mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174786 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			571 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			571 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is the generic implementation of LoopInfo used for both Loops and
 | |
| // MachineLoops.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
 | |
| #define LLVM_ANALYSIS_LOOPINFOIMPL_H
 | |
| 
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // APIs for simple analysis of the loop. See header notes.
 | |
| 
 | |
| /// getExitingBlocks - Return all blocks inside the loop that have successors
 | |
| /// outside of the loop.  These are the blocks _inside of the current loop_
 | |
| /// which branch out.  The returned list is always unique.
 | |
| ///
 | |
| template<class BlockT, class LoopT>
 | |
| void LoopBase<BlockT, LoopT>::
 | |
| getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
 | |
|   std::sort(LoopBBs.begin(), LoopBBs.end());
 | |
| 
 | |
|   typedef GraphTraits<BlockT*> BlockTraits;
 | |
|   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
 | |
|     for (typename BlockTraits::ChildIteratorType I =
 | |
|            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
 | |
|          I != E; ++I)
 | |
|       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
 | |
|         // Not in current loop? It must be an exit block.
 | |
|         ExitingBlocks.push_back(*BI);
 | |
|         break;
 | |
|       }
 | |
| }
 | |
| 
 | |
| /// getExitingBlock - If getExitingBlocks would return exactly one block,
 | |
| /// return that block. Otherwise return null.
 | |
| template<class BlockT, class LoopT>
 | |
| BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
 | |
|   SmallVector<BlockT*, 8> ExitingBlocks;
 | |
|   getExitingBlocks(ExitingBlocks);
 | |
|   if (ExitingBlocks.size() == 1)
 | |
|     return ExitingBlocks[0];
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getExitBlocks - Return all of the successor blocks of this loop.  These
 | |
| /// are the blocks _outside of the current loop_ which are branched to.
 | |
| ///
 | |
| template<class BlockT, class LoopT>
 | |
| void LoopBase<BlockT, LoopT>::
 | |
| getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
 | |
|   std::sort(LoopBBs.begin(), LoopBBs.end());
 | |
| 
 | |
|   typedef GraphTraits<BlockT*> BlockTraits;
 | |
|   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
 | |
|     for (typename BlockTraits::ChildIteratorType I =
 | |
|            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
 | |
|          I != E; ++I)
 | |
|       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
 | |
|         // Not in current loop? It must be an exit block.
 | |
|         ExitBlocks.push_back(*I);
 | |
| }
 | |
| 
 | |
| /// getExitBlock - If getExitBlocks would return exactly one block,
 | |
| /// return that block. Otherwise return null.
 | |
| template<class BlockT, class LoopT>
 | |
| BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
 | |
|   SmallVector<BlockT*, 8> ExitBlocks;
 | |
|   getExitBlocks(ExitBlocks);
 | |
|   if (ExitBlocks.size() == 1)
 | |
|     return ExitBlocks[0];
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
 | |
| template<class BlockT, class LoopT>
 | |
| void LoopBase<BlockT, LoopT>::
 | |
| getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
 | |
|   array_pod_sort(LoopBBs.begin(), LoopBBs.end());
 | |
| 
 | |
|   typedef GraphTraits<BlockT*> BlockTraits;
 | |
|   for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
 | |
|     for (typename BlockTraits::ChildIteratorType I =
 | |
|            BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
 | |
|          I != E; ++I)
 | |
|       if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
 | |
|         // Not in current loop? It must be an exit block.
 | |
|         ExitEdges.push_back(Edge(*BI, *I));
 | |
| }
 | |
| 
 | |
| /// getLoopPreheader - If there is a preheader for this loop, return it.  A
 | |
| /// loop has a preheader if there is only one edge to the header of the loop
 | |
| /// from outside of the loop.  If this is the case, the block branching to the
 | |
| /// header of the loop is the preheader node.
 | |
| ///
 | |
| /// This method returns null if there is no preheader for the loop.
 | |
| ///
 | |
| template<class BlockT, class LoopT>
 | |
| BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
 | |
|   // Keep track of nodes outside the loop branching to the header...
