mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This is another one that doesn't matter much, but uses the right GEP index types in the first place. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@189854 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			820 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			820 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visit functions for load, store and alloca.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombine.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
 | |
| STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
 | |
| 
 | |
| /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
 | |
| /// some part of a constant global variable.  This intentionally only accepts
 | |
| /// constant expressions because we can't rewrite arbitrary instructions.
 | |
| static bool pointsToConstantGlobal(Value *V) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     return GV->isConstant();
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|     if (CE->getOpcode() == Instruction::BitCast ||
 | |
|         CE->getOpcode() == Instruction::GetElementPtr)
 | |
|       return pointsToConstantGlobal(CE->getOperand(0));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
 | |
| /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
 | |
| /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
 | |
| /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
 | |
| /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
 | |
| /// the alloca, and if the source pointer is a pointer to a constant global, we
 | |
| /// can optimize this.
 | |
| static bool
 | |
| isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
 | |
|                                SmallVectorImpl<Instruction *> &ToDelete,
 | |
|                                bool IsOffset = false) {
 | |
|   // We track lifetime intrinsics as we encounter them.  If we decide to go
 | |
|   // ahead and replace the value with the global, this lets the caller quickly
 | |
|   // eliminate the markers.
 | |
| 
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
 | |
|     User *U = cast<Instruction>(*UI);
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | |
|       // Ignore non-volatile loads, they are always ok.
 | |
|       if (!LI->isSimple()) return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
 | |
|       // If uses of the bitcast are ok, we are ok.
 | |
|       if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, ToDelete, IsOffset))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
 | |
|       // If the GEP has all zero indices, it doesn't offset the pointer.  If it
 | |
|       // doesn't, it does.
 | |
|       if (!isOnlyCopiedFromConstantGlobal(
 | |
|               GEP, TheCopy, ToDelete, IsOffset || !GEP->hasAllZeroIndices()))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (CallSite CS = U) {
 | |
|       // If this is the function being called then we treat it like a load and
 | |
|       // ignore it.
 | |
|       if (CS.isCallee(UI))
 | |
|         continue;
 | |
| 
 | |
|       // If this is a readonly/readnone call site, then we know it is just a
 | |
|       // load (but one that potentially returns the value itself), so we can
 | |
|       // ignore it if we know that the value isn't captured.
 | |
|       unsigned ArgNo = CS.getArgumentNo(UI);
 | |
|       if (CS.onlyReadsMemory() &&
 | |
|           (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
 | |
|         continue;
 | |
| 
 | |
|       // If this is being passed as a byval argument, the caller is making a
 | |
|       // copy, so it is only a read of the alloca.
 | |
|       if (CS.isByValArgument(ArgNo))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Lifetime intrinsics can be handled by the caller.
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
 | |
|       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|           II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | |
|         assert(II->use_empty() && "Lifetime markers have no result to use!");
 | |
|         ToDelete.push_back(II);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If this is isn't our memcpy/memmove, reject it as something we can't
 | |
|     // handle.
 | |
|     MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
 | |
|     if (MI == 0)
 | |
|       return false;
 | |
| 
 | |
|     // If the transfer is using the alloca as a source of the transfer, then
 | |
|     // ignore it since it is a load (unless the transfer is volatile).
 | |
|     if (UI.getOperandNo() == 1) {
 | |
|       if (MI->isVolatile()) return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we already have seen a copy, reject the second one.
 | |
|     if (TheCopy) return false;
 | |
| 
 | |
|     // If the pointer has been offset from the start of the alloca, we can't
 | |
|     // safely handle this.
 | |
|     if (IsOffset) return false;
 | |
| 
 | |
|     // If the memintrinsic isn't using the alloca as the dest, reject it.
 | |
|     if (UI.getOperandNo() != 0) return false;
 | |
| 
 | |
|     // If the source of the memcpy/move is not a constant global, reject it.
 | |
|     if (!pointsToConstantGlobal(MI->getSource()))
 | |
|       return false;
 | |
| 
 | |
|     // Otherwise, the transform is safe.  Remember the copy instruction.
 | |
|     TheCopy = MI;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
 | |
| /// modified by a copy from a constant global.  If we can prove this, we can
 | |
| /// replace any uses of the alloca with uses of the global directly.
