mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	The logic that actually compares the types considers pointers and integers the same if they are of the same size. This created a strange mismatch between hash and reality and made the test case for this fail on some platforms (yay, test cases). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179905 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			885 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			885 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass looks for equivalent functions that are mergable and folds them.
 | |
| //
 | |
| // A hash is computed from the function, based on its type and number of
 | |
| // basic blocks.
 | |
| //
 | |
| // Once all hashes are computed, we perform an expensive equality comparison
 | |
| // on each function pair. This takes n^2/2 comparisons per bucket, so it's
 | |
| // important that the hash function be high quality. The equality comparison
 | |
| // iterates through each instruction in each basic block.
 | |
| //
 | |
| // When a match is found the functions are folded. If both functions are
 | |
| // overridable, we move the functionality into a new internal function and
 | |
| // leave two overridable thunks to it.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Future work:
 | |
| //
 | |
| // * virtual functions.
 | |
| //
 | |
| // Many functions have their address taken by the virtual function table for
 | |
| // the object they belong to. However, as long as it's only used for a lookup
 | |
| // and call, this is irrelevant, and we'd like to fold such functions.
 | |
| //
 | |
| // * switch from n^2 pair-wise comparisons to an n-way comparison for each
 | |
| // bucket.
 | |
| //
 | |
| // * be smarter about bitcasts.
 | |
| //
 | |
| // In order to fold functions, we will sometimes add either bitcast instructions
 | |
| // or bitcast constant expressions. Unfortunately, this can confound further
 | |
| // analysis since the two functions differ where one has a bitcast and the
 | |
| // other doesn't. We should learn to look through bitcasts.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "mergefunc"
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InlineAsm.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <vector>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumFunctionsMerged, "Number of functions merged");
 | |
| STATISTIC(NumThunksWritten, "Number of thunks generated");
 | |
| STATISTIC(NumAliasesWritten, "Number of aliases generated");
 | |
| STATISTIC(NumDoubleWeak, "Number of new functions created");
 | |
| 
 | |
| /// Returns the type id for a type to be hashed. We turn pointer types into
 | |
| /// integers here because the actual compare logic below considers pointers and
 | |
| /// integers of the same size as equal.
 | |
| static Type::TypeID getTypeIDForHash(Type *Ty) {
 | |
|   if (Ty->isPointerTy())
 | |
|     return Type::IntegerTyID;
 | |
|   return Ty->getTypeID();
 | |
| }
 | |
| 
 | |
| /// Creates a hash-code for the function which is the same for any two
 | |
| /// functions that will compare equal, without looking at the instructions
 | |
| /// inside the function.
 | |
| static unsigned profileFunction(const Function *F) {
 | |
|   FunctionType *FTy = F->getFunctionType();
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(F->size());
 | |
|   ID.AddInteger(F->getCallingConv());
 | |
|   ID.AddBoolean(F->hasGC());
 | |
|   ID.AddBoolean(FTy->isVarArg());
 | |
|   ID.AddInteger(getTypeIDForHash(FTy->getReturnType()));
 | |
|   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | |
|     ID.AddInteger(getTypeIDForHash(FTy->getParamType(i)));
 | |
|   return ID.ComputeHash();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// ComparableFunction - A struct that pairs together functions with a
 | |
| /// DataLayout so that we can keep them together as elements in the DenseSet.
 | |
| class ComparableFunction {
 | |
| public:
 | |
|   static const ComparableFunction EmptyKey;
 | |
|   static const ComparableFunction TombstoneKey;
 | |
|   static DataLayout * const LookupOnly;
 | |
| 
 | |
|   ComparableFunction(Function *Func, DataLayout *TD)
 | |
|     : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
 | |
| 
 | |
|   Function *getFunc() const { return Func; }
 | |
|   unsigned getHash() const { return Hash; }
 | |
|   DataLayout *getTD() const { return TD; }
 | |
| 
 | |
|   // Drops AssertingVH reference to the function. Outside of debug mode, this
 | |
|   // does nothing.