 | |
|   BlockT *Out = getLoopPredecessor();
 | |
|   if (!Out) return 0;
 | |
| 
 | |
|   // Make sure there is only one exit out of the preheader.
 | |
|   typedef GraphTraits<BlockT*> BlockTraits;
 | |
|   typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
 | |
|   ++SI;
 | |
|   if (SI != BlockTraits::child_end(Out))
 | |
|     return 0;  // Multiple exits from the block, must not be a preheader.
 | |
| 
 | |
|   // The predecessor has exactly one successor, so it is a preheader.
 | |
|   return Out;
 | |
| }
 | |
| 
 | |
| /// getLoopPredecessor - If the given loop's header has exactly one unique
 | |
| /// predecessor outside the loop, return it. Otherwise return null.
 | |
| /// This is less strict that the loop "preheader" concept, which requires
 | |
| /// the predecessor to have exactly one successor.
 | |
| ///
 | |
| template<class BlockT, class LoopT>
 | |
| BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
 | |
|   // Keep track of nodes outside the loop branching to the header...
 | |
|   BlockT *Out = 0;
 | |
| 
 | |
|   // Loop over the predecessors of the header node...
 | |
|   BlockT *Header = getHeader();
 | |
|   typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | |
|   for (typename InvBlockTraits::ChildIteratorType PI =
 | |
|          InvBlockTraits::child_begin(Header),
 | |
|          PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
 | |
|     typename InvBlockTraits::NodeType *N = *PI;
 | |
|     if (!contains(N)) {     // If the block is not in the loop...
 | |
|       if (Out && Out != N)
 | |
|         return 0;             // Multiple predecessors outside the loop
 | |
|       Out = N;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure there is only one exit out of the preheader.
 | |
|   assert(Out && "Header of loop has no predecessors from outside loop?");
 | |
|   return Out;
 | |
| }
 | |
| 
 | |
| /// getLoopLatch - If there is a single latch block for this loop, return it.
 | |
| /// A latch block is a block that contains a branch back to the header.
 | |
| template<class BlockT, class LoopT>
 | |
| BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
 | |
|   BlockT *Header = getHeader();
 | |
|   typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | |
|   typename InvBlockTraits::ChildIteratorType PI =
 | |
|     InvBlockTraits::child_begin(Header);
 | |
|   typename InvBlockTraits::ChildIteratorType PE =
 | |
|     InvBlockTraits::child_end(Header);
 | |
|   BlockT *Latch = 0;
 | |
|   for (; PI != PE; ++PI) {
 | |
|     typename InvBlockTraits::NodeType *N = *PI;
 | |
|     if (contains(N)) {
 | |
|       if (Latch) return 0;
 | |
|       Latch = N;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Latch;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // APIs for updating loop information after changing the CFG
 | |
| //
 | |
| 
 | |
| /// addBasicBlockToLoop - This method is used by other analyses to update loop
 | |
| /// information.  NewBB is set to be a new member of the current loop.
 | |
| /// Because of this, it is added as a member of all parent loops, and is added
 | |
| /// to the specified LoopInfo object as being in the current basic block.  It
 | |
| /// is not valid to replace the loop header with this method.
 | |
| ///
 | |
| template<class BlockT, class LoopT>
 | |
| void LoopBase<BlockT, LoopT>::
 | |
| addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
 | |
|   assert((Blocks.empty() || LIB[getHeader()] == this) &&
 | |
|          "Incorrect LI specified for this loop!");
 | |
|   assert(NewBB && "Cannot add a null basic block to the loop!");
 | |
|   assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
 | |
| 
 | |
|   LoopT *L = static_cast<LoopT *>(this);
 | |
| 
 | |
|   // Add the loop mapping to the LoopInfo object...
 | |
|   LIB.BBMap[NewBB] = L;
 | |
| 
 | |
|   // Add the basic block to this loop and all parent loops...
 | |
|   while (L) {
 | |
|     L->Blocks.push_back(NewBB);
 | |
|     L = L->getParentLoop();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
 | |
| /// the OldChild entry in our children list with NewChild, and updates the
 | |
| /// parent pointer of OldChild to be null and the NewChild to be this loop.