 | |
| static MemTransferInst *
 | |
| isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
 | |
|                                SmallVectorImpl<Instruction *> &ToDelete) {
 | |
|   MemTransferInst *TheCopy = 0;
 | |
|   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
 | |
|     return TheCopy;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
 | |
|   // Ensure that the alloca array size argument has type intptr_t, so that
 | |
|   // any casting is exposed early.
 | |
|   if (TD) {
 | |
|     Type *IntPtrTy = TD->getIntPtrType(AI.getType());
 | |
|     if (AI.getArraySize()->getType() != IntPtrTy) {
 | |
|       Value *V = Builder->CreateIntCast(AI.getArraySize(),
 | |
|                                         IntPtrTy, false);
 | |
|       AI.setOperand(0, V);
 | |
|       return &AI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
 | |
|   if (AI.isArrayAllocation()) {  // Check C != 1
 | |
|     if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
 | |
|       Type *NewTy =
 | |
|         ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
 | |
|       AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
 | |
|       New->setAlignment(AI.getAlignment());
 | |
| 
 | |
|       // Scan to the end of the allocation instructions, to skip over a block of
 | |
|       // allocas if possible...also skip interleaved debug info
 | |
|       //
 | |
|       BasicBlock::iterator It = New;
 | |
|       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
 | |
| 
 | |
|       // Now that I is pointing to the first non-allocation-inst in the block,
 | |
|       // insert our getelementptr instruction...
 | |
|       //
 | |
|       Type *IdxTy = TD
 | |
|                   ? TD->getIntPtrType(AI.getType())
 | |
|                   : Type::getInt64Ty(AI.getContext());
 | |
|       Value *NullIdx = Constant::getNullValue(IdxTy);
 | |
|       Value *Idx[2] = { NullIdx, NullIdx };
 | |
|       Instruction *GEP =
 | |
|         GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
 | |
|       InsertNewInstBefore(GEP, *It);
 | |
| 
 | |
|       // Now make everything use the getelementptr instead of the original
 | |
|       // allocation.
 | |
|       return ReplaceInstUsesWith(AI, GEP);
 | |
|     } else if (isa<UndefValue>(AI.getArraySize())) {
 | |
|       return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TD && AI.getAllocatedType()->isSized()) {
 | |
|     // If the alignment is 0 (unspecified), assign it the preferred alignment.
 | |
|     if (AI.getAlignment() == 0)
 | |
|       AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
 | |
| 
 | |
|     // Move all alloca's of zero byte objects to the entry block and merge them
 | |
|     // together.  Note that we only do this for alloca's, because malloc should
 | |
|     // allocate and return a unique pointer, even for a zero byte allocation.
 | |
|     if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) {
 | |
|       // For a zero sized alloca there is no point in doing an array allocation.
 | |
|       // This is helpful if the array size is a complicated expression not used
 | |
|       // elsewhere.
 | |
|       if (AI.isArrayAllocation()) {
 | |
|         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
 | |
|         return &AI;
 | |
|       }
 | |
| 
 | |
|       // Get the first instruction in the entry block.
 | |
|       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
 | |
|       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
 | |
|       if (FirstInst != &AI) {
 | |
|         // If the entry block doesn't start with a zero-size alloca then move
 | |
|         // this one to the start of the entry block.  There is no problem with
 | |
|         // dominance as the array size was forced to a constant earlier already.
 | |
|         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
 | |
|         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
 | |
|             TD->getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
 | |
|           AI.moveBefore(FirstInst);
 | |
|           return &AI;
 | |
|         }
 | |
| 
 | |
|         // If the alignment of the entry block alloca is 0 (unspecified),
 | |
|         // assign it the preferred alignment.
 | |
|         if (EntryAI->getAlignment() == 0)
 | |
|           EntryAI->setAlignment(
 | |
|             TD->getPrefTypeAlignment(EntryAI->getAllocatedType()));
 | |
|         // Replace this zero-sized alloca with the one at the start of the entry
 | |
|         // block after ensuring that the address will be aligned enough for both
 | |
|         // types.
