that the instructions aren't removed from the symbol table, then
 | 
						|
      // reinserted.
 | 
						|
      Caller->getEntryBlock().getInstList().splice(InsertPoint,
 | 
						|
                                                   FirstNewBlock->getInstList(),
 | 
						|
                                                   AI, I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool InlinedMustTailCalls = false;
 | 
						|
  if (InlinedFunctionInfo.ContainsCalls) {
 | 
						|
    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(TheCall))
 | 
						|
      CallSiteTailKind = CI->getTailCallKind();
 | 
						|
 | 
						|
    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
 | 
						|
         ++BB) {
 | 
						|
      for (Instruction &I : *BB) {
 | 
						|
        CallInst *CI = dyn_cast<CallInst>(&I);
 | 
						|
        if (!CI)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // We need to reduce the strength of any inlined tail calls.  For
 | 
						|
        // musttail, we have to avoid introducing potential unbounded stack
 | 
						|
        // growth.  For example, if functions 'f' and 'g' are mutually recursive
 | 
						|
        // with musttail, we can inline 'g' into 'f' so long as we preserve
 | 
						|
        // musttail on the cloned call to 'f'.  If either the inlined call site
 | 
						|
        // or the cloned call site is *not* musttail, the program already has
 | 
						|
        // one frame of stack growth, so it's safe to remove musttail.  Here is
 | 
						|
        // a table of example transformations:
 | 
						|
        //
 | 
						|
        //    f -> musttail g -> musttail f  ==>  f -> musttail f
 | 
						|
        //    f -> musttail g ->     tail f  ==>  f ->     tail f
 | 
						|
        //    f ->          g -> musttail f  ==>  f ->          f
 | 
						|
        //    f ->          g ->     tail f  ==>  f ->          f
 | 
						|
        CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
 | 
						|
        ChildTCK = std::min(CallSiteTailKind, ChildTCK);
 | 
						|
        CI->setTailCallKind(ChildTCK);
 | 
						|
        InlinedMustTailCalls |= CI->isMustTailCall();
 | 
						|
 | 
						|
        // Calls inlined through a 'nounwind' call site should be marked
 | 
						|
        // 'nounwind'.
 | 
						|
        if (MarkNoUnwind)
 | 
						|
          CI->setDoesNotThrow();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Leave lifetime markers for the static alloca's, scoping them to the
 | 
						|
  // function we just inlined.
 | 
						|
  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
 | 
						|
    IRBuilder<> builder(FirstNewBlock->begin());
 | 
						|
    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
 | 
						|
      AllocaInst *AI = IFI.StaticAllocas[ai];
 | 
						|
 | 
						|
      // If the alloca is already scoped to something smaller than the whole
 | 
						|
      // function then there's no need to add redundant, less accurate markers.
 | 
						|
      if (hasLifetimeMarkers(AI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Try to determine the size of the allocation.
 | 
						|
      ConstantInt *AllocaSize = nullptr;
 | 
						|
      if (ConstantInt *AIArraySize =
 | 
						|
          dyn_cast<ConstantInt>(AI->getArraySize())) {
 | 
						|
        if (IFI.DL) {
 | 
						|
          Type *AllocaType = AI->getAllocatedType();
 | 
						|
          uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType);
 | 
						|
          uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
 | 
						|
          assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
 | 
						|
          // Check that array size doesn't saturate uint64_t and doesn't
 | 
						|
          // overflow when it's multiplied by type size.
 | 
						|
          if (AllocaArraySize != ~0ULL &&
 | 
						|
              UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
 | 
						|
            AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
 | 
						|
                                          AllocaArraySize * AllocaTypeSize);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      builder.CreateLifetimeStart(AI, AllocaSize);
 | 
						|
      for (ReturnInst *RI : Returns) {
 | 
						|
        // Don't insert llvm.lifetime.end calls between a musttail call and a
 | 
						|
        // return.  The return kills all local allocas.
 | 
						|
        if (InlinedMustTailCalls &&
 | 
						|
            RI->getParent()->getTerminatingMustTailCall())
 | 
						|
          continue;
 | 
						|
        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If the inlined code contained dynamic alloca instructions, wrap the inlined
 | 
						|
  // code with llvm.stacksave/llvm.stackrestore intrinsics.
 | 
						|
  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
 | 
						|
    Module *M = Caller->getParent();
 | 
						|
    // Get the two intrinsics we care about.
 | 
						|
    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
 | 
						|
    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
 | 
						|
 | 
						|
    // Insert the llvm.stacksave.
 | 
						|
    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
 | 
						|
      .CreateCall(StackSave, "savedstack");
 | 
						|
 | 
						|
    // Insert a call to llvm.stackrestore before any return instructions in the
 | 
						|
    // inlined function.
 | 
						|
    for (ReturnInst *RI : Returns) {
 | 
						|
      // Don't insert llvm.stackrestore calls between a musttail call and a
 | 
						|
      // return.  The return will restore the stack pointer.
 | 
						|
      if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
 | 
						|
        continue;
 | 
						|
      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are inlining for an invoke instruction, we must make sure to rewrite
 | 
						|
  // any call instructions into invoke instructions.
