mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	This adds a second implementation of the AArch64 architecture to LLVM, accessible in parallel via the "arm64" triple. The plan over the coming weeks & months is to merge the two into a single backend, during which time thorough code review should naturally occur. Everything will be easier with the target in-tree though, hence this commit. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205090 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			393 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			393 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ARM64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| // When profitable, replace GPR targeting i64 instructions with their
 | |
| // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
 | |
| // as minimizing the number of cross-class register copies.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TODO: Graph based predicate heuristics.
 | |
| // Walking the instruction list linearly will get many, perhaps most, of
 | |
| // the cases, but to do a truly throrough job of this, we need a more
 | |
| // wholistic approach.
 | |
| //
 | |
| // This optimization is very similar in spirit to the register allocator's
 | |
| // spill placement, only here we're determining where to place cross-class
 | |
| // register copies rather than spills. As such, a similar approach is
 | |
| // called for.
 | |
| //
 | |
| // We want to build up a set of graphs of all instructions which are candidates
 | |
| // for transformation along with instructions which generate their inputs and
 | |
| // consume their outputs. For each edge in the graph, we assign a weight
 | |
| // based on whether there is a copy required there (weight zero if not) and
 | |
| // the block frequency of the block containing the defining or using
 | |
| // instruction, whichever is less. Our optimization is then a graph problem
 | |
| // to minimize the total weight of all the graphs, then transform instructions
 | |
| // and add or remove copy instructions as called for to implement the
 | |
| // solution.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "arm64-simd-scalar"
 | |
| #include "ARM64.h"
 | |
| #include "ARM64InstrInfo.h"
 | |
| #include "ARM64RegisterInfo.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| AdvSIMDScalar("arm64-simd-scalar",
 | |
|               cl::desc("enable use of AdvSIMD scalar integer instructions"),
 | |
|               cl::init(false), cl::Hidden);
 | |
| // Allow forcing all i64 operations with equivalent SIMD instructions to use
 | |
| // them. For stress-testing the transformation function.
 | |
| static cl::opt<bool>
 | |
| TransformAll("arm64-simd-scalar-force-all",
 | |
|              cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
 | |
|              cl::init(false), cl::Hidden);
 | |
| 
 | |
| STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
 | |
| STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
 | |
| STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
 | |
| 
 | |
| namespace {
 | |
| class ARM64AdvSIMDScalar : public MachineFunctionPass {
 | |
|   MachineRegisterInfo *MRI;
 | |
|   const ARM64InstrInfo *TII;
 | |
| 
 | |
| private:
 | |
|   // isProfitableToTransform - Predicate function to determine whether an
 | |
|   // instruction should be transformed to its equivalent AdvSIMD scalar
 | |
|   // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
 | |
|   bool isProfitableToTransform(const MachineInstr *MI) const;
 | |
| 
 | |
|   // tranformInstruction - Perform the transformation of an instruction
 | |
|   // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
 | |
|   // to be the correct register class, minimizing cross-class copies.
 | |
|   void transformInstruction(MachineInstr *MI);
 | |
| 
 | |
|   // processMachineBasicBlock - Main optimzation loop.
 | |
|   bool processMachineBasicBlock(MachineBasicBlock *MBB);
 | |
| 
 | |
| public:
 | |
|   static char ID; // Pass identification, replacement for typeid.
 | |
|   explicit ARM64AdvSIMDScalar() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|   virtual bool runOnMachineFunction(MachineFunction &F);
 | |
| 
 | |
|   const char *getPassName() const {
 | |
|     return "AdvSIMD scalar operation optimization";
 | |
|   }
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     AU.setPreservesCFG();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| };
 | |
| char ARM64AdvSIMDScalar::ID = 0;
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static bool isGPR64(unsigned Reg, unsigned SubReg,
 | |
|                     const MachineRegisterInfo *MRI) {
 | |
|   if (SubReg)
 | |
|     return false;
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|     return MRI->getRegClass(Reg)->hasSuperClassEq(&ARM64::GPR64RegClass);
 | |
|   return ARM64::GPR64RegClass.contains(Reg);
 | |
| }
 | |
| 
 | |
| static bool isFPR64(unsigned Reg, unsigned SubReg,
 | |
|                     const MachineRegisterInfo *MRI) {
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|     return (MRI->getRegClass(Reg)->hasSuperClassEq(&ARM64::FPR64RegClass) &&
 | |
|             SubReg == 0) ||
 | |
|            (MRI->getRegClass(Reg)->hasSuperClassEq(&ARM64::FPR128RegClass) &&
 | |
|             SubReg == ARM64::dsub);
 | |
|   // Physical register references just check the regist class directly.