 | |
|         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
 | |
|                                      AI.getAlignment());
 | |
|         EntryAI->setAlignment(MaxAlign);
 | |
|         if (AI.getType() != EntryAI->getType())
 | |
|           return new BitCastInst(EntryAI, AI.getType());
 | |
|         return ReplaceInstUsesWith(AI, EntryAI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (AI.getAlignment()) {
 | |
|     // Check to see if this allocation is only modified by a memcpy/memmove from
 | |
|     // a constant global whose alignment is equal to or exceeds that of the
 | |
|     // allocation.  If this is the case, we can change all users to use
 | |
|     // the constant global instead.  This is commonly produced by the CFE by
 | |
|     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
 | |
|     // is only subsequently read.
 | |
|     SmallVector<Instruction *, 4> ToDelete;
 | |
|     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
 | |
|       unsigned SourceAlign = getOrEnforceKnownAlignment(Copy->getSource(),
 | |
|                                                         AI.getAlignment(), TD);
 | |
|       if (AI.getAlignment() <= SourceAlign) {
 | |
|         DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
 | |
|         DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
 | |
|         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
 | |
|           EraseInstFromFunction(*ToDelete[i]);
 | |
|         Constant *TheSrc = cast<Constant>(Copy->getSource());
 | |
|         Instruction *NewI
 | |
|           = ReplaceInstUsesWith(AI, ConstantExpr::getBitCast(TheSrc,
 | |
|                                                              AI.getType()));
 | |
|         EraseInstFromFunction(*Copy);
 | |
|         ++NumGlobalCopies;
 | |
|         return NewI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // At last, use the generic allocation site handler to aggressively remove
 | |
|   // unused allocas.
 | |
|   return visitAllocSite(AI);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
 | |
| static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
 | |
|                                         const DataLayout *TD) {
 | |
|   User *CI = cast<User>(LI.getOperand(0));
 | |
|   Value *CastOp = CI->getOperand(0);
 | |
| 
 | |
|   PointerType *DestTy = cast<PointerType>(CI->getType());
 | |
|   Type *DestPTy = DestTy->getElementType();
 | |
|   if (PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
 | |
| 
 | |
|     // If the address spaces don't match, don't eliminate the cast.
 | |
|     if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
 | |
|       return 0;
 | |
| 
 | |
|     Type *SrcPTy = SrcTy->getElementType();
 | |
| 
 | |
|     if (DestPTy->isIntegerTy() || DestPTy->isPointerTy() ||
 | |
|          DestPTy->isVectorTy()) {
 | |
|       // If the source is an array, the code below will not succeed.  Check to
 | |
|       // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
 | |
|       // constants.
 | |
|       if (ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
 | |
|         if (Constant *CSrc = dyn_cast<Constant>(CastOp))
 | |
|           if (ASrcTy->getNumElements() != 0) {
 | |
|             Type *IdxTy = TD
 | |
|                         ? TD->getIntPtrType(SrcTy)
 | |
|                         : Type::getInt64Ty(SrcTy->getContext());
 | |
|             Value *Idx = Constant::getNullValue(IdxTy);
 | |
|             Value *Idxs[2] = { Idx, Idx };
 | |
|             CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs);
 | |
|             SrcTy = cast<PointerType>(CastOp->getType());
 | |
|             SrcPTy = SrcTy->getElementType();
 | |
|           }
 | |
| 
 | |
|       if (IC.getDataLayout() &&
 | |
|           (SrcPTy->isIntegerTy() || SrcPTy->isPointerTy() ||
 | |
|             SrcPTy->isVectorTy()) &&
 | |
|           // Do not allow turning this into a load of an integer, which is then
 | |
|           // casted to a pointer, this pessimizes pointer analysis a lot.
 | |
|           (SrcPTy->isPointerTy() == LI.getType()->isPointerTy()) &&
 | |
|           IC.getDataLayout()->getTypeSizeInBits(SrcPTy) ==
 | |
|                IC.getDataLayout()->getTypeSizeInBits(DestPTy)) {
 | |
| 
 | |
|         // Okay, we are casting from one integer or pointer type to another of
 | |
|         // the same size.  Instead of casting the pointer before the load, cast
 | |
|         // the result of the loaded value.
