mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83849 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			391 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			391 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 
 | 
						|
                      "http://www.w3.org/TR/html4/strict.dtd">
 | 
						|
<html>
 | 
						|
<head>
 | 
						|
 <title>LLVM Link Time Optimization: Design and Implementation</title>
 | 
						|
  <link rel="stylesheet" href="llvm.css" type="text/css">
 | 
						|
</head>
 | 
						|
 | 
						|
<div class="doc_title">
 | 
						|
  LLVM Link Time Optimization: Design and Implementation
 | 
						|
</div>
 | 
						|
 | 
						|
<ul>
 | 
						|
  <li><a href="#desc">Description</a></li>
 | 
						|
  <li><a href="#design">Design Philosophy</a>
 | 
						|
  <ul>
 | 
						|
    <li><a href="#example1">Example of link time optimization</a></li>
 | 
						|
    <li><a href="#alternative_approaches">Alternative Approaches</a></li>
 | 
						|
  </ul></li>
 | 
						|
  <li><a href="#multiphase">Multi-phase communication between LLVM and linker</a>
 | 
						|
  <ul>
 | 
						|
    <li><a href="#phase1">Phase 1 : Read LLVM Bytecode Files</a></li>
 | 
						|
    <li><a href="#phase2">Phase 2 : Symbol Resolution</a></li>
 | 
						|
    <li><a href="#phase3">Phase 3 : Optimize Bitcode Files</a></li>
 | 
						|
    <li><a href="#phase4">Phase 4 : Symbol Resolution after optimization</a></li>
 | 
						|
  </ul></li>
 | 
						|
  <li><a href="#lto">libLTO</a>
 | 
						|
  <ul>
 | 
						|
    <li><a href="#lto_module_t">lto_module_t</a></li>
 | 
						|
    <li><a href="#lto_code_gen_t">lto_code_gen_t</a></li>
 | 
						|
  </ul>
 | 
						|
</ul>
 | 
						|
 | 
						|
<div class="doc_author">
 | 
						|
<p>Written by Devang Patel and Nick Kledzik</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section">
 | 
						|
<a name="desc">Description</a>
 | 
						|
</div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
<p>
 | 
						|
LLVM features powerful intermodular optimizations which can be used at link 
 | 
						|
time.  Link Time Optimization (LTO) is another name for intermodular optimization 
 | 
						|
when performed during the link stage. This document describes the interface 
 | 
						|
and design between the LTO optimizer and the linker.</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section">
 | 
						|
<a name="design">Design Philosophy</a>
 | 
						|
</div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
<p>
 | 
						|
The LLVM Link Time Optimizer provides complete transparency, while doing 
 | 
						|
intermodular optimization, in the compiler tool chain. Its main goal is to let 
 | 
						|
the developer take advantage of intermodular optimizations without making any 
 | 
						|
significant changes to the developer's makefiles or build system. This is 
 | 
						|
achieved through tight integration with the linker. In this model, the linker 
 | 
						|
treates LLVM bitcode files like native object files and allows mixing and 
 | 
						|
matching among them. The linker uses <a href="#lto">libLTO</a>, a shared
 | 
						|
object, to handle LLVM bitcode files. This tight integration between 
 | 
						|
the linker and LLVM optimizer helps to do optimizations that are not possible 
 | 
						|
in other models. The linker input allows the optimizer to avoid relying on 
 | 
						|
conservative escape analysis.
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsection">
 | 
						|
  <a name="example1">Example of link time optimization</a>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
  <p>The following example illustrates the advantages of LTO's integrated
 | 
						|
  approach and clean interface. This example requires a system linker which
 | 
						|
  supports LTO through the interface described in this document.  Here,
 | 
						|
  llvm-gcc transparently invokes system linker. </p>
 | 
						|
  <ul>
 | 
						|
    <li> Input source file <tt>a.c</tt> is compiled into LLVM bitcode form.
 | 
						|
    <li> Input source file <tt>main.c</tt> is compiled into native object code.