 | |
|   return (ARM64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
 | |
|          (ARM64::FPR128RegClass.contains(Reg) && SubReg == ARM64::dsub);
 | |
| }
 | |
| 
 | |
| // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
 | |
| // copy instruction. Return zero_reg if the instruction is not a copy.
 | |
| static unsigned getSrcFromCopy(const MachineInstr *MI,
 | |
|                                const MachineRegisterInfo *MRI,
 | |
|                                unsigned &SubReg) {
 | |
|   SubReg = 0;
 | |
|   // The "FMOV Xd, Dn" instruction is the typical form.
 | |
|   if (MI->getOpcode() == ARM64::FMOVDXr || MI->getOpcode() == ARM64::FMOVXDr)
 | |
|     return MI->getOperand(1).getReg();
 | |
|   // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
 | |
|   // these at this stage, but it's easy to check for.
 | |
|   if (MI->getOpcode() == ARM64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
 | |
|     SubReg = ARM64::dsub;
 | |
|     return MI->getOperand(1).getReg();
 | |
|   }
 | |
|   // Or just a plain COPY instruction. This can be directly to/from FPR64,
 | |
|   // or it can be a dsub subreg reference to an FPR128.
 | |
|   if (MI->getOpcode() == ARM64::COPY) {
 | |
|     if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
 | |
|                 MRI) &&
 | |
|         isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
 | |
|       return MI->getOperand(1).getReg();
 | |
|     if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
 | |
|                 MRI) &&
 | |
|         isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
 | |
|                 MRI)) {
 | |
|       SubReg = ARM64::dsub;
 | |
|       return MI->getOperand(1).getReg();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this is some other kind of instruction.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
 | |
| // that we're considering transforming to, return that AdvSIMD opcode. For all
 | |
| // others, return the original opcode.
 | |
| static int getTransformOpcode(unsigned Opc) {
 | |
|   switch (Opc) {
 | |
|   default:
 | |
|     break;
 | |
|   // FIXME: Lots more possibilities.
 | |
|   case ARM64::ADDXrr:
 | |
|     return ARM64::ADDv1i64;
 | |
|   case ARM64::SUBXrr:
 | |
|     return ARM64::SUBv1i64;
 | |
|   }
 | |
|   // No AdvSIMD equivalent, so just return the original opcode.
 | |
|   return Opc;
 | |
| }
 | |
| 
 | |
| static bool isTransformable(const MachineInstr *MI) {
 | |
|   int Opc = MI->getOpcode();
 | |
|   return Opc != getTransformOpcode(Opc);
 | |
| }
 | |
| 
 | |
| // isProfitableToTransform - Predicate function to determine whether an
 | |
| // instruction should be transformed to its equivalent AdvSIMD scalar
 | |
| // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
 | |
| bool ARM64AdvSIMDScalar::isProfitableToTransform(const MachineInstr *MI) const {
 | |
|   // If this instruction isn't eligible to be transformed (no SIMD equivalent),
 | |
|   // early exit since that's the common case.
 | |
|   if (!isTransformable(MI))
 | |
|     return false;
 | |
| 
 | |
|   // Count the number of copies we'll need to add and approximate the number
 | |
|   // of copies that a transform will enable us to remove.
 | |
|   unsigned NumNewCopies = 3;
 | |
|   unsigned NumRemovableCopies = 0;
 | |
| 
 | |
|   unsigned OrigSrc0 = MI->getOperand(1).getReg();
 | |
|   unsigned OrigSrc1 = MI->getOperand(2).getReg();
 | |
|   unsigned Src0 = 0, SubReg0;
 | |
|   unsigned Src1 = 0, SubReg1;
 | |
|   if (!MRI->def_empty(OrigSrc0)) {
 | |
|     MachineRegisterInfo::def_instr_iterator Def =
 | |
|         MRI->def_instr_begin(OrigSrc0);
 | |
|     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
 | |
|     Src0 = getSrcFromCopy(&*Def, MRI, SubReg0);
 | |
|     // If the source was from a copy, we don't need to insert a new copy.
 | |
|     if (Src0)
 | |
|       --NumNewCopies;
 | |
|     // If there are no other users of the original source, we can delete
 | |
|     // that instruction.