 | |
|         LoadInst *NewLoad =
 | |
|           IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
 | |
|         NewLoad->setAlignment(LI.getAlignment());
 | |
|         NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
 | |
|         // Now cast the result of the load.
 | |
|         return new BitCastInst(NewLoad, LI.getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
 | |
|   Value *Op = LI.getOperand(0);
 | |
| 
 | |
|   // Attempt to improve the alignment.
 | |
|   if (TD) {
 | |
|     unsigned KnownAlign =
 | |
|       getOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()),TD);
 | |
|     unsigned LoadAlign = LI.getAlignment();
 | |
|     unsigned EffectiveLoadAlign = LoadAlign != 0 ? LoadAlign :
 | |
|       TD->getABITypeAlignment(LI.getType());
 | |
| 
 | |
|     if (KnownAlign > EffectiveLoadAlign)
 | |
|       LI.setAlignment(KnownAlign);
 | |
|     else if (LoadAlign == 0)
 | |
|       LI.setAlignment(EffectiveLoadAlign);
 | |
|   }
 | |
| 
 | |
|   // load (cast X) --> cast (load X) iff safe.
 | |
|   if (isa<CastInst>(Op))
 | |
|     if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
 | |
|       return Res;
 | |
| 
 | |
|   // None of the following transforms are legal for volatile/atomic loads.
 | |
|   // FIXME: Some of it is okay for atomic loads; needs refactoring.
 | |
|   if (!LI.isSimple()) return 0;
 | |
| 
 | |
|   // Do really simple store-to-load forwarding and load CSE, to catch cases
 | |
|   // where there are several consecutive memory accesses to the same location,
 | |
|   // separated by a few arithmetic operations.
 | |
|   BasicBlock::iterator BBI = &LI;
 | |
|   if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
 | |
|     return ReplaceInstUsesWith(LI, AvailableVal);
 | |
| 
 | |
|   // load(gep null, ...) -> unreachable
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
 | |
|     const Value *GEPI0 = GEPI->getOperand(0);
 | |
|     // TODO: Consider a target hook for valid address spaces for this xform.
 | |
|     if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
 | |
|       // Insert a new store to null instruction before the load to indicate
 | |
|       // that this code is not reachable.  We do this instead of inserting
 | |
|       // an unreachable instruction directly because we cannot modify the
 | |
|       // CFG.
 | |
|       new StoreInst(UndefValue::get(LI.getType()),
 | |
|                     Constant::getNullValue(Op->getType()), &LI);
 | |
|       return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // load null/undef -> unreachable
 | |
|   // TODO: Consider a target hook for valid address spaces for this xform.
 | |
|   if (isa<UndefValue>(Op) ||
 | |
|       (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
 | |
|     // Insert a new store to null instruction before the load to indicate that
 | |
|     // this code is not reachable.  We do this instead of inserting an
 | |
|     // unreachable instruction directly because we cannot modify the CFG.
 | |
|     new StoreInst(UndefValue::get(LI.getType()),
 | |
|                   Constant::getNullValue(Op->getType()), &LI);
 | |
|     return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
 | |
|   }
 | |
| 
 | |
|   // Instcombine load (constantexpr_cast global) -> cast (load global)
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
 | |
|     if (CE->isCast())
 | |
|       if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
 | |
|         return Res;
 | |
| 
 | |
|   if (Op->hasOneUse()) {
 | |
|     // Change select and PHI nodes to select values instead of addresses: this
 | |
|     // helps alias analysis out a lot, allows many others simplifications, and
 | |
|     // exposes redundancy in the code.
 | |
|     //
 | |
|     // Note that we cannot do the transformation unless we know that the
 | |
|     // introduced loads cannot trap!  Something like this is valid as long as
 | |
|     // the condition is always false: load (select bool %C, int* null, int* %G),
 | |
|     // but it would not be valid if we transformed it to load from null
 | |
|     // unconditionally.