 | |
| /// This updates the loop depth of the new child.
 | |
| template<class BlockT, class LoopT>
 | |
| void LoopBase<BlockT, LoopT>::
 | |
| replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
 | |
|   assert(OldChild->ParentLoop == this && "This loop is already broken!");
 | |
|   assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
 | |
|   typename std::vector<LoopT *>::iterator I =
 | |
|     std::find(SubLoops.begin(), SubLoops.end(), OldChild);
 | |
|   assert(I != SubLoops.end() && "OldChild not in loop!");
 | |
|   *I = NewChild;
 | |
|   OldChild->ParentLoop = 0;
 | |
|   NewChild->ParentLoop = static_cast<LoopT *>(this);
 | |
| }
 | |
| 
 | |
| /// verifyLoop - Verify loop structure
 | |
| template<class BlockT, class LoopT>
 | |
| void LoopBase<BlockT, LoopT>::verifyLoop() const {
 | |
| #ifndef NDEBUG
 | |
|   assert(!Blocks.empty() && "Loop header is missing");
 | |
| 
 | |
|   // Setup for using a depth-first iterator to visit every block in the loop.
 | |
|   SmallVector<BlockT*, 8> ExitBBs;
 | |
|   getExitBlocks(ExitBBs);
 | |
|   llvm::SmallPtrSet<BlockT*, 8> VisitSet;
 | |
|   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
 | |
|   df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
 | |
|     BI = df_ext_begin(getHeader(), VisitSet),
 | |
|     BE = df_ext_end(getHeader(), VisitSet);
 | |
| 
 | |
|   // Keep track of the number of BBs visited.
 | |
|   unsigned NumVisited = 0;
 | |
| 
 | |
|   // Sort the blocks vector so that we can use binary search to do quick
 | |
|   // lookups.
 | |
|   SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
 | |
|   std::sort(LoopBBs.begin(), LoopBBs.end());
 | |
| 
 | |
|   // Check the individual blocks.
 | |
|   for ( ; BI != BE; ++BI) {
 | |
|     BlockT *BB = *BI;
 | |
|     bool HasInsideLoopSuccs = false;
 | |
|     bool HasInsideLoopPreds = false;
 | |
|     SmallVector<BlockT *, 2> OutsideLoopPreds;
 | |
| 
 | |
|     typedef GraphTraits<BlockT*> BlockTraits;
 | |
|     for (typename BlockTraits::ChildIteratorType SI =
 | |
|            BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
 | |
|          SI != SE; ++SI)
 | |
|       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
 | |
|         HasInsideLoopSuccs = true;
 | |
|         break;
 | |
|       }
 | |
|     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | |
|     for (typename InvBlockTraits::ChildIteratorType PI =
 | |
|            InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
 | |
|          PI != PE; ++PI) {
 | |
|       BlockT *N = *PI;
 | |
|       if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
 | |
|         HasInsideLoopPreds = true;
 | |
|       else
 | |
|         OutsideLoopPreds.push_back(N);
 | |
|     }
 | |
| 
 | |
|     if (BB == getHeader()) {
 | |
|         assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
 | |
|     } else if (!OutsideLoopPreds.empty()) {
 | |
|       // A non-header loop shouldn't be reachable from outside the loop,
 | |
|       // though it is permitted if the predecessor is not itself actually
 | |
|       // reachable.
 | |
|       BlockT *EntryBB = BB->getParent()->begin();
 | |
|         for (df_iterator<BlockT *> NI = df_begin(EntryBB),
 | |
|                NE = df_end(EntryBB); NI != NE; ++NI)
 | |
|           for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
 | |
|             assert(*NI != OutsideLoopPreds[i] &&
 | |
|                    "Loop has multiple entry points!");
 | |
|     }
 | |
|     assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
 | |
|     assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
 | |
|     assert(BB != getHeader()->getParent()->begin() &&
 | |
|            "Loop contains function entry block!");
 | |
| 
 | |
|     NumVisited++;
 | |
|   }
 | |
| 
 | |
|   assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
 | |
| 
 | |
|   // Check the subloops.