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
 | 
						|
    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
 | 
						|
 | 
						|
  // Handle any inlined musttail call sites.  In order for a new call site to be
 | 
						|
  // musttail, the source of the clone and the inlined call site must have been
 | 
						|
  // musttail.  Therefore it's safe to return without merging control into the
 | 
						|
  // phi below.
 | 
						|
  if (InlinedMustTailCalls) {
 | 
						|
    // Check if we need to bitcast the result of any musttail calls.
 | 
						|
    Type *NewRetTy = Caller->getReturnType();
 | 
						|
    bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
 | 
						|
 | 
						|
    // Handle the returns preceded by musttail calls separately.
 | 
						|
    SmallVector<ReturnInst *, 8> NormalReturns;
 | 
						|
    for (ReturnInst *RI : Returns) {
 | 
						|
      CallInst *ReturnedMustTail =
 | 
						|
          RI->getParent()->getTerminatingMustTailCall();
 | 
						|
      if (!ReturnedMustTail) {
 | 
						|
        NormalReturns.push_back(RI);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!NeedBitCast)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Delete the old return and any preceding bitcast.
 | 
						|
      BasicBlock *CurBB = RI->getParent();
 | 
						|
      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
 | 
						|
      RI->eraseFromParent();
 | 
						|
      if (OldCast)
 | 
						|
        OldCast->eraseFromParent();
 | 
						|
 | 
						|
      // Insert a new bitcast and return with the right type.
 | 
						|
      IRBuilder<> Builder(CurBB);
 | 
						|
      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
 | 
						|
    }
 | 
						|
 | 
						|
    // Leave behind the normal returns so we can merge control flow.
 | 
						|
    std::swap(Returns, NormalReturns);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we cloned in _exactly one_ basic block, and if that block ends in a
 | 
						|
  // return instruction, we splice the body of the inlined callee directly into
 | 
						|
  // the calling basic block.
 | 
						|
  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
 | 
						|
    // Move all of the instructions right before the call.
 | 
						|
    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
 | 
						|
                                 FirstNewBlock->begin(), FirstNewBlock->end());
 | 
						|
    // Remove the cloned basic block.
 | 
						|
    Caller->getBasicBlockList().pop_back();
 | 
						|
 | 
						|
    // If the call site was an invoke instruction, add a branch to the normal
 | 
						|
    // destination.
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | 
						|
      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
 | 
						|
      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
 | 
						|
    }
 | 
						|
 | 
						|
    // If the return instruction returned a value, replace uses of the call with
 | 
						|
    // uses of the returned value.
 | 
						|
    if (!TheCall->use_empty()) {
 | 
						|
      ReturnInst *R = Returns[0];
 | 
						|
      if (TheCall == R->getReturnValue())
 | 
						|
        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | 
						|
      else
 | 
						|
        TheCall->replaceAllUsesWith(R->getReturnValue());
 | 
						|
    }
 | 
						|
    // Since we are now done with the Call/Invoke, we can delete it.
 | 
						|
    TheCall->eraseFromParent();
 | 
						|
 | 
						|
    // Since we are now done with the return instruction, delete it also.
 | 
						|
    Returns[0]->eraseFromParent();
 | 
						|
 | 
						|
    // We are now done with the inlining.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we have the normal case, of more than one block to inline or
 | 
						|
  // multiple return sites.
 | 
						|
 | 
						|
  // We want to clone the entire callee function into the hole between the
 | 
						|
  // "starter" and "ender" blocks.  How we accomplish this depends on whether
 | 
						|
  // this is an invoke instruction or a call instruction.
 | 
						|
  BasicBlock *AfterCallBB;
 | 
						|
  BranchInst *CreatedBranchToNormalDest = nullptr;
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | 
						|
 | 
						|
    // Add an unconditional branch to make this look like the CallInst case...
 | 
						|
    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
 | 
						|
 | 
						|
    // Split the basic block.  This guarantees that no PHI nodes will have to be
 | 
						|
    // updated due to new incoming edges, and make the invoke case more
 | 
						|
    // symmetric to the call case.
 | 
						|
    AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest,
 | 
						|
                                          CalledFunc->getName()+".exit");
 | 
						|
 | 
						|
  } else {  // It's a call
 | 
						|
    // If this is a call instruction, we need to split the basic block that
 | 
						|
    // the call lives in.
 | 
						|
    //
 | 
						|
    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
 | 
						|
                                          CalledFunc->getName()+".exit");
 | 
						|
  }
 | 
						|
 | 
						|
  // Change the branch that used to go to AfterCallBB to branch to the first
 | 
						|
  // basic block of the inlined function.
 | 
						|
  //
 | 
						|
  TerminatorInst *Br = OrigBB->getTerminator();
 | 
						|
  assert(Br && Br->getOpcode() == Instruction::Br &&
 | 
						|
         "splitBasicBlock broken!");
 | 
						|
  Br->setOperand(0, FirstNewBlock);
 | 
						|
 | 
						|
 | 
						|
  // Now that the function is correct, make it a little bit nicer.  In
 | 
						|
  // particular, move the basic blocks inserted from the end of the function
 | 
						|
  // into the space made by splitting the source basic block.
