mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	function. They don't appear to be used, and are inconsistent with handling of other physreg intervals (i.e. intervals that are not live-in) where ranges are not inserted for aliases. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148986 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			948 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			948 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the LiveInterval analysis pass which is used
 | 
						|
// by the Linear Scan Register allocator. This pass linearizes the
 | 
						|
// basic blocks of the function in DFS order and uses the
 | 
						|
// LiveVariables pass to conservatively compute live intervals for
 | 
						|
// each virtual and physical register.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "VirtRegMap.h"
 | 
						|
#include "llvm/Value.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/CalcSpillWeights.h"
 | 
						|
#include "llvm/CodeGen/LiveVariables.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/ProcessImplicitDefs.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <limits>
 | 
						|
#include <cmath>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Hidden options for help debugging.
 | 
						|
static cl::opt<bool> DisableReMat("disable-rematerialization",
 | 
						|
                                  cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
STATISTIC(numIntervals , "Number of original intervals");
 | 
						|
 | 
						|
char LiveIntervals::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
 | 
						|
                "Live Interval Analysis", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(PHIElimination)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TwoAddressInstructionPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ProcessImplicitDefs)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
 | 
						|
                "Live Interval Analysis", false, false)
 | 
						|
 | 
						|
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addRequired<AliasAnalysis>();
 | 
						|
  AU.addPreserved<AliasAnalysis>();
 | 
						|
  AU.addRequired<LiveVariables>();
 | 
						|
  AU.addPreserved<LiveVariables>();
 | 
						|
  AU.addRequired<MachineLoopInfo>();
 | 
						|
  AU.addPreserved<MachineLoopInfo>();
 | 
						|
  AU.addPreservedID(MachineDominatorsID);
 | 
						|
 | 
						|
  if (!StrongPHIElim) {
 | 
						|
    AU.addPreservedID(PHIEliminationID);
 | 
						|
    AU.addRequiredID(PHIEliminationID);
 | 
						|
  }
 | 
						|
 | 
						|
  AU.addRequiredID(TwoAddressInstructionPassID);
 | 
						|
  AU.addPreserved<ProcessImplicitDefs>();
 | 
						|
  AU.addRequired<ProcessImplicitDefs>();
 | 
						|
  AU.addPreserved<SlotIndexes>();
 | 
						|
  AU.addRequiredTransitive<SlotIndexes>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::releaseMemory() {
 | 
						|
  // Free the live intervals themselves.
 | 
						|
  for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
 | 
						|
       E = r2iMap_.end(); I != E; ++I)
 | 
						|
    delete I->second;
 | 
						|
 | 
						|
  r2iMap_.clear();
 | 
						|
 | 
						|
  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
 | 
						|
  VNInfoAllocator.Reset();
 | 
						|
  while (!CloneMIs.empty()) {
 | 
						|
    MachineInstr *MI = CloneMIs.back();
 | 
						|
    CloneMIs.pop_back();
 | 
						|
    mf_->DeleteMachineInstr(MI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// runOnMachineFunction - Register allocate the whole function
 | 
						|
///
 | 
						|
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
 | 
						|
  mf_ = &fn;
 | 
						|
  mri_ = &mf_->getRegInfo();
 | 
						|
  tm_ = &fn.getTarget();
 | 
						|
  tri_ = tm_->getRegisterInfo();
 | 
						|
  tii_ = tm_->getInstrInfo();
 | 
						|
  aa_ = &getAnalysis<AliasAnalysis>();
 | 
						|
  lv_ = &getAnalysis<LiveVariables>();
 | 
						|
  indexes_ = &getAnalysis<SlotIndexes>();
 | 
						|
  allocatableRegs_ = tri_->getAllocatableSet(fn);
 | 
						|
 | 
						|
  computeIntervals();
 | 
						|
 | 
						|
  numIntervals += getNumIntervals();
 | 
						|
 | 
						|
  DEBUG(dump());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// print - Implement the dump method.
 | 
						|
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
 | 
						|
  OS << "********** INTERVALS **********\n";
 | 
						|
  for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    I->second->print(OS, tri_);
 | 
						|
    OS << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  printInstrs(OS);
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::printInstrs(raw_ostream &OS) const {
 | 
						|
  OS << "********** MACHINEINSTRS **********\n";
 | 
						|
  mf_->print(OS, indexes_);
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::dumpInstrs() const {
 | 
						|
  printInstrs(dbgs());
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
 | 
						|
  unsigned Reg = MI.getOperand(MOIdx).getReg();
 | 
						|
  for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
 | 
						|
    const MachineOperand &MO = MI.getOperand(i);
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
    if (MO.getReg() == Reg && MO.isDef()) {
 | 
						|
      assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
 | 
						|
             MI.getOperand(MOIdx).getSubReg() &&
 | 
						|
             (MO.getSubReg() || MO.isImplicit()));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isPartialRedef - Return true if the specified def at the specific index is
 | 
						|
/// partially re-defining the specified live interval. A common case of this is
 | 
						|
/// a definition of the sub-register.