 | |
|   for (iterator I = begin(), E = end(); I != E; ++I)
 | |
|     // Each block in each subloop should be contained within this loop.
 | |
|     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
 | |
|          BI != BE; ++BI) {
 | |
|         assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
 | |
|                "Loop does not contain all the blocks of a subloop!");
 | |
|     }
 | |
| 
 | |
|   // Check the parent loop pointer.
 | |
|   if (ParentLoop) {
 | |
|     assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
 | |
|            ParentLoop->end() &&
 | |
|            "Loop is not a subloop of its parent!");
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// verifyLoop - Verify loop structure of this loop and all nested loops.
 | |
| template<class BlockT, class LoopT>
 | |
| void LoopBase<BlockT, LoopT>::verifyLoopNest(
 | |
|   DenseSet<const LoopT*> *Loops) const {
 | |
|   Loops->insert(static_cast<const LoopT *>(this));
 | |
|   // Verify this loop.
 | |
|   verifyLoop();
 | |
|   // Verify the subloops.
 | |
|   for (iterator I = begin(), E = end(); I != E; ++I)
 | |
|     (*I)->verifyLoopNest(Loops);
 | |
| }
 | |
| 
 | |
| template<class BlockT, class LoopT>
 | |
| void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
 | |
|   OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
 | |
|        << " containing: ";
 | |
| 
 | |
|   for (unsigned i = 0; i < getBlocks().size(); ++i) {
 | |
|     if (i) OS << ",";
 | |
|     BlockT *BB = getBlocks()[i];
 | |
|     WriteAsOperand(OS, BB, false);
 | |
|     if (BB == getHeader())    OS << "<header>";
 | |
|     if (BB == getLoopLatch()) OS << "<latch>";
 | |
|     if (isLoopExiting(BB))    OS << "<exiting>";
 | |
|   }
 | |
|   OS << "\n";
 | |
| 
 | |
|   for (iterator I = begin(), E = end(); I != E; ++I)
 | |
|     (*I)->print(OS, Depth+2);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
 | |
| /// result does / not depend on use list (block predecessor) order.
 | |
| ///
 | |
| 
 | |
| /// Discover a subloop with the specified backedges such that: All blocks within
 | |
| /// this loop are mapped to this loop or a subloop. And all subloops within this
 | |
| /// loop have their parent loop set to this loop or a subloop.
 | |
| template<class BlockT, class LoopT>
 | |
| static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT*> Backedges,
 | |
|                                   LoopInfoBase<BlockT, LoopT> *LI,
 | |
|                                   DominatorTreeBase<BlockT> &DomTree) {
 | |
|   typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | |
| 
 | |
|   unsigned NumBlocks = 0;
 | |
|   unsigned NumSubloops = 0;
 | |
| 
 | |
|   // Perform a backward CFG traversal using a worklist.
 | |
|   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
 | |
|   while (!ReverseCFGWorklist.empty()) {
 | |
|     BlockT *PredBB = ReverseCFGWorklist.back();
 | |
|     ReverseCFGWorklist.pop_back();
 | |
| 
 | |
|     LoopT *Subloop = LI->getLoopFor(PredBB);
 | |
|     if (!Subloop) {
 | |
|       if (!DomTree.isReachableFromEntry(PredBB))
 | |
|         continue;
 | |
| 
 | |
|       // This is an undiscovered block. Map it to the current loop.
 | |
|       LI->changeLoopFor(PredBB, L);
 | |
|       ++NumBlocks;
 | |
|       if (PredBB == L->getHeader())
 | |
|           continue;
 | |
|       // Push all block predecessors on the worklist.
 | |
|       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
 | |
|                                 InvBlockTraits::child_begin(PredBB),
 | |
|                                 InvBlockTraits::child_end(PredBB));
 | |
|     }
 | |
|     else {
 | |
|       // This is a discovered block. Find its outermost discovered loop.
 | |
|       while (LoopT *Parent = Subloop->getParentLoop())
 | |
|         Subloop = Parent;
 | |
| 
 | |
|       // If it is already discovered to be a subloop of this loop, continue.