 | 
						|
  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
 | 
						|
                                     FirstNewBlock, Caller->end());
 | 
						|
 | 
						|
  // Handle all of the return instructions that we just cloned in, and eliminate
 | 
						|
  // any users of the original call/invoke instruction.
 | 
						|
  Type *RTy = CalledFunc->getReturnType();
 | 
						|
 | 
						|
  PHINode *PHI = nullptr;
 | 
						|
  if (Returns.size() > 1) {
 | 
						|
    // The PHI node should go at the front of the new basic block to merge all
 | 
						|
    // possible incoming values.
 | 
						|
    if (!TheCall->use_empty()) {
 | 
						|
      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
 | 
						|
                            AfterCallBB->begin());
 | 
						|
      // Anything that used the result of the function call should now use the
 | 
						|
      // PHI node as their operand.
 | 
						|
      TheCall->replaceAllUsesWith(PHI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Loop over all of the return instructions adding entries to the PHI node
 | 
						|
    // as appropriate.
 | 
						|
    if (PHI) {
 | 
						|
      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | 
						|
        ReturnInst *RI = Returns[i];
 | 
						|
        assert(RI->getReturnValue()->getType() == PHI->getType() &&
 | 
						|
               "Ret value not consistent in function!");
 | 
						|
        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    // Add a branch to the merge points and remove return instructions.
 | 
						|
    DebugLoc Loc;
 | 
						|
    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
 | 
						|
      ReturnInst *RI = Returns[i];
 | 
						|
      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
 | 
						|
      Loc = RI->getDebugLoc();
 | 
						|
      BI->setDebugLoc(Loc);
 | 
						|
      RI->eraseFromParent();
 | 
						|
    }
 | 
						|
    // We need to set the debug location to *somewhere* inside the
 | 
						|
    // inlined function. The line number may be nonsensical, but the
 | 
						|
    // instruction will at least be associated with the right
 | 
						|
    // function.
 | 
						|
    if (CreatedBranchToNormalDest)
 | 
						|
      CreatedBranchToNormalDest->setDebugLoc(Loc);
 | 
						|
  } else if (!Returns.empty()) {
 | 
						|
    // Otherwise, if there is exactly one return value, just replace anything
 | 
						|
    // using the return value of the call with the computed value.
 | 
						|
    if (!TheCall->use_empty()) {
 | 
						|
      if (TheCall == Returns[0]->getReturnValue())
 | 
						|
        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | 
						|
      else
 | 
						|
        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
 | 
						|
    }
 | 
						|
 | 
						|
    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
 | 
						|
    BasicBlock *ReturnBB = Returns[0]->getParent();
 | 
						|
    ReturnBB->replaceAllUsesWith(AfterCallBB);
 | 
						|
 | 
						|
    // Splice the code from the return block into the block that it will return
 | 
						|
    // to, which contains the code that was after the call.
 | 
						|
    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
 | 
						|
                                      ReturnBB->getInstList());
 | 
						|
 | 
						|
    if (CreatedBranchToNormalDest)
 | 
						|
      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
 | 
						|
 | 
						|
    // Delete the return instruction now and empty ReturnBB now.
 | 
						|
    Returns[0]->eraseFromParent();
 | 
						|
    ReturnBB->eraseFromParent();
 | 
						|
  } else if (!TheCall->use_empty()) {
 | 
						|
    // No returns, but something is using the return value of the call.  Just
 | 
						|
    // nuke the result.
 | 
						|
    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
 | 
						|
  }
 | 
						|
 | 
						|
  // Since we are now done with the Call/Invoke, we can delete it.
 | 
						|
  TheCall->eraseFromParent();
 | 
						|
 | 
						|
  // If we inlined any musttail calls and the original return is now
 | 
						|
  // unreachable, delete it.  It can only contain a bitcast and ret.
 | 
						|
  if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
 | 
						|
    AfterCallBB->eraseFromParent();
 | 
						|
 | 
						|
  // We should always be able to fold the entry block of the function into the
 | 
						|
  // single predecessor of the block...
 | 
						|
  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
 | 
						|
  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
 | 
						|
 | 
						|
  // Splice the code entry block into calling block, right before the
 | 
						|
  // unconditional branch.
 | 
						|
  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
 | 
						|
  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
 | 
						|
 | 
						|
  // Remove the unconditional branch.
 | 
						|
  OrigBB->getInstList().erase(Br);
 | 
						|
 | 
						|
  // Now we can remove the CalleeEntry block, which is now empty.
 | 
						|
  Caller->getBasicBlockList().erase(CalleeEntry);
 | 
						|
 | 
						|
  // If we inserted a phi node, check to see if it has a single value (e.g. all
 | 
						|
  // the entries are the same or undef).  If so, remove the PHI so it doesn't
 | 
						|
  // block other optimizations.
 | 
						|
  if (PHI) {
 | 
						|
    if (Value *V = SimplifyInstruction(PHI, IFI.DL, nullptr, nullptr, IFI.AT)) {
 | 
						|
      PHI->replaceAllUsesWith(V);
 | 
						|
      PHI->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 |