 | |
|     if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0))
 | |
|       ++NumRemovableCopies;
 | |
|   }
 | |
|   if (!MRI->def_empty(OrigSrc1)) {
 | |
|     MachineRegisterInfo::def_instr_iterator Def =
 | |
|         MRI->def_instr_begin(OrigSrc1);
 | |
|     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
 | |
|     Src1 = getSrcFromCopy(&*Def, MRI, SubReg1);
 | |
|     if (Src1)
 | |
|       --NumNewCopies;
 | |
|     // If there are no other users of the original source, we can delete
 | |
|     // that instruction.
 | |
|     if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1))
 | |
|       ++NumRemovableCopies;
 | |
|   }
 | |
| 
 | |
|   // If any of the uses of the original instructions is a cross class copy,
 | |
|   // that's a copy that will be removable if we transform. Likewise, if
 | |
|   // any of the uses is a transformable instruction, it's likely the tranforms
 | |
|   // will chain, enabling us to save a copy there, too. This is an aggressive
 | |
|   // heuristic that approximates the graph based cost analysis described above.
 | |
|   unsigned Dst = MI->getOperand(0).getReg();
 | |
|   bool AllUsesAreCopies = true;
 | |
|   for (MachineRegisterInfo::use_instr_nodbg_iterator
 | |
|            Use = MRI->use_instr_nodbg_begin(Dst),
 | |
|            E = MRI->use_instr_nodbg_end();
 | |
|        Use != E; ++Use) {
 | |
|     unsigned SubReg;
 | |
|     if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(&*Use))
 | |
|       ++NumRemovableCopies;
 | |
|     // If the use is an INSERT_SUBREG, that's still something that can
 | |
|     // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
 | |
|     // preferable to have it use the FPR64 in most cases, as if the source
 | |
|     // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
 | |
|     // Ditto for a lane insert.
 | |
|     else if (Use->getOpcode() == ARM64::INSERT_SUBREG ||
 | |
|              Use->getOpcode() == ARM64::INSvi64gpr)
 | |
|       ;
 | |
|     else
 | |
|       AllUsesAreCopies = false;
 | |
|   }
 | |
|   // If all of the uses of the original destination register are copies to
 | |
|   // FPR64, then we won't end up having a new copy back to GPR64 either.
 | |
|   if (AllUsesAreCopies)
 | |
|     --NumNewCopies;
 | |
| 
 | |
|   // If a tranform will not increase the number of cross-class copies required,
 | |
|   // return true.
 | |
|   if (NumNewCopies <= NumRemovableCopies)
 | |
|     return true;
 | |
| 
 | |
|   // Finally, even if we otherwise wouldn't transform, check if we're forcing
 | |
|   // transformation of everything.
 | |
|   return TransformAll;
 | |
| }
 | |
| 
 | |
| static MachineInstr *insertCopy(const ARM64InstrInfo *TII, MachineInstr *MI,
 | |
|                                 unsigned Dst, unsigned Src, bool IsKill) {
 | |
|   MachineInstrBuilder MIB =
 | |
|       BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(ARM64::COPY),
 | |
|               Dst)
 | |
|           .addReg(Src, getKillRegState(IsKill));
 | |
|   DEBUG(dbgs() << "    adding copy: " << *MIB);
 | |
|   ++NumCopiesInserted;
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| // tranformInstruction - Perform the transformation of an instruction
 | |
| // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
 | |
| // to be the correct register class, minimizing cross-class copies.
 | |
| void ARM64AdvSIMDScalar::transformInstruction(MachineInstr *MI) {
 | |
|   DEBUG(dbgs() << "Scalar transform: " << *MI);
 | |
| 
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   int OldOpc = MI->getOpcode();
 | |
|   int NewOpc = getTransformOpcode(OldOpc);
 | |
|   assert(OldOpc != NewOpc && "transform an instruction to itself?!");
 | |
| 
 | |
|   // Check if we need a copy for the source registers.
 | |
|   unsigned OrigSrc0 = MI->getOperand(1).getReg();
 | |
|   unsigned OrigSrc1 = MI->getOperand(2).getReg();
 | |
|   unsigned Src0 = 0, SubReg0;
 | |
|   unsigned Src1 = 0, SubReg1;
 | |
|   if (!MRI->def_empty(OrigSrc0)) {
 | |
|     MachineRegisterInfo::def_instr_iterator Def =
 | |
|         MRI->def_instr_begin(OrigSrc0);
 | |
|     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
 | |
|     Src0 = getSrcFromCopy(&*Def, MRI, SubReg0);
 | |
|     // If there are no other users of the original source, we can delete
 | |
|     // that instruction.