 | |
|       if (Subloop == L)
 | |
|         continue;
 | |
| 
 | |
|       // Discover a subloop of this loop.
 | |
|       Subloop->setParentLoop(L);
 | |
|       ++NumSubloops;
 | |
|       NumBlocks += Subloop->getBlocks().capacity();
 | |
|       PredBB = Subloop->getHeader();
 | |
|       // Continue traversal along predecessors that are not loop-back edges from
 | |
|       // within this subloop tree itself. Note that a predecessor may directly
 | |
|       // reach another subloop that is not yet discovered to be a subloop of
 | |
|       // this loop, which we must traverse.
 | |
|       for (typename InvBlockTraits::ChildIteratorType PI =
 | |
|              InvBlockTraits::child_begin(PredBB),
 | |
|              PE = InvBlockTraits::child_end(PredBB); PI != PE; ++PI) {
 | |
|         if (LI->getLoopFor(*PI) != Subloop)
 | |
|           ReverseCFGWorklist.push_back(*PI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   L->getSubLoopsVector().reserve(NumSubloops);
 | |
|   L->getBlocksVector().reserve(NumBlocks);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// Populate all loop data in a stable order during a single forward DFS.
 | |
| template<class BlockT, class LoopT>
 | |
| class PopulateLoopsDFS {
 | |
|   typedef GraphTraits<BlockT*> BlockTraits;
 | |
|   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
 | |
| 
 | |
|   LoopInfoBase<BlockT, LoopT> *LI;
 | |
|   DenseSet<const BlockT *> VisitedBlocks;
 | |
|   std::vector<std::pair<BlockT*, SuccIterTy> > DFSStack;
 | |
| 
 | |
| public:
 | |
|   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li):
 | |
|     LI(li) {}
 | |
| 
 | |
|   void traverse(BlockT *EntryBlock);
 | |
| 
 | |
| protected:
 | |
|   void insertIntoLoop(BlockT *Block);
 | |
| 
 | |
|   BlockT *dfsSource() { return DFSStack.back().first; }
 | |
|   SuccIterTy &dfsSucc() { return DFSStack.back().second; }
 | |
|   SuccIterTy dfsSuccEnd() { return BlockTraits::child_end(dfsSource()); }
 | |
| 
 | |
|   void pushBlock(BlockT *Block) {
 | |
|     DFSStack.push_back(std::make_pair(Block, BlockTraits::child_begin(Block)));
 | |
|   }
 | |
| };
 | |
| } // anonymous
 | |
| 
 | |
| /// Top-level driver for the forward DFS within the loop.
 | |
| template<class BlockT, class LoopT>
 | |
| void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
 | |
|   pushBlock(EntryBlock);
 | |
|   VisitedBlocks.insert(EntryBlock);
 | |
|   while (!DFSStack.empty()) {
 | |
|     // Traverse the leftmost path as far as possible.
 | |
|     while (dfsSucc() != dfsSuccEnd()) {
 | |
|       BlockT *BB = *dfsSucc();
 | |
|       ++dfsSucc();
 | |
|       if (!VisitedBlocks.insert(BB).second)
 | |
|         continue;
 | |
| 
 | |
|       // Push the next DFS successor onto the stack.
 | |
|       pushBlock(BB);
 | |
|     }
 | |
|     // Visit the top of the stack in postorder and backtrack.
 | |
|     insertIntoLoop(dfsSource());
 | |
|     DFSStack.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Add a single Block to its ancestor loops in PostOrder. If the block is a
 | |
| /// subloop header, add the subloop to its parent in PostOrder, then reverse the
 | |
| /// Block and Subloop vectors of the now complete subloop to achieve RPO.
 | |
| template<class BlockT, class LoopT>
 | |
| void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
 | |
|   LoopT *Subloop = LI->getLoopFor(Block);
 | |
|   if (Subloop && Block == Subloop->getHeader()) {
 | |
|     // We reach this point once per subloop after processing all the blocks in
 | |
|     // the subloop.