 | |
|     //
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
 | |
|       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
 | |
|       unsigned Align = LI.getAlignment();
 | |
|       if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) &&
 | |
|           isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) {
 | |
|         LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
 | |
|                                            SI->getOperand(1)->getName()+".val");
 | |
|         LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
 | |
|                                            SI->getOperand(2)->getName()+".val");
 | |
|         V1->setAlignment(Align);
 | |
|         V2->setAlignment(Align);
 | |
|         return SelectInst::Create(SI->getCondition(), V1, V2);
 | |
|       }
 | |
| 
 | |
|       // load (select (cond, null, P)) -> load P
 | |
|       if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
 | |
|         if (C->isNullValue()) {
 | |
|           LI.setOperand(0, SI->getOperand(2));
 | |
|           return &LI;
 | |
|         }
 | |
| 
 | |
|       // load (select (cond, P, null)) -> load P
 | |
|       if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
 | |
|         if (C->isNullValue()) {
 | |
|           LI.setOperand(0, SI->getOperand(1));
 | |
|           return &LI;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
 | |
| /// when possible.  This makes it generally easy to do alias analysis and/or
 | |
| /// SROA/mem2reg of the memory object.
 | |
| static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
 | |
|   User *CI = cast<User>(SI.getOperand(1));
 | |
|   Value *CastOp = CI->getOperand(0);
 | |
| 
 | |
|   Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
 | |
|   PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
 | |
|   if (SrcTy == 0) return 0;
 | |
| 
 | |
|   Type *SrcPTy = SrcTy->getElementType();
 | |
| 
 | |
|   if (!DestPTy->isIntegerTy() && !DestPTy->isPointerTy())
 | |
|     return 0;
 | |
| 
 | |
|   /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
 | |
|   /// to its first element.  This allows us to handle things like:
 | |
|   ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
 | |
|   /// on 32-bit hosts.
 | |
|   SmallVector<Value*, 4> NewGEPIndices;
 | |
| 
 | |
|   // If the source is an array, the code below will not succeed.  Check to
 | |
|   // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
 | |
|   // constants.
 | |
|   if (SrcPTy->isArrayTy() || SrcPTy->isStructTy()) {
 | |
|     // Index through pointer.
 | |
|     Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
 | |
|     NewGEPIndices.push_back(Zero);
 | |
| 
 | |
|     while (1) {
 | |
|       if (StructType *STy = dyn_cast<StructType>(SrcPTy)) {
 | |
|         if (!STy->getNumElements()) /* Struct can be empty {} */
 | |
|           break;
 | |
|         NewGEPIndices.push_back(Zero);
 | |
|         SrcPTy = STy->getElementType(0);
 | |
|       } else if (ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
 | |
|         NewGEPIndices.push_back(Zero);
 | |
|         SrcPTy = ATy->getElementType();
 | |
|       } else {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
 | |
|   }
 | |
| 
 | |
|   if (!SrcPTy->isIntegerTy() && !SrcPTy->isPointerTy())
 | |
|     return 0;
 | |
| 
 | |
|   // If the pointers point into different address spaces or if they point to
 | |
|   // values with different sizes, we can't do the transformation.
 | |
|   if (!IC.getDataLayout() ||
 | |
|       SrcTy->getAddressSpace() !=
 | |
|         cast<PointerType>(CI->getType())->getAddressSpace() ||
 | |
|       IC.getDataLayout()->getTypeSizeInBits(SrcPTy) !=
 | |
|       IC.getDataLayout()->getTypeSizeInBits(DestPTy))
 | |
|     return 0;
 | |
| 
 | |
|   // Okay, we are casting from one integer or pointer type to another of
 | |
|   // the same size.  Instead of casting the pointer before
 | |
|   // the store, cast the value to be stored.
 | |
|   Value *NewCast;
 | |
|   Value *SIOp0 = SI.getOperand(0);
 | |
|   Instruction::CastOps opcode = Instruction::BitCast;
 | |
|   Type* CastSrcTy = SIOp0->getType();
 | |
|   Type* CastDstTy = SrcPTy;
 | |
|   if (CastDstTy->isPointerTy()) {
 | |
|     if (CastSrcTy->isIntegerTy())
 | |
|       opcode = Instruction::IntToPtr;
 | |
|   } else if (CastDstTy->isIntegerTy()) {
 | |
|     if (SIOp0->getType()->isPointerTy())
 | |
|       opcode = Instruction::PtrToInt;
 | |
|   }
 | |
| 
 | |
|   // SIOp0 is a pointer to aggregate and this is a store to the first field,
 | |
|   // emit a GEP to index into its first field.