 | 
						|
bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
 | 
						|
                                   LiveInterval &interval) {
 | 
						|
  if (!MO.getSubReg() || MO.isEarlyClobber())
 | 
						|
    return false;
 | 
						|
 | 
						|
  SlotIndex RedefIndex = MIIdx.getRegSlot();
 | 
						|
  const LiveRange *OldLR =
 | 
						|
    interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
 | 
						|
  MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
 | 
						|
  if (DefMI != 0) {
 | 
						|
    return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
 | 
						|
                                             MachineBasicBlock::iterator mi,
 | 
						|
                                             SlotIndex MIIdx,
 | 
						|
                                             MachineOperand& MO,
 | 
						|
                                             unsigned MOIdx,
 | 
						|
                                             LiveInterval &interval) {
 | 
						|
  DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
 | 
						|
 | 
						|
  // Virtual registers may be defined multiple times (due to phi
 | 
						|
  // elimination and 2-addr elimination).  Much of what we do only has to be
 | 
						|
  // done once for the vreg.  We use an empty interval to detect the first
 | 
						|
  // time we see a vreg.
 | 
						|
  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
 | 
						|
  if (interval.empty()) {
 | 
						|
    // Get the Idx of the defining instructions.
 | 
						|
    SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
 | 
						|
 | 
						|
    // Make sure the first definition is not a partial redefinition. Add an
 | 
						|
    // <imp-def> of the full register.
 | 
						|
    // FIXME: LiveIntervals shouldn't modify the code like this.  Whoever
 | 
						|
    // created the machine instruction should annotate it with <undef> flags
 | 
						|
    // as needed.  Then we can simply assert here.  The REG_SEQUENCE lowering
 | 
						|
    // is the main suspect.
 | 
						|
    if (MO.getSubReg()) {
 | 
						|
      mi->addRegisterDefined(interval.reg);
 | 
						|
      // Mark all defs of interval.reg on this instruction as reading <undef>.
 | 
						|
      for (unsigned i = MOIdx, e = mi->getNumOperands(); i != e; ++i) {
 | 
						|
        MachineOperand &MO2 = mi->getOperand(i);
 | 
						|
        if (MO2.isReg() && MO2.getReg() == interval.reg && MO2.getSubReg())
 | 
						|
          MO2.setIsUndef();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    MachineInstr *CopyMI = NULL;
 | 
						|
    if (mi->isCopyLike()) {
 | 
						|
      CopyMI = mi;
 | 
						|
    }
 | 
						|
 | 
						|
    VNInfo *ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator);
 | 
						|
    assert(ValNo->id == 0 && "First value in interval is not 0?");
 | 
						|
 | 
						|
    // Loop over all of the blocks that the vreg is defined in.  There are
 | 
						|
    // two cases we have to handle here.  The most common case is a vreg
 | 
						|
    // whose lifetime is contained within a basic block.  In this case there
 | 
						|
    // will be a single kill, in MBB, which comes after the definition.
 | 
						|
    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
 | 
						|
      // FIXME: what about dead vars?
 | 
						|
      SlotIndex killIdx;
 | 
						|
      if (vi.Kills[0] != mi)
 | 
						|
        killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
 | 
						|
      else
 | 
						|
        killIdx = defIndex.getDeadSlot();
 | 
						|
 | 
						|
      // If the kill happens after the definition, we have an intra-block
 | 
						|
      // live range.
 | 
						|
      if (killIdx > defIndex) {
 | 
						|
        assert(vi.AliveBlocks.empty() &&
 | 
						|
               "Shouldn't be alive across any blocks!");
 | 
						|
        LiveRange LR(defIndex, killIdx, ValNo);
 | 
						|
        interval.addRange(LR);
 | 
						|
        DEBUG(dbgs() << " +" << LR << "\n");
 | 
						|
        return;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // The other case we handle is when a virtual register lives to the end
 | 
						|
    // of the defining block, potentially live across some blocks, then is
 | 
						|
    // live into some number of blocks, but gets killed.  Start by adding a
 | 
						|
    // range that goes from this definition to the end of the defining block.
 | 
						|
    LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
 | 
						|
    DEBUG(dbgs() << " +" << NewLR);
 | 
						|
    interval.addRange(NewLR);
 | 
						|
 | 
						|
    bool PHIJoin = lv_->isPHIJoin(interval.reg);
 | 
						|
 | 
						|
    if (PHIJoin) {
 | 
						|
      // A phi join register is killed at the end of the MBB and revived as a new
 | 
						|
      // valno in the killing blocks.
 | 
						|
      assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
 | 
						|
      DEBUG(dbgs() << " phi-join");
 | 
						|
      ValNo->setHasPHIKill(true);
 | 
						|
    } else {
 | 
						|
      // Iterate over all of the blocks that the variable is completely
 | 
						|
      // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
 | 
						|
      // live interval.
 | 
						|
      for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
 | 
						|
               E = vi.AliveBlocks.end(); I != E; ++I) {
 | 
						|
        MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
 | 
						|
        LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
 | 
						|
        interval.addRange(LR);
 | 
						|
        DEBUG(dbgs() << " +" << LR);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, this virtual register is live from the start of any killing
 | 
						|
    // block to the 'use' slot of the killing instruction.