 | 
						|
  </ul>
 | 
						|
<pre class="doc_code">
 | 
						|
--- a.h ---
 | 
						|
extern int foo1(void);
 | 
						|
extern void foo2(void);
 | 
						|
extern void foo4(void);
 | 
						|
--- a.c ---
 | 
						|
#include "a.h"
 | 
						|
 | 
						|
static signed int i = 0;
 | 
						|
 | 
						|
void foo2(void) {
 | 
						|
 i = -1;
 | 
						|
}
 | 
						|
 | 
						|
static int foo3() {
 | 
						|
foo4();
 | 
						|
return 10;
 | 
						|
}
 | 
						|
 | 
						|
int foo1(void) {
 | 
						|
int data = 0;
 | 
						|
 | 
						|
if (i < 0) { data = foo3(); }
 | 
						|
 | 
						|
data = data + 42;
 | 
						|
return data;
 | 
						|
}
 | 
						|
 | 
						|
--- main.c ---
 | 
						|
#include <stdio.h>
 | 
						|
#include "a.h"
 | 
						|
 | 
						|
void foo4(void) {
 | 
						|
 printf ("Hi\n");
 | 
						|
}
 | 
						|
 | 
						|
int main() {
 | 
						|
 return foo1();
 | 
						|
}
 | 
						|
 | 
						|
--- command lines ---
 | 
						|
$ llvm-gcc --emit-llvm -c a.c -o a.o  # <-- a.o is LLVM bitcode file
 | 
						|
$ llvm-gcc -c main.c -o main.o # <-- main.o is native object file
 | 
						|
$ llvm-gcc a.o main.o -o main # <-- standard link command without any modifications
 | 
						|
</pre>
 | 
						|
  <p>In this example, the linker recognizes that <tt>foo2()</tt> is an 
 | 
						|
  externally visible symbol defined in LLVM bitcode file. The linker completes 
 | 
						|
  its usual symbol resolution 
 | 
						|
  pass and finds that <tt>foo2()</tt> is not used anywhere. This information 
 | 
						|
  is used by the LLVM optimizer and it removes <tt>foo2()</tt>. As soon as 
 | 
						|
  <tt>foo2()</tt> is removed, the optimizer recognizes that condition 
 | 
						|
  <tt>i < 0</tt> is always false, which means <tt>foo3()</tt> is never 
 | 
						|
  used. Hence, the optimizer removes <tt>foo3()</tt>, also.  And this in turn, 
 | 
						|
  enables linker to remove <tt>foo4()</tt>.  This example illustrates the 
 | 
						|
  advantage of tight integration with the linker. Here, the optimizer can not 
 | 
						|
  remove <tt>foo3()</tt> without the linker's input.
 | 
						|
  </p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsection">
 | 
						|
  <a name="alternative_approaches">Alternative Approaches</a>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
  <dl>
 | 
						|
    <dt><b>Compiler driver invokes link time optimizer separately.</b></dt>
 | 
						|
    <dd>In this model the link time optimizer is not able to take advantage of 
 | 
						|
    information collected during the linker's normal symbol resolution phase. 
 | 
						|
    In the above example, the optimizer can not remove <tt>foo2()</tt> without 
 | 
						|
    the linker's input because it is externally visible. This in turn prohibits
 | 
						|
    the optimizer from removing <tt>foo3()</tt>.</dd>
 | 
						|
    <dt><b>Use separate tool to collect symbol information from all object
 | 
						|
    files.</b></dt>
 | 
						|
    <dd>In this model, a new, separate, tool or library replicates the linker's
 | 
						|
    capability to collect information for link time optimization. Not only is
 | 
						|
    this code duplication difficult to justify, but it also has several other 
 | 
						|
    disadvantages.  For example, the linking semantics and the features 
 | 
						|
    provided by the linker on various platform are not unique. This means, 
 | 
						|
    this new tool needs to support all such features and platforms in one 
 | 
						|
    super tool or a separate tool per platform is required. This increases 
 | 
						|
    maintenance cost for link time optimizer significantly, which is not 
 | 
						|
    necessary. This approach also requires staying synchronized with linker 
 | 
						|
    developements on various platforms, which is not the main focus of the link 
 | 
						|
    time optimizer. Finally, this approach increases end user's build time due 
 | 
						|
    to the duplication of work done by this separate tool and the linker itself.
 | 
						|
    </dd>
 | 
						|
  </dl>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section">
 | 
						|
  <a name="multiphase">Multi-phase communication between libLTO and linker</a>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
  <p>The linker collects information about symbol defininitions and uses in 
 | 
						|
  various link objects which is more accurate than any information collected 
 | 
						|
  by other tools during typical build cycles.  The linker collects this 
 | 
						|
  information by looking at the definitions and uses of symbols in native .o 
 | 
						|
  files and using symbol visibility information. The linker also uses 
 | 
						|
  user-supplied information, such as a list of exported symbols. LLVM 
 | 
						|
  optimizer collects control flow information, data flow information and knows 
 | 
						|
  much more about program structure from the optimizer's point of view. 
 | 
						|
  Our goal is to take advantage of tight integration between the linker and 
 | 
						|
  the optimizer by sharing this information during various linking phases.