 | |
|   if (!NewGEPIndices.empty())
 | |
|     CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices);
 | |
| 
 | |
|   NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
 | |
|                                    SIOp0->getName()+".c");
 | |
|   SI.setOperand(0, NewCast);
 | |
|   SI.setOperand(1, CastOp);
 | |
|   return &SI;
 | |
| }
 | |
| 
 | |
| /// equivalentAddressValues - Test if A and B will obviously have the same
 | |
| /// value. This includes recognizing that %t0 and %t1 will have the same
 | |
| /// value in code like this:
 | |
| ///   %t0 = getelementptr \@a, 0, 3
 | |
| ///   store i32 0, i32* %t0
 | |
| ///   %t1 = getelementptr \@a, 0, 3
 | |
| ///   %t2 = load i32* %t1
 | |
| ///
 | |
| static bool equivalentAddressValues(Value *A, Value *B) {
 | |
|   // Test if the values are trivially equivalent.
 | |
|   if (A == B) return true;
 | |
| 
 | |
|   // Test if the values come form identical arithmetic instructions.
 | |
|   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
 | |
|   // its only used to compare two uses within the same basic block, which
 | |
|   // means that they'll always either have the same value or one of them
 | |
|   // will have an undefined value.
 | |
|   if (isa<BinaryOperator>(A) ||
 | |
|       isa<CastInst>(A) ||
 | |
|       isa<PHINode>(A) ||
 | |
|       isa<GetElementPtrInst>(A))
 | |
|     if (Instruction *BI = dyn_cast<Instruction>(B))
 | |
|       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
 | |
|         return true;
 | |
| 
 | |
|   // Otherwise they may not be equivalent.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
 | |
|   Value *Val = SI.getOperand(0);
 | |
|   Value *Ptr = SI.getOperand(1);
 | |
| 
 | |
|   // Attempt to improve the alignment.
 | |
|   if (TD) {
 | |
|     unsigned KnownAlign =
 | |
|       getOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()),
 | |
|                                  TD);
 | |
|     unsigned StoreAlign = SI.getAlignment();
 | |
|     unsigned EffectiveStoreAlign = StoreAlign != 0 ? StoreAlign :
 | |
|       TD->getABITypeAlignment(Val->getType());
 | |
| 
 | |
|     if (KnownAlign > EffectiveStoreAlign)
 | |
|       SI.setAlignment(KnownAlign);
 | |
|     else if (StoreAlign == 0)
 | |
|       SI.setAlignment(EffectiveStoreAlign);
 | |
|   }
 | |
| 
 | |
|   // Don't hack volatile/atomic stores.
 | |
|   // FIXME: Some bits are legal for atomic stores; needs refactoring.
 | |
|   if (!SI.isSimple()) return 0;
 | |
| 
 | |
|   // If the RHS is an alloca with a single use, zapify the store, making the
 | |
|   // alloca dead.
 | |
|   if (Ptr->hasOneUse()) {
 | |
|     if (isa<AllocaInst>(Ptr))
 | |
|       return EraseInstFromFunction(SI);
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
 | |
|       if (isa<AllocaInst>(GEP->getOperand(0))) {
 | |
|         if (GEP->getOperand(0)->hasOneUse())
 | |
|           return EraseInstFromFunction(SI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Do really simple DSE, to catch cases where there are several consecutive
 | |
|   // stores to the same location, separated by a few arithmetic operations. This
 | |
|   // situation often occurs with bitfield accesses.
 | |
|   BasicBlock::iterator BBI = &SI;
 | |
|   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
 | |
|        --ScanInsts) {
 | |
|     --BBI;
 | |
|     // Don't count debug info directives, lest they affect codegen,
 | |
|     // and we skip pointer-to-pointer bitcasts, which are NOPs.
 | |
|     if (isa<DbgInfoIntrinsic>(BBI) ||
 | |
|         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
 | |
|       ScanInsts++;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
 | |
|       // Prev store isn't volatile, and stores to the same location?
 | |
|       if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1),
 | |
|                                                         SI.getOperand(1))) {
 | |
|         ++NumDeadStore;
 | |
|         ++BBI;
 | |
|         EraseInstFromFunction(*PrevSI);
 | |
|         continue;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If this is a load, we have to stop.  However, if the loaded value is from
 | |
|     // the pointer we're loading and is producing the pointer we're storing,
 | |
|     // then *this* store is dead (X = load P; store X -> P).