 | |
|   void release() {
 | |
|     assert(Func &&
 | |
|            "Attempted to release function twice, or release empty/tombstone!");
 | |
|     Func = NULL;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   explicit ComparableFunction(unsigned Hash)
 | |
|     : Func(NULL), Hash(Hash), TD(NULL) {}
 | |
| 
 | |
|   AssertingVH<Function> Func;
 | |
|   unsigned Hash;
 | |
|   DataLayout *TD;
 | |
| };
 | |
| 
 | |
| const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
 | |
| const ComparableFunction ComparableFunction::TombstoneKey =
 | |
|     ComparableFunction(1);
 | |
| DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1);
 | |
| 
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   template <>
 | |
|   struct DenseMapInfo<ComparableFunction> {
 | |
|     static ComparableFunction getEmptyKey() {
 | |
|       return ComparableFunction::EmptyKey;
 | |
|     }
 | |
|     static ComparableFunction getTombstoneKey() {
 | |
|       return ComparableFunction::TombstoneKey;
 | |
|     }
 | |
|     static unsigned getHashValue(const ComparableFunction &CF) {
 | |
|       return CF.getHash();
 | |
|     }
 | |
|     static bool isEqual(const ComparableFunction &LHS,
 | |
|                         const ComparableFunction &RHS);
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// FunctionComparator - Compares two functions to determine whether or not
 | |
| /// they will generate machine code with the same behaviour. DataLayout is
 | |
| /// used if available. The comparator always fails conservatively (erring on the
 | |
| /// side of claiming that two functions are different).
 | |
| class FunctionComparator {
 | |
| public:
 | |
|   FunctionComparator(const DataLayout *TD, const Function *F1,
 | |
|                      const Function *F2)
 | |
|     : F1(F1), F2(F2), TD(TD) {}
 | |
| 
 | |
|   /// Test whether the two functions have equivalent behaviour.
 | |
|   bool compare();
 | |
| 
 | |
| private:
 | |
|   /// Test whether two basic blocks have equivalent behaviour.
 | |
|   bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
 | |
| 
 | |
|   /// Assign or look up previously assigned numbers for the two values, and
 | |
|   /// return whether the numbers are equal. Numbers are assigned in the order
 | |
|   /// visited.
 | |
|   bool enumerate(const Value *V1, const Value *V2);
 | |
| 
 | |
|   /// Compare two Instructions for equivalence, similar to
 | |
|   /// Instruction::isSameOperationAs but with modifications to the type
 | |
|   /// comparison.
 | |
|   bool isEquivalentOperation(const Instruction *I1,
 | |
|                              const Instruction *I2) const;
 | |
| 
 | |
|   /// Compare two GEPs for equivalent pointer arithmetic.
 | |
|   bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
 | |
|   bool isEquivalentGEP(const GetElementPtrInst *GEP1,
 | |
|                        const GetElementPtrInst *GEP2) {
 | |
|     return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
 | |
|   }
 | |
| 
 | |
|   /// Compare two Types, treating all pointer types as equal.
 | |
|   bool isEquivalentType(Type *Ty1, Type *Ty2) const;
 | |
| 
 | |
|   // The two functions undergoing comparison.
 | |
|   const Function *F1, *F2;
 | |
| 
 | |
|   const DataLayout *TD;
 | |
| 
 | |
|   DenseMap<const Value *, const Value *> id_map;
 | |
|   DenseSet<const Value *> seen_values;
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| // Any two pointers in the same address space are equivalent, intptr_t and
 | |
| // pointers are equivalent. Otherwise, standard type equivalence rules apply.
 | |
| bool FunctionComparator::isEquivalentType(Type *Ty1, Type *Ty2) const {
 | |
|   if (Ty1 == Ty2)
 | |
|     return true;
 | |
|   if (Ty1->getTypeID() != Ty2->getTypeID()) {
 | |
|     if (TD) {
 | |
|       LLVMContext &Ctx = Ty1->getContext();
 | |
|       if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ctx)) return true;
 | |
|       if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ctx)) return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   switch (Ty1->getTypeID()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown type!");
 | |
|     // Fall through in Release mode.
 | |
|   case Type::IntegerTyID:
 | |
|   case Type::VectorTyID:
 | |
|     // Ty1 == Ty2 would have returned true earlier.