 | |
|     if (Subloop->getParentLoop())
 | |
|       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
 | |
|     else
 | |
|       LI->addTopLevelLoop(Subloop);
 | |
| 
 | |
|     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
 | |
|     // the lists, except for the loop header, which is always at the beginning.
 | |
|     std::reverse(Subloop->getBlocksVector().begin()+1,
 | |
|                  Subloop->getBlocksVector().end());
 | |
|     std::reverse(Subloop->getSubLoopsVector().begin(),
 | |
|                  Subloop->getSubLoopsVector().end());
 | |
| 
 | |
|     Subloop = Subloop->getParentLoop();
 | |
|   }
 | |
|   for (; Subloop; Subloop = Subloop->getParentLoop())
 | |
|     Subloop->getBlocksVector().push_back(Block);
 | |
| }
 | |
| 
 | |
| /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
 | |
| /// interleaved with backward CFG traversals within each subloop
 | |
| /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
 | |
| /// this part of the algorithm is linear in the number of CFG edges. Subloop and
 | |
| /// Block vectors are then populated during a single forward CFG traversal
 | |
| /// (PopulateLoopDFS).
 | |
| ///
 | |
| /// During the two CFG traversals each block is seen three times:
 | |
| /// 1) Discovered and mapped by a reverse CFG traversal.
 | |
| /// 2) Visited during a forward DFS CFG traversal.
 | |
| /// 3) Reverse-inserted in the loop in postorder following forward DFS.
 | |
| ///
 | |
| /// The Block vectors are inclusive, so step 3 requires loop-depth number of
 | |
| /// insertions per block.
 | |
| template<class BlockT, class LoopT>
 | |
| void LoopInfoBase<BlockT, LoopT>::
 | |
| Analyze(DominatorTreeBase<BlockT> &DomTree) {
 | |
| 
 | |
|   // Postorder traversal of the dominator tree.
 | |
|   DomTreeNodeBase<BlockT>* DomRoot = DomTree.getRootNode();
 | |
|   for (po_iterator<DomTreeNodeBase<BlockT>*> DomIter = po_begin(DomRoot),
 | |
|          DomEnd = po_end(DomRoot); DomIter != DomEnd; ++DomIter) {
 | |
| 
 | |
|     BlockT *Header = DomIter->getBlock();
 | |
|     SmallVector<BlockT *, 4> Backedges;
 | |
| 
 | |
|     // Check each predecessor of the potential loop header.
 | |
|     typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
 | |
|     for (typename InvBlockTraits::ChildIteratorType PI =
 | |
|            InvBlockTraits::child_begin(Header),
 | |
|            PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
 | |
| 
 | |
|       BlockT *Backedge = *PI;
 | |
| 
 | |
|       // If Header dominates predBB, this is a new loop. Collect the backedges.
 | |
|       if (DomTree.dominates(Header, Backedge)
 | |
|           && DomTree.isReachableFromEntry(Backedge)) {
 | |
|         Backedges.push_back(Backedge);
 | |
|       }
 | |
|     }
 | |
|     // Perform a backward CFG traversal to discover and map blocks in this loop.
 | |
|     if (!Backedges.empty()) {
 | |
|       LoopT *L = new LoopT(Header);
 | |
|       discoverAndMapSubloop(L, ArrayRef<BlockT*>(Backedges), this, DomTree);
 | |
|     }
 | |
|   }
 | |
|   // Perform a single forward CFG traversal to populate block and subloop
 | |
|   // vectors for all loops.
 | |
|   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
 | |
|   DFS.traverse(DomRoot->getBlock());
 | |
| }
 | |
| 
 | |
| // Debugging
 | |
| template<class BlockT, class LoopT>
 | |
| void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
 | |
|   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
 | |
|     TopLevelLoops[i]->print(OS);
 | |
| #if 0
 | |
|   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
 | |
|          E = BBMap.end(); I != E; ++I)
 | |
|     OS << "BB '" << I->first->getName() << "' level = "
 | |
|        << I->second->getLoopDepth() << "\n";
 | |
| #endif
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 | |
| 
 | |
| #endif
 |