 | 
						|
    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
 | 
						|
      MachineInstr *Kill = vi.Kills[i];
 | 
						|
      SlotIndex Start = getMBBStartIdx(Kill->getParent());
 | 
						|
      SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
 | 
						|
 | 
						|
      // Create interval with one of a NEW value number.  Note that this value
 | 
						|
      // number isn't actually defined by an instruction, weird huh? :)
 | 
						|
      if (PHIJoin) {
 | 
						|
        assert(getInstructionFromIndex(Start) == 0 &&
 | 
						|
               "PHI def index points at actual instruction.");
 | 
						|
        ValNo = interval.getNextValue(Start, 0, VNInfoAllocator);
 | 
						|
        ValNo->setIsPHIDef(true);
 | 
						|
      }
 | 
						|
      LiveRange LR(Start, killIdx, ValNo);
 | 
						|
      interval.addRange(LR);
 | 
						|
      DEBUG(dbgs() << " +" << LR);
 | 
						|
    }
 | 
						|
 | 
						|
  } else {
 | 
						|
    if (MultipleDefsBySameMI(*mi, MOIdx))
 | 
						|
      // Multiple defs of the same virtual register by the same instruction.
 | 
						|
      // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
 | 
						|
      // This is likely due to elimination of REG_SEQUENCE instructions. Return
 | 
						|
      // here since there is nothing to do.
 | 
						|
      return;
 | 
						|
 | 
						|
    // If this is the second time we see a virtual register definition, it
 | 
						|
    // must be due to phi elimination or two addr elimination.  If this is
 | 
						|
    // the result of two address elimination, then the vreg is one of the
 | 
						|
    // def-and-use register operand.
 | 
						|
 | 
						|
    // It may also be partial redef like this:
 | 
						|
    // 80  %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
 | 
						|
    // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
 | 
						|
    bool PartReDef = isPartialRedef(MIIdx, MO, interval);
 | 
						|
    if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
 | 
						|
      // If this is a two-address definition, then we have already processed
 | 
						|
      // the live range.  The only problem is that we didn't realize there
 | 
						|
      // are actually two values in the live interval.  Because of this we
 | 
						|
      // need to take the LiveRegion that defines this register and split it
 | 
						|
      // into two values.
 | 
						|
      SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
 | 
						|
 | 
						|
      const LiveRange *OldLR =
 | 
						|
        interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
 | 
						|
      VNInfo *OldValNo = OldLR->valno;
 | 
						|
      SlotIndex DefIndex = OldValNo->def.getRegSlot();
 | 
						|
 | 
						|
      // Delete the previous value, which should be short and continuous,
 | 
						|
      // because the 2-addr copy must be in the same MBB as the redef.
 | 
						|
      interval.removeRange(DefIndex, RedefIndex);
 | 
						|
 | 
						|
      // The new value number (#1) is defined by the instruction we claimed
 | 
						|
      // defined value #0.
 | 
						|
      VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
 | 
						|
 | 
						|
      // Value#0 is now defined by the 2-addr instruction.
 | 
						|
      OldValNo->def  = RedefIndex;
 | 
						|
      OldValNo->setCopy(0);
 | 
						|
 | 
						|
      // A re-def may be a copy. e.g. %reg1030:6<def> = VMOVD %reg1026, ...
 | 
						|
      if (PartReDef && mi->isCopyLike())
 | 
						|
        OldValNo->setCopy(&*mi);
 | 
						|
 | 
						|
      // Add the new live interval which replaces the range for the input copy.
 | 
						|
      LiveRange LR(DefIndex, RedefIndex, ValNo);
 | 
						|
      DEBUG(dbgs() << " replace range with " << LR);
 | 
						|
      interval.addRange(LR);
 | 
						|
 | 
						|
      // If this redefinition is dead, we need to add a dummy unit live
 | 
						|
      // range covering the def slot.
 | 
						|
      if (MO.isDead())
 | 
						|
        interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
 | 
						|
                                    OldValNo));
 | 
						|
 | 
						|
      DEBUG({
 | 
						|
          dbgs() << " RESULT: ";
 | 
						|
          interval.print(dbgs(), tri_);
 | 
						|
        });
 | 
						|
    } else if (lv_->isPHIJoin(interval.reg)) {
 | 
						|
      // In the case of PHI elimination, each variable definition is only
 | 
						|
      // live until the end of the block.  We've already taken care of the
 | 
						|
      // rest of the live range.