 | |
|     return false;
 | |
| 
 | |
|   case Type::VoidTyID:
 | |
|   case Type::FloatTyID:
 | |
|   case Type::DoubleTyID:
 | |
|   case Type::X86_FP80TyID:
 | |
|   case Type::FP128TyID:
 | |
|   case Type::PPC_FP128TyID:
 | |
|   case Type::LabelTyID:
 | |
|   case Type::MetadataTyID:
 | |
|     return true;
 | |
| 
 | |
|   case Type::PointerTyID: {
 | |
|     PointerType *PTy1 = cast<PointerType>(Ty1);
 | |
|     PointerType *PTy2 = cast<PointerType>(Ty2);
 | |
|     return PTy1->getAddressSpace() == PTy2->getAddressSpace();
 | |
|   }
 | |
| 
 | |
|   case Type::StructTyID: {
 | |
|     StructType *STy1 = cast<StructType>(Ty1);
 | |
|     StructType *STy2 = cast<StructType>(Ty2);
 | |
|     if (STy1->getNumElements() != STy2->getNumElements())
 | |
|       return false;
 | |
| 
 | |
|     if (STy1->isPacked() != STy2->isPacked())
 | |
|       return false;
 | |
| 
 | |
|     for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
 | |
|       if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case Type::FunctionTyID: {
 | |
|     FunctionType *FTy1 = cast<FunctionType>(Ty1);
 | |
|     FunctionType *FTy2 = cast<FunctionType>(Ty2);
 | |
|     if (FTy1->getNumParams() != FTy2->getNumParams() ||
 | |
|         FTy1->isVarArg() != FTy2->isVarArg())
 | |
|       return false;
 | |
| 
 | |
|     if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
 | |
|       return false;
 | |
| 
 | |
|     for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
 | |
|       if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case Type::ArrayTyID: {
 | |
|     ArrayType *ATy1 = cast<ArrayType>(Ty1);
 | |
|     ArrayType *ATy2 = cast<ArrayType>(Ty2);
 | |
|     return ATy1->getNumElements() == ATy2->getNumElements() &&
 | |
|            isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Determine whether the two operations are the same except that pointer-to-A
 | |
| // and pointer-to-B are equivalent. This should be kept in sync with
 | |
| // Instruction::isSameOperationAs.
 | |
| bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
 | |
|                                                const Instruction *I2) const {
 | |
|   // Differences from Instruction::isSameOperationAs:
 | |
|   //  * replace type comparison with calls to isEquivalentType.
 | |
|   //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
 | |
|   //  * because of the above, we don't test for the tail bit on calls later on
 | |
|   if (I1->getOpcode() != I2->getOpcode() ||
 | |
|       I1->getNumOperands() != I2->getNumOperands() ||
 | |
|       !isEquivalentType(I1->getType(), I2->getType()) ||
 | |
|       !I1->hasSameSubclassOptionalData(I2))
 | |
|     return false;
 | |
| 
 | |
|   // We have two instructions of identical opcode and #operands.  Check to see
 | |
|   // if all operands are the same type
 | |
|   for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
 | |
|     if (!isEquivalentType(I1->getOperand(i)->getType(),
 | |
|                           I2->getOperand(i)->getType()))
 | |
|       return false;
 | |
| 
 | |
|   // Check special state that is a part of some instructions.
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
 | |
|     return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
 | |
|            LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() &&
 | |
|            LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
 | |
|            LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
 | |
|   if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
 | |
|     return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
 | |
|            SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() &&
 | |
|            SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
 | |
|            SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
 | |
|   if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
 | |
|     return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(I1))
 | |
|     return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
 | |
|            CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
 | |
|   if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
 | |
|     return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
 | |
|            CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
 | |
|   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
 | |
|     return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
 | |
|   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
 | |
|     return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
 | |
|   if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
 | |
|     return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
 | |
|            FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
 | |
|   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
 | |
|     return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
 | |
|            CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() &&
 | |
|            CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
 | |
|   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
 | |
|     return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
 | |
|            RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
 | |
|            RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
 | |
|            RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Determine whether two GEP operations perform the same underlying arithmetic.