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | |
|       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
 | |
|           LI->isSimple())
 | |
|         return EraseInstFromFunction(SI);
 | |
| 
 | |
|       // Otherwise, this is a load from some other location.  Stores before it
 | |
|       // may not be dead.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Don't skip over loads or things that can modify memory.
 | |
|     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // store X, null    -> turns into 'unreachable' in SimplifyCFG
 | |
|   if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
 | |
|     if (!isa<UndefValue>(Val)) {
 | |
|       SI.setOperand(0, UndefValue::get(Val->getType()));
 | |
|       if (Instruction *U = dyn_cast<Instruction>(Val))
 | |
|         Worklist.Add(U);  // Dropped a use.
 | |
|     }
 | |
|     return 0;  // Do not modify these!
 | |
|   }
 | |
| 
 | |
|   // store undef, Ptr -> noop
 | |
|   if (isa<UndefValue>(Val))
 | |
|     return EraseInstFromFunction(SI);
 | |
| 
 | |
|   // If the pointer destination is a cast, see if we can fold the cast into the
 | |
|   // source instead.
 | |
|   if (isa<CastInst>(Ptr))
 | |
|     if (Instruction *Res = InstCombineStoreToCast(*this, SI))
 | |
|       return Res;
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
 | |
|     if (CE->isCast())
 | |
|       if (Instruction *Res = InstCombineStoreToCast(*this, SI))
 | |
|         return Res;
 | |
| 
 | |
| 
 | |
|   // If this store is the last instruction in the basic block (possibly
 | |
|   // excepting debug info instructions), and if the block ends with an
 | |
|   // unconditional branch, try to move it to the successor block.
 | |
|   BBI = &SI;
 | |
|   do {
 | |
|     ++BBI;
 | |
|   } while (isa<DbgInfoIntrinsic>(BBI) ||
 | |
|            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
 | |
|     if (BI->isUnconditional())
 | |
|       if (SimplifyStoreAtEndOfBlock(SI))
 | |
|         return 0;  // xform done!
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SimplifyStoreAtEndOfBlock - Turn things like:
 | |
| ///   if () { *P = v1; } else { *P = v2 }
 | |
| /// into a phi node with a store in the successor.
 | |
| ///
 | |
| /// Simplify things like:
 | |
| ///   *P = v1; if () { *P = v2; }
 | |
| /// into a phi node with a store in the successor.
 | |
| ///
 | |
| bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
 | |
|   BasicBlock *StoreBB = SI.getParent();
 | |
| 
 | |
|   // Check to see if the successor block has exactly two incoming edges.  If
 | |
|   // so, see if the other predecessor contains a store to the same location.
 | |
|   // if so, insert a PHI node (if needed) and move the stores down.
 | |
|   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
 | |
| 
 | |
|   // Determine whether Dest has exactly two predecessors and, if so, compute
 | |
|   // the other predecessor.
 | |
|   pred_iterator PI = pred_begin(DestBB);
 | |
|   BasicBlock *P = *PI;
 | |
|   BasicBlock *OtherBB = 0;
 | |
| 
 | |
|   if (P != StoreBB)
 | |
|     OtherBB = P;
 | |
| 
 | |
|   if (++PI == pred_end(DestBB))
 | |
|     return false;
 | |
| 
 | |
|   P = *PI;
 | |
|   if (P != StoreBB) {
 | |
|     if (OtherBB)
 | |
|       return false;
 | |
|     OtherBB = P;
 | |
|   }
 | |
|   if (++PI != pred_end(DestBB))
 | |
|     return false;
 | |
| 
 | |
|   // Bail out if all the relevant blocks aren't distinct (this can happen,
 | |
|   // for example, if SI is in an infinite loop)
 | |
|   if (StoreBB == DestBB || OtherBB == DestBB)
 | |
|     return false;
 | |
| 
 | |
|   // Verify that the other block ends in a branch and is not otherwise empty.