 | 
						|
 | 
						|
      SlotIndex defIndex = MIIdx.getRegSlot();
 | 
						|
      if (MO.isEarlyClobber())
 | 
						|
        defIndex = MIIdx.getRegSlot(true);
 | 
						|
 | 
						|
      VNInfo *ValNo;
 | 
						|
      MachineInstr *CopyMI = NULL;
 | 
						|
      if (mi->isCopyLike())
 | 
						|
        CopyMI = mi;
 | 
						|
      ValNo = interval.getNextValue(defIndex, CopyMI, VNInfoAllocator);
 | 
						|
 | 
						|
      SlotIndex killIndex = getMBBEndIdx(mbb);
 | 
						|
      LiveRange LR(defIndex, killIndex, ValNo);
 | 
						|
      interval.addRange(LR);
 | 
						|
      ValNo->setHasPHIKill(true);
 | 
						|
      DEBUG(dbgs() << " phi-join +" << LR);
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("Multiply defined register");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << '\n');
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
 | 
						|
                                              MachineBasicBlock::iterator mi,
 | 
						|
                                              SlotIndex MIIdx,
 | 
						|
                                              MachineOperand& MO,
 | 
						|
                                              LiveInterval &interval,
 | 
						|
                                              MachineInstr *CopyMI) {
 | 
						|
  // A physical register cannot be live across basic block, so its
 | 
						|
  // lifetime must end somewhere in its defining basic block.
 | 
						|
  DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
 | 
						|
 | 
						|
  SlotIndex baseIndex = MIIdx;
 | 
						|
  SlotIndex start = baseIndex.getRegSlot(MO.isEarlyClobber());
 | 
						|
  SlotIndex end = start;
 | 
						|
 | 
						|
  // If it is not used after definition, it is considered dead at
 | 
						|
  // the instruction defining it. Hence its interval is:
 | 
						|
  // [defSlot(def), defSlot(def)+1)
 | 
						|
  // For earlyclobbers, the defSlot was pushed back one; the extra
 | 
						|
  // advance below compensates.
 | 
						|
  if (MO.isDead()) {
 | 
						|
    DEBUG(dbgs() << " dead");
 | 
						|
    end = start.getDeadSlot();
 | 
						|
    goto exit;
 | 
						|
  }
 | 
						|
 | 
						|
  // If it is not dead on definition, it must be killed by a
 | 
						|
  // subsequent instruction. Hence its interval is:
 | 
						|
  // [defSlot(def), useSlot(kill)+1)
 | 
						|
  baseIndex = baseIndex.getNextIndex();
 | 
						|
  while (++mi != MBB->end()) {
 | 
						|
 | 
						|
    if (mi->isDebugValue())
 | 
						|
      continue;
 | 
						|
    if (getInstructionFromIndex(baseIndex) == 0)
 | 
						|
      baseIndex = indexes_->getNextNonNullIndex(baseIndex);
 | 
						|
 | 
						|
    if (mi->killsRegister(interval.reg, tri_)) {
 | 
						|
      DEBUG(dbgs() << " killed");
 | 
						|
      end = baseIndex.getRegSlot();
 | 
						|
      goto exit;
 | 
						|
    } else {
 | 
						|
      int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_);
 | 
						|
      if (DefIdx != -1) {
 | 
						|
        if (mi->isRegTiedToUseOperand(DefIdx)) {
 | 
						|
          // Two-address instruction.
 | 
						|
          end = baseIndex.getRegSlot();
 | 
						|
        } else {
 | 
						|
          // Another instruction redefines the register before it is ever read.
 | 
						|
          // Then the register is essentially dead at the instruction that
 | 
						|
          // defines it. Hence its interval is:
 | 
						|
          // [defSlot(def), defSlot(def)+1)
 | 
						|
          DEBUG(dbgs() << " dead");
 | 
						|
          end = start.getDeadSlot();
 | 
						|
        }
 | 
						|
        goto exit;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    baseIndex = baseIndex.getNextIndex();
 | 
						|
  }
 | 
						|
 | 
						|
  // The only case we should have a dead physreg here without a killing or
 | 
						|
  // instruction where we know it's dead is if it is live-in to the function
 | 
						|
  // and never used. Another possible case is the implicit use of the
 | 
						|
  // physical register has been deleted by two-address pass.
 | 
						|
  end = start.getDeadSlot();
 | 
						|
 | 
						|
exit:
 | 
						|
  assert(start < end && "did not find end of interval?");
 | 
						|
 | 
						|
  // Already exists? Extend old live interval.
 | 
						|
  VNInfo *ValNo = interval.getVNInfoAt(start);
 | 
						|
  bool Extend = ValNo != 0;
 | 
						|
  if (!Extend)
 | 
						|
    ValNo = interval.getNextValue(start, CopyMI, VNInfoAllocator);
 | 
						|
  if (Extend && MO.isEarlyClobber())
 | 
						|
    ValNo->setHasRedefByEC(true);
 | 
						|
  LiveRange LR(start, end, ValNo);
 | 
						|
  interval.addRange(LR);
 | 
						|
  DEBUG(dbgs() << " +" << LR << '\n');
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
 | 
						|
                                      MachineBasicBlock::iterator MI,
 | 
						|
                                      SlotIndex MIIdx,
 | 
						|
                                      MachineOperand& MO,
 | 
						|
                                      unsigned MOIdx) {
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
 | 
						|
    handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
 | 
						|
                             getOrCreateInterval(MO.getReg()));
 | 
						|
  else {
 | 
						|
    MachineInstr *CopyMI = NULL;
 | 
						|
    if (MI->isCopyLike())
 | 
						|
      CopyMI = MI;
 | 
						|
    handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
 | 
						|
                              getOrCreateInterval(MO.getReg()), CopyMI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
 | 
						|
                                         SlotIndex MIIdx,
 | 
						|
                                         LiveInterval &interval, bool isAlias) {
 | 
						|
  DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_));
 | 
						|
 | 
						|
  // Look for kills, if it reaches a def before it's killed, then it shouldn't
 | 
						|
  // be considered a livein.