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsection">
 | 
						|
  <a name="phase1">Phase 1 : Read LLVM Bitcode Files</a>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
  <p>The linker first reads all object files in natural order and collects 
 | 
						|
  symbol information. This includes native object files as well as LLVM bitcode 
 | 
						|
  files.  To minimize the cost to the linker in the case that all .o files
 | 
						|
  are native object files, the linker only calls <tt>lto_module_create()</tt> 
 | 
						|
  when a supplied object file is found to not be a native object file.  If
 | 
						|
  <tt>lto_module_create()</tt> returns that the file is an LLVM bitcode file, 
 | 
						|
  the linker
 | 
						|
  then iterates over the module using <tt>lto_module_get_symbol_name()</tt> and
 | 
						|
  <tt>lto_module_get_symbol_attribute()</tt> to get all symbols defined and 
 | 
						|
  referenced.
 | 
						|
  This information is added to the linker's global symbol table.
 | 
						|
</p>
 | 
						|
  <p>The lto* functions are all implemented in a shared object libLTO.  This
 | 
						|
  allows the LLVM LTO code to be updated independently of the linker tool.
 | 
						|
  On platforms that support it, the shared object is lazily loaded. 
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsection">
 | 
						|
  <a name="phase2">Phase 2 : Symbol Resolution</a>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
  <p>In this stage, the linker resolves symbols using global symbol table. 
 | 
						|
  It may report undefined symbol errors, read archive members, replace 
 | 
						|
  weak symbols, etc.  The linker is able to do this seamlessly even though it 
 | 
						|
  does not know the exact content of input LLVM bitcode files.  If dead code 
 | 
						|
  stripping is enabled then the linker collects the list of live symbols.
 | 
						|
  </p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsection">
 | 
						|
  <a name="phase3">Phase 3 : Optimize Bitcode Files</a>
 | 
						|
</div>
 | 
						|
<div class="doc_text">
 | 
						|
  <p>After symbol resolution, the linker tells the LTO shared object which
 | 
						|
  symbols are needed by native object files.  In the example above, the linker 
 | 
						|
  reports that only <tt>foo1()</tt> is used by native object files using 
 | 
						|
  <tt>lto_codegen_add_must_preserve_symbol()</tt>.  Next the linker invokes
 | 
						|
  the LLVM optimizer and code generators using <tt>lto_codegen_compile()</tt>
 | 
						|
  which returns a native object file creating by merging the LLVM bitcode files 
 | 
						|
  and applying various optimization passes.  
 | 
						|
</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsection">
 | 
						|
  <a name="phase4">Phase 4 : Symbol Resolution after optimization</a>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
  <p>In this phase, the linker reads optimized a native object file and 
 | 
						|
  updates the internal global symbol table to reflect any changes. The linker 
 | 
						|
  also collects information about any changes in use of external symbols by 
 | 
						|
  LLVM bitcode files. In the examle above, the linker notes that 
 | 
						|
  <tt>foo4()</tt> is not used any more. If dead code stripping is enabled then 
 | 
						|
  the linker refreshes the live symbol information appropriately and performs 
 | 
						|
  dead code stripping.</p>
 | 
						|
  <p>After this phase, the linker continues linking as if it never saw LLVM 
 | 
						|
  bitcode files.</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section">
 | 
						|
<a name="lto">libLTO</a>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
  <p><tt>libLTO</tt> is a shared object that is part of the LLVM tools, and 
 | 
						|
  is intended for use by a linker. <tt>libLTO</tt> provides an abstract C 
 | 
						|
  interface to use the LLVM interprocedural optimizer without exposing details 
 | 
						|
  of LLVM's internals. The intention is to keep the interface as stable as 
 | 
						|
  possible even when the LLVM optimizer continues to evolve. It should even
 | 
						|
  be possible for a completely different compilation technology to provide
 | 
						|
  a different libLTO that works with their object files and the standard
 | 
						|
  linker tool.</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsection">
 | 
						|
  <a name="lto_module_t">lto_module_t</a>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>A non-native object file is handled via an <tt>lto_module_t</tt>.  