 | |
| bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
 | |
|                                          const GEPOperator *GEP2) {
 | |
|   // When we have target data, we can reduce the GEP down to the value in bytes
 | |
|   // added to the address.
 | |
|   unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 1;
 | |
|   APInt Offset1(BitWidth, 0), Offset2(BitWidth, 0);
 | |
|   if (TD &&
 | |
|       GEP1->accumulateConstantOffset(*TD, Offset1) &&
 | |
|       GEP2->accumulateConstantOffset(*TD, Offset2)) {
 | |
|     return Offset1 == Offset2;
 | |
|   }
 | |
| 
 | |
|   if (GEP1->getPointerOperand()->getType() !=
 | |
|       GEP2->getPointerOperand()->getType())
 | |
|     return false;
 | |
| 
 | |
|   if (GEP1->getNumOperands() != GEP2->getNumOperands())
 | |
|     return false;
 | |
| 
 | |
|   for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
 | |
|     if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Compare two values used by the two functions under pair-wise comparison. If
 | |
| // this is the first time the values are seen, they're added to the mapping so
 | |
| // that we will detect mismatches on next use.
 | |
| bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
 | |
|   // Check for function @f1 referring to itself and function @f2 referring to
 | |
|   // itself, or referring to each other, or both referring to either of them.
 | |
|   // They're all equivalent if the two functions are otherwise equivalent.
 | |
|   if (V1 == F1 && V2 == F2)
 | |
|     return true;
 | |
|   if (V1 == F2 && V2 == F1)
 | |
|     return true;
 | |
| 
 | |
|   if (const Constant *C1 = dyn_cast<Constant>(V1)) {
 | |
|     if (V1 == V2) return true;
 | |
|     const Constant *C2 = dyn_cast<Constant>(V2);
 | |
|     if (!C2) return false;
 | |
|     // TODO: constant expressions with GEP or references to F1 or F2.
 | |
|     if (C1->isNullValue() && C2->isNullValue() &&
 | |
|         isEquivalentType(C1->getType(), C2->getType()))
 | |
|       return true;
 | |
|     // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
 | |
|     // then they must have equal bit patterns.
 | |
|     return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
 | |
|       C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
 | |
|   }
 | |
| 
 | |
|   if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
 | |
|     return V1 == V2;
 | |
| 
 | |
|   // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
 | |
|   // check whether it's equal to V2. When there is no mapping then we need to
 | |
|   // ensure that V2 isn't already equivalent to something else. For this
 | |
|   // purpose, we track the V2 values in a set.
 | |
| 
 | |
|   const Value *&map_elem = id_map[V1];
 | |
|   if (map_elem)
 | |
|     return map_elem == V2;
 | |
|   if (!seen_values.insert(V2).second)
 | |
|     return false;
 | |
|   map_elem = V2;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Test whether two basic blocks have equivalent behaviour.
 | |
| bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
 | |
|   BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
 | |
|   BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
 | |
| 
 | |
|   do {
 | |
|     if (!enumerate(F1I, F2I))
 | |
|       return false;
 | |
| 
 | |
|     if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
 | |
|       const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
 | |
|       if (!GEP2)
 | |
|         return false;
 | |
| 
 | |
|       if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
 | |
|         return false;
 | |
| 
 | |
|       if (!isEquivalentGEP(GEP1, GEP2))
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!isEquivalentOperation(F1I, F2I))
 | |
|         return false;
 | |
| 
 | |
|       assert(F1I->getNumOperands() == F2I->getNumOperands());
 | |
|       for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
 | |
|         Value *OpF1 = F1I->getOperand(i);
 | |
|         Value *OpF2 = F2I->getOperand(i);
 | |
| 
 | |
|         if (!enumerate(OpF1, OpF2))
 | |
|           return false;
 | |
| 
 | |
|         if (OpF1->getValueID() != OpF2->getValueID() ||
 | |
|             !isEquivalentType(OpF1->getType(), OpF2->getType()))
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ++F1I, ++F2I;
 | |
|   } while (F1I != F1E && F2I != F2E);
 | |
| 
 | |
|   return F1I == F1E && F2I == F2E;
 | |
| }
 | |
| 
 | |
| // Test whether the two functions have equivalent behaviour.