 | 
						|
  MachineBasicBlock::iterator mi = MBB->begin();
 | 
						|
  MachineBasicBlock::iterator E = MBB->end();
 | 
						|
  // Skip over DBG_VALUE at the start of the MBB.
 | 
						|
  if (mi != E && mi->isDebugValue()) {
 | 
						|
    while (++mi != E && mi->isDebugValue())
 | 
						|
      ;
 | 
						|
    if (mi == E)
 | 
						|
      // MBB is empty except for DBG_VALUE's.
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  SlotIndex baseIndex = MIIdx;
 | 
						|
  SlotIndex start = baseIndex;
 | 
						|
  if (getInstructionFromIndex(baseIndex) == 0)
 | 
						|
    baseIndex = indexes_->getNextNonNullIndex(baseIndex);
 | 
						|
 | 
						|
  SlotIndex end = baseIndex;
 | 
						|
  bool SeenDefUse = false;
 | 
						|
 | 
						|
  while (mi != E) {
 | 
						|
    if (mi->killsRegister(interval.reg, tri_)) {
 | 
						|
      DEBUG(dbgs() << " killed");
 | 
						|
      end = baseIndex.getRegSlot();
 | 
						|
      SeenDefUse = true;
 | 
						|
      break;
 | 
						|
    } else if (mi->definesRegister(interval.reg, tri_)) {
 | 
						|
      // Another instruction redefines the register before it is ever read.
 | 
						|
      // Then the register is essentially dead at the instruction that defines
 | 
						|
      // it. Hence its interval is:
 | 
						|
      // [defSlot(def), defSlot(def)+1)
 | 
						|
      DEBUG(dbgs() << " dead");
 | 
						|
      end = start.getDeadSlot();
 | 
						|
      SeenDefUse = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    while (++mi != E && mi->isDebugValue())
 | 
						|
      // Skip over DBG_VALUE.
 | 
						|
      ;
 | 
						|
    if (mi != E)
 | 
						|
      baseIndex = indexes_->getNextNonNullIndex(baseIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  // Live-in register might not be used at all.
 | 
						|
  if (!SeenDefUse) {
 | 
						|
    if (isAlias) {
 | 
						|
      DEBUG(dbgs() << " dead");
 | 
						|
      end = MIIdx.getDeadSlot();
 | 
						|
    } else {
 | 
						|
      DEBUG(dbgs() << " live through");
 | 
						|
      end = getMBBEndIdx(MBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SlotIndex defIdx = getMBBStartIdx(MBB);
 | 
						|
  assert(getInstructionFromIndex(defIdx) == 0 &&
 | 
						|
         "PHI def index points at actual instruction.");
 | 
						|
  VNInfo *vni =
 | 
						|
    interval.getNextValue(defIdx, 0, VNInfoAllocator);
 | 
						|
  vni->setIsPHIDef(true);
 | 
						|
  LiveRange LR(start, end, vni);
 | 
						|
 | 
						|
  interval.addRange(LR);
 | 
						|
  DEBUG(dbgs() << " +" << LR << '\n');
 | 
						|
}
 | 
						|
 | 
						|
/// computeIntervals - computes the live intervals for virtual
 | 
						|
/// registers. for some ordering of the machine instructions [1,N] a
 | 
						|
/// live interval is an interval [i, j) where 1 <= i <= j < N for
 | 
						|
/// which a variable is live
 | 
						|
void LiveIntervals::computeIntervals() {
 | 
						|
  DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
 | 
						|
               << "********** Function: "
 | 
						|
               << ((Value*)mf_->getFunction())->getName() << '\n');
 | 
						|
 | 
						|
  SmallVector<unsigned, 8> UndefUses;
 | 
						|
  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
 | 
						|
       MBBI != E; ++MBBI) {
 | 
						|
    MachineBasicBlock *MBB = MBBI;
 | 
						|
    if (MBB->empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Track the index of the current machine instr.
 | 
						|
    SlotIndex MIIndex = getMBBStartIdx(MBB);
 | 
						|
    DEBUG(dbgs() << "BB#" << MBB->getNumber()
 | 
						|
          << ":\t\t# derived from " << MBB->getName() << "\n");
 | 
						|
 | 
						|
    // Create intervals for live-ins to this BB first.
 | 
						|
    for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
 | 
						|
           LE = MBB->livein_end(); LI != LE; ++LI) {
 | 
						|
      handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
 | 
						|
    }
 | 
						|
 | 
						|
    // Skip over empty initial indices.