 | 
						|
The following functions allow the linker to check if a file (on disk
 | 
						|
or in a memory buffer) is a file which libLTO can process:</p>
 | 
						|
 | 
						|
<pre class="doc_code">
 | 
						|
lto_module_is_object_file(const char*)
 | 
						|
lto_module_is_object_file_for_target(const char*, const char*)
 | 
						|
lto_module_is_object_file_in_memory(const void*, size_t)
 | 
						|
lto_module_is_object_file_in_memory_for_target(const void*, size_t, const char*)
 | 
						|
</pre>
 | 
						|
 | 
						|
<p>If the object file can be processed by libLTO, the linker creates a
 | 
						|
<tt>lto_module_t</tt> by using one of</p>
 | 
						|
 | 
						|
<pre class="doc_code">
 | 
						|
lto_module_create(const char*)
 | 
						|
lto_module_create_from_memory(const void*, size_t)
 | 
						|
</pre>
 | 
						|
 | 
						|
<p>and when done, the handle is released via</p>
 | 
						|
 | 
						|
<pre class="doc_code">
 | 
						|
lto_module_dispose(lto_module_t)
 | 
						|
</pre>
 | 
						|
 | 
						|
<p>The linker can introspect the non-native object file by getting the number of
 | 
						|
symbols and getting the name and attributes of each symbol via:</p>
 | 
						|
 | 
						|
<pre class="doc_code">
 | 
						|
lto_module_get_num_symbols(lto_module_t)
 | 
						|
lto_module_get_symbol_name(lto_module_t, unsigned int)
 | 
						|
lto_module_get_symbol_attribute(lto_module_t, unsigned int)
 | 
						|
</pre>
 | 
						|
 | 
						|
<p>The attributes of a symbol include the alignment, visibility, and kind.</p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsection">
 | 
						|
  <a name="lto_code_gen_t">lto_code_gen_t</a>
 | 
						|
</div>
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>Once the linker has loaded each non-native object files into an
 | 
						|
<tt>lto_module_t</tt>, it can request libLTO to process them all and
 | 
						|
generate a native object file.  This is done in a couple of steps.
 | 
						|
First, a code generator is created with:</p>
 | 
						|
 | 
						|
<pre class="doc_code">lto_codegen_create()</pre>
 | 
						|
 | 
						|
<p>Then, each non-native object file is added to the code generator with:</p>
 | 
						|
 | 
						|
<pre class="doc_code">
 | 
						|
lto_codegen_add_module(lto_code_gen_t, lto_module_t)
 | 
						|
</pre>
 | 
						|
 | 
						|
<p>The linker then has the option of setting some codegen options.  Whether or
 | 
						|
not to generate DWARF debug info is set with:</p>
 | 
						|
  
 | 
						|
<pre class="doc_code">lto_codegen_set_debug_model(lto_code_gen_t)</pre>
 | 
						|
 | 
						|
<p>Which kind of position independence is set with:</p>
 | 
						|
 | 
						|
<pre class="doc_code">lto_codegen_set_pic_model(lto_code_gen_t) </pre>
 | 
						|
  
 | 
						|
<p>And each symbol that is referenced by a native object file or otherwise must
 | 
						|
not be optimized away is set with:</p>
 | 
						|
 | 
						|
<pre class="doc_code">
 | 
						|
lto_codegen_add_must_preserve_symbol(lto_code_gen_t, const char*)
 | 
						|
</pre>
 | 
						|
 | 
						|
<p>After all these settings are done, the linker requests that a native object
 | 
						|
file be created from the modules with the settings using:</p>
 | 
						|
 | 
						|
<pre class="doc_code">lto_codegen_compile(lto_code_gen_t, size*)</pre>
 | 
						|
 | 
						|
<p>which returns a pointer to a buffer containing the generated native
 | 
						|
object file.  The linker then parses that and links it with the rest 
 | 
						|
of the native object files.</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<hr>
 | 
						|
<address>
 | 
						|
  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | 
						|
  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
 | 
						|
  <a href="http://validator.w3.org/check/referer"><img
 | 
						|
  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
 | 
						|
 | 
						|
  Devang Patel and Nick Kledzik<br>
 | 
						|
  <a href="http://llvm.org">LLVM Compiler Infrastructure</a><br>
 | 
						|
  Last modified: $Date$
 | 
						|
</address>
 | 
						|
 | 
						|
</body>
 | 
						|
</html>
 | 
						|
 |