 | |
| bool FunctionComparator::compare() {
 | |
|   // We need to recheck everything, but check the things that weren't included
 | |
|   // in the hash first.
 | |
| 
 | |
|   if (F1->getAttributes() != F2->getAttributes())
 | |
|     return false;
 | |
| 
 | |
|   if (F1->hasGC() != F2->hasGC())
 | |
|     return false;
 | |
| 
 | |
|   if (F1->hasGC() && F1->getGC() != F2->getGC())
 | |
|     return false;
 | |
| 
 | |
|   if (F1->hasSection() != F2->hasSection())
 | |
|     return false;
 | |
| 
 | |
|   if (F1->hasSection() && F1->getSection() != F2->getSection())
 | |
|     return false;
 | |
| 
 | |
|   if (F1->isVarArg() != F2->isVarArg())
 | |
|     return false;
 | |
| 
 | |
|   // TODO: if it's internal and only used in direct calls, we could handle this
 | |
|   // case too.
 | |
|   if (F1->getCallingConv() != F2->getCallingConv())
 | |
|     return false;
 | |
| 
 | |
|   if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
 | |
|     return false;
 | |
| 
 | |
|   assert(F1->arg_size() == F2->arg_size() &&
 | |
|          "Identically typed functions have different numbers of args!");
 | |
| 
 | |
|   // Visit the arguments so that they get enumerated in the order they're
 | |
|   // passed in.
 | |
|   for (Function::const_arg_iterator f1i = F1->arg_begin(),
 | |
|          f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
 | |
|     if (!enumerate(f1i, f2i))
 | |
|       llvm_unreachable("Arguments repeat!");
 | |
|   }
 | |
| 
 | |
|   // We do a CFG-ordered walk since the actual ordering of the blocks in the
 | |
|   // linked list is immaterial. Our walk starts at the entry block for both
 | |
|   // functions, then takes each block from each terminator in order. As an
 | |
|   // artifact, this also means that unreachable blocks are ignored.
 | |
|   SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
 | |
|   SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
 | |
| 
 | |
|   F1BBs.push_back(&F1->getEntryBlock());
 | |
|   F2BBs.push_back(&F2->getEntryBlock());
 | |
| 
 | |
|   VisitedBBs.insert(F1BBs[0]);
 | |
|   while (!F1BBs.empty()) {
 | |
|     const BasicBlock *F1BB = F1BBs.pop_back_val();
 | |
|     const BasicBlock *F2BB = F2BBs.pop_back_val();
 | |
| 
 | |
|     if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
 | |
|       return false;
 | |
| 
 | |
|     const TerminatorInst *F1TI = F1BB->getTerminator();
 | |
|     const TerminatorInst *F2TI = F2BB->getTerminator();
 | |
| 
 | |
|     assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
 | |
|     for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
 | |
|       if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
 | |
|         continue;
 | |
| 
 | |
|       F1BBs.push_back(F1TI->getSuccessor(i));
 | |
|       F2BBs.push_back(F2TI->getSuccessor(i));
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// MergeFunctions finds functions which will generate identical machine code,
 | |
| /// by considering all pointer types to be equivalent. Once identified,
 | |
| /// MergeFunctions will fold them by replacing a call to one to a call to a
 | |
| /// bitcast of the other.
 | |
| ///
 | |
| class MergeFunctions : public ModulePass {
 | |
| public:
 | |
|   static char ID;
 | |
|   MergeFunctions()
 | |
|     : ModulePass(ID), HasGlobalAliases(false) {
 | |
|     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnModule(Module &M);
 | |
| 
 | |
| private:
 | |
|   typedef DenseSet<ComparableFunction> FnSetType;
 | |
| 
 | |
|   /// A work queue of functions that may have been modified and should be
 | |
|   /// analyzed again.
 | |
|   std::vector<WeakVH> Deferred;
 | |
| 
 | |
|   /// Insert a ComparableFunction into the FnSet, or merge it away if it's
 | |
|   /// equal to one that's already present.