 | 
						|
    if (getInstructionFromIndex(MIIndex) == 0)
 | 
						|
      MIIndex = indexes_->getNextNonNullIndex(MIIndex);
 | 
						|
 | 
						|
    for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
 | 
						|
         MI != miEnd; ++MI) {
 | 
						|
      DEBUG(dbgs() << MIIndex << "\t" << *MI);
 | 
						|
      if (MI->isDebugValue())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Handle defs.
 | 
						|
      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
 | 
						|
        MachineOperand &MO = MI->getOperand(i);
 | 
						|
        if (!MO.isReg() || !MO.getReg())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // handle register defs - build intervals
 | 
						|
        if (MO.isDef())
 | 
						|
          handleRegisterDef(MBB, MI, MIIndex, MO, i);
 | 
						|
        else if (MO.isUndef())
 | 
						|
          UndefUses.push_back(MO.getReg());
 | 
						|
      }
 | 
						|
 | 
						|
      // Move to the next instr slot.
 | 
						|
      MIIndex = indexes_->getNextNonNullIndex(MIIndex);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create empty intervals for registers defined by implicit_def's (except
 | 
						|
  // for those implicit_def that define values which are liveout of their
 | 
						|
  // blocks.
 | 
						|
  for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
 | 
						|
    unsigned UndefReg = UndefUses[i];
 | 
						|
    (void)getOrCreateInterval(UndefReg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LiveInterval* LiveIntervals::createInterval(unsigned reg) {
 | 
						|
  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
 | 
						|
  return new LiveInterval(reg, Weight);
 | 
						|
}
 | 
						|
 | 
						|
/// dupInterval - Duplicate a live interval. The caller is responsible for
 | 
						|
/// managing the allocated memory.
 | 
						|
LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
 | 
						|
  LiveInterval *NewLI = createInterval(li->reg);
 | 
						|
  NewLI->Copy(*li, mri_, getVNInfoAllocator());
 | 
						|
  return NewLI;
 | 
						|
}
 | 
						|
 | 
						|
/// shrinkToUses - After removing some uses of a register, shrink its live
 | 
						|
/// range to just the remaining uses. This method does not compute reaching
 | 
						|
/// defs for new uses, and it doesn't remove dead defs.
 | 
						|
bool LiveIntervals::shrinkToUses(LiveInterval *li,
 | 
						|
                                 SmallVectorImpl<MachineInstr*> *dead) {
 | 
						|
  DEBUG(dbgs() << "Shrink: " << *li << '\n');
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
 | 
						|
         && "Can only shrink virtual registers");
 | 
						|
  // Find all the values used, including PHI kills.
 | 
						|
  SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
 | 
						|
 | 
						|
  // Blocks that have already been added to WorkList as live-out.
 | 
						|
  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
 | 
						|
 | 
						|
  // Visit all instructions reading li->reg.
 | 
						|
  for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg);
 | 
						|
       MachineInstr *UseMI = I.skipInstruction();) {
 | 
						|
    if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
 | 
						|
      continue;
 | 
						|
    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
 | 
						|
    // Note: This intentionally picks up the wrong VNI in case of an EC redef.
 | 
						|
    // See below.
 | 
						|
    VNInfo *VNI = li->getVNInfoBefore(Idx);
 | 
						|
    if (!VNI) {
 | 
						|
      // This shouldn't happen: readsVirtualRegister returns true, but there is
 | 
						|
      // no live value. It is likely caused by a target getting <undef> flags
 | 
						|
      // wrong.
 | 
						|
      DEBUG(dbgs() << Idx << '\t' << *UseMI
 | 
						|
                   << "Warning: Instr claims to read non-existent value in "
 | 
						|
                    << *li << '\n');
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Special case: An early-clobber tied operand reads and writes the
 | 
						|
    // register one slot early.  The getVNInfoBefore call above would have
 | 
						|
    // picked up the value defined by UseMI.  Adjust the kill slot and value.
 | 
						|
    if (SlotIndex::isSameInstr(VNI->def, Idx)) {
 | 
						|
      Idx = VNI->def;
 | 
						|
      VNI = li->getVNInfoBefore(Idx);
 | 
						|
      assert(VNI && "Early-clobber tied value not available");
 | 
						|
    }
 | 
						|
    WorkList.push_back(std::make_pair(Idx, VNI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a new live interval with only minimal live segments per def.
 | 
						|
  LiveInterval NewLI(li->reg, 0);
 | 
						|
  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    VNInfo *VNI = *I;
 | 
						|
    if (VNI->isUnused())
 | 
						|
      continue;
 | 
						|
    NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
 | 
						|
  }
 | 
						|
 | 
						|
  // Keep track of the PHIs that are in use.
 | 
						|
  SmallPtrSet<VNInfo*, 8> UsedPHIs;
 | 
						|
 | 
						|
  // Extend intervals to reach all uses in WorkList.