 | |
|   BasicBlock::iterator BBI = OtherBB->getTerminator();
 | |
|   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
 | |
|   if (!OtherBr || BBI == OtherBB->begin())
 | |
|     return false;
 | |
| 
 | |
|   // If the other block ends in an unconditional branch, check for the 'if then
 | |
|   // else' case.  there is an instruction before the branch.
 | |
|   StoreInst *OtherStore = 0;
 | |
|   if (OtherBr->isUnconditional()) {
 | |
|     --BBI;
 | |
|     // Skip over debugging info.
 | |
|     while (isa<DbgInfoIntrinsic>(BBI) ||
 | |
|            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
 | |
|       if (BBI==OtherBB->begin())
 | |
|         return false;
 | |
|       --BBI;
 | |
|     }
 | |
|     // If this isn't a store, isn't a store to the same location, or is not the
 | |
|     // right kind of store, bail out.
 | |
|     OtherStore = dyn_cast<StoreInst>(BBI);
 | |
|     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
 | |
|         !SI.isSameOperationAs(OtherStore))
 | |
|       return false;
 | |
|   } else {
 | |
|     // Otherwise, the other block ended with a conditional branch. If one of the
 | |
|     // destinations is StoreBB, then we have the if/then case.
 | |
|     if (OtherBr->getSuccessor(0) != StoreBB &&
 | |
|         OtherBr->getSuccessor(1) != StoreBB)
 | |
|       return false;
 | |
| 
 | |
|     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
 | |
|     // if/then triangle.  See if there is a store to the same ptr as SI that
 | |
|     // lives in OtherBB.
 | |
|     for (;; --BBI) {
 | |
|       // Check to see if we find the matching store.
 | |
|       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
 | |
|         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
 | |
|             !SI.isSameOperationAs(OtherStore))
 | |
|           return false;
 | |
|         break;
 | |
|       }
 | |
|       // If we find something that may be using or overwriting the stored
 | |
|       // value, or if we run out of instructions, we can't do the xform.
 | |
|       if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
 | |
|           BBI == OtherBB->begin())
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // In order to eliminate the store in OtherBr, we have to
 | |
|     // make sure nothing reads or overwrites the stored value in
 | |
|     // StoreBB.
 | |
|     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
 | |
|       // FIXME: This should really be AA driven.
 | |
|       if (I->mayReadFromMemory() || I->mayWriteToMemory())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Insert a PHI node now if we need it.
 | |
|   Value *MergedVal = OtherStore->getOperand(0);
 | |
|   if (MergedVal != SI.getOperand(0)) {
 | |
|     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
 | |
|     PN->addIncoming(SI.getOperand(0), SI.getParent());
 | |
|     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
 | |
|     MergedVal = InsertNewInstBefore(PN, DestBB->front());
 | |
|   }
 | |
| 
 | |
|   // Advance to a place where it is safe to insert the new store and
 | |
|   // insert it.
 | |
|   BBI = DestBB->getFirstInsertionPt();
 | |
|   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
 | |
|                                    SI.isVolatile(),
 | |
|                                    SI.getAlignment(),
 | |
|                                    SI.getOrdering(),
 | |
|                                    SI.getSynchScope());
 | |
|   InsertNewInstBefore(NewSI, *BBI);
 | |
|   NewSI->setDebugLoc(OtherStore->getDebugLoc());
 | |
| 
 | |
|   // If the two stores had the same TBAA tag, preserve it.
 | |
|   if (MDNode *TBAATag = SI.getMetadata(LLVMContext::MD_tbaa))
 | |
|     if ((TBAATag = MDNode::getMostGenericTBAA(TBAATag,
 | |
|                                OtherStore->getMetadata(LLVMContext::MD_tbaa))))
 | |
|       NewSI->setMetadata(LLVMContext::MD_tbaa, TBAATag);
 | |
| 
 | |
| 
 | |
|   // Nuke the old stores.
 | |
|   EraseInstFromFunction(SI);
 | |
|   EraseInstFromFunction(*OtherStore);
 | |
|   return true;
 | |
| }
 |