 | |
|   bool insert(ComparableFunction &NewF);
 | |
| 
 | |
|   /// Remove a Function from the FnSet and queue it up for a second sweep of
 | |
|   /// analysis.
 | |
|   void remove(Function *F);
 | |
| 
 | |
|   /// Find the functions that use this Value and remove them from FnSet and
 | |
|   /// queue the functions.
 | |
|   void removeUsers(Value *V);
 | |
| 
 | |
|   /// Replace all direct calls of Old with calls of New. Will bitcast New if
 | |
|   /// necessary to make types match.
 | |
|   void replaceDirectCallers(Function *Old, Function *New);
 | |
| 
 | |
|   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
 | |
|   /// be converted into a thunk. In either case, it should never be visited
 | |
|   /// again.
 | |
|   void mergeTwoFunctions(Function *F, Function *G);
 | |
| 
 | |
|   /// Replace G with a thunk or an alias to F. Deletes G.
 | |
|   void writeThunkOrAlias(Function *F, Function *G);
 | |
| 
 | |
|   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
 | |
|   /// of G with bitcast(F). Deletes G.
 | |
|   void writeThunk(Function *F, Function *G);
 | |
| 
 | |
|   /// Replace G with an alias to F. Deletes G.
 | |
|   void writeAlias(Function *F, Function *G);
 | |
| 
 | |
|   /// The set of all distinct functions. Use the insert() and remove() methods
 | |
|   /// to modify it.
 | |
|   FnSetType FnSet;
 | |
| 
 | |
|   /// DataLayout for more accurate GEP comparisons. May be NULL.
 | |
|   DataLayout *TD;
 | |
| 
 | |
|   /// Whether or not the target supports global aliases.
 | |
|   bool HasGlobalAliases;
 | |
| };
 | |
| 
 | |
| }  // end anonymous namespace
 | |
| 
 | |
| char MergeFunctions::ID = 0;
 | |
| INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
 | |
| 
 | |
| ModulePass *llvm::createMergeFunctionsPass() {
 | |
|   return new MergeFunctions();
 | |
| }
 | |
| 
 | |
| bool MergeFunctions::runOnModule(Module &M) {
 | |
|   bool Changed = false;
 | |
|   TD = getAnalysisIfAvailable<DataLayout>();
 | |
| 
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
 | |
|     if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
 | |
|       Deferred.push_back(WeakVH(I));
 | |
|   }
 | |
|   FnSet.resize(Deferred.size());
 | |
| 
 | |
|   do {
 | |
|     std::vector<WeakVH> Worklist;
 | |
|     Deferred.swap(Worklist);
 | |
| 
 | |
|     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
 | |
|     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
 | |
| 
 | |
|     // Insert only strong functions and merge them. Strong function merging
 | |
|     // always deletes one of them.
 | |
|     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
 | |
|            E = Worklist.end(); I != E; ++I) {
 | |
|       if (!*I) continue;
 | |
|       Function *F = cast<Function>(*I);
 | |
|       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
 | |
|           !F->mayBeOverridden()) {
 | |
|         ComparableFunction CF = ComparableFunction(F, TD);
 | |
|         Changed |= insert(CF);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Insert only weak functions and merge them. By doing these second we
 | |
|     // create thunks to the strong function when possible. When two weak
 | |
|     // functions are identical, we create a new strong function with two weak
 | |
|     // weak thunks to it which are identical but not mergable.
 | |
|     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
 | |
|            E = Worklist.end(); I != E; ++I) {
 | |
|       if (!*I) continue;
 | |
|       Function *F = cast<Function>(*I);
 | |
|       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
 | |
|           F->mayBeOverridden()) {
 | |
|         ComparableFunction CF = ComparableFunction(F, TD);
 | |
|         Changed |= insert(CF);
 | |
|       }
 | |
|     }
 | |
|     DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
 | |
|   } while (!Deferred.empty());
 | |
| 
 | |
|   FnSet.clear();
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
 | |
|                                                const ComparableFunction &RHS) {
 | |
|   if (LHS.getFunc() == RHS.getFunc() &&
 | |
|       LHS.getHash() == RHS.getHash())
 | |
|     return true;
 | |
|   if (!LHS.getFunc() || !RHS.getFunc())
 | |
|     return false;
 | |
| 
 | |
|   // One of these is a special "underlying pointer comparison only" object.