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    SlotIndex Idx = WorkList.back().first;
 | 
						|
    VNInfo *VNI = WorkList.back().second;
 | 
						|
    WorkList.pop_back();
 | 
						|
    const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
 | 
						|
    SlotIndex BlockStart = getMBBStartIdx(MBB);
 | 
						|
 | 
						|
    // Extend the live range for VNI to be live at Idx.
 | 
						|
    if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
 | 
						|
      (void)ExtVNI;
 | 
						|
      assert(ExtVNI == VNI && "Unexpected existing value number");
 | 
						|
      // Is this a PHIDef we haven't seen before?
 | 
						|
      if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
 | 
						|
        continue;
 | 
						|
      // The PHI is live, make sure the predecessors are live-out.
 | 
						|
      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
 | 
						|
           PE = MBB->pred_end(); PI != PE; ++PI) {
 | 
						|
        if (!LiveOut.insert(*PI))
 | 
						|
          continue;
 | 
						|
        SlotIndex Stop = getMBBEndIdx(*PI);
 | 
						|
        // A predecessor is not required to have a live-out value for a PHI.
 | 
						|
        if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
 | 
						|
          WorkList.push_back(std::make_pair(Stop, PVNI));
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // VNI is live-in to MBB.
 | 
						|
    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
 | 
						|
    NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
 | 
						|
 | 
						|
    // Make sure VNI is live-out from the predecessors.
 | 
						|
    for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
 | 
						|
         PE = MBB->pred_end(); PI != PE; ++PI) {
 | 
						|
      if (!LiveOut.insert(*PI))
 | 
						|
        continue;
 | 
						|
      SlotIndex Stop = getMBBEndIdx(*PI);
 | 
						|
      assert(li->getVNInfoBefore(Stop) == VNI &&
 | 
						|
             "Wrong value out of predecessor");
 | 
						|
      WorkList.push_back(std::make_pair(Stop, VNI));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle dead values.
 | 
						|
  bool CanSeparate = false;
 | 
						|
  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    VNInfo *VNI = *I;
 | 
						|
    if (VNI->isUnused())
 | 
						|
      continue;
 | 
						|
    LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
 | 
						|
    assert(LII != NewLI.end() && "Missing live range for PHI");
 | 
						|
    if (LII->end != VNI->def.getDeadSlot())
 | 
						|
      continue;
 | 
						|
    if (VNI->isPHIDef()) {
 | 
						|
      // This is a dead PHI. Remove it.
 | 
						|
      VNI->setIsUnused(true);
 | 
						|
      NewLI.removeRange(*LII);
 | 
						|
      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
 | 
						|
      CanSeparate = true;
 | 
						|
    } else {
 | 
						|
      // This is a dead def. Make sure the instruction knows.
 | 
						|
      MachineInstr *MI = getInstructionFromIndex(VNI->def);
 | 
						|
      assert(MI && "No instruction defining live value");
 | 
						|
      MI->addRegisterDead(li->reg, tri_);
 | 
						|
      if (dead && MI->allDefsAreDead()) {
 | 
						|
        DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
 | 
						|
        dead->push_back(MI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Move the trimmed ranges back.
 | 
						|
  li->ranges.swap(NewLI.ranges);
 | 
						|
  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
 | 
						|
  return CanSeparate;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Register allocator hooks.
 | 
						|
//
 | 
						|
 | 
						|
void LiveIntervals::addKillFlags() {
 | 
						|
  for (iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
    unsigned Reg = I->first;
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | 
						|
      continue;
 | 
						|
    if (mri_->reg_nodbg_empty(Reg))
 | 
						|
      continue;
 | 
						|
    LiveInterval *LI = I->second;
 | 
						|
 | 
						|
    // Every instruction that kills Reg corresponds to a live range end point.
 | 
						|
    for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
 | 
						|
         ++RI) {
 | 
						|
      // A block index indicates an MBB edge.
 | 
						|
      if (RI->end.isBlock())
 | 
						|
        continue;
 | 
						|
      MachineInstr *MI = getInstructionFromIndex(RI->end);
 | 
						|
      if (!MI)
 | 
						|
        continue;
 | 
						|
      MI->addRegisterKilled(Reg, NULL);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getReMatImplicitUse - If the remat definition MI has one (for now, we only
 | 
						|
/// allow one) virtual register operand, then its uses are implicitly using
 | 
						|
/// the register. Returns the virtual register.
 | 
						|
unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
 | 
						|
                                            MachineInstr *MI) const {
 | 
						|
  unsigned RegOp = 0;
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.isUse())
 | 
						|
      continue;
 | 
						|
    unsigned Reg = MO.getReg();
 | 
						|
    if (Reg == 0 || Reg == li.reg)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
 | 
						|
        !allocatableRegs_[Reg])
 | 
						|
      continue;
 | 
						|
    RegOp = MO.getReg();
 | 
						|
    break; // Found vreg operand - leave the loop.
 | 
						|
  }
 | 
						|
  return RegOp;
 | 
						|
}
 | 
						|
 | 
						|
/// isValNoAvailableAt - Return true if the val# of the specified interval
 | 
						|
/// which reaches the given instruction also reaches the specified use index.