 | |
|     if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0)) {
 | |
|       assert(Src0 && "Can't delete copy w/o a valid original source!");
 | |
|       Def->eraseFromParent();
 | |
|       ++NumCopiesDeleted;
 | |
|     }
 | |
|   }
 | |
|   if (!MRI->def_empty(OrigSrc1)) {
 | |
|     MachineRegisterInfo::def_instr_iterator Def =
 | |
|         MRI->def_instr_begin(OrigSrc1);
 | |
|     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
 | |
|     Src1 = getSrcFromCopy(&*Def, MRI, SubReg1);
 | |
|     // If there are no other users of the original source, we can delete
 | |
|     // that instruction.
 | |
|     if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1)) {
 | |
|       assert(Src1 && "Can't delete copy w/o a valid original source!");
 | |
|       Def->eraseFromParent();
 | |
|       ++NumCopiesDeleted;
 | |
|     }
 | |
|   }
 | |
|   // If we weren't able to reference the original source directly, create a
 | |
|   // copy.
 | |
|   if (!Src0) {
 | |
|     SubReg0 = 0;
 | |
|     Src0 = MRI->createVirtualRegister(&ARM64::FPR64RegClass);
 | |
|     insertCopy(TII, MI, Src0, OrigSrc0, true);
 | |
|   }
 | |
|   if (!Src1) {
 | |
|     SubReg1 = 0;
 | |
|     Src1 = MRI->createVirtualRegister(&ARM64::FPR64RegClass);
 | |
|     insertCopy(TII, MI, Src1, OrigSrc1, true);
 | |
|   }
 | |
| 
 | |
|   // Create a vreg for the destination.
 | |
|   // FIXME: No need to do this if the ultimate user expects an FPR64.
 | |
|   // Check for that and avoid the copy if possible.
 | |
|   unsigned Dst = MRI->createVirtualRegister(&ARM64::FPR64RegClass);
 | |
| 
 | |
|   // For now, all of the new instructions have the same simple three-register
 | |
|   // form, so no need to special case based on what instruction we're
 | |
|   // building.
 | |
|   BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(NewOpc), Dst)
 | |
|       .addReg(Src0, getKillRegState(true), SubReg0)
 | |
|       .addReg(Src1, getKillRegState(true), SubReg1);
 | |
| 
 | |
|   // Now copy the result back out to a GPR.
 | |
|   // FIXME: Try to avoid this if all uses could actually just use the FPR64
 | |
|   // directly.
 | |
|   insertCopy(TII, MI, MI->getOperand(0).getReg(), Dst, true);
 | |
| 
 | |
|   // Erase the old instruction.
 | |
|   MI->eraseFromParent();
 | |
| 
 | |
|   ++NumScalarInsnsUsed;
 | |
| }
 | |
| 
 | |
| // processMachineBasicBlock - Main optimzation loop.
 | |
| bool ARM64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
 | |
|   bool Changed = false;
 | |
|   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
 | |
|     MachineInstr *MI = I;
 | |
|     ++I;
 | |
|     if (isProfitableToTransform(MI)) {
 | |
|       transformInstruction(MI);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // runOnMachineFunction - Pass entry point from PassManager.
 | |
| bool ARM64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
 | |
|   // Early exit if pass disabled.
 | |
|   if (!AdvSIMDScalar)
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   DEBUG(dbgs() << "***** ARM64AdvSIMDScalar *****\n");
 | |
| 
 | |
|   const TargetMachine &TM = mf.getTarget();
 | |
|   MRI = &mf.getRegInfo();
 | |
|   TII = static_cast<const ARM64InstrInfo *>(TM.getInstrInfo());
 | |
| 
 | |
|   // Just check things on a one-block-at-a-time basis.
 | |
|   for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
 | |
|     if (processMachineBasicBlock(I))
 | |
|       Changed = true;
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| // createARM64AdvSIMDScalar - Factory function used by ARM64TargetMachine
 | |
| // to add the pass to the PassManager.
 | |
| FunctionPass *llvm::createARM64AdvSIMDScalar() {
 | |
|   return new ARM64AdvSIMDScalar();
 | |
| }
 |