 | |
|   if (LHS.getTD() == ComparableFunction::LookupOnly ||
 | |
|       RHS.getTD() == ComparableFunction::LookupOnly)
 | |
|     return false;
 | |
| 
 | |
|   assert(LHS.getTD() == RHS.getTD() &&
 | |
|          "Comparing functions for different targets");
 | |
| 
 | |
|   return FunctionComparator(LHS.getTD(), LHS.getFunc(),
 | |
|                             RHS.getFunc()).compare();
 | |
| }
 | |
| 
 | |
| // Replace direct callers of Old with New.
 | |
| void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
 | |
|   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
 | |
|   for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
 | |
|        UI != UE;) {
 | |
|     Value::use_iterator TheIter = UI;
 | |
|     ++UI;
 | |
|     CallSite CS(*TheIter);
 | |
|     if (CS && CS.isCallee(TheIter)) {
 | |
|       remove(CS.getInstruction()->getParent()->getParent());
 | |
|       TheIter.getUse().set(BitcastNew);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
 | |
| void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
 | |
|   if (HasGlobalAliases && G->hasUnnamedAddr()) {
 | |
|     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
 | |
|         G->hasWeakLinkage()) {
 | |
|       writeAlias(F, G);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   writeThunk(F, G);
 | |
| }
 | |
| 
 | |
| // Replace G with a simple tail call to bitcast(F). Also replace direct uses
 | |
| // of G with bitcast(F). Deletes G.
 | |
| void MergeFunctions::writeThunk(Function *F, Function *G) {
 | |
|   if (!G->mayBeOverridden()) {
 | |
|     // Redirect direct callers of G to F.
 | |
|     replaceDirectCallers(G, F);
 | |
|   }
 | |
| 
 | |
|   // If G was internal then we may have replaced all uses of G with F. If so,
 | |
|   // stop here and delete G. There's no need for a thunk.
 | |
|   if (G->hasLocalLinkage() && G->use_empty()) {
 | |
|     G->eraseFromParent();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
 | |
|                                     G->getParent());
 | |
|   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
 | |
|   IRBuilder<false> Builder(BB);
 | |
| 
 | |
|   SmallVector<Value *, 16> Args;
 | |
|   unsigned i = 0;
 | |
|   FunctionType *FFTy = F->getFunctionType();
 | |
|   for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
 | |
|        AI != AE; ++AI) {
 | |
|     Args.push_back(Builder.CreateBitCast(AI, FFTy->getParamType(i)));
 | |
|     ++i;
 | |
|   }
 | |
| 
 | |
|   CallInst *CI = Builder.CreateCall(F, Args);
 | |
|   CI->setTailCall();
 | |
|   CI->setCallingConv(F->getCallingConv());
 | |
|   if (NewG->getReturnType()->isVoidTy()) {
 | |
|     Builder.CreateRetVoid();
 | |
|   } else {
 | |
|     Type *RetTy = NewG->getReturnType();
 | |
|     if (CI->getType()->isIntegerTy() && RetTy->isPointerTy())
 | |
|       Builder.CreateRet(Builder.CreateIntToPtr(CI, RetTy));
 | |
|     else if (CI->getType()->isPointerTy() && RetTy->isIntegerTy())
 | |
|       Builder.CreateRet(Builder.CreatePtrToInt(CI, RetTy));
 | |
|     else
 | |
|       Builder.CreateRet(Builder.CreateBitCast(CI, RetTy));
 | |
|   }
 | |
| 
 | |
|   NewG->copyAttributesFrom(G);
 | |
|   NewG->takeName(G);
 | |
|   removeUsers(G);
 | |
|   G->replaceAllUsesWith(NewG);
 | |
|   G->eraseFromParent();
 | |
| 
 | |
|   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
 | |
|   ++NumThunksWritten;
 | |
| }
 | |
| 
 | |
| // Replace G with an alias to F and delete G.