 | 
						|
bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
 | 
						|
                                       SlotIndex UseIdx) const {
 | 
						|
  VNInfo *UValNo = li.getVNInfoAt(UseIdx);
 | 
						|
  return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI));
 | 
						|
}
 | 
						|
 | 
						|
/// isReMaterializable - Returns true if the definition MI of the specified
 | 
						|
/// val# of the specified interval is re-materializable.
 | 
						|
bool
 | 
						|
LiveIntervals::isReMaterializable(const LiveInterval &li,
 | 
						|
                                  const VNInfo *ValNo, MachineInstr *MI,
 | 
						|
                                  const SmallVectorImpl<LiveInterval*> *SpillIs,
 | 
						|
                                  bool &isLoad) {
 | 
						|
  if (DisableReMat)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!tii_->isTriviallyReMaterializable(MI, aa_))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Target-specific code can mark an instruction as being rematerializable
 | 
						|
  // if it has one virtual reg use, though it had better be something like
 | 
						|
  // a PIC base register which is likely to be live everywhere.
 | 
						|
  unsigned ImpUse = getReMatImplicitUse(li, MI);
 | 
						|
  if (ImpUse) {
 | 
						|
    const LiveInterval &ImpLi = getInterval(ImpUse);
 | 
						|
    for (MachineRegisterInfo::use_nodbg_iterator
 | 
						|
           ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end();
 | 
						|
         ri != re; ++ri) {
 | 
						|
      MachineInstr *UseMI = &*ri;
 | 
						|
      SlotIndex UseIdx = getInstructionIndex(UseMI);
 | 
						|
      if (li.getVNInfoAt(UseIdx) != ValNo)
 | 
						|
        continue;
 | 
						|
      if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // If a register operand of the re-materialized instruction is going to
 | 
						|
    // be spilled next, then it's not legal to re-materialize this instruction.
 | 
						|
    if (SpillIs)
 | 
						|
      for (unsigned i = 0, e = SpillIs->size(); i != e; ++i)
 | 
						|
        if (ImpUse == (*SpillIs)[i]->reg)
 | 
						|
          return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isReMaterializable - Returns true if every definition of MI of every
 | 
						|
/// val# of the specified interval is re-materializable.
 | 
						|
bool
 | 
						|
LiveIntervals::isReMaterializable(const LiveInterval &li,
 | 
						|
                                  const SmallVectorImpl<LiveInterval*> *SpillIs,
 | 
						|
                                  bool &isLoad) {
 | 
						|
  isLoad = false;
 | 
						|
  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
 | 
						|
       i != e; ++i) {
 | 
						|
    const VNInfo *VNI = *i;
 | 
						|
    if (VNI->isUnused())
 | 
						|
      continue; // Dead val#.
 | 
						|
    // Is the def for the val# rematerializable?
 | 
						|
    MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
 | 
						|
    if (!ReMatDefMI)
 | 
						|
      return false;
 | 
						|
    bool DefIsLoad = false;
 | 
						|
    if (!ReMatDefMI ||
 | 
						|
        !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
 | 
						|
      return false;
 | 
						|
    isLoad |= DefIsLoad;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
 | 
						|
  LiveInterval::Ranges::const_iterator itr = li.ranges.begin();
 | 
						|
 | 
						|
  MachineBasicBlock *mbb =  indexes_->getMBBCoveringRange(itr->start, itr->end);
 | 
						|
 | 
						|
  if (mbb == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (++itr; itr != li.ranges.end(); ++itr) {
 | 
						|
    MachineBasicBlock *mbb2 =
 | 
						|
      indexes_->getMBBCoveringRange(itr->start, itr->end);
 | 
						|
 | 
						|
    if (mbb2 != mbb)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
float
 | 
						|
LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
 | 
						|
  // Limit the loop depth ridiculousness.
 | 
						|
  if (loopDepth > 200)
 | 
						|
    loopDepth = 200;
 | 
						|
 | 
						|
  // The loop depth is used to roughly estimate the number of times the
 | 
						|
  // instruction is executed. Something like 10^d is simple, but will quickly
 | 
						|
  // overflow a float. This expression behaves like 10^d for small d, but is
 | 
						|
  // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
 | 
						|
  // headroom before overflow.
 | 
						|
  // By the way, powf() might be unavailable here. For consistency,
 | 
						|
  // We may take pow(double,double).
 | 
						|
  float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
 | 
						|
 | 
						|
  return (isDef + isUse) * lc;
 | 
						|
}
 | 
						|
 | 
						|
LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
 | 
						|
                                                  MachineInstr* startInst) {
 | 
						|
  LiveInterval& Interval = getOrCreateInterval(reg);
 | 
						|
  VNInfo* VN = Interval.getNextValue(
 | 
						|
    SlotIndex(getInstructionIndex(startInst).getRegSlot()),
 | 
						|
    startInst, getVNInfoAllocator());
 | 
						|
  VN->setHasPHIKill(true);
 | 
						|
  LiveRange LR(
 | 
						|
     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
 | 
						|
     getMBBEndIdx(startInst->getParent()), VN);
 | 
						|
  Interval.addRange(LR);
 | 
						|
 | 
						|
  return LR;
 | 
						|
}
 | 
						|
 |