 | |
| void MergeFunctions::writeAlias(Function *F, Function *G) {
 | |
|   Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
 | |
|   GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
 | |
|                                     BitcastF, G->getParent());
 | |
|   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
 | |
|   GA->takeName(G);
 | |
|   GA->setVisibility(G->getVisibility());
 | |
|   removeUsers(G);
 | |
|   G->replaceAllUsesWith(GA);
 | |
|   G->eraseFromParent();
 | |
| 
 | |
|   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
 | |
|   ++NumAliasesWritten;
 | |
| }
 | |
| 
 | |
| // Merge two equivalent functions. Upon completion, Function G is deleted.
 | |
| void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
 | |
|   if (F->mayBeOverridden()) {
 | |
|     assert(G->mayBeOverridden());
 | |
| 
 | |
|     if (HasGlobalAliases) {
 | |
|       // Make them both thunks to the same internal function.
 | |
|       Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
 | |
|                                      F->getParent());
 | |
|       H->copyAttributesFrom(F);
 | |
|       H->takeName(F);
 | |
|       removeUsers(F);
 | |
|       F->replaceAllUsesWith(H);
 | |
| 
 | |
|       unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
 | |
| 
 | |
|       writeAlias(F, G);
 | |
|       writeAlias(F, H);
 | |
| 
 | |
|       F->setAlignment(MaxAlignment);
 | |
|       F->setLinkage(GlobalValue::PrivateLinkage);
 | |
|     } else {
 | |
|       // We can't merge them. Instead, pick one and update all direct callers
 | |
|       // to call it and hope that we improve the instruction cache hit rate.
 | |
|       replaceDirectCallers(G, F);
 | |
|     }
 | |
| 
 | |
|     ++NumDoubleWeak;
 | |
|   } else {
 | |
|     writeThunkOrAlias(F, G);
 | |
|   }
 | |
| 
 | |
|   ++NumFunctionsMerged;
 | |
| }
 | |
| 
 | |
| // Insert a ComparableFunction into the FnSet, or merge it away if equal to one
 | |
| // that was already inserted.
 | |
| bool MergeFunctions::insert(ComparableFunction &NewF) {
 | |
|   std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
 | |
|   if (Result.second) {
 | |
|     DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const ComparableFunction &OldF = *Result.first;
 | |
| 
 | |
|   // Never thunk a strong function to a weak function.
 | |
|   assert(!OldF.getFunc()->mayBeOverridden() ||
 | |
|          NewF.getFunc()->mayBeOverridden());
 | |
| 
 | |
|   DEBUG(dbgs() << "  " << OldF.getFunc()->getName() << " == "
 | |
|                << NewF.getFunc()->getName() << '\n');
 | |
| 
 | |
|   Function *DeleteF = NewF.getFunc();
 | |
|   NewF.release();
 | |
|   mergeTwoFunctions(OldF.getFunc(), DeleteF);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Remove a function from FnSet. If it was already in FnSet, add it to Deferred
 | |
| // so that we'll look at it in the next round.
 | |
| void MergeFunctions::remove(Function *F) {
 | |
|   // We need to make sure we remove F, not a function "equal" to F per the
 | |
|   // function equality comparator.
 | |
|   //
 | |
|   // The special "lookup only" ComparableFunction bypasses the expensive
 | |
|   // function comparison in favour of a pointer comparison on the underlying
 | |
|   // Function*'s.
 | |
|   ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
 | |
|   if (FnSet.erase(CF)) {
 | |
|     DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
 | |
|     Deferred.push_back(F);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // For each instruction used by the value, remove() the function that contains
 | |
| // the instruction. This should happen right before a call to RAUW.
 | |
| void MergeFunctions::removeUsers(Value *V) {
 | |
|   std::vector<Value *> Worklist;
 | |
|   Worklist.push_back(V);
 | |
|   while (!Worklist.empty()) {
 | |
|     Value *V = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       Use &U = UI.getUse();
 | |
|       if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
 | |
|         remove(I->getParent()->getParent());
 | |
|       } else if (isa<GlobalValue>(U.getUser())) {
 | |
|         // do nothing
 | |
|       } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
 | |
|         for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
 | |
|              CUI != CUE; ++CUI)
 | |
|           Worklist.push_back(*CUI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 |